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ABSTRACT

Out-of-Distribution (OOD) generalization remains both a fundamental challenge
and an often-overlooked aspect of modern machine learning—especially in the
context of Deep Neural Networks (DNNs), which are highly expressive yet prone
to overfitting under distributional stress. Classical learning theory highlights the
role of regularization in managing the bias-variance trade-off—particularly im-
portant for complex models with higher VC dimension. In this work, we explore
stochastic data regularization techniques—such as random transformations and
noise injection—applied not only as isolated strategies but also organized through
a Scheduling Policy framework using a Curriculum Learning-based approach.
By progressively increasing input difficulty during training, the scheduling aligns
model capacity with task complexity, promoting more robust generalization. We
also propose a novel statistical procedure to assess the consistency of performance
estimates across cross-validation folds, mitigating miscoverage effects in confi-
dence interval estimation. Altogether, our findings highlight the importance of a
tailored data regularization, where the selection, combination, and schedul-
ing of perturbations become key to achieving OOD robustness in DNNs.

1 INTRODUCTION

Robust generalization is the ability of models to maintain reliable performance under distribution
shifts—when test data deviate from the training distribution. It remains a significant challenge
for Deep Neural Networks (DNNs), which are highly susceptible to overfitting under distribution
shifts (Li et al., 2022; Hendrycks et al., 2021). Within the broader landscape of robust training
strategies, regularization techniques are commonly used to counteract this issue—but they often
fall short or even cause over-regularization, degrading model performance (Lin et al., 2024). These
limitations highlight the need for carefully tailored regularizers (Choi & Kim, 2024; Srivastava et al.,
2014) whose effectiveness depends heavily on both the task (e.g., classification) and the data domain
(e.g., vision, language). This motivates the need for domain-aware and task-sensitive regularization
approaches.

In this work, we adopt the OOD definitions of Farquhar & Gal (2022), focusing on the transformed-
OOD setting, where label-preserving corruptions are applied to in-distribution inputs. To assess the
impact of such shifts, we compute statistical distances—such as KL divergence—between clean and
corrupted latent representations, capturing the extent of deviation and the effect of regularization.

Building on this perspective, we explore whether stochastic data regularization—via random trans-
formations (Cubuk et al., 2020; Hendrycks et al., 2019) and input noise (Bishop, 1995; Yuan et al.,
2025; Filho et al., 2023)—can act as an implicit regularizer when applied dynamically. We show
that organizing these perturbations as a curriculum (Bengio et al., 2009; Lu & Lam, 2023), gradu-
ally increasing their intensity, is a promising yet underexplored strategy in computer vision (Choi &
Kim, 2024)—especially effective for compact models aiming at robust generalization.

A modular framework that systematizes data regularization is presented through three components:
a Selection Policy (e.g., choosing between noise types or augmentation pipelines), a Combination
Policy (e.g., composing augmentations and noise), and a Scheduling Policy (Curriculum Learning-
based approach).
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This paper explores a core question in robust model design: How can data regularization be dy-
namically adapted to a model’s capacity to improve robustness while mitigating overfitting
and underfitting, thereby enhancing out-of-distribution performance? We hypothesize that
stochastic data regularization—whether applied uniformly or progressively—can drive consistent
gains in robustness across domains. When organized as a curriculum, aligning perturbation strength
with model maturity, such strategies can enhance learning stability. Moreover, even unstructured
randomness in augmentations and noise appears effective in reducing overfitting and promoting
generalization, particularly when carefully tuned to avoid early over-perturbation.

To evaluate our models, we assess both average performance and the reliability of performance es-
timates. We introduce a miscoverage-based analysis across cross-validation folds, inspired by Bates
et al. (2023), to quantify how well confidence intervals reflect true variability. Our findings indicate
that stronger data regularization reduces miscoverage—particularly in shallow architectures—by ad-
dressing the bias–variance trade-off and promoting more stable out-of-distribution generalization.

2 RELATED WORKS

Out-of-Distribution Categorization The term out-of-distribution is often used ambiguously in
the literature, leading to inconsistent interpretations and methodological practices. To clarify this,
recent work (Farquhar & Gal, 2022) categorizes the different distributions into four types: trans-
formed, related, complementary, and synthetic.

Diversity in Data Regularization for Robust Learning Recent work has shown that data regu-
larization plays a key role in improving both robustness and generalization (Li & Spratling, 2023).
However, simple transformations are often insufficient under distribution shifts. Increasing the diver-
sity of augmentations promotes better model performance. Diverse transformations help the model
to generalize to unseen data and improve stability under adversarial conditions. This highlights the
importance of carefully designed augmentation pipelines for robust learning.

Miscoverage in Cross-Validation-Based Estimates Standard K-fold cross-validation (CV) often
underestimates variance, resulting in confidence intervals with lower-than-nominal coverage (Ben-
gio & Grandvalet, 2004). This miscoverage is especially pronounced when folds are not indepen-
dent, as data points contribute to both training and evaluation. More recently, Bates et al. (2023)
showed that even in modern settings, such intervals can severely misrepresent model uncertainty.
They observed that stronger regularization mitigates this effect by providing CV estimator with
fresher data across folds. In our work, we capitalize on this known limitation by using leave-fold-
out replications to directly assess model consistency. This not only exposes the weaknesses of
standard cross-validation but also highlights the robustness gains achieved through our proposed
data regularization strategies.

Curriculum Learning Curriculum Learning (CL) is a training paradigm inspired by the human
learning process, where models are exposed to increasingly difficult examples (Bengio et al., 2009).
It has shown benefits for convergence and generalization across domains. A recent causal analy-
sis (Li et al., 2024) highlights that CL is more effective when early tasks reinforce decision patterns
that remain valid throughout training. While originally studied in reinforcement learning, the un-
derlying principle—aligning task difficulty with model capacity—can be extended to other learning
settings. For instance, in computer vision, curriculum-based augmentation strategies that gradually
increase corruption severity during training have gained attention (Lu & Lam, 2023; Choi & Kim,
2024).

3 METHODS

3.1 STOCHASTIC DATA REGULARIZATION

We explore data regularization through stochastic transformations applied during training, struc-
tured along three core dimensions: selection policies (e.g., noise injection, random augmentation
pipelines), combination policies (e.g., jointly applying multiple data regularization strategies), and
scheduling policy (e.g., curriculum learning-based approach).
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Selection Policies Selection policies define stochastic mechanisms for perturbing training inputs,
thereby inducing regularization without altering the underlying task. In this work, we consider two
complementary strategies under this paradigm: direct Noise Injection and Random Transforma-
tions drawn from augmentation sets.

Noise Injection applies input-space corruption by sampling corruption parameters dynamically at
each step. We define a noise operator ν(·) such that:

x̃ = ν(x; θt), θt ∼ P(θmin, θmax), (1)

where P is a generic sampling distribution (e.g., Uniform, Alpha-Stable (Yuan et al., 2025)), and
θt modulates the corruption strength (e.g., standard deviation for Gaussian noise or the corruption
factor for Salt-and-Pepper noise). This technique is theoretically equivalent to Tikhonov regulariza-
tion (Bishop, 1995) and is applied exclusively during training.

Random Transformations, in turn, select stochastic augmentations from a candidate set T =
{τ1, τ2, . . . , τk}. At each training step, a random subset T ∗ ⊆ T is sampled and applied to the
input with randomized parameters:

x̃ = τ(x), τ ∈ T ∗, with parameters from predefined ranges. (2)

Combination Policies In practice, multiple selection policies may be combined—e.g., applying
both τ and ν sequentially—to form a compound perturbation strategy. Such combination policies
can unify coarse (e.g., geometric, shuffling) and fine-grained (e.g., noisy) transformations, enabling
richer training signals and broader robust generalization capabilities.

Scheduling Policy We implement a Curriculum Learning-based approach by progressively train-
ing across stages of increasing regularization, each governed by Early Stopping, as detailed in Al-
gorithm 1. Each stage s ∈ {1, ..., S} introduces a transformation Φs(x) selected from a predefined
scheduling sequence S = (Φ1, ...,ΦS), which may include selection policies (e.g. Eq. 2, Eq. 1) or
their combinations.

Algorithm 1 Scheduling Policy with Early Stopping
Input: Training set {Xtrain, Y train}, Validation set {Xval, Y val}
Input: Scheduling sequence (Φ1, ...,ΦS), Early Stopping patience values (p1, . . . , pS)
Input: Hypothesis SpaceH, Optimizer U , Loss L
Output: Final hypothesis hS ∈ H

1: h1 ← h ∈ H, ϵ←∞
2: for s = 1 to S do
3: p← 0, h̃← hs

4: Xtrain
s ← Φs(X

train)
5: while p > pS do
6: h̃← U(Xtrain

s , Y train, h̃)

7: Ŷ val ← h̃(Xval)

8: ϵ̃← L(Ŷ val, Y val) ▷ Validation set used without transformations
9: if ϵ̃ < ϵ then

10: ϵ← ϵ̃, p← 0, hs ← h̃
11: else
12: p← p+ 1
13: end if
14: end while
15: hs+1 ← hs, s← s+ 1
16: end for
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3.2 CHARACTERIZING OUT-OF-DISTRIBUTION

We characterize out-of-distribution (OOD) datasets by estimating their divergence from the in-
distribution data in a shared latent representation space (Algorithm 2). This approach avoids direct
comparisons in the input space, which may be sensitive to superficial or non-semantic differences.
We train an autoencoder (h ≡ (hf ,hg)) on the in-distribution training set and use its encoder (hf ) to
extract latent representations for both the clean test set (Zin) and each OOD variant (Zout). To quan-
tify the shift between these distributions, we employ Kullback–Leibler (KL) divergence, although
other statistical distances (e.g., Wasserstein) are compatible with our framework.

Algorithm 2 Characterizing Out-of-Distribution Data using Latent Representations
Input: In-distribution dataset X in = {xi}nin

i=1, xi ∈ Rd, with training and test splits: X train, X test

Input: Out-of-distribution dataset Xout = {xj}nout
j=1, xj ∈ Rd

Input: Learning Algorithm A : R→ (hf ,hg) where hf : Rd → Rp (encoder) and hg : Rp → Rd

(decoder)
Output: Out-of-Distribution metric M = KL(Zin ∥ Zout)

1: h← A(X train)
2: ε← 10−10 ▷ Define a small positive constant
3: Zin ← hf (X

test) ▷ Encode in-distribution test dataset Zin ∈ Rnin×p

4: Zin ← flatten(Zin) + ε ▷ Encode in-distribution test dataset Zin ∈ Rnin×p × 1
5: Zin ← Zin

1TZin

6: Zout ← hf (X
out) ▷ Encode out-of-distribution dataset Zout ∈ Rnout×p

7: Zout ← flatten(Zout) + ε ▷ Encode in-distribution test dataset Zout ∈ Rnout×p × 1
8: Zout ← Zout

1TZout

9: M = ZT
in · logZin − ZT

in logZout ▷ Compute KL Divergence

3.3 MISCOVERAGE STATISTICAL ANALYSIS

We formalize our miscoverage evaluation via leave-fold-out analysis, detailed in Algorithm 3.

Algorithm 3 Leave-Folds-Out Miscoverage Analysis
Input: Set of K-Fold Estimates F = {Fi : Fi ∈ RB}Ki=1
Input: Number L of folds to leave out
Output: Set of TuplesR = {(µ̃Rj , σRj )}Jj=1

1: J ← K − L
2: µF ← 1

N 1TF ▷ Compute mean
3: R ← ∅
4: for j = 1 to J do
5: Rj ← F− {Fj , . . . ,Fj+L−1} ▷ Rj ∈ RB×J

6: µ̃Rj
= µRj

− µF ▷ Mean-centered
7: σRj

← bootstrap(Rj)
8: R ← R∪ (µ̃Rj

, σRj
)

9: end for

4 EXPERIMENTAL SETUP

Our experimental setup is designed to evaluate the impact of data regularization strategies on in-
distribution, out-of-sample and out-of-distribution scenarios, as seen in Figure 3. All results reported
in the main paper refer to the CIFAR-10 (Krizhevsky et al., 2009) dataset and its corrupted variant,
CIFAR-10-C (Hendrycks & Dietterich, 2019). The CIFAR-10-C benchmark includes 19 corruption
types (e.g. JPEG compression, contrast, brightness) across 5 severity levels, resulting in a total
of 95 out-of-distribution datasets. We use F1-score as the evaluation estimator θ throughout all
in-distribution and out-of-distribution assessments.
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Figure 1: Overview of our evaluation pipeline. (a) We apply distinct stochastic data regularization
strategies to the original in-sample dataset Din for training, including no regularization (Baseline)
and our modular framework consisting in 3 different policies—selection, combination, and schedul-
ing—to regularize our data. (b) For each strategy, models are trained using K-fold cross-validation
over Din. (c) Trained models are evaluated on Din to obtain θ

(i)
in estimators. (d) Each model is

then evaluated on a collection of G corrupted datasets {D(g)
out }Gg=1 to compute out-of-distribution

estimators θ(i)out[g], enabling robust generalization and miscoverage analysis under domain shift.

4.1 ARCHITECTURES

We evaluate three representative architectures to assess the generalization effects of data regular-
ization. ResNet-20 (He et al., 2016) serves as a compact and shallow baseline with approximately
280K parameters. WideResNet-28-10 (Zagoruyko & Komodakis, 2016) is a deeper and signifi-
cantly wider CNN, totaling over 36M parameters, representing a high-capacity architecture. Finally,
CCT (Compact Convolutional Transformer) (Hassani et al., 2021) introduces a hybrid transformer-
based model with convolutional tokenization and positional encoding, comprising around 930K
parameters. This setup allows us to contrast different architectural families—shallow CNNs, wide
CNNs, and attention-based models—under a unified training protocol. All models are trained from
scratch, without architectural-level regularization (e.g., Dropout or LayerNorm), to isolate the ef-
fects of data regularization alone. Inputs are 32×32×3 and training uses a batch size of 128.

4.2 IMPLEMENTATION DETAILS

Early Stopping was applied consistently across all training routines—including both standard and
curriculum-based strategies—to prevent overfitting and stabilize convergence. Although this pro-
motes fair evaluations, baseline models often converge prematurely, leading to lower final perfor-
mance that may differ from typical state-of-the-art results. This is intentional, as our focus lies
in understanding the robust generalization capabilities of models rather than maximizing absolute
performance.

Standard training strategies used a fixed patience of 10 epochs, while Curriculum Learning stages
followed a progressive patience schedule tailored to the difficulty of each stage. The same Early
Stopping protocol was also applied to the Autoencoder used in the KL divergence characterization
(see Section 3.2), ensuring consistent training dynamics across all components of the experimental
pipeline.

4.3 DATA REGULARIZATION STRATEGIES

All stochastic data regularization strategies evaluated in this study are organized within our modular
framework of Selection Policies, Combination Policies, and Scheduling Policy. Table 1 summa-
rizes the configuration details, including the maximum Salt & Pepper factor, Gaussian noise stan-
dard deviation, RandAugment parameters, Curriculum Learning stage schedule, and Early Stopping
values.
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We apply RandAugment (Cubuk et al., 2020)—composed of both transformations (e.g. color jitter,
Gaussian blur, and saturation adjustments) and standard augmentations like random cropping—as a
representative Selection Policy, using three transformations per image with a fixed magnitude of 0.3.
As a Combination Policy, we compose RandAugment with additive noise—either Gaussian or Salt &
Pepper—to enhance perturbation diversity. At each training step, the noise intensity is dynamically
sampled from a uniform distribution: σ ∼ U(0, σmax) for Gaussian noise, and λ ∼ U(0, λmax) for
Salt & Pepper.

Finally, we implement a curriculum-based Scheduling Policy, where the regularization severity in-
creases across training stages. All parameter values used in these strategies were selected through
a lightweight parameter search. As a result, the Scheduling Policy focuses on the most effective
configurations found—namely, RandAugment followed by RandAugment combined with Gaussian
noise.

For a visual illustration of the applied perturbations under each strategy, see Appendix A. The
GitHub repository will be made publicly available for full reproducibility.

Table 1: Configurations for CIFAR-10 training strategies, including data regularization types, noise
levels, and Early Stopping (ES) patience.

Policy Strategy Max S&P Factor (α) Max Gaussian StdDev (σ) ES Patience
Baseline None – – 10
Selection Policy RandAugment – – 10
Combination Policy RandAugment + S&P 0.3 – 10
Combination Policy RandAugment + GN – 0.2 10

Scheduling Policy
Stage 1: RandAugment – – 3

Stage 2: RandAugment + GN – 0.1 5
Stage 3: RandAugment + GN – 0.2 8
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Figure 2: KL-based categorization of CIFAR-10-C corruptions.

To enable severity-aware com-
parisons, we characterize each
of the 95 CIFAR-10-C corrup-
tions by measuring their diver-
gence from the clean CIFAR-
10 distribution in latent space
and calculating the KL Diver-
gence. This is performed us-
ing Algorithm 2. Based on
the resulting metric vector, we
sort all corruptions and divide
them into three severity bands
according to their percentile
rank: Lowest (0–33rd), Mid-
Range (34–66th), and Highest
(67–100th). Figure 2 shows this
categorization, with average KL
values and bootstrapped confi-
dence intervals per group. This
severity stratification underpins all subsequent robustness analyses presented in this study.

To evaluate the effectiveness of data regularization strategies, we report F1-scores under both in-
distribution (out-of-sample) and out-of-distribution (OOD) scenarios. As shown in Figure 5 and Ta-
ble 2, augmenting training with stochastic regularization significantly improves performance across
all models and severity levels. In particular, we observe that applying RandAugment improves OOD
generalization compared to the baseline. Furthermore, combining RandAugment with noise yields
even stronger improvements under high-severity corruptions. Finally, the Scheduling Policy consis-
tently achieve superior F1-scores under stronger corruptions, especially for lightweight architectures
like ResNet20.
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Lowest

Mid-Range

Highest

ResNet20

0.4 0.5 0.6 0.7 0.8 0.9
F1-Score

WideResNet28-10

0.4 0.5 0.6 0.7 0.8 0.9
F1-Score

CCT

Baseline
RandAugment

RandAugment+S&P
RandAugment+Gaussian

Scheduling Policy

Figure 3: F1-scores for each model under In-Distribution and Out-of-Distribution (OOD) scenarios,
with corruptions grouped by severity (Lowest, Mid-Range, Highest).

Table 2: Out-of-Distribution (OOD) characterization for CIFAR-10-C grouped by severity. Values
are F1-score (95% CI). Epochs are average values. Best results per column are in bold.

ResNet20 In-Dist. Lowest Mid-Range Highest Epochs (avg)
Baseline 67.9 (66.6, 69.4) 60.1 (59.3, 60.9) 50.4 (49.1, 51.6) 48.9 (47.5, 50.3) 15.4
RandAugment 85.7 (84.8, 86.7) 76.8 (75.9, 77.8) 64.9 (62.8, 66.8) 70.1 (68.5, 71.8) 51.4
RandAugment+S&P 84.5 (83.6, 85.5) 77.9 (77.2, 78.7) 67.4 (65.6, 69.2) 73.2 (72.0, 74.4) 65.3
RandAugment+Gaussian 83.3 (82.6, 84.0) 80.6 (80.3, 81.0) 78.4 (77.9, 78.8) 72.6 (71.4, 73.9) 63.0
Scheduling Policy 84.2 (83.6, 84.8) 81.4 (81.1, 81.8) 79.4 (79.1, 79.8) 74.3 (73.3, 75.5) 91.6

WideResNet-28-10
Baseline 77.4 (75.7, 79.2) 63.6 (62.4, 64.9) 50.1 (48.2, 52.0) 52.1 (50.3, 53.8) 19.0
RandAugment 91.4 (90.7, 92.3) 82.9 (81.9, 83.8) 72.4 (70.5, 74.4) 77.8 (76.3, 79.3) 53.6
RandAugment+S&P 91.5 (91.1, 92.0) 84.3 (83.5, 85.1) 74.6 (72.9, 76.4) 81.3 (80.1, 82.6) 56.6
RandAugment+Gaussian 90.0 (89.4, 90.7) 87.2 (86.8, 87.6) 85.0 (84.6, 85.5) 80.6 (79.6, 81.7) 59.9
Scheduling Policy 90.2 (89.7, 90.7) 87.2 (86.8, 87.6) 85.1 (84.7, 85.5) 80.5 (79.4, 81.8) 62.1

CCT
Baseline 65.2 (63.6, 66.8) 56.8 (55.8, 57.8) 48.3 (47.3, 49.4) 42.4 (41.1, 43.8) 15.6
RandAugment 87.1 (86.7, 87.5) 78.1 (77.2, 79.1) 64.5 (62.4, 66.7) 69.5 (67.7, 71.5) 95.0
RandAugment+S&P 83.8 (83.6, 84.0) 79.3 (78.8, 79.8) 70.6 (69.4, 71.8) 71.5 (70.1, 73.0) 100.0
RandAugment+Gaussian 83.5 (82.6, 84.4) 80.7 (80.3, 81.1) 78.7 (78.3, 79.1) 71.6 (70.3, 73.1) 99.1
Scheduling Policy 82.5 (81.8, 83.3) 79.4 (79.0, 79.9) 77.3 (76.8, 77.7) 70.0 (68.5, 71.6) 77.7
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Table 3: Standard deviation (95% CI) of F1-scores across CIFAR-10-C severity ranges. Lower
values indicate more stable performance across folds. Best results per column are in bold.

ResNet20 In-Dist. Lowest Mid-Range Highest
Baseline .0237 (.0229, .0244) .0718 (.0707, .0728) .1144 (.1134, .1154) .1337 (.1321, .1354)
RandAugment .0139 (.0135, .0143) .0643 (.0636, .0650) .1418 (.1409, .1427) .1292 (.1278, .1307)
RandAugment+S&P .0157 (.0149, .0164) .0670 (.0660, .0681) .1603 (.1590, .1616) .1162 (.1140, .1184)
RandAugment+Gaussian .0106 (.0101, .0112) .0313 (.0305, .0319) .0389 (.0385, .0394) .1173 (.1140, .1206)
Scheduling Policy .0098 (.0094, .0103) .0306 (.0299, .0313) .0338 (.0334, .0341) .1048 (.1016, .1081)
WideResNet-28-10
Baseline .0273 (.0255, .0293) .1167 (.1150, .1186) .1658 (.1646, .1671) .1695 (.1679, .1710)
RandAugment .0106 (.0103, .0110) .0674 (.0668, .0681) .1394 (.1386, .1403) .1192 (.1180, .1206)
RandAugment+S&P .0072 (.0068, .0076) .0736 (.0725, .0747) .1635 (.1622, .1647) .1128 (.1108, .1148)
RandAugment+Gaussian .0111 (.0107, .0116) .0356 (.0348, .0365) .0427 (.0422, .0432) .1002 (.0979, .1030)
Scheduling Policy .0075 (.0068, .0081) .0343 (.0335, .0353) .0399 (.0395, .0404) .1039 (.1006, .1068)

CCT
Baseline .0250 (.0237, .0261) .0881 (.0866, .0895) .0897 (.0889, .0906) .1317 (.1303, .1330)
RandAugment .0094 (.0090, .0099) .0588 (.0581, .0595) .1316 (.1306, .1325) .1490 (.1472, .1507)
RandAugment+S&P .0041 (.0039, .0043) .0439 (.0432, .0447) .1136 (.1124, .1147) .1319 (.1287, .1350)
RandAugment+Gaussian .0143 (.0136, .0150) .0349 (.0342, .0357) .0363 (.0359, .0367) .1332 (.1299, .1365)
Scheduling Policy .0113 (.0107, .0119) .0377 (.0369, .0385) .0400 (.0395, .0405) .1340 (.1307, .1373)

To complement average performance results, we apply our proposed Miscoverage Analysis (Algo-
rithm 3) to assess the stability of model predictions across cross-validation folds. Figure 5 visualizes
miscoverage behaviors, while Table 3 reports the standard deviation and 95% confidence intervals
of F1-scores across severity categories, highlighting the consistency gains from data regularization
strategies.
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Figure 4: Mean-Centered F-Score distributions for each data regularization strategy across three ar-
chitectures (ResNet20, WideResNet-28-10, and CCT) and four evaluation domains: In-Distribution
and OOD corruptions grouped by severity levels. Each point represents a mean-centered F1-score
from one replication, and horizontal lines denote 95% confidence intervals derived via bootstrap
resampling. These results are generated using the Leave-Folds-Out Miscoverage Analysis (Algo-
rithm 3). Narrower intervals suggest more stable generalization across unseen corruptions and folds.
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6 DISCUSSION

Our findings underscore that robust generalization is strongly influenced by how data regularization
is designed and scheduled during training. Rather than relying solely on isolated techniques, our
modular framework offers a structured lens for understanding and improving robust gener-
alization, especially under out-of-distribution shifts.

Scheduling Policies (Curriculum Learning-based) consistently with state-of-the-art proves effec-
tive in enhancing robustness across architectures and corruption severities. It reliably reduces per-
formance variability (i.e., lower standard deviations) and often outperforms isolated regularization
strategies. These findings emphasize the importance of the training data presentation order for gen-
eralization under distribution shift.

Combining stochastic data regularization techniques also yields measurable benefits. In particular,
pairing RandAugment with Gaussian noise improves robustness for WideResNet and CCT, whereas
Salt & Pepper noise produces less consistent gains. This suggests that the interaction between model
architecture and corruption type is nontrivial and deserves further attention.

Notably, improvements are not solely driven by the type of regularization applied, but also by in-
creased training exposure. Curriculum-based strategies tend to train longer before Early Stopping is
triggered. This extended exposure appears necessary for learning robust representations, indicating
that vision models benefit from prolonged stochastic regularization.

Some of the applied data regularization strategies may partially overlap with corruptions present
in the CIFAR-10-C dataset. To understand the effects under this lens, we include a discussion
in Appendix B comparing overall performance on the full CIFAR-10-C benchmark and a filtered
version that excludes overlapping corruptions—specifically, cases where similar transformations
(e.g., Gaussian noise or contrast adjustments introduced by RandAugment) are used during training
but are also present in the evaluated corrupted test sets.

In summary, our results highlight that the structure and progression of regularization—not just its
presence—play a critical role in enabling robust generalization, particularly for compact models. A
tailored and modular approach to data regularization, as proposed in this study, offers a promising
direction for building more reliable machine learning systems under distributional stress.

7 CONCLUSION

This work explored stochastic data regularization strategies to improve model robustness under dis-
tribution shift. We find that organizing these transformations into a curriculum—progressively in-
creasing complexity during training—consistently leads to more stable and generalizable models.
While curriculum-based approaches demonstrate strong regularization capabilities, especially un-
der challenging conditions, we also observe that simpler strategies combining transformations with
noise injection offer competitive trade-offs in terms of effectiveness and efficiency. These results
highlight that the structure and dynamics of data exposure can be as important as the regularization
technique itself. For future work, we aim to explore a Variational Autoencoder to extract a structured
latent space, thereby enhancing our quantification of distribution shifts. Additionally, we intend to
apply the methods proposed in this work to other data modalities, such as acoustic signals and text.
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A DATA REGULARIZATION TRANSFORMATIONS
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Figure 5: Visual comparison of stochastic data regularization strategies applied to CIFAR-10 sam-
ples. (a) Original images. (b) RandAugment with 3 transformations per image and magnitude 0.3.
(c) RandAugment combined with Salt & Pepper noise (Combination Policy), where the noise factor
α is sampled uniformly from U(0, αmax = 0.3). (d) RandAugment combined with Gaussian noise,
with standard deviation σ ∼ U(0, σmax = 0.2). The values of α and σ shown below each image
indicate the sampled noise intensity for that example.

B OVERALL RESULTS ACROSS ALL CORRUPTIONS

Some of the data regularization strategies we adopt—such as Gaussian noise, Salt & Pepper noise,
and RandAugment—introduce transformations that can be thought of as partially overlapping with
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specific corruptions in the CIFAR-10-C dataset (e.g., Gaussian Noise, Shot Noise, Speckle Noise,
Impulse Noise, Contrast, Brightness). We conducted a sensitivity analysis comparing a dataset with
all curruptions included and a dataset (w/o Overlap) that excludes these potentially overlapping
curruptions. The (w/o Overlap) dataset is, when compared to the dataset containing all corruptions,
OOD to a greater extent. The results remain consistent, and the exclusion of potentially overlapping
corruptions has even improved in some cases.

Table 4: General performance for three models using different augmentation strategies. Values are
F1-score (95% CI). Best results per column are in bold.

ResNet20 In-Dist. All Corruptions w/o Overlap
Baseline 67.9 (66.5, 69.4) 53.0 (52.3, 53.9) 55.2 (54.5, 56.0)
RandAugment 85.7 (84.8, 86.7) 70.6 (69.7, 71.5) 73.3 (72.3, 74.2)
RandAugment+S&P 84.5 (83.6, 85.5) 72.8 (72.0, 73.6) 75.0 (74.4, 75.7)
RandAugment+Gaussian 83.3 (82.6, 84.0) 77.1 (76.6, 77.6) 76.8 (76.4, 77.2)
Scheduling Policy 84.2 (83.6, 84.8) 78.3 (77.9, 78.8) 78.1 (77.7, 78.5)
WideResNet-28-10
Baseline 77.4 (75.7, 79.4) 55.2 (54.2, 56.3) 57.3 (56.2, 58.4)
RandAugment 91.4 (90.7, 92.3) 77.7 (76.8, 78.6) 79.6 (78.6, 80.6)
RandAugment+S&P 91.5 (91.1, 92.0) 80.1 (79.3, 80.9) 81.1 (80.2, 82.0)
RandAugment+Gaussian 90.0 (89.3, 90.7) 84.2 (83.7, 84.7) 83.5 (83.1, 84.0)
Scheduling Policy 90.2 (89.8, 90.7) 84.2 (83.7, 84.7) 83.6 (83.2, 84.1)
CCT
Baseline 65.2 (63.7, 66.8) 49.0 (48.3, 49.8) 50.1 (49.3, 50.9)
RandAugment 87.1 (86.6, 87.5) 70.7 (69.6, 71.7) 75.3 (74.5, 76.2)
RandAugment+S&P 83.8 (83.5, 84.0) 73.7 (73.0, 74.5) 75.4 (74.9, 76.0)
RandAugment+Gaussian 83.5 (82.6, 84.4) 76.9 (76.3, 77.5) 76.8 (76.4, 77.2)
Scheduling Policy 82.5 (81.9, 83.2) 75.4 (74.8, 76.1) 75.3 (74.8, 75.8)

C ACKNOWLEDGMENT OF LLM USE

We acknowledge the use of large language models to aid in polishing the writing and, primarily, to
help build and check how tables and plots could be presented in the best way. The models were not
used to generate original research content, experiments, or results.

12


	Introduction
	Related Works
	Methods
	Stochastic Data Regularization
	Characterizing Out-of-Distribution
	Miscoverage Statistical Analysis

	Experimental Setup
	Architectures
	Implementation Details
	Data Regularization Strategies

	Results
	Discussion
	Conclusion
	Data Regularization Transformations
	Overall Results across all Corruptions
	Acknowledgment of LLM Use

