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Abstract

To enable embodied agents to operate effectively over extended timeframes, it is
crucial to develop models that form and access memories to stay contextualized in
their environment. In the current paradigm of training transformer-based policies
for embodied sequential decision-making tasks, visual inputs often overwhelm the
context limits of transformers, while humans can maintain and utilize a lifetime
of experience compressed as memories. Significant compression is possible in
principle, as much of the input is irrelevant and can be abstracted. However,
existing approaches predominantly focus on either recurrent models with fixed-size
memory or transformers with full-context reliance. In this work, we propose Memo,
a transformer-based architecture and training recipe for reinforcement learning
(RL) on memory-intensive, long-horizon tasks. Memo incorporates the creation
and retrieval of memory by interleaving periodic summarization tokens with the
inputs of a model during training. We demonstrate Memo’s effectiveness on a grid-
world meta-RL benchmark and a multi-object navigation task in photo-realistic
indoor settings. Memo outperforms naive long-context transformer baselines while
being more compute and storage efficient. Additionally, Memo generalizes better
to longer contexts at inference time and remains robust in streaming settings, where
historical context must be truncated to fit inference constraints.

1 Introduction

Humans intuitively prioritize and retain memories relevant to their current tasks, filtering out irrele-
vant details such as the color of a house’s walls along a route unless it serves as a crucial navigation
landmark. Similarly, reinforcement learning (RL) agents must learn to selectively retain and access
task-specific memories guided by task objectives rather than predefined rules. This ability is espe-
cially critical for long-horizon tasks, where delayed rewards make credit assignment challenging
and necessitate efficient training and inference over extended timescales to effectively capture the
relationship between past and future events.

Recently, Transformers have become the go-to framework for sequence modeling due to their flexible
and expressive encoding, free from the fixed-size constraints of recurrent neural networks (RNNs)
[8, 14]. However, it assumes access to all past information at each step rather than selectively retaining
relevant memories, which can lead to inefficiencies and make it harder to extract task-relevant
information for decision-making. Their quadratic attention complexity further limits scalability,
making it challenging to process long contexts efficiently, especially when gradients must propagate
over large sequences. At test time, Transformers face another practical challenge: storing an
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increasingly large key-value (KV) cache is computationally expensive, and attending over ever-
growing contexts requires the ability to generalize beyond the temporal patterns seen during training.

To address these challenges, we propose Memo, a novel framework that enhances transformer-based
agents by enabling them to summarize and index past experiences through specialized summary
tokens. Memo introduces a simple yet effective training procedure where transformers learn to
compress their experience by periodically generating summary tokens that encode relevant past
information. These summary tokens are stored in a dedicated memory buffer, allowing the model to
attend to condensed representations of prior states instead of maintaining a full-context cache. This
enables Memo to maintain a compact memory footprint at inference, reducing computational costs
while preserving long-horizon reasoning capabilities.

Inspired by advancements in extending context lengths in language models, Memo adapts these
principles to reinforcement learning (RL), addressing the unique challenges presented by RL tasks.
Specifically, Memo integrates with both on-policy and off-policy RL agents, leveraging learned
compression mechanisms to enhance sample efficiency and generalization in sequential decision-
making settings. We demonstrate its effectiveness across diverse tasks, including a grid world
and a 3D indoor navigation task in Habitat. Memo matches or outperforms the naive transformer
baseline, which requires storing its entire context, leading to an 8-10× larger cache. Despite using
significantly less memory, Memo achieves better in-context learning (ICL) behavior, higher success
rates, and shorter path lengths in unseen environments. On large-scale navigation tasks, we show that
Memo also exhibits superior robustness in streaming settings where the cached context is truncated,
demonstrating improved adaptability under limited inference budgets.

Our contributions are summarized as follows:
• We propose Memo, a framework that enables transformers to learn to summarize and store

task-relevant past experiences, reducing computational costs while maintaining long-horizon
reasoning capabilities.

• We evaluate Memo on sequential decision-making tasks, demonstrating its efficiency and im-
proved in-context learning behavior compared to transformers that require full-context storage.

• We show that Memo is a general and versatile memory augmentation technique applicable to both
on-policy and off-policy RL agents for long-horizon tasks.

2 Related Work

In this section we briefly review research on extending context limits of transformers in language
modeling, as well as the state of the art in long sequence modeling and decision making in RL.

Extending Transformer Contexts in language: A significant limitation of current large language
models is their restricted input context length, prompting research into methods for scaling and
generalizing to larger contexts [33, 21, 13, 27]. Key-value (KV) caching can reduce recomputation
at training [9] or inference time [23], by storing and reusing self-attention outputs during decoding.
[25] further reduce memory by maintaining a compressed cache, though this compression is not
completely task-guided.

Beyond compute efficiency, recent work explores dynamic context extension. Recurrent Memory
Transformer (RMT) [4] introduces summarization tokens to periodically compress and propagate
prior context while discarding older tokens. Autocompressors (AC) [7] extend this by accumulating
generated summaries across context windows, avoiding RMT’s fixed-size memory but still truncating
gradient propagation through summaries. We extend this context summarization approach to the more
involved setting of reinforcement learning (RL), where summarization must support decision-making
and handle credit assignment over long horizons. Unlike AC, which fine-tunes pretrained models on
a supervised token prediction task with limited gradient propagation—and aims to match but does
not surpass full-context transformer baselines—we train from scratch, integrating summarization
directly into the RL optimization process and propagating gradients across all summaries. This
enables more effective task-driven memory formation, surpassing full-context transformer baselines
in both efficiency and scalability.

Transformers in RL: Transformers, while widely used in self-supervised language modeling [10, 3],
have seen slower adoption in reinforcement learning (RL) due to challenges like sparse rewards,
optimization instability, and limited batch sizes in on-policy RL. However, as we move to more
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Figure 1: Architecture Diagram of Memo. The frames O1−3lseg depict the input sensor observations
to the agent at timesteps 1− 3lseg . The figure depicts the information flow between three consecutive
segments of a much longer context of inputs provided to a transformer during training. The summary
tokens bottleneck the information passed on from one chunk of inputs to the next.

complex tasks that demand long-horizon planning and reasoning over past experiences, transformers
have shown promising initial results, outperforming recurrent models in POMDPs when encoding
longer temporal dependencies [22].

To stabilize transformer training in partially observable RL, Parisotto et al. [24] used KV caching
while restricting gradient propagation to a small window of time steps, limiting the learning of long-
term dependencies. More recently, ReLIC [11] improved convergence of on-policy RL algorithms by
unfreezing the historical context within a rollout and applying frequent updates, while AMAGO [12]
adapted off-policy RL to train with a shared transformer backbone. While these methods enhance
long-horizon learning, ReLIC’s high computational cost and slow training hinder scalability, and
AMAGO is limited to small state-space observations, reducing its applicability to more complex tasks.
Our approach addresses these challenges by enabling efficient memory utilization and leveraging a
more scalable transformer architecture for extreme long-horizon decision-making.

3 Methodology

This section outlines our methodology for memory-augmented in-context reinforcement learning
(RL). We first formalize the problem and describe the in-context RL algorithms and the sequence
model we consider, in Section 3.1. We then introduce our context summarization mechanism in
Section 3.2, and describe key implementation details including the attention masking, positional
encoding, segment randomization and cache management scheme we use.

3.1 Problem Setting

In this work, we study tasks that require a model to perform sequential decision-making over long
executions while leveraging its experience history to improve efficiency over time. Many diverse
reasoning problems fall into this category, ranging from embodied navigation to language modeling.
We formalize these tasks within the framework of in-context reinforcement learning (RL), where
models adapt and improve their performance using past inferences rather than pre-collected supervised
datasets. By treating these tasks as partially observable Markov decision processes (POMDPs) and
transforming them into fully observable MDPs through the integration of historical context, it is
possible to train policies effectively using both on-policy and off-policy RL methods.

We use a sequence encoder to model the agent’s policy, processing past observations into a contextual
representation for decision-making. At each timestep t, the sequence encoder receives a sequence
of observations, denoted as Xt = {o1, . . . , ot}, and maps them to hidden representations ht =
SeqEnc(Xt). The policy distribution and value estimate are then computed using learnable actor
and critic heads as π(at | ht), V (ht), respectively, where at ∈ A is the action taken by the agent at
timestep t, selected according to the policy π over the action space A.

In-Context RL Algorithms: In in-context RL, an agent adapts over time by conditioning on
its entire past within a trial. A trial consists of multiple episodes, where each episode resets upon
termination, but the agent retains memory across episodes. These episodes share a common underlying
context—such as environment dynamics, task structure, or goal distribution—enabling the model to
leverage past experiences for more efficient adaptation. Sequence models like Transformers encode
history by attending to all previous timesteps within a trial, allowing the agent to infer temporal
dependencies and adjust its behavior accordingly. However, as trial lengths increase, attending to all
past timesteps becomes computationally infeasible.
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To address this, we introduce Memo, a method for constructing and accessing memory representations
in Transformers to improve long-term context management in RL, as described in Section 3.2. To
demonstrate its efficacy and broad applicability to long-context RL, we integrate Memo with both
on-policy and off-policy RL method:

• On-policy RL: We incorporate our memory mechanism into RELIC [11], an adaptation of DD-
PPO [30], which applies frequent partial updates during trajectory rollouts to help transformer
policies learn more effectively from in-context experiences.

• Off-policy RL: We extend Memo to AMAGO [12], which trains transformer-based policy using a
shared sequence encoder and unified actor-critic loss to improve stability and learning efficiency.

3.2 Context Summarization in Memo

Following [7], we introduce context summarization as a learned sub-task that enables the transformer
encoder to compress and retain task-relevant information from long observation histories. This
mechanism allows the model to efficiently process past experiences while optimizing for task rewards
in RL. Our approach uses learnable summary embeddings to prompt the transformer to generate
summary tokens at predefined intervals, ensuring efficient memory utilization in long-horizon tasks.

Instead of attending to the full sequence history, the transformer periodically compresses past context
into summary tokens, which are then fed back into the model in future timesteps. We partition long
input sequences into segments of length lseg, and generate lsum summary tokens at the end of each
segment. These tokens act as compact memory representations, allowing the model to condition
on past experiences without requiring access to raw observations. The encoding and integration
of summary tokens into future segments are illustrated in Figure 1, and the pseudocoe is provided
in Appendix A.4. The summarization mechanism is trained end-to-end through the RL objective,
allowing the model to attend over and refine all previously generated summary tokens. Gradients
propagate through the attention mechanism, ensuring that memory updates remain task-driven.

Attention Masking: We use causal masking which includes all the previous summary tokens as well
as the previous observations within the segment being processed at time step t. This excludes any
previous observation that contributed to and that was processed before the most recent summarization.
This creates a bottleneck for the flow of historical information to be solely through summary tokens.

Positional Encoding: To add positional awareness, we assign indices to an observation at time step t
based on its relative position within a segment. We use the same positional encoding method (linear
or ROPE) used by the baseline implementation which we will be comparing to. The position labeling
scheme in a naive full-context transformer input has indices which run from 0 to the length of the
context window. In Memo, the input context at time step t in the rollout consists of n ∗ lsum summary
tokens and the latest segment’s observations, where n = ⌊t/lseg⌋. The position indices thus range
from 0 to n ∗ lsum - 1 for the summaries and then start from n ∗ lsum and go to t−n ∗ lseg +n ∗ lsum
for the most recent observations in the latest segment. The summary embeddings at the end of a
segment are assigned indices following those of the last segment observation.

Segment length randomization: Following Chevalier et al. [7], we randomize segment lengths
during training by sampling uniformly within ±20% of a fixed lseg . This approach, which previously
showed small improvements in perplexity for token prediction, will be ablated in 4.8. A fixed lseg is
used during data collection and evaluation, while training uses randomized segment lengths.

Maintaining the KV Cache: In on-policy RL, the KV cache stored during action selection can
become stale after a model update, as the new weights would encode different representations for the
same past context. This divergence is problematic since policy decisions depend on context, making
consistency crucial. ReLIC addresses this by refreshing and re-encoding the KV cache with the latest
model weights after every on-policy update. We extend this approach to memory tokens, ensuring
consistency by recomputing the summary vectors alongside the KV cache refresh. This guarantees
that both cached representations and learned memory remain aligned with the current policy.

4 Experiments

In this section, we present experimental results highlighting different aspects of our proposed method.
We first describe the benchmark tasks and baselines used in our experiments, followed by different
experimental insights in the following subsections.
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4.1 Benchmarks

EXTOBJNAV: The Extended Object Navigation (EXTOBJNAV) task, first introduced in [11], builds
on the OBJECTNAV task commonly used in embodied AI research [1, 20]. While OBJECTNAV
requires an agent to navigate to a single object goal in an episode, EXTOBJNAV focuses on how
performance evolves when the agent is repeatedly tasked with reaching different object goals within
the same scene. The task evaluates the agent’s ability to leverage memory—utilizing information
from prior exploration during navigation to reach subsequent goals.

The EXTOBJNAV task uses 37 training and 12 validation scenes from HSSD [16] and includes 20
object instances from the YCB dataset [6]. These objects can be randomly placed on receptacles
throughout the scene, with each placement featuring an average of 30 objects. We use 11,100 novel
placements during training and 108 during evaluation. A sample scene is shown in Figure 2a.

Agents are trained and evaluated over trials, each consisting of a sequence of episodes with the same
object placement in a scene. Each episode mirrors OBJECTNAV in structure: the agent is randomly
spawned and tasked with locating an object from a sampled category. Episodes are capped at 500
steps, while trials are limited to 4096 steps during training and 32k steps during evaluation.

The agent is a Fetch robot with a head-mounted camera (256x256 RGB) and an odometry sensor that
provides relative position and orientation. It operates in a discrete action space: Forward (0.25m),
TurnLeft (0.3°), TurnRight, and Stop. An episode is successful if the agent stops within 2m of the
goal with the object in view, occupying at least 10 pixels in the image.

We report success rate (SR) and success weighted by path length (SPL), with SPL measuring
navigation efficiency relative to the shortest path. Results are computed over 32k interaction steps
on the validation set and plotted at intervals of 500 steps. All experiments use 10 random seeds.
Further details are in Appendix A.1. We include results on another multi-goal 3D maze navigation
task (Memory Maze) in the appendix.

Dark-Key-To-Door: Dark-Key-To-Door [18] is a Meta-RL [2] benchmark where an agent must find
an invisible key to open an invisible door in a 9x9 2D gridworld. The agent receives +1 reward for
finding the key and the door. It only observes its (x, y) position at each timestep and must remember
key and door locations based on previous reward signals.

Each episode lasts up to 50 timesteps, with trial duration fixed at 500 steps. We evaluate performance
by average reward across 960 trials and 3 validation seeds. An agent that leverages contextual
information can complete multiple episodes per trial and achieve total reward well above 50.

4.2 Baselines

Below, we describe the main transformer-based baselines that we compare Memo to in this work.

• The full context transformer baseline corresponding to ReLIC [11] and AMAGO [12]. We refer
to it as FCT in the following sections for brevity.

• Transformer without Inter-Episode Attention (no-IEA): We modify the attention masking
such that the model can’t attend over previous trials in the rollout. This sets a lower bound for
what the performance would be if the model didn’t do in-context learning and simply used its
current trial’s observations to explore and find objects.

• Recurrent Memory Transformers (RMT): We also include a recurrent-only version of Memo
that does not accumulate summary tokens. This baseline represents an implementation of
RMT [5] adapted for the RL setting. The purpose of this comparison is to evaluate the benefits
of Memo’s summary accumulation against a fixed-size memory constraint. To ensure a fair
comparison, we set the fixed memory size in RMT equal to the total number of summary tokens
Memo would accumulate over multiple segments (lsum * number-of-segments).

• Autocompressors (AC): Memo with a pre-trained initialization and highly truncated backpropa-
gation through time TBTT. This represents an implementation of AC [7] tailored to the RL setting.

We exclude RL2 and Tr-XL due to their poor performance in the results of [11, 12]. In the following
subsections, we present experimental insights examining how Memo’s memory creation mechanism
and training recipe enhance long-horizon reasoning and in-context learning. Each subsection high-
lights and focuses on a specific finding and analyzes a subset of baselines drawn from figures that are
shared across multiple sections, allowing us to do a more structured comparison.
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(a) EXTOBJNAV (b) Results on EXTOBJNAV

Figure 2: (Left) Overhead view of a training scene in Habitat simulator. The EXTOBJNAV task
involves placing multiple objects around the house, and then sampling an object category as the goal
each time the previous goal is reached. The figure shows some sample objects that may be placed
around the house, such as Banana, Cracker Box, etc. (Right) Val success rate and SPL curves over
32k in-context learning steps in novel scenes, for different methods trained with ReLIC. We compare
Memo to the the full-context transformer (FCT), the FCT variant which does not attend over previous
episodes (no IEA), the recurrent memory transformer (RMT), and the Autocompressors (AC) variant.

4.3 Summarization Outperforms Full In-Context Access

We first show that Memo achieves higher performance and exhibits better ICL-ability compared to
naive full context transformer (FCT) while using significantly less tokens in-context during evaluation.

In Figure 2b, we report the validation SR and SPL on the EXTOBJNAV task over 32k environment
steps. All methods are trained using on-policy RL technique proposed by ReLIC. Memo is trained
with a segment length of 256, 32 summarization tokens, and a trainable rollout length of 4096.
We observe that Memo outperforms FCT achieving 7.5% higher SR and 2.5% higher SPL on
average while using 8x fewer tokens (details in Table 1). We see that both Memo and FCT show
in-context learning ability and continue to increase their performance up to 10k steps (∼2.5x of
the training context length). Beyond this point, both methods experience performance degradation
due to limitations in context length extrapolation. Notably, FCT degrades more than Memo in SR,
while both show similar degradation in SPL. The single-episode variant (Transformer - no IEA)
performs significantly worse, highlighting the disadvantage of not leveraging historical context in this
navigation task. We also compare the GPU memory and FLOPs for Memo and FCT in Appendix A.5,
and their sample-efficiency in Appendix A.10.

In Figure 3a, we present a similar comparison on the Dark-Key-To-Door environment, reporting the
average total return over trials as training progresses. All methods are trained using the off-policy
RL algorithm AMAGO. We see that both Memo and RMT match the FCT baseline, achieving peak
performance on validation episodes by 40M training steps. Interestingly, FCT shows a notable
performance drop around the 35-40M step mark across all seeds, while Memo remains maintains
stable convergence. This is likely due to training instability commonly observed in long-context RL
[12, 24], highlighting further training challenges with full-context models.

The consistent performance gains observed across both on-policy (with ReLIC) and off-policy
(with AMAGO) RL setups demonstrates that our proposal to augment transformer policies with
summarization enhances long-context modeling capabilities while being independent of the specific
RL algorithm used.

4.4 Advantage of Summary Accumulation Over Fixed Recurrent Memory

The summary accumulation mechanism in Memo addresses the limitations of both transformers and
recurrent models. While transformers can model full context, they suffer from significant memory
overhead with long sequences. In contrast, recurrent models are memory-efficient but struggle to
propagate gradients effectively over long horizons due to vanishing or exploding gradients. Summary
accumulation mitigates context explosion by periodically summarizing experiences and propagating
these summaries forward, allowing earlier memories to directly influence outcomes at later timesteps.
Additionally, in purely recurrent models, gradients must pass through all intermediate memory update
steps to reach the embedding of a relevant input far back in time. In contrast, periodic summary
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(a) Results on Dark-Key-To-Door (b) Comparison between Memo and AC variants on EXTOBJNAV.

Figure 3: (Left) We plot the average return over evaluation trials of 500 steps, consisting of 10 or
more episodes, plotted against the training progress. We compare Memo, RMT and FCT, when
training with the AMAGO RL algorithm over 3 random seeds. (Right) On EXTOBJNAV, we find that
restricting gradient propagation to a few consecutive windows (AC (TBTT)) performs much worse
than allowing all past segments to remain trainable (AC (all segments)). While AC (all segments)
initially performs slightly better than Memo, it suffers from severe performance degradation over
time, converging to AC (TBTT) after 16k steps.

generation and accumulation (as in Memo) ensure that each summary vector contributes directly to
the loss function at later timesteps without degradation. For example, at a timestep t, all summaries
created before are available as an undiminished input to the attention and subsequent optimization
process.

We empirically validate this by comparing Memo’s summary accumulation to a variant where only
newly generated summaries (at the end of the current segment) are propagated to the next segment.
This variant is closely aligned to the Recurrent Memory Transformer (RMT) [5]. To ensure fairness,
we allow the recurrent model a larger summary size. Even with this adjustment, Memo achieves faster
convergence, improving training speed by over 10M steps on the Dark-Key-To-Door task (Figure 3a).
We further evaluate RMT on EXTOBJNAV (Figure 2b) using 1× and 2× Memo’s summary size
(32, 64). Although RMT outperforms a purely recurrent baseline such as RL2—showing that
per-step memory updates are too limiting—it still lags Memo by about 5% success rate. Larger
summaries (RMT-128) destabilize training. This indicates that periodic summarization (like in Memo
or Memo-RMT) improves expressivity and stability over purely recurrent per-step memory updates,
while Memo’s accumulation mechanism further enhances both by introducing residual-like gradient
shortcuts that enable efficient and stable long-horizon optimization (see Appendix A.7 for further
analysis).

4.5 Importance of Long-Horizon Gradient Propagation: Comparison to Autocompressors

Since Memo’s summarization approach is inspired by the Autocompressors (AC) method from the
language modeling domain, we investigate how following the exact training setup from AC would
perform in our setting.This involves pre-training a transformer policy on a shorter context length
before fine-tuning it with summarization to extend its effective context length. We first train a baseline
transformer with a context size of 1024 for 350M steps (half of the total training horizon for other
baselines). This model serves as the weight initialization for our AC model, which is then fine-tuned
for 350M steps with segment length lseg = 256, summary length lsum = 32, and a trainable rollout
length of 4096. Following AC, we employ Truncated Backpropagation Through Time (TBTT) during
training, restricting gradient propagation to summary tokens from only the two preceding segments;
we refer to this variant as AC (TBTT). For a fairer comparison to other methods, we also train a
version of AC where gradients are propagated across all segments within the rollout, referred to as
AC (all segments). This setup is identical to Memo, except it’s bootstrapped from a pre-trained
model with a shorter context length.

We discover that this limited propagation is insufficient for tasks requiring long-horizon memory, as
AC (TBTT) fail to capture dependencies spanning extended horizons. As illustrated in Figure 3b,
AC (TBTT) exhibits poorer in-context improvement in object-finding tasks compared to AC (all
segments). While AC (all segments) slightly surpasses Memo in SR and matches it in SPL during
the first 6-8k steps, its performance degrades significantly over time, eventually converging to AC
(TBTT) after 16k steps. This suggests that while a short context length pre-trained checkpoint can
offer some initial advantage, it ultimately hinders effective generalization to longer contexts.
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(a) Memo and Transformer streaming evaluations. (b) Finetuning for 16k steps on EXTOBJNAV.
Figure 4: (Left) We show a comparison between the accumulating context (default setting) and the
streaming version of Memo and the full-context transformer, where streaming starts after 6k eval
steps. This comparison highlights the robustness of Streaming Memo, which maintains and even
slightly improves performance, whereas Streaming Transformer suffers a sharp decline. (Right) We
see that finetuning over a longer number of steps during training serves to partially fix the degradation
due to context length extrapolation.

4.6 Extrapolation and Experience Subsampling During Evaluation

Avoiding memory explosion due to KV cache accumulation is a challenge for transformers at
inference time. We evaluate Memo and the FCT baseline in a streaming setting, where only the most
recent T KV cache elements are retained for inference, enforcing a fixed memory limit. To keep our
setup simple, we do not update the KV cache to account for shifts in token position indices relative to
the retained cache. We set T based on the context length at 6k env steps, as both Memo and FCT
exhibit ICL generalization up to at least 6k steps (see Figure 2b). Thus, on EXTOBJNAV, we use
T = 6k for Streaming Transformer and T = 1024(= round(6000/256) ∗ 32 + 256) for Streaming
Memo, since 6k steps correspond to 24 sets of summary tokens when lsum = 32 and lseg = 256.

We present the results in Figure 4a. Streaming Memo not only maintains performance through the
trial but even outperforms Memo with full memory access in terms of ICL trend. In contrast, the
Streaming Transformer undergoes a significant performance drop once streaming begins at 6k steps.
Although methods like StreamingLLM [31] address the issues faced by the Streaming Transformer,
Memo achieves strong performance without requiring such modifications. Additionally, Streaming
Memo provides a way to maintain peak ICL performance by identifying the highest-performing
context length during evaluation and initiating streaming beyond that.

4.7 Finetuning

In Figures 2b and 4a, we see a saturation in Memo’s ICL performance at ∼60% SR. To investigate
whether this limitation stems from suboptimal context length extrapolation, we take Memo’s and
FCT’s checkpoints trained until 1B steps and fine-tune them on a 4× larger context size of 16,384
tokens for 500M steps. As shown in Figure 4b, the ICL performance of both models improves
when evaluated over 32k environment steps. Notably, Memo (16k) outperforms Memo (4k) in SPL,
indicating that training with longer contexts enables the policy to find more efficient paths. While
the 16k full-context transformer (FCT) improves significantly over its 4k variant, it still achieves
lower maximum SR and SPL compared to Memo (16k). Interestingly, Memo (16k) generalizes up to
1.5× its training context length after which it sees a slight degradation, whereas FCT (16k) maintains
performance up to at least 2×. This necessitates further research into the factors limiting Memo’s
long-context generalization, which we leave for future work.

4.8 Ablations.

Summary Length Ablation: There is a trade-off between creating or retaining more memory and
the compute saved when generating fewer tokens at training or inference time. Additionally, creating
more tokens pushes the model further into the “extrapolation” regime, where its positional encodings
stop generalizing effectively. We vary the summary length between values 16, 32, and 64 (thereby
varying the compression ratio, lseg/lsum, between 16×, 8×, and 4×) on the EXTOBJNAV task and
plot the resulting performance in Figure 5a. We find that Memo is highly sensitive to the choice of
summary length. The main performance gap emerges after 6k environment steps, where a summary
length of 32 achieves the best generalization across longer trajectories. In contrast, a summary length
of 64 performs the worst, likely due to summary tokens overfitting to the training context length (see
Figure 10a), leading to redundant information storage and a lower signal-to-noise ratio.
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(a) Summary length ablations (b) Segment length randomization.

Figure 5: Memo ablations. (Left) Effect of varying the number of memory tokens (16/32/64), where
32 outperforms 16, and 16 outperforms 64. (Right) Performance of Memo on EXTOBJNAV with and
without randomization of the segment lengths at the end of which summarization is done, showing
the latter is significantly less data-efficient.

Segment Randomization: In our main experiments, we adopted the strategy of randomizing seg-
ment lengths as in [7] for Memo, AC, and RMT to make token generation more robust to specific
environment time steps. We randomized segment lengths between [0.8, 1.2] × 256, resulting in
a range of [205, 307]. In this ablation, we disable this randomization and evaluate the impact of
using a fixed segment length of 256, as shown in Figure 5b. We observe that this variant performs
significantly worse, not just during evaluation but in also training (see Figure 10b). We hypothesize
that segment length randomization not only improves generalization by preventing overfitting to fixed
boundaries but also serves as a form of curriculum. By exposing the model to segments of varying
lengths, it naturally encounters both easier (shorter) and harder (longer) compression tasks, fostering
a progressive learning effect. We present further results and ablations in Appendices A.6 and A.8.

5 Discussion

In this work, we proposed a simple yet effective approach for training transformers with memory in
sequential decision-making tasks that require long-horizon reasoning. By introducing a context sum-
marization mechanism, Memo enables transformers to retain and retrieve task-relevant information
efficiently, significantly reducing computational overhead while maintaining long-term dependencies.
Our experiments demonstrated Memo’s key advantages over full-context transformer baselines. In
terms of performance vs. efficiency, Memo achieves comparable or superior performance while
attending to sequences over 8× shorter than the full-context transformer. This improves scalability,
enhances extrapolation to longer contexts, and ensures robust performance in streaming settings,
where past context must be discarded due to inference constraints.

Furthermore, our analysis highlighted two key design choices: propagating gradients across multiple
summarization steps and accumulating summaries rather than using a fixed memory size. We showed
that allowing gradients to flow through sequential memory updates significantly enhances long-
horizon reasoning, while memory accumulation improves retention of relevant past experiences,
leading to more effective decision-making.

6 Limitations

Our experiments focus on object navigation in unseen scenes, where agents locate a fixed set of
randomly placed objects. We do not evaluate semantic generalization—i.e., navigating to entirely new
object categories—since this would conflate memorization with general object recognition capability.
Future work could explore leveraging foundation models in a more open-ended setting.

Additionally, while Memo effectively summarizes experience, we do not explore more flexible
memory mechanisms, such as memory consolidation, where past summaries are progressively
compressed. Investigating these strategies could further improve long-term memory efficiency. We
also do not explicitly study length extrapolation. Our results indicate that compressed memory tokens
improve robustness to longer contexts and enable streaming inference, but extending generalization
beyond training limits remains an open challenge. Lastly, our memory mechanism is trained end-
to-end via the RL objective. Future work could explore self-supervised objectives, such as future
prediction, to enhance data efficiency in training memory representations.
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A Appendix.

A.1 Task Setting and Model architecture: EXTOBJNAV

Our policy takes as input an RGB image, the agent’s relative position, the previous action, and the
current goal object category. The RGB image is encoded using a ViT-B-sized VC-1 [20] visual
encoder, finetuned by ReLIC to improve small object detection, a limitation of the original VC-1
model. The finetuned encoder remains frozen in all experiments, and we use VC-1’s CLS token
downstream, applying an MLP for dimension reduction to size 256. The goal category one-hot vector
and previous action are also embedded into 256 dimensions, while the agent’s position is converted
into a 32-dimensional embedding. All these embeddings are concatenated together and passed to the
sequence encoder.

All our sequence encoders (Memo, AC, etc) are based on a much smaller version of the causal
auto-regressive transformer architecture used in LLaMA [29] (see details in Table 2). The weights
of the model are trained from scratch unless specified otherwise. To accelerate data collection, the
transformer’s KV cache is maintained between rollout steps. Following ReLIC, we shuffle older
episodes within each sequence and update the KV cache after each policy update, ensuring efficient
memory reuse.

We use the same reward function for the navigation task as defined in Elawady et al. [11]. The reward
consists of three components: (1) Geodesic distance reward: The agent receives a reward

rd = −∆d

where d is the geodesic distance to the closest object, which can change throughout the episode. (2)
Slack penalty: A constant penalty of −0.003 per step encourages efficient navigation. (3) Success
reward: The agent receives a reward of 2 upon successfully reaching the target.

The SPL (Success weighted by Path Length) metric is computed as:

SPL = 1
N

∑N
i=1 Si · L∗

i

max(Li,L∗
i )

where N is the number of episodes, Si is a binary indicator of success in episode i, Li is the length
of the path taken by the agent, L∗

i is the length of the shortest path to the goal (computed using
privileged simulator information). The SPL values reported in the main graphs are computed at
intervals of 500 environment steps. Specifically, the SPL at step t is calculated by averaging the SPL
of all episodes that completed between steps t − 499 and t. So the SPL at step 5000 reflects the
performance of all episodes that finished between step 4501 and 5000.

A.2 Task Setting and Model architecture: Dark-Key-To-Door

We refer the reader to the AMAGO implementation [12] (https://github.com/UT-Austin-RPL/amago)
for details on the policy architecture used on the Dark-Key-To-Door task. We keep all implementation
and training details fixed.

A.3 Training Scenes Dataset: EXTOBJNAV

Since the training dataset used in ReLIC only consisted of 333 episodes, we create our own training
dataset while using the same validation dataset as them. We use the same 37 train scenes as [11, 32].
However we generate 300 episodes per scene each having a different object placement. This leads to
a total of 11100 training episode. In each episode we reduce the number of sampled objects to make
the navigation task harder since the agent has to traverse longer, more targeted paths to reach objects
instead of getting away by guessing (i.e. navigating to rooms with more clutter and many receptacles
since the likelihood of finding an object would be higher there). We visualize the difference in
sampled object distributions over episode, between the old [11] and new datasets in Figure 6.

A.4 Pseudocode for Memo

We present the algorithmic pseudocode for Memo in Algorithms 1 and 2. The modifications with
respect to a distributed PPO implementation (corresponding to ReLIC) are highlighted in blue. We
plan to fully open-source our implementation upon publication and include an early release version
at https://github.com/Memory-icrl/memo.
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Figure 6: Distribution of Objects in the training episodes: We visualize the changed distribution of
objects sampled (and placed) randomly in the scenes corresponding to our dataset versus the original
training dataset used in [11]. In our training scenes, avoid sampling more than 30 objects per scene to
avoid cluttered rooms where multiple target objects could be placed together, to reduce the risk of
models overfitting during training.

Algorithm 1 Memo

1: Initialize θ, ϕ, buffer B ← ∅, summary tokens S ← ∅
2: o1 ← reset()
3: i← 0
4: for t = 1 to N do
5: Ci:t−1 ← context from B
6: ht ← SeqEncϕ(S, Ci:t−1, ot)
7: a ∼ πθ(a | ht)
8: (r, ot+1, done)← step(a)
9: if done then

10: ot+1 ← reset()
11: end if
12: if t % lseg = 0 then ▷ lseg is segment length
13: S ← SeqEncϕ(S, Ci:t−1, ot)
14: i← t
15: end if
16: Append (ot, a, r, ot+1, done) to B
17: if t% num_steps = 0 then
18: TRAIN(B, t)
19: end if
20: ot ← ot+1

21: end for

Algorithm 2 Train Memo

1: procedure TRAIN(B, t)
2: Initialize summary tokens Strain ← ∅
3: n←

⌊
t

lseg

⌋
▷ n is num segments

4: for j = 0 to n do
5: Cjlseg :(j+1)lseg ← context from B
6: Strain ← SeqEncϕ(Strain, Cjlseg :(j+1)lseg )
7: end for
8: Cnlseg :t ← context from B
9: L ← PPOloss(Strain, Cnlseg :t)

10: θ ← θ − η∇θL
11: end procedure
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A.5 Extended Result: FLOPs Comparison

Here, we include memory, FLOPs and latency comparison between Memo and Full-Context Trans-
former during evaluation on EXTOBJNAV at 32k env steps. Memo requires 10x lesser memory and
4.2x lesser floating point operation, being 2x faster than the Full-Context Transformer

Table 1: GPU memory usage comparison: Memo versus the Full-Context Transformer (FCT) at
the end of 32k steps of evaluation on the EXTOBJNAV task. We observe a 10× higher memory
requirement for the KV cache of FCT, in line with the context compression ratio (∼ 8) of Memo.

Memo Full-Context Transformer
GPU Memory 51.8 MB 546.5 MB
Model FLOPs 17.61 MFLOPs 74.49 MFLOPs
Latency 5.3 ms 10.1 ms

A.6 Extended Result: Memory-Maze Benchmark

To further evaluate our method on long-horizon memory-intensive tasks, we include preliminary
results on the Memory Maze benchmark. This environment poses a challenging multi-goal navigation
task in a procedurally generated Mujoco-based maze. At the start of each episode, up to six colored
goal objects are randomly placed in the maze, and the agent is given a randomly sampled sequence of
goals to reach in order. Upon reaching the current goal, the next target is revealed, continuing until
the episode ends. We evaluate Memo and the Full-Context Transformer (FCT) on the 9×9 version of
the task, which includes two obstacles and has an episode length of 1000 steps. This setting demands
both exploration and the ability to recall spatial information about previously encountered goals and
maze structure. Figure 8 show that Memo matches the performance of FCT on this task.

Figure 7: Returns of FCT vs AC on Memory Maze 9x9.

A.7 Extended Result: Benefits of Memory Accumulation on an Adversarially Long-Context
RL Task (T-Maze)

To explore memory-reuse, recall that we had included a recurrent-only summarisation (RMT) baseline
in our experiments in Section 4.4. While RMT performance improved with larger memory sizes (e.g.,
RMT-64 outperformed RMT-32), Memo still achieved 5̃% higher success rate on navigation. Runs
with a larger summary size (RMT-128) showed unstable convergence.

We observed an interesting trend across recurrent summarization baseline results on different bench-
marks: while recurrent summarization can eventually achieve reasonable performance, they typically
require significantly more training due to the need to propagate gradients through many sequential
memory updates. In contrast, architectures like Memo—and transformers more generally—enable
more efficient credit assignment by allowing earlier memories to receive gradient signals from later
timesteps via direct attention mechanisms.To further validate the above intuition, we ran an exper-
iment in the synthetic T-maze gridworld environment [22]. Here, the agent sees a clue ("left" or
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"right") at timestep 0, which disappears at timestep 1. It then traverses a long corridor with only
forward actions, and at the end must choose the left or right room based on the initial clue to receive
a reward. The corridor length can be made arbitrarily large (e.g., 10,000 steps). We hypothesized that
purely recurrent models would especially struggle in this adversarial setting, as learning to retain the
clue requires backpropagating gradients through all the segments corresponding to the 10,000 steps.
Memo and FCT, however, can access that information directly at later timesteps—either through full
attention (FCT) or through a small number of memory consolidation stages (Memo). Empirically,
we observed the expected result: RMT required 10× longer to achieve an average reward of 1.0 for
the first time during training, compared to FCT and Memo. In addition, it exhibited much greater
instability in learning the correct policy, since it did not manage to maintain this performance (average
reward = 1.0) for three consecutive checkpoints at any point during training.

Figure 8: Returns of Memo-RMT vs Memo on T-Maze (l = 2000).

A.8 Extended Ablation: Direct KV Cache Construction from Summary Embeddings

To assess whether the improved performance of Memo stems from the additional computation it
uses (due to summary embeddings being processed through the transformer twice), we perform an
ablation that removes the re-encoding step.

In this variant, instead of generating summary tokens and re-encoding them through the transformer,
we directly construct the memory (KV cache) from the internal embeddings produced at each layer
while encoding the learnable summary embeddings. As in Memo, these summary embeddings are
inserted at regular intervals between segments of tokens. However, unlike Memo, their layer-wise
representations are extracted directly to serve as the KV cache, without further processing.

Figure 9: Ablating the summary generation process in Memo.

This approach is more compute-efficient, as each token—including summaries—is passed through
the transformer only once. However, as shown in Figure 9, this variant performs poorly and quickly
degrades beyond the training context length. We hypothesize that this is not only due to the lack of
deeper summarization capacity, but also due to positional embedding generalization issues. Since
summary embeddings are appended at the end of each segment, their positional indices lie in the
range [lseg, lseg + lsum] , with offsets accumulating across segments. Consequently, these summary
positions - and those of all future tokens - progressively reach larger values, potentially leading to
distribution shifts in the positional encodings that the model is unable to generalize over.
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This result suggests that Memo’s re-encoding step not only adds depth for more expressive sum-
marization but also resets the positional index range for the summary tokens, both of which appear
beneficial for stability and generalization.

A.9 Training-Validation Gap

(a) Summary length ablations. (b) Segment length randomization.

Figure 10: Training-validation gap for Memo ablations on EXTOBJNAV. (Left) All summary
tokens sizes (16/32/64) perform equally well on the training set for ∼ 7.5k environment steps after
which 16 and 64 summary token policies start degrading faster. (Right) Fixed segment length’s
training performance is worse than the val performance of random segment length.
In this section, we visualize the overlaid training and validation performance curves for Memo on the
EXTOBJNAV task, which presents two key challenges. First, validation scenes are entirely novel,
requiring models to generalize their in-context learning (ICL) solutions. Second, models are evaluated
on 4× larger trial sizes, testing their context extrapolation capabilities. To assess generalization, we
compare overfitting levels across models, distinguishing whether low validation performance stems
from limited encoding expressivity (indicated by low training performance) or poor generalization
despite strong training performance. We present train versus validation curves for Memo while
ablating the summary lengths in Figure 10a and while ablating the segment length randomization in
Figure 10b.

Figure 11: We compare the validation reward curves of checkpoints saved at 700M and 1000M steps
of training for Memo and the full context transformer (FCT) variants on the EXTOBJNAV task trained
with ReLIC. Both checkpoints of Memo acheve higher success rate compared to the checkpoints of
FCT, while its 1000M approaches the 700M Memo checkpoint’s performance in terms of the SPL
metric. This highlights the sample efficiency of Memo, besides the compute efficiency which comes
from using much smaller contexts in the transformer encoding and decoding process.

A.10 Sample Efficiency of Memo

We observed higher sample-efficiency for Memo during training on the EXTOBJNAV and Dark-
Key-To-Door tasks compared to the full context transformer. For Dark-Key-To-Door, this is directly
observable in Figure 3a since the performance is plotted against training progress. We present the
this observation for the EXTOBJNAV task in this section by visualizing the performance of earlier
and later checkpoints (700M and 1B training steps) of both FCT and Memo in Appendix A.9. We see
that even earlier into training, Memo exhibits higher-ICL success rates compared to FCT which starts
to get closer to Memo’s SPL only after 300M more steps of training.
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A.11 Hyperparameters

Hyperparameter Ours/AC/RMT Transformer
Model Architecture
# Layers 4
# Heads 8
Hidden dimensions 256
MLP Hidden dimensions 1024
Activation GeLU [26]
# Sink-KV 0 1
Attention sink N.A. Sink KV0

Episode index encoding N.A. RoPE [28]
Within-episode position encoding RoPE [28] Learnable

Training Setup
Workers 320 (20 env workers per GPU × 16 GPUs)
Batch Size 160
RL Algorithm DDPPO [30]
Discount Factor (γ) 0.99
GAE Parameter (τ ) 0.95
Entropy Coefficient 0.1
Value Loss Coefficient 0.5

Optimization
Optimizer Adam [17]
Regularization Depth dropout [15] with value 0.1

In-context episodes shuffled after partial updates
Learning Rate Schedule Warm-up for 100K env interactions
Initial Learning Rate 4× 10−7

Learning Rate at Warm-up End 4× 10−4

Decay Schedule Cosine decay [19] to 0 after 1B steps

Computation
Precision FP16 for visual encoder, FP32 for other model components
Rollout size 4096
Total # updates per rollout 16
# partial updates 15
# full updates 1

Hardware and Performance
Environment Steps 700M Steps
Hardware 16x NVIDIA A40 GPUs
Training Time 2.5 days

Table 2: Comprehensive training setup and hyperparameters related to the EXTOBJNAV task.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We only list the findings from experimental results in our claims.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Provided in Section 6
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not include theorems and proofs in this work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Provided in the Appendix. We also release our code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification:Provided in Appendix A.4.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Provided in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All results are averaged over seeds and we indicate error intervals.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All information required to reproduce the setup can be found in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read through the ethics guidelines and conformed to them.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is related to foundational research on transformer architectures and
does not immediately carry broader societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any models or datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All works that we build on are cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The released code is documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowd-sourcing is conducted.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No research on human subjects is conducted.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Only used for editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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