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ABSTRACT

State-of-the-art end-to-end (E2E) ASR systems, such as the Connectionist Temporal
Classification (CTC) and transducer-based models, suffer from peaky behavior and
alignment inaccuracies. In this paper, we propose a novel differentiable alignment
framework based on one-dimensional optimal transport, enabling the model to learn
a single alignment and perform ASR in an E2E manner. We introduce a pseudo-
metric, called Sequence Optimal Transport Distance (SOTD), over the sequence
space and discuss its theoretical properties. Based on the SOTD, we propose
Optimal Temporal Transport Classification (OTTC) loss for ASR and contrast its
behavior with CTC. Experimental results on the TIMIT, AMI, and LibriSpeech
datasets show that our method considerably improves alignment performance
compared to CTC and the more recently proposed Consistency-Regularized CTC,
though with a trade-off in ASR performance. We believe this work opens new
avenues for seq2seq alignment research, providing a solid foundation for further
exploration and development within the community.

1 INTRODUCTION

Sequence-to-sequence (seq2seq) alignment is a fundamental challenge in automatic speech recogni-
tion (ASR), where, beyond text prediction, precise alignment of text to the corresponding speech is
crucial for many applications. For example, in medical domain, accurate alignment helps speech and
language pathologists pinpoint speech segments for analyzing pathological cues, such as stuttering or
voice disorders. In real-time subtitling, precise alignment ensures that subtitles are synchronized with
spoken words, which is crucial for live broadcasts and streaming content. In language learning tools,
ASR systems use alignment to provide feedback on pronunciation and fluency, allowing learners to
compare their speech to target pronunciations. In these ASR-driven applications, while word error
rate (WER) is an important performance metric, frame-level and word-level alignment accuracy are
equally important for improving the system’s applicability and responsiveness.

In the literature, two primary approaches to ASR have emerged, i.e., hybrid systems and end-to-end
(E2E) models. In hybrid approaches, a deep neural network-hidden Markov model (DNN-HMM)
Morgan & Bourlard (1990); Bourlard & Morgan (2012); Young (1996); Povey (2005); Abdel-Hamid
et al. (2012); Graves et al. (2013a); Dahl et al. (2012) system is typically trained, where the DNN
is optimized by minimizing cross-entropy loss on the forced alignments generated for each frame
of audio embeddings from a hidden Markov model-Gaussian mixture model (HMM-GMM). One
notable disadvantage of the hybrid approach is that the model cannot be optimized in an E2E manner,
which may result in suboptimal performance Hannun (2014). More recently, E2E models for ASR
have become very popular due to their superior performance. There are three popular approaches
for training an E2E model: (i) attention-based encoder-decoder (AED) models Chan et al. (2015);
Radford et al. (2023); Watanabe et al. (2017); Prabhavalkar et al. (2023), (ii) using Connectionist
Temporal Classification (CTC) loss Graves et al. (2006); Graves & Jaitly (2014), and (iii) neural
Transducer-based models Graves (2012); Kuang et al. (2022); Graves et al. (2013b). AED models use
an encoder to convert the input audio sequence into a hidden representation. The decoder, typically
auto-regressive, generates the output text sequence by attending to specific parts of the input through
an attention mechanism, often referred to as soft alignment Yan et al. (2022) between the audio and
text sequences. This design, however, can make it challenging to obtain word-level timestamps and to
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do teacher-student training with soft labels. Training AED models also requires a comparatively large
amount of data, which can be prohibitive in low-resource setups. In contrast to AED models, CTC
and transducer-based models maximize the marginal probability of the correct sequence of tokens
(transcript) over all possible valid alignments (paths), often referred to as hard alignment Yan et al.
(2022). However, recent research has shown that only a few paths, which are dominated by blank
labels, contribute meaningfully to the marginalization, leading to the well-known peaky behavior that
can result in suboptimal ASR performance Zeyer et al. (2021). Unfortunately, it is not possible to
directly identify these prominent paths, or those that do not disproportionately favor blank labels, in
advance within E2E models. This observation serves as the main motivation of our work.

In this paper, we introduce the Optimal Temporal Transport Classification (OTTC) loss function, a
novel approach to ASR where our model jointly learns temporal sequence alignment and audio frame
classification. OTTC is derived from the Sequence Optimal Transport Distance (SOTD) framework,
which is also introduced in this paper and defines a pseudo-metric for finite-length sequences. At
the core of this framework is a novel, parameterized, and differentiable alignment model based on
one-dimensional optimal transport, offering both simplicity and efficiency, with linear time and space
complexity relative to the largest sequence size. This design allows OTTC to be fast and scalable,
maximizing the probability of exactly one path, which, as we demonstrate, helps avoid the peaky
behavior commonly seen in CTC based models.

To summarize, our contributions are the following:

• We propose a novel, parameterized, and differentiable seq2seq alignment model with linear
complexity both in time and space.

• We introduce SOTD, a novel framework for comparing finite-length sequences, with theo-
retical guarantees on the existence and properties of a minimum.

• We derive a new loss function, i.e., OTTC, specifically designed for ASR tasks.
• Finally, we conduct proof-of-concept experiments on the TIMIT Garofolo et al. (1993),

AMI Carletta et al. (2005), and Librispeech Panayotov et al. (2015) datasets, demonstrating
that our method mitigates the peaky beahavior, improves alignment performance, and
achieves promising results in E2E ASR.

2 RELATED WORK

CTC loss. The CTC criterion Graves et al. (2006) is a versatile method for learning alignments
between sequences. This versatility has led to its application across various seq2seq tasks Liu et al.
(2020); Chuang et al. (2021); Yan et al. (2022); Gu & Kong (2021); Graves & Schmidhuber (2008);
Molchanov et al. (2016). However, despite its widespread use, CTC has numerous limitations that
impact its effectiveness in real-world applications. To address issues such as peaky behavior Zeyer
et al. (2021), label delay Tian et al. (2023), and alignment drift Sak et al. (2015), researchers
have proposed various extensions. These extensions aim to refine the alignment process, ensuring
better performance across diverse tasks. Delay-penalized CTC Yao et al. (2023) and blank symbol
regularization Yang et al. (2023); Zhao & Bell (2022); Bluche et al. (2015) attempt to mitigate label
delay issues. Other works have tried to control alignment through teacher model spikes Ghorbani et al.
(2018); Kurata & Audhkhasi (2019) or external supervision Zeyer et al. (2020); Senior et al. (2015);
Plantinga & Fosler-Lussier (2019), though this increases complexity. More recently, Bayes Risk
CTC Tian et al. (2023) offer customizable, E2E approaches to improve alignment without relying
on external supervision. The latest advancement, Consistency-Regularized CTC (CR-CTC) Yao
et al. (2024), mitigates extreme peaky behavior by enforcing consistency between CTC distributions
obtained from different augmented views of the same audio.

Transducer loss. The transducer loss was introduced to address the conditional independence
assumption of CTC by incorporating a predictor network Graves (2012). However, similarly to CTC,
transducer models suffer from label delay and peaky behavior Yu et al. (2021). To mitigate these
issues, several methods have been proposed, such as e.g., Pruned RNN-T Kuang et al. (2022), which
prunes alignment paths before loss computation, FastEmit Yu et al. (2021), which encourages faster
symbol emission, delay-penalized transducers Kang et al. (2023), which add a constant delay to all
non-blank log-probabilities, and minimum latency training Shinohara & Watanabe (2022), which
augments the transducer loss with the expected latency. Further extensions include CIFTransducer for
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Figure 1: Alignment between embeddings of frames and target sequence. Red bullets represent the
elements of the target sequence {y}m, while the blue bullets indicate the frame embeddings {x}n.
In OTTC, the alignment guides the prediction model F in determining which frames should map to
which labels. Additionally, the alignment model has the flexibility to leave some frames unaligned,
as represented by the blue-and-white bullets, allowing those frames to be dropped during inference.

efficient alignment Zhang et al. (2024), self-alignment techniques Kim et al. (2021), and lightweight
transducer models using CTC forced alignments Wan et al. (2024).

Over the years, the CTC and transducer-based ASR models have achieved state-of-the-art performance.
Despite numerous efforts to control alignments and apply path pruning, the fundamental formulation
of marginalizing over all valid paths remains unchanged and directly or indirectly contributes to
several of the aforementioned limitations. Instead of marginalizing over all valid paths as in CTC and
transducer models, we propose a differential alignment framework based on optimal transport, which
can jointly learn a single alignment and perform ASR in an E2E manner.

3 PROBLEM FORMULATION

We define Ud
≤N =

⋃
n≤N Ud

n to be the set of all d-dimensional vector sequences of length at most N .
Let us consider a distribution DUd

≤N
×Ud

≤N
and pairs of sequences ({xi}ni=1, {yi}mi=1) of length n and

m drawn from DUd
≤N

×Ud
≤N

. For notational simplicity, the sequences of the pairs ({xi}ni=1, {yi}mi=1)

will be respectively denoted by {x}n and {y}m in the following. The goal in seq2seq tasks is to
train a classifier that can accurately predict the target sequence {y}m from the input sequence {x}n,
enabling it to generalize to unseen examples. Typically, n ̸= m, creating challenges for accurate
prediction as there is no natural alignment between the two sequences. In this paper, we introduce
a framework to address this class of problems, applying it specifically to the ASR domain. In this
context, the first sequence {x}n represents an audio signal, where each vector xi ∈ Rd corresponds to
a time frame in the acoustic embedding space. The second sequence {y}m is the textual transcription
of the audio, where each element yi belongs to a predefined vocabulary L = {l1, . . . , l|L|}, such that
{y}m ∈ Lm, where Lm denotes the set of all m-length sequences formed from the vocabulary L.

4 OPTIMAL TEMPORAL TRANSPORT CLASSIFICATION

The core idea is to model the alignment between two sequences as a mapping to be learned along
with the frame labels (see Figure 1). As the classification of audio frames improves, inferring the
correct alignment becomes easier. Conversely, accurate alignments also improve frame classification.
This mutual reinforcement between alignment and classification highlights the benefit of addressing
both tasks simultaneously, contrasting with traditional hybrid models that treat them as separate
tasks Morgan & Bourlard (1990). To achieve this, we propose the SOTD, a framework for constructing
pseudo-metrics over the sequence space Ud

≤N , based on a differentiable, parameterized model that
learns to align sequences. Using this framework, we derive the OTTC loss, which allows the model to
learn both the alignment and the classification in a unified manner. We denote J1, nK = {1, . . . , n}.

4.1 PRELIMINARIES

Definition 1. Discrete monotonic alignment. Given two sequences {x}n and {y}m, and a set of
index pairs A ⊂ J1, nK × J1,mK representing their alignment, we say that A is a discrete monotonic
alignment between the two sequences if:

• Complete alignment of {y}m: Every element of {y}m is aligned, i.e.,

∀j ∈ J1,mK, ∃k ∈ J1, nK, (k, j) ∈ A.

3
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Figure 2: Discrete monotonic alignment as 1D OT solution. A discrete monotonic alignment
represents a temporal alignment between two sequences (target on top, frame embeddings on bottom).
It can be modeled by γm,β

n , as illustrated in the graph. The thickness of the links reflects the amount
of mass γm,β

n (α)i,j transported, with thicker links corresponding to higher mass.

• Monotonicity: The alignment is monotonic, meaning that for all (i, j), (k, l) ∈ A

i ≤ k ⇒ j ≤ l.

Discrete monotonic alignments model the relationship between temporal sequences, such as those in
ASR, by determining which frame should predict which target. The conditions imposed on the target
sequence {y}m ensure that no target element is omitted, while the absence of similar constraints on
the source sequence {x}n allows certain audio frames to be considered irrelevant and dropped (see
Figure 2). The monotonicity condition preserves the temporal order, ensuring the sequential structure
is maintained. In the following sections, we will develop a model capable of differentiating within
the space of discrete monotonic alignments.

4.2 DIFFERENTIABLE TEMPORAL ALIGNMENT WITH OPTIMAL TRANSPORT

In the following, we introduce 1D OT and define our alignment model. Consider the 1D discrete
distributions µ[α, n] and ν[β,m] expressed as superpositions of δ measures, i.e., a distribution that
is zero everywhere except at a single point, where it integrates to 1

µ[α, n] =

n∑
i=1

αiδi and ν[β,m] =

m∑
i=1

βiδi. (1)

The bins of µ[α, n] and ν[β,m] are J1, nK and J1,mK, respectively, whereas the weights αi and
βi are components of the vectors α ∈ ∆n and β ∈ ∆m, with ∆n the simplex set defined as
∆n = {v ∈ Rn|0 ≤ vi ≤ 1,

∑n
i=1 vi = 1} ⊂ Rn. OT theory provides an elegant and versatile

framework for computing distances between distributions such as µ[α, n] and ν[β,m], depending
on the choice of the cost function Peyré & Cuturi (2019) (chapter 2.4). One such distance is the
2-Wasserstein distance W2, which measures the minimal cost of transporting the weight of one
distribution to match the other. This distance is defined as

W2(µ[α, n], ν[β,m]) = min
γ∈Γα,β

n,m∑
i,j=1

γi,j ||i− j||22, (2)

where ||i− j||22 is the cost of moving weight from bin i to bin j and γi,j is the amount of mass moved
from i to j. The optimal coupling γ∗ is searched within the set of valid couplings Γα,β, defined as

Γα,β = {γ ∈ Rn×m
+ |γ1m = α and γT1n = β}. (3)

This constraint ensures that the coupling conserves mass, accurately redistributing all weights
between the bins. A key property of optimal transport in 1D is its monotonicity Peyré (2019).
Specifically, if there is mass transfer between bins i and j (i.e., γ∗

i,j > 0) and similarly between
bins k and l (i.e., γ∗

k,l > 0), then it must hold that i ≤ k ⇒ j ≤ l. Consequently, when β
has no zero components – meaning that every bin from ν is reached by the transport – the set
{(i, j) ∈ [|1, n|] × [|1,m|] | γ∗

i,j > 0} satisfies the conditions of Definition 1, thereby forming a
discrete monotonic alignment. This demonstrates that the optimal coupling can effectively model
such alignments (see Figure 2).

Parameterized and differentiable temporal alignment. Given any sequences length n and m and
β with no zero components, we can define the alignment function γm,β

n

γm,β
n : ∆n → Γ∗,β[n]

α 7→ γ∗ = argmin
γ∈Γ

W(µ[α, n], ν[β,m]), (4)

4
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where Γ∗,β[n] is the space of all 1D transport solutions between µ[α, n] and ν[β,m] for any α.
Differently from β, α may have zero components, giving the model the flexibility to suppress certain
bins, which acts similarly to a blank token in traditional models. In the context of ASR, α and β can
be referred to as OT weights and label weights, respectively.

Lemma 1: The function α 7→ γm,β
n (α) is bijective from ∆n to Γ∗,β[n] .

Proof. The proof can be found in Appendix A.2.1.

Proposition 1. Discrete Monotonic Alignment Approximation Equivalence. For any β that satisfies
the condition above, any discrete set of alignments A ⊂ [|1, n|]× [|1,m|] between sequences of lengths
n and m can be modeled by γm,β

n through the appropriate selection of α, i.e.,

∀A, ∃α ∈ ∆n, (i, j) ∈ A ⇐⇒ γm,β
n (α)i,j > 0. (5)

Proof. The proof can be found in Appendix A.2.2.

Thus, we have defined a family of alignment functions γm,β
n that are capable of modeling any discrete

monotonic alignment, which can be chosen or adapted based on the specific task at hand. The
computational cost of these alignment functions is low, as the bins are already sorted, eliminating the
need for additional sorting. This results in linear complexity O(max(n,m)) depending on the length
of the longest sequence (see Algorithm A.1.1 in the Appendix). Furthermore, these alignments are
differentiable, with γm,β

n (α)i,j explicitly expressed in terms of α and β, allowing direct computation

of the derivative dγm,β
n (α)i,j

dα via its analytical form.

4.2.1 SEQUENCE-TO-SEQUENCE DISTANCE

Here, we use the previously designed alignment functions to build a pseudo-metric over sets of
sequences Ud

≤N .

Definition 1. Sequences Optimal Transport Distance (SOTD). Consider an n-length sequence
{x}n ∈ Ud

≤N , an m-length sequence {y}m ∈ Ud
≤N , p = max(n,m), and q = min(n,m). Let

C : Rd × Rd → R+, be a differentiable positive cost function. Considering r ∈ N∗ and a family
of vectors {β}N = {β1 ∈ ∆1,β2 ∈ ∆2, . . . ,βN ∈ ∆N} without zero components, we define the
SOTD Sr as

Sr({x}n, {y}m) = min
α∈∆n

( n,m∑
i,j=1

γ
q,βq
p (α)i,j · C(xi,yj)

r
)1/r

. (6)

Note that βq obviously depends on q, but could a priori depend on {x}n and {y}m. To simplify the
notation, we only denote its dependence on q. However, all the results in this section remain valid
under such dependencies, as long as βq components never becomes zero.

Proposition 2. Validity of the definition. SOTD is well-defined, meaning that a solution to the
problem always exists, although it may not be unique.

Proof. The proof and the discussion about the non-unicity is conducted in Appendix A.2.3.

Proposition 3. SOTD is a Pseudo-Metric. If the cost matrix C is a metric on Rd, then Sr defines a
pseudo-metric over the space sequences with at most N elements Ud

≤N .

Proof. The proof can be found in Appendix A.2.4.

Since Sr is a pseudo-metric, there are sequences {x}n ̸= {y}m such that Sr({x}n, {y}m) = 0.
The following proposition describes the conditions when this occurs.

Proposition 4. Non-Separation Condition. Let A be the sequence aggregation operator which
removes consecutive duplicates, i.e., A({. . . ,x,x, . . . }) = {. . . ,x, . . . }. Let Pα be the sequence
pruning operator which removes any element xi from sequences corresponding to an αi = 0, i.e.,
Pα({. . . ,xi−1,xi,xi+1, . . . }) = {. . . ,xi−1,xi+1, . . . } iff αi = 0. Further, let us consider {x}n
and {y}m such that {x}n ̸= {y}m. Without loss of generality, we assume that n ≥ m. Then

Sr({x}n, {y}m) = 0 iff A(Pα∗({x}n)) = A({y}m), (7)

5
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where α∗ is a minimum for which Sr({x}n, {y}m) = 0. It should be noted that this condition holds
also when C is neither symmetric nor satisfies the triangular inequality, but is separated (like the
cross-entropy for example). (Proof. See Appendix A.2.5. )

The consequence of the previous proposition is that we can learn a transformation through gradient
descent using a trainable network F which maps input sequences {x}n to target sequences {y}m
(with n ≥ m) by solving the optimization problem

min
F

Sr(F ({x}n), {y}m). (8)

We are then guaranteed that a solution F ∗{x}n allows us to recover the sequence A({y}m). In
cases where retrieving repeated elements in {y}m (e.g., double letters) is important, we can in-
tersperse blank labels ϕ /∈ L between repeated labels as follows: {y}m = {. . . , li, li, . . . } →
{. . . , li, ϕ, li, . . . }.
Note on Dynamic Time Warping (DTW): A note on the distinction between our approach and
DTW-based methods Itakura (1975) can be found in Appendix A.4.

4.3 APPLICATION TO ASR: OTTC LOSS

In ASR, the target sequences {y}m are d-dimensional one-hot encoding of elements from the set
L ∪ {ϕ}, where ϕ is a blank label used to separate repeated labels. The encoder F predicts the label
probabilities for each audio frame, such that

F ({x}n) = {[pl1(xi), . . . , pl|L|+1
(xi)]

T }ni=1. (9)

The alignment between F ({x}n) and {y}m is parameterized by α[{x}n,W ] ∈ ∆n, defined as

α[{x}n,W ] = softmax(W (x1), . . . ,W (xn))
T (10)

where W is a network that outputs a scalar for each frame xi. Using the framework built in
Section 4.2.1 (with r = 1 and C = Ce, where Ce is the cross-entropy) to predict {y}m from {x}n,
we train both W and F by minimizing the OTTC objective

LOTTC = −
n,m∑
i,j=1

γm,βm
n (α[{x}n,W ])i,j · log pyj (xi). (11)

The choice of Ce as cost function arises naturally from the probabilistic encoding of the predicted
output of F and the one-hot encoding of the target sequence. Additionally, since Ce is differentiable,
it makes the OTTC loss differentiable with respect to F , while the differentiability of the OTTC
with respect to W stems from the differentiability of γm,βm

n with respect to its input α[{x}n,W ].
Thus, by following the gradient of this loss, we jointly learn both the alignment (via W ) and the
classification (via F ). Note: The notation γm,β

n in Eq. 11 is valid in the context of ASR since n ≥ m.

4.4 LINK WITH CTC LOSS

In this section, we link the CTC and the proposed OTTC losses. In the context of CTC, we
denote by B the mapping which reduces any sequences by deleting repeated vocabulary (similarly
to the previously defined A mapping in Proposition 5) and then deleting the blank token ϕ (e.g.,
B({GGOOϕODD}) = {GOOD}). The objective of CTC is to maximise the probability of all
possible paths {π}n of length n through minimizing

− log
∑

{π}n∈B−1({y}m)

p({π}n) = − log
∑

{π}n∈B−1({y}m)

n∏
i=1

p(πi), (12)

where {π} ∈ Ln is an n-length sequence and B−1({y}m) is the set of all sequences collapsed by B
into {y}m. Let us consider a path {π}n ∈ B−1({y}m). Such a path can be seen as an alignment
(see Figure 3), where {xi} and {yj} are aligned iff πi = yj . By denoting Aπ as the corresponding
discrete monotonic alignment, one can write

− log p({π}n) = −
n∑

i=1

log pπi(xi) =

n,m∑
i,j=1

(i,j)∈Aπ

Ce(πj ,yi)
∃α∈∆n

=

n,m∑
i,j=1

γn,βm
p (α)i,j>0

Ce(πj ,yi). (13)
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Figure 3: A CTC alignment. Here, we illustrate one of the valid alignments for CTC. The CTC loss
maximizes the marginal probability over all such possible alignments.

with Ce representing the cross-entropy. The last equality arises from Proposition 1 and the fact that
Aπ represents a discrete monotonic alignment.

The continuous relaxation (i.e., making the problem continuous with respect to alignment) of the last
term in this sequence of equalities results in −LOTTC . Therefore, OTTC can be seen as relaxation
of the probability associated with a single path, enabling a differentiable path search mechanism.
Essentially, OTTC optimization focuses on maximizing the probability of exactly one path, in contrast
to CTC, which maximizes the probability across all valid paths.

Additionally, OTTC does not incentivize paths containing many blank tokens, unlike CTC. In CTC,
the peaky behavior arises because maximizing the marginal probability over all valid paths can
incentivize the model to assign more frames to the blank token Zeyer et al. (2021). In contrast, OTTC
does not rely on a blank token to indicate that a frame i should not be classified (blank tokens are
only used to separate consecutive tokens). Instead, the model simply sets the corresponding weight
αi to 0 (see Figure 2). This mechanism avoids the peaky behavior exhibited by CTC.

5 EXPERIMENTAL SETUP

To demonstrate the viability of the proposed OTTC loss framework, we conduct several proof-
of-concept experiments on the ASR task. To this end, we compare alignment quality and ASR
performance using the proposed OTTC framework and existing CTC-based models.

Datasets. We conduct our experiments on popular open-source datasets, the TIMIT Garofolo et al.
(1993), AMI Carletta et al. (2005), and LibriSpeech Panayotov et al. (2015). TIMIT is a 5 hour
English dataset with time-aligned transcriptions, including exact time-frame phoneme transcriptions,
making it a standard benchmark for ASR and phoneme segmentation tasks. We report results on the
eval set. AMI is an English spontaneous meeting speech corpus that serves as a good benchmark to
evaluate our approach in a realistic conversational scenario, due to its spontaneous nature and prior
use in alignment evaluation Rastorgueva et al. (2023). For our experiments on this dataset, we train
models on the individual head microphone (IHM) split comprising 80 hours of audio, and report
results on the official eval set. LibriSpeech is an English read-speech corpus, containing 1000 hours
of data. It is a standard benchmark for reporting ASR results. For our experiments, we train models
on the official 100, 360, and 960 hour splits, and report results on the two official test sets.

Baselines. We benchmark our performance against the standard CTC. To specifically compare
alignment quality, particularly regarding the mitigation of the peaky behavior inherent in CTC-based
models, we also include CR-CTC Yao et al. (2024). CR-CTC serves as a strong baseline, chosen for
its established effectiveness against such peaky alignments.

Model architectures. We use the 300M parameter Wav2Vec2-large Baevski et al. (2020) as the
base model for acoustic embeddings in all the experiments conducted in this work. The Wav2Vec2
is a self-supervised model pre-trained on 60K hours of unlabeled English speech. For the baseline
CTC-based models, we stack a dropout layer followed by a linear layer for logits prediction, termed
the logits prediction head. For the proposed OTTC loss based model, we use a dropout and a linear
layer (identical to the baseline) for logits prediction. In addition, as described in Section 4.3, we
apply a dropout layer followed by two linear layers on top of the Wav2Vec2-large model for OT
weight prediction, with a GeLU Hendrycks & Gimpel (2016) non-linearity in between, termed the
OT weights prediction head. Note that the output from the Wav2Vec2-large model is used as input for
both the logit and OT weight prediction heads, and the entire model is trained using the OTTC loss.

Performance metrics. Alignment quality is assessed using three metrics: peaky behavior, starting
frame accuracy, and Intersection Duration Ratio (IDR). Peaky behavior, a common characteristic of
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Table 1: Alignment performance of the CTC, CR-CTC, and OTTC based ASR models on TIMIT and
AMI datasets. †On TIMIT, we subtract the percentage of real silence, as it is available, unlike AMI.

Model
TIMIT (Phoneme Level) AMI (Word Level)

Peaky†(↓) F1 Score (↑) IDR (↑) Peaky (↓) F1 Score (↑) IDR (↑)

CTC 53.51 88.77 26.98 81.93 83.94 16.75
CR-CTC 35.62 88.98 35.82 80.40 84.58 18.20
OTTC 0.76 89.27 76.72 54.75 84.81 42.84

CTC-based models, refers to a large proportion of audio frames being assigned to blank or space
symbols (non-alphabet symbols) Zeyer et al. (2021). To quantify this, we compute the average
percentage of frames mapped to these symbols. Starting frame accuracy is evaluated using the F1
score, following the methodology proposed in Rastorgueva et al. (2023). It is important to note
that this F1 score reflects only the correctness of the predicted token’s starting frame and does not
fully capture alignment quality. To address this, we introduce IDR, which measures the overlap
between predicted and reference word segments, normalized by the reference duration. This provides
a finer-grained assessment of temporal alignment. These alignment metrics are computed only on the
TIMIT and AMI datasets due to the lack of reliable ground-truth or forced-alignment annotations
for LibriSpeech. On TIMIT, where ground-truth alignments are available, we assess alignment at
the phoneme level. For AMI, which lacks ground-truth timestamps, we follow the forced-alignment
approach in Rastorgueva et al. (2023), but restrict evaluation to word-level timestamps, as they
are generally more reliable than phoneme-, letter-, or subword-level annotations. Finally, ASR
performance is evaluated using the WER on all considered databases.

Training details. In all our experiments, we use the AdamW optimizer Loshchilov & Hutter (2019)
for training. For TIMIT and LibriSpeech, the initial learning rate is set to lr= 2e−4, with a linear
warm-up for the first 500 steps followed by a linear decay until the end of training. For AMI, the
initial learning rate is set to lr= 1.25e−3, with a linear warm-up during the first 10% of the steps,
also followed by linear decay. We train all considered models for 40 epochs, reporting the test set
WER at the final epoch. In our OTTC-based models, both the logits and OT weight prediction heads
are trained for the first 30 epochs. During the final 10 epochs, the OT weight prediction head is
fixed, while training continues on the logits prediction head. For experiments on the LibriSpeech
(resp. TIMIT) dataset, we use character-level (resp. phoneme-level) tokens to encode text. Given the
popularity of subword-based units for encoding text Sennrich et al. (2016), we sought to observe the
behavior of OTTC-based models when tokens are subword-based, where a token can contain more
than one character. For the experiments on the AMI dataset, we use the SentencePiece tokenizer
Kudo & Richardson (2018) to train subwords from the training text. Greedy decoding is used for all
considered models to generate the hypothesis text.

Choice of label weights (βq). To simplify the training setup for our OTTC-based models, we use a
fixed and uniform βq (see Sections 4.2 & 4.3), where the length q of β is equal to the total number of
tokens in the text after augmenting with the blank (ϕ) label between repeating characters.

6 RESULTS AND DISCUSSION

Alignment quality. We begin by analyzing the alignment performance of the models on the
TIMIT and AMI datasets, with results shown in Table 1. Our proposed OTTC model consistently
outperforms the CTC-based models across all alignment metrics on both datasets. A key observation
is the significant difference in the percentage of frames assigned to non-alphabet symbols by the
CTC-based models, highlighting the peaky behavior inherent in these models. Specifically, the
baseline CTC-based models tend to assign a large proportion of frames to blank or space symbols,
reflecting a misalignment in predicted word boundaries. In contrast, the OTTC model avoids this
issue, preventing extreme peaky behavior observed in CTC-based models. While the OTTC model
also outperforms the CTC-based models in F1 score, the margin of improvement is smaller. However,
the IDR reveals a substantial advantage for OTTC, with a significant improvement over CTC and
CR-CTC. This indicates that CTC-based models often either delay the prediction of word starts
or assigns too few frames to non-blank symbols, reinforcing the peaky behavior. Additionally,
the performance improvement on the AMI dataset is particularly significant, given its nature of
meeting speech. This demonstrates how effectively the OTTC loss adapts to varying speaking rates,
showcasing the robustness of our framework in learning alignments despite speech variability.
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Table 2: Word Error Rate (WER%) comparison between the baseline CTC model and the proposed
OTTC model on all considered datasets. Lower WER is better.

Model TIMIT AMI 100h-LibriSpeech 360h-LibriSpeech 960h-LibriSpeech
eval eval test-clean test-other test-clean test-other test-clean test-other

CTC 8.38 11.75 3.36 7.36 2.77 6.58 2.20 5.23
OTTC 8.76 14.27 3.77 8.55 3.00 7.44 2.52 6.16

WER. ASR performance in terms of WER for the CTC model and the proposed OTTC model
is depicted in Table 2 for all considered datasets. On the TIMIT dataset, the OTTC model shows
a slightly higher WER compared to the CTC model, and while the performance gap is larger on
the AMI dataset, it’s encouraging to observe consistent performance despite the varied nature of
speech. On the LibriSpeech dataset, using the 100-hour training split, the OTTC model achieves a
WER of 3.77% on test-clean. As we scale the training dataset (100h → 360h → 960h), we observe a
monotonic improvement in WER for the proposed OTTC-based models, similarly to the CTC-based
models. Although the WERs achieved by the OTTC-based models are typically higher than the
CTC-based models, the presented results underscore the experimental validity of the SOTD as a
metric and demonstrate that learning a single alignment can yield promising results in E2E ASR.

Qualitative alignment comparison. Apart from quantitative alignment comparison (Ta-
ble 1), we show an alignment from the CTC- and OTTC-based models in Figure 4.

Figure 4: CTC and OTTC alignments. Phoneme-
level transcription of CTC and OTTC, compared
to a reference from TIMIT.

For CTC, it can be seen that the best path aligns
most frames to the blank token, resulting in
peaky behavior Zeyer et al. (2021). In con-
trast, the OTTC model learns to align all frames
to non-blank tokens. This effectively mitigates
the peaky behavior observed in the CTC model.
Note that OTTC allows dropping frames during
alignment (see Section 4.4), however, in prac-
tice, we observed that only a few frames are
dropped. For additional insights, we plot the
evolution of the alignment for the OTTC model
during the course of training in Figures 6 & 7.
It is evident that the alignment learned early in the training process remains relatively stable as
training progresses. The most notable changes occur at the extremities of the predicted label clusters.
This observation led us to the decision to freeze the OT weight predictions for the final 10 epochs,
otherwise, even subtle changes in alignment could adversely impact the logits predictions because
same base model is shared for predicting both the logits and the alignment OT weights.

In summary, the presented results demonstrate that the proposed OTTC models achieve significant
improvements in alignment performance, effectively mitigating the peaky behavior observed in CTC
models. Although there is an increase in WER, the improvement in alignment accuracy indicates
better temporal modeling. This enhanced alignment could benefit tasks that require precise timing
information, such as speech segmentation, event detection, and applications in the medical domain,
where accurate temporal alignment is crucial for tasks like clinical transcription or patient monitoring.

7 CONCLUSION AND FUTURE WORK

Learning effective sequence-to-sequence alignment has diverse applications across various fields.
Building upon our core idea of modeling the alignment between two sequences as a learnable
mapping while simultaneously predicting the target sequence, we define a pseudo-metric known
as the Sequence Optimal Transport Distance (SOTD) over sequences. Our formulation of SOTD
enables the joint optimization of target sequence prediction and alignment, which is achieved through
one-dimensional optimal transport. We theoretically show that the SOTD defines a distance with
guaranteed existence of a solution, though uniqueness is not assured. We then derive the Optimal
Temporal Transport Classification (OTTC) loss for ASR where the task is to map acoustic frames
to text. Experiments across multiple datasets demonstrate that our method significantly improves
alignment performance while successfully avoiding the peaky behavior commonly observed in CTC-
based models. Other sequence-to-sequence tasks could be investigated using the proposed framework,
particularly those involving the alignment of multiple sequences, such as audio, video, and text.
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Figure 5: 1D OT transport computation. Illustration of the optimal transport process, computed
iteratively by transferring probability mass from the smallest bins to the largest.

A APPENDIX

A.1 ALGORITHM AND IMPLEMENTATION DETAILS

A.1.1 ALIGNMENT COMPUTATION

The algorithm to compute γm,β
n is given in Algorithm 1. This algorithm computes the 1D optimal

transport between µ[α, n] and ν[β,m], exploiting the monotonicity of transport in this dimension. To
do so the first step consist in sorting the bins which has the complexity O(n log n) +O(m logm) =
O(max(n,m) logmax(n,m)). Then we transfer the probability mass from one distribution to
another, moving from the smallest bins to the largest. A useful way to visualize this process is by
imagining that the bins of µ each contain a pot with a volume of ai filled with water, while the bins
of ν each contain an empty pot with a volume of bj . The goal is to fill the empty pots of ν using the
water from the pots of µ. At any given step of the process, we always transfer water from the smallest
non-empty pot of µ to the smallest non-full pot of ν. The volume of water transferred from i to j is
denoted by γi,j . An example of this process is provided in Figure 5.

In the worst case, this process requires O(n+m) comparisons. However, since the bins are already
sorted in SOTD, the overall complexity remains O(n + m) = O(max(n,m)). In practice, this
algorithm is not directly used in this work, as we never compute optimal transport solely; it is
provided here to illustrate that the dependencies of γm,β

n on α are explicit, making it differentiable
with respect to α. An efficient batched implementation version for computing SOTD will be released
soon.

A.2 PROPERTIES OF OTTC

Here can be found proof and more insight about the properties of SOTD, Sr.

A.2.1 LEMMA 1 : BIJECTIVITY

Proof of Lemma 1. Surjectivity: The surjectivity come from definition of Γ∗,β[n]. Injectiv-
ity: Suppose γm,β

n (α) = γm,β
n (σ), so α = [

∑m
j=1 γ

m,β
n (α)i,j , . . . ,

∑m
j=1 γ

m,β
n (α)i,j ]

T =
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Algorithm 1 : Transport Computation - γm,β
n (α)

Ensure: Compute γm,β
n (α).

Require: α ∈ Rn.
Set γ ∈ Rn×m = 0n×m.
Set i, j = 0.
while T == True do

if αi < βj then
γi,j = βj − αi

i = i+ 1
if i == n then
T = false

end if
βj = βj − αi

else
γi,j = αi − βj

j = j + 1
if j == m then
T = false

end if
αi = αi − βj

end if
end while
Return γ

[
∑m

j=1 γ
m,β
n (σ)i,j , . . . ,

∑m
j=1 γ

m,β
n (σ)i,j ]

T = σ (because γm,β
n (α) ∈ Γα,β and γm,β

n (σ) ∈
Γσ,β), which conclude the proof.

A.2.2 PROPOSITION 1 : DISCRETE MONOTONIC ALIGNMENT APPROXIMATION
EQUIVALENCE.

Proof of proposition 1. Let’s consider the following proposition P (k) :

P (k) : ∃αi ∈ ∆n, ∀i,∀j ≤ k, (i, j) ∈ A ⇐⇒ γm,β
n (αi)i,j > 0. (14)

Initialisation - P (1). P (1) is true. Consider the set E1 = {j ∈ J1,mK | (1, j) ∈ A}, which
can be written as E1 = {1, 2, . . . ,max(E1)} since A is a discrete monotonic alignment. Define
α1 = [

∑
j∈E1

βj , . . . ]
T , where the remaining coefficients are chosen to sum to 1.

Since the alignment γm,β
n is computed monotonically (see Appendix A.1.1), γm,β

n (α1)1,j > 0 if and
only if α1

1 ≤ β1 + · · ·+ βj , which corresponds exactly to the set of indices j ∈ E1, i.e., the aligned
indices in A. This proves P (1).

Heredity - P (k) ⇒ P (k + 1). The proof follows similarly to P (1). However two cases need to be
considered :

• When (k + 1,max(Ek)) ∈ A, in this cases we must consider Ek+1 = {j ∈ J1,mK| (k +
1, j) ∈ A} = {max(Ek) = min(Ek+1),min(Ek+1)+1, . . . ,max(Ek+1)} (because β has
no components) and define αk+1 = [α1

1, . . . , α
k
k−

βmax(Ek)

2 ,
∑

j∈Ek+1
βj−

βmax(Ek)

2 , . . . ]T ,
where the remaining parameters are chosen to sum to 1.

• When (k + 1,max(Ek)) /∈ A, we must consider Ek+1 = {j ∈ J1,mK| (k + 1, j) ∈
A} = {max(Ek) ̸= min(Ek+1),min(Ek+1) + 1, . . . ,max(Ek+1)} (because β has no
components) and define αk+1 = [α1

1, . . . , α
k
k,
∑

j∈Ek+1
βj , . . . ]

T , where the remaining
parameters are chosen to sum to 1.

By induction, the proposition holds for all n. Therefore, Proposition 1 (i.e., P (n)) is true. An α
verifying the condition is :

α = [α1
1, . . . , α

n
n]

T
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A.2.3 PROPOSITION 2 :VALIDITY OF SOTD DEFINITION

Proof of proposition 2. Since γm,β
n is differentiable so continuous, it follows that α 7→∑n,m

i,j=1 γ
m,β
n (α)i,j · C(xi,yj) is continuous over ∆n. Given that ∆n is a compact set and ev-

ery continuous function on a compact space is bounded and attains its bounds, the existence of an
optimal solution α∗ follows.

Non-unicity of the solution. The non unicity come from that if their is a solution α∗ and two integer
k, l such that γm,β

n (α∗)k,l ≥ ϵ > 0 and γm,β
n (α∗)k+1,l ≥ ϵ > 0 and C(xk,yl) = C(xk+1,yl),

therefore the transport γ̂ such that :

• ∀i ∈ [|1, n|], j,∈ [|1,m|], (i, j) ̸= (k, l) , γ̂i,j = γm,β
n (α∗)i,j .

• γ̂k,l = γm,β
n (α∗)k,l − ϵ/2

• γ̂k+1,l = γm,β
n (α∗)k+1,l + ϵ/2

provide a distinct solution. Let’s denote σ = {γm,β
n }−1(γ̂i,j). First σ ̸= α because σk =∑m

l=1 γ̂k,l =
∑m

l=1 γ
m,β
n (α∗)k,l − ϵ/2 = α∗

k − ϵ/2. Second, it’s clear that
∑n,m

i,j=1 γ
m,β
n (α∗)i,j ·

C(xi,yj) =
∑n,m

i,j=1 γ
m,βn(σ)i,j · C(xi,yj). Then σ is distinct solution.

A.2.4 PROPOSITION 3 : SOTD IS A PSEUDO METRIC

Proof of proposition 3. Pseudo-separation. It’s clear that Sr({x}n, {x}n) = 0, this value is
attained for α∗ = βn; where the corresponding alignment γn,βn

n (α∗) corresponds to a one-to-one
alignment. Since the two sequences are identical, all the costs are zero.

Symmetry. We have Sr({x}n, {y}mm) = Sr({y}m, {x}n) because the expression for Sr in Eq. 6
is symmetric. Specifically, because C is symmetric as it is a metric.

Triangular inequality. Consider three sequences {x}n, {y}m and {z}o. Let p = max(n,m),
q = min(n,m), u = max(m, o), v = min(m, o). Define the optimal alignments γq,βq

p (α∗) between
{x}n and {y}m; and γv,βv

u (ρ∗) between {y}m and {z}o. ∀i ∈ [|1, n|],∀j, k ∈ [|1,m|],∀l ∈ [|1, o|],
we define :

γxy
i,j =

{
γ
q,βq
p (α∗)i,j if n ≥ m

γ
q,βq
p (α∗)j,i otherwise.

(15)

γyz
k,l =

{
γv,βv
u (ρ∗)k,l if k ≥ l

γv,βv
u (ρ∗)l,k otherwise. (16)

γyy
j,k = γq,σ∗

p (βq)j,k (17)

and we define :

bj =

{ ∑n
i=1 γ

xy
i,j if > 0

1 otherwise. (18)

ck =

{ ∑o
l=1 γ

yz
k,l if > 0

1 otherwise. (19)

So γxy is the optimal transport between µ[α∗, p] and ν[βq, q]; γyy is the optimal transport between
µ[βq, q] and ν[σ∗, u] and γyz is the optimal transport between µ[σ∗, u] and ν[βv, v], since in 1D

optimal transport can be composed, the composition
γxy
i,jγ

yy
j,kγ

yz
k,l

bjck
is an optimal transport between

µ[α∗, p] and ν[βv, v]. Therefore by bijectivity of γ
min(p,v),βmin(p,v)

max(p,v) , there is a θ ∈ Rmax(p,v) such
that :
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γ
min(p,v),βmin(p,v)

max(p,v) (θ) =
γxy
i,jγ

yy
j,kγ

yz
k,l

bjck
(20)

Thus, by the definition of Sr({x}n, {z}o):

Sr({x}n, {z}o) ≤
( n,o∑

i,l=1

m,m∑
j,k=1

γ
min(p,v),βmin(p,v)

max(p,v) (θ) · C(xi, zl)
r
)1/r

(21)

Sr({x}n, {z}o) ≤
( n,o∑

i,l=1

m,m∑
j,k=1

γxy
i,jγ

yy
j,kγ

yz
k,l

bjck
· C(xi, zl)

r
)1/r

(22)

Sr({x}n, {z}o) ≤
( n,o∑

i,l=1

m,m∑
j,k=1

γxy
i,jγ

yy
j,kγ

yz
k,l

bjck
· (C(xi,yj) + C(yj ,yk) + C(yk, zl))

r
)1/r

(23)

Applying the Minkowski inequality:

Sr({x}n, {z}o) ≤
( n,o∑

i,l=1

m,m∑
j,k=1

γxy
i,jγ

yy
j,kγ

yz
k,l

bjck
· (C(xi,yj))

r
)1/r

+ (24)

( n,o∑
i,l=1

m,m∑
j,k=1

γxy
i,jγ

yy
j,kγ

yz
k,l

bjck
· (C(yj ,yk))

r
)1/r

+ (25)

( n,o∑
i,l=1

m,m∑
j,k=1

γxy
i,jγ

yy
j,kγ

yz
k,l

bjck
· (C(yk, zl))

r
)1/r

(26)

Then :

Sr({x}n, {z}o) ≤
( n,m∑

i,j=1

γxy
i,j · C(xi,yj)

r
)1/r

+ (27)

( m,m∑
j,k=1

γyy
j,k · C(yj ,yk)

r
)1/r

+ (28)

( m,o∑
k,l=1

γyz
k,l · C(yk, zl)

r
)1/r

(29)

By definition :

Sr({x}n, {z}o) ≤ Sr({x}n, {y}m) + Sr({y}m, {y}m) + Sr({y}m, {z}o) (30)

So finally since Sr({y}m, {y}m) = 0, the triangular inequality holds :

Sr({x}n, {z}o) ≤ Sr({x}n, {y}m) + Sr({y}m, {z}o). (31)

This concludes the proof.

Note: If β’s depends on {x}n, {y}m and {z}m, we need to introduce the appropriate γzz to
construct the composition in Equation 20, ensuring the proof remains valid.
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A.2.5 PROPOSITION 4 : NON-SEPARATION CONDITION

Proof. Suppose Sr({x}n, {y}m) = 0, and A(Pα∗({x}n)) ̸= A({y}n). So :

n,m∑
i,j=1

γm,β
n (α∗)i,j · C(xi,yj)

r = 0 (32)

Let A{x}n
denote the aggregation operator on ∆n, which groups indices where consecutive elements

in {x}n are identical (i.e, A([. . . , αi, . . . , αi+k, . . .]
T ) = [. . . , αi + · · ·+ αi+k, . . .]

T iff xi =
· · · = xi+k). By expanding the right term, we show that; ∀α ∈ ∆n :

n,m∑
i,j=1

γm,β
n (α)i,j · C(xi,yj)

r =

n,m∑
i,j=1

γ
m,A{y}m(β)
n (A{x}n

(α))i,j · C(A(Pα({x}n)),A({y}n))r

(33)

Therefore :
n,m∑
i,j=1

γ
m,A{y}m(β)
n (APα{x}n

(α∗))i,j · C(A(Pα∗({x}n)),A({y}n))r = 0 (34)

Since A(Pα∗({x}n)) ̸= A({y}n) their is a k ∈ [|1,m|[ such that :

∀k′ < k,A({x}n)k′ = A({y}n)k′ and A({x}n)k ̸= A({y}n)k (35)

Because the optimal alignment is monotonous and lead to a 0 cost, necessarily:

∀k′ < k,APα({x}n)(α
∗)k′ = A{y}m

(β)k′ (36)

which is the only way to have alignment between the k first element which led to 0 cost. Because
of the monotonicity of γ

m,A{y}m(β)
n (APα{x}n

(α∗)) the next alignment (s, t) is between the next
element with a non zeros weights for both sequences. Since β has non zero component and by the
definition of Pα, s = k and t = k. Therefore the term γ

m,A{y}m(β)
n (APα∗ ({x}n)(α

∗))k,k is non
null and the term :

γ
m,A{y}m(β)
n (APα{x}n

(α∗))C(A(Pα∗({x}n),A({y}n)k)

belong to the sum in depicted in Eq. 34. So C(A(Pα∗({x}n)),A({y}n)k) = 0 i.e.,
A(Pα∗({x}n)) = A({y}n)k because C is separated. Here a contradiction so we can conclude
that:

A(Pα∗({x}n)) = A({y}n).

A.3 SUPPLEMENTARY EXPERIMENTAL INSIGHTS

A.4 NOTE ON DYNAMIC TIME WARPING (DTW)

It is important to highlight the distinction between our approach and DTW-based Itakura (1975)
alignment methods, particularly the differentiable variations such as soft-DTW Cuturi & Blondel
(2018). These methods generally have quadratic complexity Cuturi & Blondel (2018), making them
significantly more computationally expensive than ours. Furthermore, in DTW-based methods, the
alignment emerges as a consequence of the sequences themselves. When the function F is powerful,
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the model can collapse by generating a sequence F ({x}n) that induces a trivial alignment Haresh
et al. (2021) (see Appendix A.4.1, where we conducted experiments using soft-DTW for ASR
to illustrate this). To mitigate this issue, regularization losses Haresh et al. (2021); Meghanani
& Hain (2024) or constraints on the capacity of F Vayer et al. (2022); Zhou & la Torre (2009)
are commonly introduced. However, using regularization losses lacks theoretical guarantees and
introduces additional hyperparameters. Furthermore, constraining the capacity of F , although more
theoretically sound, makes tasks requiring powerful encoders on large datasets impractical. In
contrast, our method decouples the computation of the alignment from the transformation function F ,
offering more flexibility to the model as well as built-in temporal alignment constraints and theoretical
guarantees against collapse.

A.4.1 ABLATION STUDIES

This section explores the effects of various design choices and configurations on the performance of
the proposed OTTC framework and provides additional insights on its comparison to soft-DTW.

Training with single-path alignment from CTC. A relevant question that arises is whether the gap
between the OTTC and CTC models arises from the use of a single alignment in OTTC rather than
marginalizing over all possible alignments. To investigate this, we conducted a comparison with a
single-path alignment approach. Specifically, we first obtained the best path (forced alignment using
the Viterbi algorithm) from a trained CTC-based model on the same dataset. A new model was then
trained to learn this single best path using Cross-Entropy. On the 360-hour LibriSpeech setup with
Wav2Vec2-large as the pre-trained model, this single-path approach achieved a WER of 7.04% on the
test-clean set and 13.03% on the test-other set. In contrast, under the same setup, the OTTC model
achieved considerably better results, with a WER of 3.00% on test-clean and 7.44% on test-other (see
Table 2). These findings indicate that the OTTC model is effective with learning a single alignment,
which may be sufficient for achieving competitive ASR performance.

Fixed OT weights prediction (α). We conducted an additional ablation experiment where we
replaced the learnable OT weight prediction head with fixed and uniform OT weights (α). This
approach removes the model’s ability to search for the best path, assigning instead a frame to the
same label during training. Consequently, the model loses the localization of the text-tokens in the
audio. For this experiment, we used the 360-hour LibriSpeech setup with Wav2Vec2-large as the
pre-trained model. The results show a WER of 3.51% on test-clean, compared to 2.77% for CTC
and 3.00% for OTTC with learnable OT weights. On test-other, the WER was 8.24%, compared to
6.58% for CTC and 7.44% for OTTC with learnable OT weights. These results demonstrate that
while using fixed OT weights leads to a slight degradation in performance, the localization property is
completely lost, highlighting the importance of learnable OT weights for preserving both performance
and localization in the OTTC model.

Impact of freezing OT weights prediction head across epochs. In our investigations so far, we
arbitrarily selected the number of epochs for which the OT weights prediction head (α predictor)
remained frozen (see Section 6), as a hyperparameter without any tuning. To further understand its
impact, we conducted additional experiments on the 360h-LibriSpeech setup using the Wav2Vec2-
large model while freezing the OT weights prediction head for the last 5 and 15 epochs. When frozen
for the last 5 epochs, we achieve a WER of 3.01%, whereas when frozen for the last 15 epochs,
the WER is 3.10%. As shown in the Table 2, freezing the OT head for the last 10 epochs results in
a WER of 3.00%. Based on these results, it appears that the model’s performance doesn’t change
considerably when the model is trained for a few more epochs after freezing the alignment part of the
OTTC model.

Oracle experiment. We believe that the proposed OTTC framework has the potential to outperform
CTC models by making β learnable with suitable constraints or by optimizing the choice of static β.
To illustrate this potential, we conduct an oracle experiment where we first force-align audio frames
and text tokens using a CTC-based model trained on the same data. This alignment is then used to
calculate the β values. For example, given the target sentence Y ES and the best valid path from the
Viterbi algorithm (ϕY ϕϕEES), we re-labeled it to (ϕY ϕES) and set β = [1/7, 1/7, 2/7, 2/7, 1/7].
This approach enabled OTTC to learn a uniform distribution for α, mimicking CTC’s highest
probability path. As a result, in both the 100h-LibriSpeech and 360h-LibriSpeech setups, the OTTC
model converged much faster and matched the performance of CTC. This experiment underscores
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Figure 6: Evolution of alignment in the OTTC model during the course of training. The red bullets
represent elements of the target sequence {y}m, while the blue bullets indicate the predicted OT
weights for each frame. The size of the blue bullets is proportional to the predicted OT weight.

the critical role of β, suggesting that a better strategy for its selection or training will lead to further
improvements.

Comments on soft-DTW. In soft-DTW, only the first and last elements of sequences are guaranteed
to align, while all in-between frames or targets may be ignored; i.e., there is no guarantee that
soft-DTW will yield a discrete monotonic alignment. A “powerful" transformation F can map x to
F (x) in such a way that soft-DTW ignores the in-between transformed frames (F (x)) and targets (y),
which we refer to as a collapse (Section 4.2.1). This is why transformations learned through sequence
comparison are typically constrained (e.g., to geometric transformations like rotations) Vayer et al.
(2022). Since transformer architectures are powerful, they are susceptible to collapse as demonstrated
by the following experiment we conducted using soft-DTW as the loss function. On the 360h-
LibriSpeech setup with Wav2Vec2-large model, the best WER achieved using soft-DTW is 39.43%.
In comparison, CTC yields 2.77% whereas the proposed OTTC yields 3.00%. A key advantage of
our method is that, by construction, such a collapse is not possible.

A.4.2 ALIGNMENT ANALYSIS

Temporal evolution of alignment. An example of the evolution of the alignment in the OTTC model
during training for 40 epochs without freezing OT weights prediction head is shown in Figure 7.
Note that during the initial phase of training, there is significant left/right movement of boundary
frames for all groups. As training progresses, the movement typically stabilizes to around 1-2 frames.
While this can be considered “relatively stable" in terms of alignment, the classification loss (i.e.,
cross-entropy) in the OTTC framework is still considerably affected by these changes. This change
of the loss is what impacts the final performance and the performance difference between freezing or
not-freezing the alignments.
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Figure 7: Alignment evolution in the OTTC model during training for 40 epochs without freezing
OT weights prediction head (α predictor). On the x-axis, each pixel corresponds to one audio frame,
while the y-axis represents the epoch. Frames grouped by tokens are shown in alternating colors
(yellow and dark blue), with the boundaries of each group highlighted in light blue/green. One can
note that during the initial phase of training, there is significant left/right movement of boundary
frames for all groups. As training progresses, the movement typically stabilizes to around 1-2 frames.
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