

000 TOWARDS ROBUST OUT-OF-DISTRIBUTION GENERALIZATION 001 FOR DEEP NEURAL NETWORKS WITH TAI- 002 LORED DATA REGULARIZATION 003 004

005 **Anonymous authors**
 006
 007 Paper under double-blind review
 008
 009
 010
 011

ABSTRACT

012 Out-of-Distribution (OOD) generalization remains both a fundamental challenge
 013 and an often-overlooked aspect of modern machine learning—especially in the
 014 context of Deep Neural Networks (DNNs), which are highly expressive yet prone
 015 to overfitting under distributional stress. Classical learning theory highlights the
 016 role of regularization in managing the bias-variance trade-off—particularly im-
 017 portant for complex models with higher VC dimension. In this work, we explore
 018 **stochastic data regularization techniques**—such as random transformations and
 019 noise injection—applied not only as isolated strategies but also organized through
 020 a Scheduling Policy framework using a Curriculum Learning-based approach.
 021 By progressively increasing input difficulty during training, the scheduling aligns
 022 model capacity with task complexity, promoting more **robust generalization**. We
 023 also propose a novel statistical procedure to assess the consistency of performance
 024 estimates across cross-validation folds, mitigating miscoverage effects in confi-
 025 dence interval estimation. Altogether, our findings highlight the importance of a
 026 **tailored data regularization, where the selection, combination, and schedul-**
 027 **ing** of perturbations become key to achieving OOD robustness in DNNs.
 028

029 1 INTRODUCTION

030 Robust generalization is the ability of models to maintain reliable performance under distribution
 031 shifts—when test data deviate from the training distribution. It remains a significant challenge
 032 for Deep Neural Networks (DNNs), which are highly susceptible to overfitting under distribution
 033 shifts (Li et al., 2022; Hendrycks et al., 2021). Within the broader landscape of robust training
 034 strategies, regularization techniques are commonly used to counteract this issue—but they often
 035 fall short or even cause over-regularization, degrading model performance (Lin et al., 2024). These
 036 limitations highlight the need for carefully tailored regularizers (Choi & Kim, 2024; Srivastava et al.,
 037 2014) whose effectiveness depends heavily on both the task (e.g., classification) and the data domain
 038 (e.g., vision, language). This motivates the need for domain-aware and task-sensitive regularization
 039 approaches.
 040

041 In this work, we adopt the OOD definitions of Farquhar & Gal (2022), focusing on the **transformed-**
 042 **OOD** setting, where label-preserving corruptions are applied to in-distribution inputs. To assess the
 043 impact of such shifts, we compute statistical distances—such as KL divergence—between clean and
 044 corrupted latent representations, capturing the extent of deviation and the effect of regularization.

045 Building on this perspective, we explore whether stochastic data regularization—via random trans-
 046 formations (Cubuk et al., 2020; Hendrycks et al., 2019) and input noise (Bishop, 1995; Yuan et al.,
 047 2025; Filho et al., 2023)—can act as an implicit regularizer when applied dynamically. We show
 048 that organizing these perturbations as a curriculum (Bengio et al., 2009; Lu & Lam, 2023), gradu-
 049 ally increasing their intensity, is a promising yet underexplored strategy in computer vision (Choi &
 050 Kim, 2024)—especially effective for compact models aiming at robust generalization.

051 A modular framework that systematizes data regularization is presented through three components:
 052 a *Selection Policy* (e.g., choosing between noise types or augmentation pipelines), a *Combination*
 053 *Policy* (e.g., composing augmentations and noise), and a *Scheduling Policy* (Curriculum Learning-
 based approach).

054 This paper explores a core question in robust model design: **How can data regularization be dy-**
 055 **namically adapted to a model’s capacity to improve robustness while mitigating overfitting**
 056 **and underfitting, thereby enhancing out-of-distribution performance?** We hypothesize that
 057 stochastic data regularization—whether applied uniformly or progressively—can drive consistent
 058 gains in robustness across domains. When organized as a curriculum, aligning perturbation strength
 059 with model maturity, such strategies can enhance learning stability. Moreover, even unstructured
 060 randomness in augmentations and noise appears effective in reducing overfitting and promoting
 061 generalization, particularly when carefully tuned to avoid early over-perturbation.

062 To evaluate our models, we assess both average performance and the reliability of performance es-
 063 timates. We introduce a miscoverage-based analysis across cross-validation folds, inspired by Bates
 064 et al. (2023), to quantify how well confidence intervals reflect true variability. Our findings indicate
 065 that stronger data regularization reduces miscoverage—particularly in shallow architectures—by ad-
 066 dressing the bias–variance trade-off and promoting more stable out-of-distribution generalization.

068 2 RELATED WORKS

070 **Out-of-Distribution Categorization** The term out-of-distribution is often used ambiguously in
 071 the literature, leading to inconsistent interpretations and methodological practices. To clarify this,
 072 recent work (Farquhar & Gal, 2022) categorizes the different distributions into four types: trans-
 073 formed, related, complementary, and synthetic.

074 **Diversity in Data Regularization for Robust Learning** Recent work has shown that data regu-
 075 larization plays a key role in improving both robustness and generalization (Li & Spratling, 2023).
 076 However, simple transformations are often insufficient under distribution shifts. Increasing the diver-
 077 sity of augmentations promotes better model performance. Diverse transformations help the model
 078 to generalize to unseen data and improve stability under adversarial conditions. This highlights the
 079 importance of carefully designed augmentation pipelines for robust learning.

080 **Miscoverage in Cross-Validation-Based Estimates** Standard K -fold cross-validation (CV) often
 081 underestimates variance, resulting in confidence intervals with lower-than-nominal coverage (Ben-
 082 gio & Grandvalet, 2004). This miscoverage is especially pronounced when folds are not indepen-
 083 dent, as data points contribute to both training and evaluation. More recently, Bates et al. (2023)
 084 showed that even in modern settings, such intervals can severely misrepresent model uncertainty.
 085 They observed that stronger regularization mitigates this effect by providing CV estimator with
 086 fresher data across folds. In our work, we capitalize on this known limitation by using leave-fold-
 087 out replications to directly assess model consistency. This not only exposes the weaknesses of
 088 standard cross-validation but also highlights the robustness gains achieved through our proposed
 089 data regularization strategies.

090 **Curriculum Learning** Curriculum Learning (CL) is a training paradigm inspired by the human
 091 learning process, where models are exposed to increasingly difficult examples (Bengio et al., 2009).
 092 It has shown benefits for convergence and generalization across domains. A recent causal analy-
 093 sis (Li et al., 2024) highlights that CL is more effective when early tasks reinforce decision patterns
 094 that remain valid throughout training. While originally studied in reinforcement learning, the under-
 095 lying principle—aligning task difficulty with model capacity—can be extended to other learning
 096 settings. For instance, in computer vision, curriculum-based augmentation strategies that gradually
 097 increase corruption severity during training have gained attention (Lu & Lam, 2023; Choi & Kim,
 098 2024).

100 3 METHODS

101 3.1 STOCHASTIC DATA REGULARIZATION

102 We explore data regularization through stochastic transformations applied during training, struc-
 103 tured along three core dimensions: *selection policies* (e.g., noise injection, random augmentation
 104 pipelines), *combination policies* (e.g., jointly applying multiple data regularization strategies), and
 105 *scheduling policy* (e.g., curriculum learning-based approach).

108 **Selection Policies** Selection policies define stochastic mechanisms for perturbing training inputs,
 109 thereby inducing regularization without altering the underlying task. In this work, we consider two
 110 complementary strategies under this paradigm: direct **Noise Injection** and **Random Transforma-**
 111 **tions** drawn from augmentation sets.

112 *Noise Injection* applies input-space corruption by sampling corruption parameters dynamically at
 113 each step. We define a noise operator $\nu(\cdot)$ such that:

$$116 \quad \tilde{x} = \nu(x; \theta_t), \quad \theta_t \sim \mathcal{P}(\theta_{\min}, \theta_{\max}), \quad (1)$$

119 where \mathcal{P} is a generic sampling distribution (e.g., Uniform, Alpha-Stable (Yuan et al., 2025)), and
 120 θ_t modulates the corruption strength (e.g., standard deviation for Gaussian noise or the corruption
 121 factor for Salt-and-Pepper noise). This technique is theoretically equivalent to Tikhonov regularization
 122 (Bishop, 1995) and is applied exclusively during training.

123 *Random Transformations*, in turn, select stochastic augmentations from a candidate set $\mathcal{T} =$
 124 $\{\tau_1, \tau_2, \dots, \tau_k\}$. At each training step, a random subset $\mathcal{T}^* \subseteq \mathcal{T}$ is sampled and applied to the
 125 input with randomized parameters:

$$128 \quad \tilde{x} = \tau(x), \quad \tau \in \mathcal{T}^*, \quad \text{with parameters from predefined ranges.} \quad (2)$$

131 **Combination Policies** In practice, multiple selection policies may be combined—e.g., applying
 132 both τ and ν sequentially—to form a compound perturbation strategy. Such combination policies
 133 can unify coarse (e.g., geometric, shuffling) and fine-grained (e.g., noisy) transformations, enabling
 134 richer training signals and broader robust generalization capabilities.

136 **Scheduling Policy** We implement a Curriculum Learning-based approach by progressively train-
 137 ing across stages of increasing regularization, each governed by Early Stopping, as detailed in Al-
 138 gorithm 1. Each stage $s \in \{1, \dots, S\}$ introduces a transformation $\Phi_s(x)$ selected from a predefined
 139 scheduling sequence $\mathcal{S} = (\Phi_1, \dots, \Phi_S)$, which may include selection policies (e.g. Eq. 2, Eq. 1) or
 140 their combinations.

Algorithm 1 Scheduling Policy with Early Stopping

142 **Input:** Training set $\{X^{train}, Y^{train}\}$, Validation set $\{X^{val}, Y^{val}\}$
 143 **Input:** Scheduling sequence (Φ_1, \dots, Φ_S) , Early Stopping patience values (p_1, \dots, p_S)
 144 **Input:** Hypothesis Space \mathcal{H} , Optimizer \mathcal{U} , Loss \mathcal{L}
 145 **Output:** Final hypothesis $h_S \in \mathcal{H}$

146 1: $h_1 \leftarrow h \in \mathcal{H}$, $\epsilon \leftarrow \infty$
 147 2: **for** $s = 1$ to S **do**
 148 3: $p \leftarrow 0$, $\tilde{h} \leftarrow h_s$
 149 4: $X_s^{train} \leftarrow \Phi_s(X^{train})$
 150 5: **while** $p > p_S$ **do**
 151 6: $\tilde{h} \leftarrow \mathcal{U}(X_s^{train}, Y^{train}, \tilde{h})$
 152 7: $\hat{Y}^{val} \leftarrow \tilde{h}(X^{val})$
 153 8: $\tilde{\epsilon} \leftarrow \mathcal{L}(\hat{Y}^{val}, Y^{val})$ ▷ Validation set used without transformations
 154 9: **if** $\tilde{\epsilon} < \epsilon$ **then**
 155 10: $\epsilon \leftarrow \tilde{\epsilon}$, $p \leftarrow 0$, $h_s \leftarrow \tilde{h}$
 156 11: **else**
 157 12: $p \leftarrow p + 1$
 158 13: **end if**
 159 14: **end while**
 160 15: $h_{s+1} \leftarrow h_s$, $s \leftarrow s + 1$
 161 16: **end for**

162 3.2 CHARACTERIZING OUT-OF-DISTRIBUTION
163

164 We characterize out-of-distribution (OOD) datasets by estimating their divergence from the in-
165 distribution data in a shared latent representation space (Algorithm 2). This approach avoids direct
166 comparisons in the input space, which may be sensitive to superficial or non-semantic differences.
167 We train an autoencoder ($\mathbf{h} \equiv (\mathbf{h}_f, \mathbf{h}_g)$) on the in-distribution training set and use its encoder (\mathbf{h}_f) to
168 extract latent representations for both the clean test set (\mathbf{Z}_{in}) and each OOD variant (\mathbf{Z}_{out}). To quanti-
169 fy the shift between these distributions, we employ Kullback–Leibler (KL) divergence, although
170 other statistical distances (e.g., Wasserstein) are compatible with our framework.

171

Algorithm 2 Characterizing Out-of-Distribution Data using Latent Representations

172 **Input:** In-distribution dataset $X^{\text{in}} = \{x_i\}_{i=1}^{n_{\text{in}}}$, $x_i \in \mathbb{R}^d$, with training and test splits: $X^{\text{train}}, X^{\text{test}}$
173 **Input:** Out-of-distribution dataset $X^{\text{out}} = \{x_j\}_{j=1}^{n_{\text{out}}}$, $x_j \in \mathbb{R}^d$
174 **Input:** Learning Algorithm $\mathcal{A} : \mathbb{R} \rightarrow (\mathbf{h}_f, \mathbf{h}_g)$ where $\mathbf{h}_f : \mathbb{R}^d \rightarrow \mathbb{R}^p$ (encoder) and $\mathbf{h}_g : \mathbb{R}^p \rightarrow \mathbb{R}^d$
175 (decoder)
176 **Output:** Out-of-Distribution metric $M = \text{KL}(\mathbf{Z}_{\text{in}} \parallel \mathbf{Z}_{\text{out}})$

177 1: $\mathbf{h} \leftarrow \mathcal{A}(X^{\text{train}})$
178 2: $\varepsilon \leftarrow 10^{-10}$ ▷ Define a small positive constant
179 3: $\mathbf{Z}_{\text{in}} \leftarrow \mathbf{h}_f(X^{\text{test}})$ ▷ Encode in-distribution test dataset $\mathbf{Z}_{\text{in}} \in \mathbb{R}^{n_{\text{in}} \times p}$
180 4: $\mathbf{Z}_{\text{in}} \leftarrow \text{flatten}(\mathbf{Z}_{\text{in}}) + \varepsilon$ ▷ Encode in-distribution test dataset $\mathbf{Z}_{\text{in}} \in \mathbb{R}^{n_{\text{in}} \times p} \times 1$
181 5: $\mathbf{Z}_{\text{in}} \leftarrow \frac{\mathbf{Z}_{\text{in}}}{\mathbf{1}^T \mathbf{Z}_{\text{in}}}$
182 6: $\mathbf{Z}_{\text{out}} \leftarrow \mathbf{h}_f(X^{\text{out}})$ ▷ Encode out-of-distribution dataset $\mathbf{Z}_{\text{out}} \in \mathbb{R}^{n_{\text{out}} \times p}$
183 7: $\mathbf{Z}_{\text{out}} \leftarrow \text{flatten}(\mathbf{Z}_{\text{out}}) + \varepsilon$ ▷ Encode in-distribution test dataset $\mathbf{Z}_{\text{out}} \in \mathbb{R}^{n_{\text{out}} \times p} \times 1$
184 8: $\mathbf{Z}_{\text{out}} \leftarrow \frac{\mathbf{Z}_{\text{out}}}{\mathbf{1}^T \mathbf{Z}_{\text{out}}}$
185 9: $M = \mathbf{Z}_{\text{in}}^T \cdot \log \mathbf{Z}_{\text{in}} - \mathbf{Z}_{\text{in}}^T \log \mathbf{Z}_{\text{out}}$ ▷ Compute KL Divergence

186

187

188 3.3 MISCOVERAGE STATISTICAL ANALYSIS
189

190 We formalize our miscoverage evaluation via leave-fold-out analysis, detailed in Algorithm 3.

191

Algorithm 3 Leave-Folds-Out Miscoverage Analysis

192 **Input:** Set of K -Fold Estimates $\mathcal{F} = \{\mathbf{F}_i : \mathbf{F}_i \in \mathbb{R}^B\}_{i=1}^K$
193 **Input:** Number L of folds to leave out
194 **Output:** Set of Tuples $\mathcal{R} = \{(\tilde{\mu}_{\mathbf{R}_j}, \sigma_{\mathbf{R}_j})\}_{j=1}^J$

195 1: $J \leftarrow K - L$
196 2: $\mu_{\mathbf{F}} \leftarrow \frac{1}{N} \mathbf{1}^T \mathbf{F}$ ▷ Compute mean
197 3: $\mathcal{R} \leftarrow \emptyset$
198 4: **for** $j = 1$ to J **do**
199 5: $\mathbf{R}_j \leftarrow \mathbf{F} - \{\mathbf{F}_j, \dots, \mathbf{F}_{j+L-1}\}$ ▷ $\mathbf{R}_j \in \mathbb{R}^{B \times J}$
200 6: $\tilde{\mu}_{\mathbf{R}_j} = \mu_{\mathbf{R}_j} - \mu_{\mathbf{F}}$ ▷ Mean-centered
201 7: $\sigma_{\mathbf{R}_j} \leftarrow \text{bootstrap}(\mathbf{R}_j)$
202 8: $\mathcal{R} \leftarrow \mathcal{R} \cup (\tilde{\mu}_{\mathbf{R}_j}, \sigma_{\mathbf{R}_j})$
203 9: **end for**

204

205

206

207

208 4 EXPERIMENTAL SETUP
209

210

211

212

213

214

215

216 Our experimental setup is designed to evaluate the impact of data regularization strategies on in-
217 distribution, out-of-sample and out-of-distribution scenarios, as seen in Figure 3. All results reported
218 in the main paper refer to the CIFAR-10 (Krizhevsky et al., 2009) dataset and its corrupted variant,
219 CIFAR-10-C (Hendrycks & Dietterich, 2019). The CIFAR-10-C benchmark includes 19 corruption
220 types (e.g. JPEG compression, contrast, brightness) across 5 severity levels, resulting in a total
221 of 95 out-of-distribution datasets. We use F1-score as the evaluation estimator θ throughout all
222 in-distribution and out-of-distribution assessments.

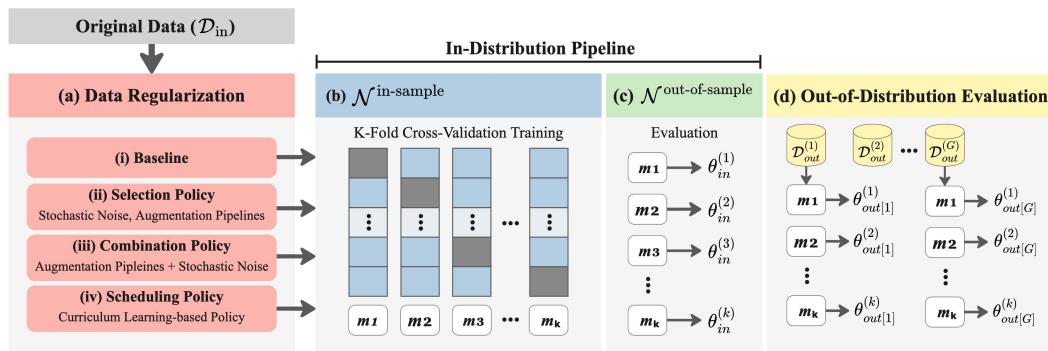


Figure 1: Overview of our evaluation pipeline. **(a)** We apply distinct stochastic data regularization strategies to the original in-sample dataset \mathcal{D}_{in} for training, including no regularization (Baseline) and our modular framework consisting in 3 different policies—*selection*, *combination*, and *scheduling*—to regularize our data. **(b)** For each strategy, models are trained using K -fold cross-validation over \mathcal{D}_{in} . **(c)** Trained models are evaluated on \mathcal{D}_{in} to obtain $\theta_{in}^{(i)}$ estimators. **(d)** Each model is then evaluated on a collection of G corrupted datasets $\{\mathcal{D}_{out}^{(g)}\}_{g=1}^G$ to compute out-of-distribution estimators $\theta_{out[g]}^{(i)}$, enabling robust generalization and miscoverage analysis under domain shift.

4.1 ARCHITECTURES

We evaluate three representative architectures to assess the generalization effects of data regularization. **ResNet-20** (He et al., 2016) serves as a compact and shallow baseline with approximately 280K parameters. **WideResNet-28-10** (Zagoruyko & Komodakis, 2016) is a deeper and significantly wider CNN, totaling over 36M parameters, representing a high-capacity architecture. Finally, **CCT** (Compact Convolutional Transformer) (Hassani et al., 2021) introduces a hybrid transformer-based model with convolutional tokenization and positional encoding, comprising around 930K parameters. This setup allows us to contrast different architectural families—shallow CNNs, wide CNNs, and attention-based models—under a unified training protocol. All models are trained from scratch, without architectural-level regularization (e.g., Dropout or LayerNorm), to isolate the effects of data regularization alone. Inputs are 32×32×3 and training uses a batch size of 128.

4.2 IMPLEMENTATION DETAILS

Early Stopping was applied consistently across all training routines—including both standard and curriculum-based strategies—to prevent overfitting and stabilize convergence. Although this promotes fair evaluations, baseline models often converge prematurely, leading to lower final performance that may differ from typical state-of-the-art results. This is intentional, as our focus lies in understanding the robust generalization capabilities of models rather than maximizing absolute performance.

Standard training strategies used a fixed patience of 10 epochs, while Curriculum Learning stages followed a progressive patience schedule tailored to the difficulty of each stage. The same Early Stopping protocol was also applied to the Autoencoder used in the KL divergence characterization (see Section 3.2), ensuring consistent training dynamics across all components of the experimental pipeline.

4.3 DATA REGULARIZATION STRATEGIES

All stochastic data regularization strategies evaluated in this study are organized within our modular framework of **Selection Policies**, **Combination Policies**, and **Scheduling Policy**. Table 1 summarizes the configuration details, including the maximum Salt & Pepper factor, Gaussian noise standard deviation, RandAugment parameters, Curriculum Learning stage schedule, and Early Stopping values.

We apply **RandAugment** (Cubuk et al., 2020)—composed of both transformations (e.g. color jitter, Gaussian blur, and saturation adjustments) and standard augmentations like random cropping—as a representative *Selection Policy*, using three transformations per image with a fixed magnitude of 0.3. As a *Combination Policy*, we compose RandAugment with additive noise—either Gaussian or Salt & Pepper—to enhance perturbation diversity. At each training step, the noise intensity is dynamically sampled from a uniform distribution: $\sigma \sim \mathcal{U}(0, \sigma_{\max})$ for Gaussian noise, and $\lambda \sim \mathcal{U}(0, \lambda_{\max})$ for Salt & Pepper.

Finally, we implement a curriculum-based *Scheduling Policy*, where the regularization severity increases across training stages. All parameter values used in these strategies were selected through a lightweight parameter search. As a result, the Scheduling Policy focuses on the most effective configurations found—namely, RandAugment followed by RandAugment combined with Gaussian noise.

For a visual illustration of the applied perturbations under each strategy, see Appendix A. The GitHub repository will be made publicly available for full reproducibility.

Table 1: Configurations for CIFAR-10 training strategies, including data regularization types, noise levels, and Early Stopping (ES) patience.

Policy	Strategy	Max S&P Factor (α)	Max Gaussian StdDev (σ)	ES Patience
Baseline	None	—	—	10
Selection Policy	RandAugment	—	—	10
Combination Policy	RandAugment + S&P	0.3	—	10
Combination Policy	RandAugment + GN	—	0.2	10
Scheduling Policy	Stage 1: RandAugment	—	—	3
	Stage 2: RandAugment + GN	—	0.1	5
	Stage 3: RandAugment + GN	—	0.2	8

5 RESULTS

To enable severity-aware comparisons, we characterize each of the 95 CIFAR-10-C corruptions by measuring their divergence from the clean CIFAR-10 distribution in latent space and calculating the KL Divergence. This is performed using Algorithm 2. Based on the resulting metric vector, we sort all corruptions and divide them into three severity bands according to their percentile rank: **Lowest** (0–33rd), **Mid-Range** (34–66th), and **Highest** (67–100th). Figure 2 shows this categorization, with average KL values and bootstrapped confidence intervals per group. This severity stratification underpins all subsequent robustness analyses presented in this study.

To evaluate the effectiveness of data regularization strategies, we report F1-scores under both in-distribution (out-of-sample) and out-of-distribution (OOD) scenarios. As shown in Figure 5 and Table 2, augmenting training with stochastic regularization significantly improves performance across all models and severity levels. In particular, we observe that applying RandAugment improves OOD generalization compared to the baseline. Furthermore, combining RandAugment with noise yields even stronger improvements under high-severity corruptions. Finally, the Scheduling Policy consistently achieve superior F1-scores under stronger corruptions, especially for lightweight architectures like ResNet20.

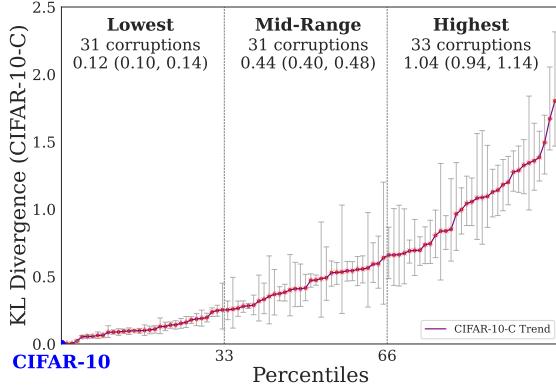


Figure 2: KL-based categorization of CIFAR-10-C corruptions.

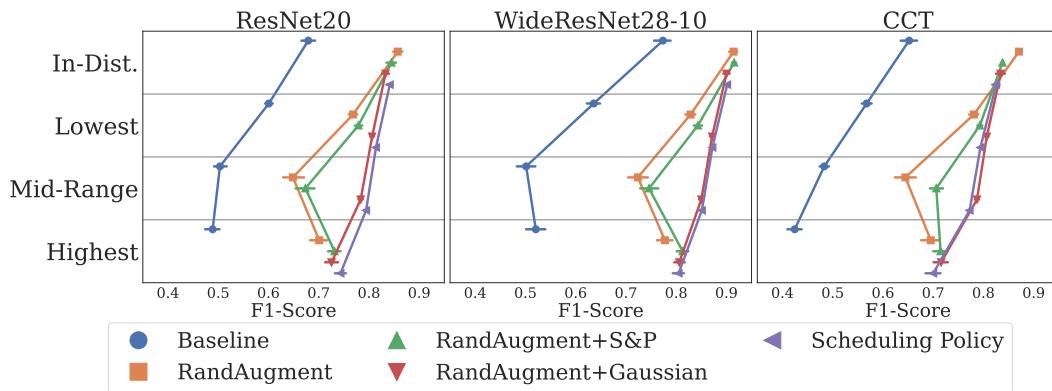


Figure 3: F1-scores for each model under In-Distribution and Out-of-Distribution (OOD) scenarios, with corruptions grouped by severity (Lowest, Mid-Range, Highest).

Table 2: Out-of-Distribution (OOD) characterization for CIFAR-10-C grouped by severity. Values are F1-score (95% CI). Epochs are average values. Best results per column are in bold.

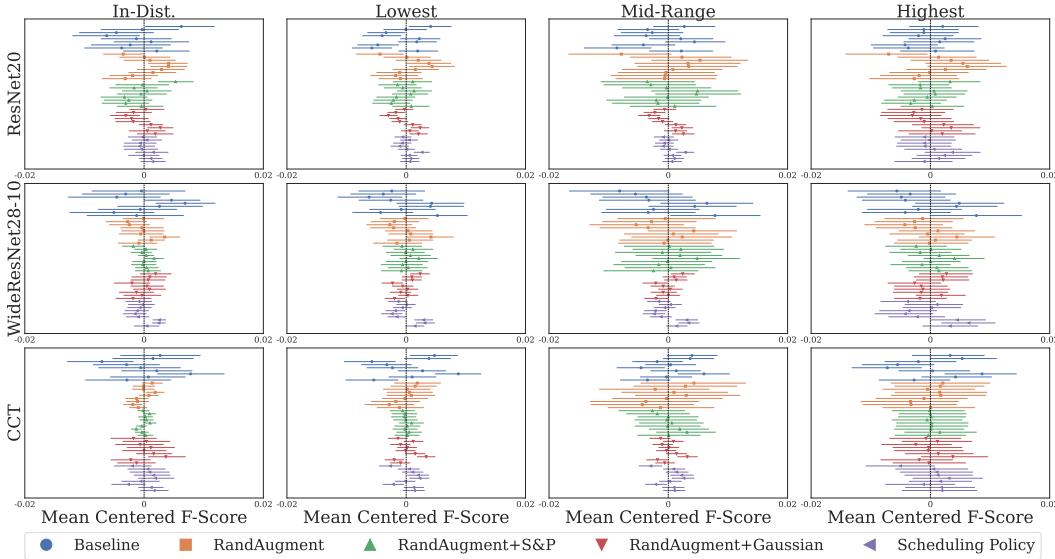
ResNet20	In-Dist.	Lowest	Mid-Range	Highest	Epochs (avg)
Baseline	67.9 (66.6, 69.4)	60.1 (59.3, 60.9)	50.4 (49.1, 51.6)	48.9 (47.5, 50.3)	15.4
RandAugment	85.7 (84.8, 86.7)	76.8 (75.9, 77.8)	64.9 (62.8, 66.8)	70.1 (68.5, 71.8)	51.4
RandAugment+S&P	84.5 (83.6, 85.5)	77.9 (77.2, 78.7)	67.4 (65.6, 69.2)	73.2 (72.0, 74.4)	65.3
RandAugment+Gaussian	83.3 (82.6, 84.0)	80.6 (80.3, 81.0)	78.4 (77.9, 78.8)	72.6 (71.4, 73.9)	63.0
Scheduling Policy	84.2 (83.6, 84.8)	81.4 (81.1, 81.8)	79.4 (79.1, 79.8)	74.3 (73.3, 75.5)	91.6
WideResNet-28-10					
Baseline	77.4 (75.7, 79.2)	63.6 (62.4, 64.9)	50.1 (48.2, 52.0)	52.1 (50.3, 53.8)	19.0
RandAugment	91.4 (90.7, 92.3)	82.9 (81.9, 83.8)	72.4 (70.5, 74.4)	77.8 (76.3, 79.3)	53.6
RandAugment+S&P	91.5 (91.1, 92.0)	84.3 (83.5, 85.1)	74.6 (72.9, 76.4)	81.3 (80.1, 82.6)	56.6
RandAugment+Gaussian	90.0 (89.4, 90.7)	87.2 (86.8, 87.6)	85.0 (84.6, 85.5)	80.6 (79.6, 81.7)	59.9
Scheduling Policy	90.2 (89.7, 90.7)	87.2 (86.8, 87.6)	85.1 (84.7, 85.5)	80.5 (79.4, 81.8)	62.1
CCT					
Baseline	65.2 (63.6, 66.8)	56.8 (55.8, 57.8)	48.3 (47.3, 49.4)	42.4 (41.1, 43.8)	15.6
RandAugment	87.1 (86.7, 87.5)	78.1 (77.2, 79.1)	64.5 (62.4, 66.7)	69.5 (67.7, 71.5)	95.0
RandAugment+S&P	83.8 (83.6, 84.0)	79.3 (78.8, 79.8)	70.6 (69.4, 71.8)	71.5 (70.1, 73.0)	100.0
RandAugment+Gaussian	83.5 (82.6, 84.4)	80.7 (80.3, 81.1)	78.7 (78.3, 79.1)	71.6 (70.3, 73.1)	99.1
Scheduling Policy	82.5 (81.8, 83.3)	79.4 (79.0, 79.9)	77.3 (76.8, 77.7)	70.0 (68.5, 71.6)	77.7

378

379
380
381
Table 3: Standard deviation (95% CI) of F1-scores across CIFAR-10-C severity ranges. Lower
values indicate more stable performance across folds. Best results per column are in bold.

382	ResNet20	In-Dist.	Lowest	Mid-Range	Highest
383	Baseline	.0237 (.0229, .0244)	.0718 (.0707, .0728)	.1144 (.1134, .1154)	.1337 (.1321, .1354)
384	RandAugment	.0139 (.0135, .0143)	.0643 (.0636, .0650)	.1418 (.1409, .1427)	.1292 (.1278, .1307)
385	RandAugment+S&P	.0157 (.0149, .0164)	.0670 (.0660, .0681)	.1603 (.1590, .1616)	.1162 (.1140, .1184)
386	RandAugment+Gaussian	.0106 (.0101, .0112)	.0313 (.0305, .0319)	.0389 (.0385, .0394)	.1173 (.1140, .1206)
387	Scheduling Policy	.0098 (.0094, .0103)	.0306 (.0299, .0313)	.0338 (.0334, .0341)	.1048 (.1016, .1081)
388	WideResNet-28-10				
389	Baseline	.0273 (.0255, .0293)	.1167 (.1150, .1186)	.1658 (.1646, .1671)	.1695 (.1679, .1710)
390	RandAugment	.0106 (.0103, .0110)	.0674 (.0668, .0681)	.1394 (.1386, .1403)	.1192 (.1180, .1206)
391	RandAugment+S&P	.0072 (.0068, .0076)	.0736 (.0725, .0747)	.1635 (.1622, .1647)	.1128 (.1108, .1148)
392	RandAugment+Gaussian	.0111 (.0107, .0116)	.0356 (.0348, .0365)	.0427 (.0422, .0432)	.1002 (.0979, .1030)
393	Scheduling Policy	.0075 (.0068, .0081)	.0343 (.0335, .0353)	.0399 (.0395, .0404)	.1039 (.1006, .1068)
394	CCT				
395	Baseline	.0250 (.0237, .0261)	.0881 (.0866, .0895)	.0897 (.0889, .0906)	.1317 (.1303, .1330)
396	RandAugment	.0094 (.0090, .0099)	.0588 (.0581, .0595)	.1316 (.1306, .1325)	.1490 (.1472, .1507)
397	RandAugment+S&P	.0041 (.0039, .0043)	.0439 (.0432, .0447)	.1136 (.1124, .1147)	.1319 (.1287, .1350)
398	RandAugment+Gaussian	.0143 (.0136, .0150)	.0349 (.0342, .0357)	.0363 (.0359, .0367)	.1332 (.1299, .1365)
399	Scheduling Policy	.0113 (.0107, .0119)	.0377 (.0369, .0385)	.0400 (.0395, .0405)	.1340 (.1307, .1373)

400 To complement average performance results, we apply our proposed Miscoverage Analysis (Algo-
401 rithm 3) to assess the stability of model predictions across cross-validation folds. Figure 5 visualizes
402 miscoverage behaviors, while Table 3 reports the standard deviation and 95% confidence intervals
403 of F1-scores across severity categories, highlighting the consistency gains from data regularization
404 strategies.



424
425
426
427
428
429
Figure 4: Mean-Centered F-Score distributions for each data regularization strategy across three ar-
430
431
chitectures (ResNet20, WideResNet-28-10, and CCT) and four evaluation domains: In-Distribution and OOD corruptions grouped by severity levels. Each point represents a mean-centered F1-score from one replication, and horizontal lines denote 95% confidence intervals derived via bootstrap resampling. These results are generated using the Leave-Folds-Out Miscoverage Analysis (Algo-
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322

432

6 DISCUSSION

434 Our findings underscore that robust generalization is strongly influenced by how data regularization
 435 is designed and scheduled during training. Rather than relying solely on isolated techniques, **our**
 436 **modular framework offers a structured lens for understanding and improving robust gener-**
 437 **alization**, especially under out-of-distribution shifts.

438 Scheduling Policies (Curriculum Learning-based) consistently with state-of-the-art proves effec-
 439 tive in enhancing robustness across architectures and corruption severities. It reliably reduces per-
 440 formance variability (i.e., lower standard deviations) and often outperforms isolated regularization
 441 strategies. These findings emphasize the importance of the training data presentation order for gen-
 442 eralization under distribution shift.

443 Combining stochastic data regularization techniques also yields measurable benefits. In particular,
 444 pairing RandAugment with Gaussian noise improves robustness for WideResNet and CCT, whereas
 445 Salt & Pepper noise produces less consistent gains. This suggests that the interaction between model
 446 architecture and corruption type is nontrivial and deserves further attention.

447 Notably, improvements are not solely driven by the type of regularization applied, but also by in-
 448 creased training exposure. Curriculum-based strategies tend to train longer before Early Stopping is
 449 triggered. This extended exposure appears necessary for learning robust representations, indicating
 450 that vision models benefit from prolonged stochastic regularization.

451 Some of the applied data regularization strategies may partially overlap with corruptions present
 452 in the CIFAR-10-C dataset. To understand the effects under this lens, we include a discussion
 453 in Appendix B comparing overall performance on the full CIFAR-10-C benchmark and a filtered
 454 version that excludes overlapping corruptions—specifically, cases where similar transformations
 455 (e.g., Gaussian noise or contrast adjustments introduced by RandAugment) are used during training
 456 but are also present in the evaluated corrupted test sets.

457 In summary, our results highlight that the structure and progression of regularization—not just its
 458 presence—play a critical role in enabling robust generalization, particularly for compact models. A
 459 tailored and modular approach to data regularization, as proposed in this study, offers a promising
 460 direction for building more reliable machine learning systems under distributional stress.

463

7 CONCLUSION

464 This work explored stochastic data regularization strategies to improve model robustness under dis-
 465 tribution shift. We find that organizing these transformations into a curriculum—progressively in-
 466 creasing complexity during training—consistently leads to more stable and generalizable models.
 467 While curriculum-based approaches demonstrate strong regularization capabilities, especially un-
 468 der challenging conditions, we also observe that simpler strategies combining transformations with
 469 noise injection offer competitive trade-offs in terms of effectiveness and efficiency. These results
 470 highlight that the structure and dynamics of data exposure can be as important as the regularization
 471 technique itself. For future work, we aim to explore a Variational Autoencoder to extract a structured
 472 latent space, thereby enhancing our quantification of distribution shifts. Additionally, we intend to
 473 apply the methods proposed in this work to other data modalities, such as acoustic signals and text.

475

ACKNOWLEDGMENTS

476 Not applicable.

480

REFERENCES

481 Stephen Bates, Trevor Hastie, and Robert Tibshirani. Cross-validation: what does it estimate and
 482 how well does it do it? *Journal of the American Statistical Association*, pp. 1–12, 2023.

483 Yoshua Bengio and Yves Grandvalet. No unbiased estimator of the variance of k-fold cross-
 484 validation. *Journal of Machine Learning Research*, 5:1089–1105, 2004.

486 Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
 487 In *Proceedings of the 26th Annual International Conference on Machine Learning*, ICML
 488 '09, pp. 41–48, New York, NY, USA, 2009. Association for Computing Machinery. ISBN
 489 9781605585161. doi: 10.1145/1553374.1553380. URL <https://doi.org/10.1145/1553374.1553380>.

491 Chris M Bishop. Training with noise is equivalent to tikhonov regularization. *Neural computation*,
 492 7(1):108–116, 1995.

494 Juhwan Choi and YoungBin Kim. Colorful cutout: Enhancing image data augmentation with cur-
 495 riculum learning. *arXiv preprint arXiv:2403.20012*, 2024.

497 Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
 498 data augmentation with a reduced search space. In *Proceedings of the IEEE/CVF conference on*
 499 *computer vision and pattern recognition workshops*, pp. 702–703, 2020.

500 Sebastian Farquhar and Yarin Gal. What ‘out-of-distribution’ is and is not. In *NeurIPS ML Safety*
 501 *Workshop*, 2022.

503 Umberto Tenório de Barros Filho, Paulo Rocha, Marcos Oliveira, Andrea Maria Nogueira Caval-
 504 canti Ribeiro, Rodrigo de Paula Monteiro, and Diego Pinheiro. Regularizing neural networks
 505 with noise injection for classification of brain tumor in magnetic resonance imaging. In *2023*
 506 *IEEE Latin American Conference on Computational Intelligence (LA-CCI)*, pp. 1–6, 2023. doi:
 507 10.1109/LA-CCI58595.2023.10409397.

508 Ali Hassani, Steven Walton, Nikhil Shah, Abulikemu Abuduweili, Jiachen Li, and Humphrey Shi.
 509 Escaping the big data paradigm with compact transformers. *arXiv preprint arXiv:2104.05704*,
 510 2021.

512 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 513 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 514 770–778, 2016.

515 Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
 516 ruptions and perturbations. *Proceedings of the International Conference on Learning Represen-
 517 tations*, 2019.

519 Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
 520 narayanan. Augmix: A simple data processing method to improve robustness and uncertainty.
 521 *arXiv preprint arXiv:1912.02781*, 2019.

522 Dan Hendrycks, Nicholas Carlini, John Schulman, and Jacob Steinhardt. Unsolved problems in ml
 523 safety. *arXiv preprint arXiv:2109.13916*, 2021.

525 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 526 *Technical Report TR-2009*, 2009.

527 Binghui Li, Jikai Jin, Han Zhong, John Hopcroft, and Liwei Wang. Why robust generalization
 528 in deep learning is difficult: Perspective of expressive power. *Advances in Neural Information
 529 Processing Systems*, 35:4370–4384, 2022.

531 Lin Li and Michael W. Spratling. Data augmentation alone can improve adversarial training. In
 532 *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=y4uc4NtTWaq>.

534 Mingxuan Li, Junzhe Zhang, and Elias Bareinboim. Causally aligned curriculum learning. In
 535 *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=hp4y0jhwTs>.

538 Chi-Heng Lin, Chiraag Kaushik, Eva L Dyer, and Vidya Muthukumar. The good, the bad and
 539 the ugly sides of data augmentation: An implicit spectral regularization perspective. *Journal of
 Machine Learning Research*, 25(91):1–85, 2024.

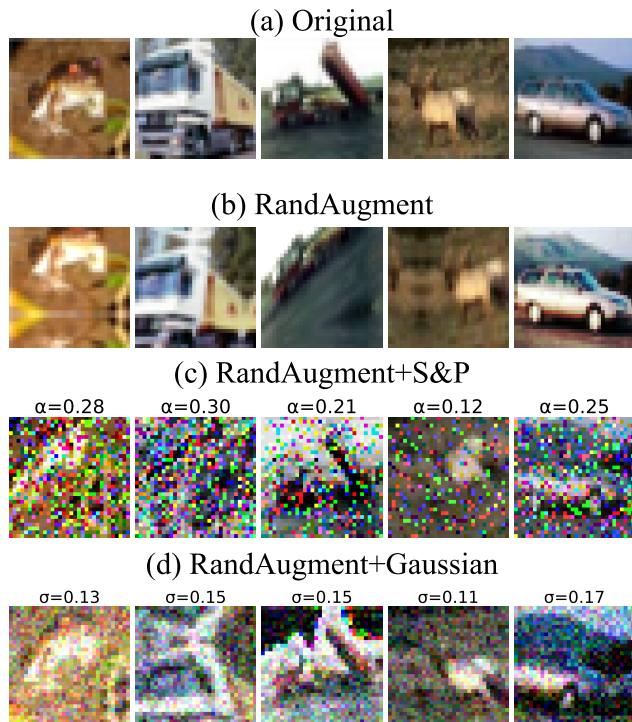
540 Hongyuan Lu and Wai Lam. PCC: Paraphrasing with bottom-k sampling and cyclic learning for
 541 curriculum data augmentation. In Andreas Vlachos and Isabelle Augenstein (eds.), *Proceed-
 542 ings of the 17th Conference of the European Chapter of the Association for Computational Lin-
 543 guistics*, pp. 68–82, Dubrovnik, Croatia, May 2023. Association for Computational Linguis-
 544 tics. doi: 10.18653/v1/2023.eacl-main.5. URL <https://aclanthology.org/2023.eacl-main.5/>.

545 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
 546 Dropout: A simple way to prevent neural networks from overfitting. *Journal of Machine
 547 Learning Research*, 15(56):1929–1958, 2014. URL <http://jmlr.org/papers/v15/srivastava14a.html>.

550 Xueqiong Yuan, Jipeng Li, and Ercan Engin Kuruoglu. Robustness enhancement in neural networks
 551 with alpha-stable training noise. *Digital Signal Processing*, 156:104778, 2025.

553 Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. *ArXiv*, abs/1605.07146, 2016.
 554 URL <https://api.semanticscholar.org/CorpusID:15276198>.

556 A DATA REGULARIZATION TRANSFORMATIONS



583 Figure 5: Visual comparison of stochastic data regularization strategies applied to CIFAR-10 sam-
 584 ples. (a) Original images. (b) RandAugment with 3 transformations per image and magnitude 0.3.
 585 (c) RandAugment combined with Salt & Pepper noise (*Combination Policy*), where the noise factor
 586 α is sampled uniformly from $\mathcal{U}(0, \alpha_{\max} = 0.3)$. (d) RandAugment combined with Gaussian noise,
 587 with standard deviation $\sigma \sim \mathcal{U}(0, \sigma_{\max} = 0.2)$. The values of α and σ shown below each image
 588 indicate the sampled noise intensity for that example.

591 B OVERALL RESULTS ACROSS ALL CORRUPTIONS

593 Some of the data regularization strategies we adopt—such as Gaussian noise, Salt & Pepper noise,
 and RandAugment—introduce transformations that can be thought of as partially overlapping with

specific corruptions in the CIFAR-10-C dataset (e.g., *Gaussian Noise*, *Shot Noise*, *Speckle Noise*, *Impulse Noise*, *Contrast*, *Brightness*). We conducted a sensitivity analysis comparing a dataset with all corruptions included and a dataset (*w/o Overlap*) that excludes these potentially overlapping corruptions. The (*w/o Overlap*) dataset is, when compared to the dataset containing all corruptions, OOD to a greater extent. The results remain consistent, and the exclusion of potentially overlapping corruptions has even improved in some cases.

Table 4: General performance for three models using different augmentation strategies. Values are F1-score (95% CI). Best results per column are in bold.

ResNet20	In-Dist.	All Corruptions	w/o Overlap
Baseline	67.9 (66.5, 69.4)	53.0 (52.3, 53.9)	55.2 (54.5, 56.0)
RandAugment	85.7 (84.8, 86.7)	70.6 (69.7, 71.5)	73.3 (72.3, 74.2)
RandAugment+S&P	84.5 (83.6, 85.5)	72.8 (72.0, 73.6)	75.0 (74.4, 75.7)
RandAugment+Gaussian	83.3 (82.6, 84.0)	77.1 (76.6, 77.6)	76.8 (76.4, 77.2)
Scheduling Policy	84.2 (83.6, 84.8)	78.3 (77.9, 78.8)	78.1 (77.7, 78.5)
WideResNet-28-10			
Baseline	77.4 (75.7, 79.4)	55.2 (54.2, 56.3)	57.3 (56.2, 58.4)
RandAugment	91.4 (90.7, 92.3)	77.7 (76.8, 78.6)	79.6 (78.6, 80.6)
RandAugment+S&P	91.5 (91.1, 92.0)	80.1 (79.3, 80.9)	81.1 (80.2, 82.0)
RandAugment+Gaussian	90.0 (89.3, 90.7)	84.2 (83.7, 84.7)	83.5 (83.1, 84.0)
Scheduling Policy	90.2 (89.8, 90.7)	84.2 (83.7, 84.7)	83.6 (83.2, 84.1)
CCT			
Baseline	65.2 (63.7, 66.8)	49.0 (48.3, 49.8)	50.1 (49.3, 50.9)
RandAugment	87.1 (86.6, 87.5)	70.7 (69.6, 71.7)	75.3 (74.5, 76.2)
RandAugment+S&P	83.8 (83.5, 84.0)	73.7 (73.0, 74.5)	75.4 (74.9, 76.0)
RandAugment+Gaussian	83.5 (82.6, 84.4)	76.9 (76.3, 77.5)	76.8 (76.4, 77.2)
Scheduling Policy	82.5 (81.9, 83.2)	75.4 (74.8, 76.1)	75.3 (74.8, 75.8)

C ACKNOWLEDGMENT OF LLM USE

We acknowledge the use of large language models to aid in polishing the writing and, primarily, to help build and check how tables and plots could be presented in the best way. The models were not used to generate original research content, experiments, or results.