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BAT: Benchmark for Auto-bidding Task
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Abstract
The optimization of bidding strategies for online advertising slot
auctions presents a critical challenge across numerous digital mar-
ketplaces. A significant obstacle to the development, evaluation,
and refinement of real-time autobidding algorithms is the scarcity
of comprehensive datasets and standardized benchmarks.

To address this deficiency, we present an auction benchmark
encompassing the two most prevalent auction formats. We imple-
ment a series of robust baselines on a novel dataset, addressing the
most salient Real-Time Bidding (RTB) problem domains: budget
pacing uniformity and Cost Per Click (CPC) constraint optimization.
This benchmark provides a user-friendly and intuitive framework
for researchers and practitioners to develop and refine innovative
autobidding algorithms, thereby facilitating advancements in the
field of programmatic advertising.

CCS Concepts
• Applied computing→ Online auctions.
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1 Introduction
Modern online advertising systems enable the dynamic rendering
of advertisements on web page in response to a user request [28].
The displayed advertisements are usually chosen from the available
inventory according to specific criteria, such as relevance, temporal
proximity, and performance metrics. These selected advertisements
are then hierarchically organized in descending order based on the
aforementioned criteria [35].

In themajority of instances, either all available advertising spaces
or the most prominently positioned ones are allocated through an
auction mechanism for each impression, competing among suf-
ficiently relevant advertisements [31]. This setup is also known
as sponsored search problem [10, 21]. The company owning the
advertisement submits a bid, and advertising space is awarded to
the highest bidder in the auction.
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Given the immense scale of advertisements and the frequency
of auctions occurring in real-time, manual bid setting becomes im-
practical [32], necessitating the development of optimal automated
bidding algorithms and thereby setting the RTB problem [15]. The
reliability and efficiency [9] of developed algorithms for such prob-
lem directly influence the effectiveness, targeting precision, and
overall return on investment (ROI) in both advertising and trading
domains.

Research on RTB algorithms is widely conducted for both VCG
auctions ([26], [32], [4], [6], [2], [36]) and FP auctions ([11], [23],
[24], [27], [25], [3], [14]), because these auctions have proven to be
competitive [12].

Beyond the diversity in auction types, companies’ objectives
and constraints in advertising campaigns vary significantly. Budget
constraints are ubiquitous, and companies often specify desired
click volumes or maximum cost-per-click thresholds [15].

Developing and validating automated bidding algorithm is an
essential step prior to production deployment. The scarcity of ap-
propriate datasets for this task is a well-documented challenge in
the field of automated bidding [23].

2 Contribution
In this study, we introduce BAT (Benchmark for Auto-bidding Task),
a novel dataset designed to support the development and evaluation
of automated bidding algorithms and related tasks. To enhance the
dataset’s usability and accessibility, we provide a detailed descrip-
tion of its contents. BAT comprises two distinct parts: data from
10 million FP auctions and 1 million VCG auctions, each collected
over a month-long period on a major platform.

Moreover, we demonstrate the practical utility of BAT by intro-
ducing two innovative algorithms for RTB: Adaptive Linear Model
(ALM) and Traffic-aware PID (TA-PID). These algorithms have
demonstrated their effectiveness in production environments, are
straightforward to implement, and serve as a solid foundation for
the development of more sophisticated methods.

Furthermore, we enhanced the automated bidding algorithm
M-PID from [34] by leveraging specific dataset fields, resulting in a
significant performance improvement compared to the baseline. We
also included two additional baselines: the budget pacing system
Mystique [29] and an autobidding algorithm with budget and ROI
constraints [19].

To ensure reproducibility and facilitate further research, wemake
the source code used in our analysis publicly available. This code
serves as a practical guide for interacting with BAT and provides
a solid foundation for researchers and practitioners to build upon
our work.

3 Related works
Development of RTB algorithms is critically important for both in-
dividual users and large advertisers, as well as for auction platform
owners, to investigate the optimality, fairness, and efficiency of auc-
tion processes. The performance of autobidding algorithms under
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real-world conditions can be evaluated using specialized datasets
that include logs from various auction types across a diverse set of
companies from different information domains [23]. This is crucial
because advertising characteristics for products like automobiles
and food differ significantly in terms of temporal periodicity, click-
through conversion rates, and other metrics. These datasets should
encompass key company and advertisement indicators, assess the
click probability of winning ads, and provide statistics on auctions
won in simulation, expenditures, clicks, and conversions for the
algorithm under test [37].

In the context of this task, the 2014 IPinYou dataset [17]) re-
mains one of the most pertinent resource available. Developed for
the KDD Cup competition on RTB, this dataset encompasses ad
features and bid prices, with the target variable (winning price
or cost-per-click) to be predicted, alongside a substantial volume
of logged auctions. Moreover, it incorporates contextual features
pertaining to user interests and ad slot parameters. Comprising
several million bid requests, the IPinYou dataset is conducive to
robust statistical analysis and machine learning model training.
However, it is limited to 9 advertisers, each representing a distinct
logical category, which poses challenges in simulating competition
among a more extensive array of ads driven by specific algorithms.
Furthermore, the dataset’s collection in 2013 may impact the rele-
vance of its content to contemporary trends and technologies in
online advertising. For instance, the dataset exclusively represents
second-price auctions, which presents limitations for many modern
platforms that have adopted alternative auction mechanisms [23].

In 2024, a dataset from Alibaba was released [33], developed for
testing RL algorithms for solving the RTB problem with a Cost per
Action (CPA) constraint. It contains a Generalized Second Price
auction with 170 million records, the number of advertisers is 48.
This dataset contains the winning price and the bids made in each
auction, as well as the conversion action probability. Auctions are
being implemented for 3 slots. The dataset contains the key compo-
nents of an RL problem: states, actions, rewards, and environmental
dynamics, making it ideal for training RL algorithms in the context
of online advertising.

Since, as far as the authors are concerned, these two datasets
are the only open datasets in the field of autobidding task, the
algorithms are most frequently tested on private, closed datasets,
which can be attributed to the need for anonymity on proprietary
platforms [23].

A large number (more than 9000) of advertisers in the BAT
dataset, participating in more than 10 million auctions, provides the
opportunity to test algorithms representatively. Aggregating data
on CTR and CVR for ads is an advantage of the dataset; it expands
the possibilities of implementing a wide range of algorithms using
these values. The data is presented for two types of auctions - VCG
and FP, which in the context of the modern large-scale transition
of platforms from second-price to first-price auctions [13] is of un-
doubted interest for the scientific community from the perspective
of developing and testing algorithms in various formulations of the
problem.

In the BAT dataset, the auction results contain a wide range of
predictions for click and conversion events, the increase in visibility
for the ad and statistics on budget write-offs in connection with
clicks on the ad (see below in section Dataset description). Auctions

are implemented for all slots, which provides wide variability in
display outcomes, which is important to consider when partici-
pating in auctions on many platforms. The format of the dataset
fields is as close as possible to the data used in production on large
advertising platforms, suggesting the use of computationally simple
in interference and effective algorithms for autobidding.

In addition to the dataset we present several RTB baselines. Com-
plex and efficient algorithms dedicated to the task of budget pacing
are constantly being developed [5], [20]. We will use in our base-
lines principles, which are commonly used for this type of problem
in applications on modern platforms due to their efficiency [34],
[16], [7].

4 Dataset description
Let us provide a comprehensive description of our datasets. Each
dataset (VCG and FP) comprises three distinct components: (a)
campaigns and their permanent attributes, (b) auction outcomes,
and (c) traffic data.

4.1 Campaigns
This component of the dataset encompasses information pertain-
ing to the invariant parameters of the participating advertising
campaigns (see Table 1).

loc_id 653248 630730
campaign_id 272505312 271449978

item_id 3660681800 2561215400
campaign_start_date 1970-01-27 1970-01-27
campaign_end_date 1970-02-03 1970-02-03
campaign_start 2302355 2253120
campaign_end 2907155 2857920
auction_budget 378227125476 4282490290176
microcat_ext 4928 4147

logical_category 2.33 3.23
region_id 653420 630660
platform_p [0.5 0. 0.25 0.25] [0.24 0.08 0.24 0.44]

Table 1: Campaigns statistics data format.

• loc_id - unique identifier for the location where a transac-
tion can be made to purchase the object advertised in the
campaign,

• campaign_id, item_id - unique identifier assigned to each
promoted advertising campaign and its corresponding item,
respectively,

• campaign_start_date, campaign_end_date - starting and
ending dates of the campaign, which have been shifted to
maintain anonymity,

• campaign_start, campaign_end - unix-like timestamps rep-
resenting the starting and ending times of the promotional
campaign,

• auction_budget - total monetary budget allocated to each
campaign,

• microcat_ext - identifier for the micro-category to which
the advertised item belongs,

2
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• logical_category (categorical variable) - reference index
indicating the item’s category. This index consists of two
parts separated by a dot: the global logical category index
and the subcategory index,

• region_id - reference index representing the geographical
location of the item, providing a broader spatial context
compared to the loc_id.

Furthermore, data regarding the frequency of advertisement
participation in auctions across the four user-accessible platforms is
available. This information, currently not utilized in the algorithms,
may prove valuable for future development of complex autobidding
algorithms by employing this field as a categorical feature.

4.2 Auction statistics
The data presented in Table 2 contains auction statistics for cam-
paigns from Campaigns part. We propose that this dataset com-
ponent be utilized in auction simulations, kept separate from the
actual bidding method, and provided solely for training purposes.

item_id 3315908300 3315908300
campaign_id 231571725 231571725
period 784791.0 791991.0
contact_price_bin 245 240
AuctionVisibilitySurplus 0.771 0.348
AuctionClicksSurplus 0.451 0.405
AuctionContactsSurplus 0.212 0.205
AuctionWinBidSurplus 725.661 288.975
CTRPredicts 0.0 0.0
CRPredicts 0.0 0.0
AuctionCount 2.0 –

Table 2: Auction statistics data format.

Each log represents one participation of an advertising campaign
in one auction.

• campaign_id, item_id - same as mentioned above,
• period - timestamp for which the auction data was aggre-

gated,
• contact_price_bin - discreteprice bin value, which can be

mapped to the actual auction bid using a logarithmic trans-
formation function - 𝛾𝑏𝑖𝑛 (in our case 𝛾 = 1.2),

• AuctionWinBidSurplus, AuctionVisibilitySurplus - expected
incremental cash write-offs for auctions at the current bid
level relative to the previous auction position, and the math-
ematical expectation of additional visibility gained with the
current bid. Visibility is defined as the probability that a
user will scroll down and view the advertisement, with a
maximum value of 1. "Incremental" refers to the difference
in visibility between the current bin and the previous bin
(smaller by 1),
• AuctionClicksSurplus, AuctionContactsSurplus - expected

increase in user clicks and contacts within the specified
time frame compared to participating in the auction with
the previous bin,

• CRPredicts, CTRPredicts - values of item CTR and CR ag-
gregated by item features,

• AuctionCount (for VCG auctions) - number of observed
auctions from which the data was aggregated.

4.3 Traffic
The Traffic component od dataset (see the Table 3) consists of the
information about a contacts-over-time distribution on the auction
platform. This data describes how the traffic is spreading over week
for each region separately.

region id dow hour traffic share
645530 1 0 0.001704
645530 1 1 0.000917
645530 1 2 0.000546
645530 1 3 0.000314
Table 3: Traffic share data format.

• region_id - identifier of region, similar to other dataset
components;

• dow - number of day from 1 to 7, where numeration starts
from Sunday;

• hour - hour of collected statistics, from 0 to 23;
• share - portion of total contacts during the week. The sum

of all traffic in the region for a week is 1.
This information can be used to specialize the algorithm regard-

ing different types of traffic shares and be used as a prediction when
setting a bid.

5 Dataset collection, filtering and sampling
The VCG auction data was collected inMarch/April 2024, FP auction
data - in July/August 2024.

Data acquisition was performed by utilizing auction results from
search and real advertising campaigns participating in these auc-
tions. After determining the outcomes of each company’s partici-
pation in the auctions, all results for campaigns (including winning
or losing at auction, corresponding bid, CTR, CR, and resulting
position in the auction) were aggregated based on price bins and
time periods (with 1-hour discretization).

The surplus fields were derived by calculating the difference
between the sum of the relevant parameters (such as clicks, visibility,
and others) for the current price bin and the corresponding sum for
previous price bin. The calculation took into account the resulting
position and its visibility. CTR and CRwere estimated as the average
of the corresponding values but exclusively for the represented
campaign. The number of aggregated auctions was recorded in the
AuctionCount field.

Statistics with VCG auction were collected using 10% of auc-
tion results, logged to form one period of statistical data for each
campaign. These datasets contain information about 2500 sampled
campaigns with statitics over 21 days period.

Statistics with FP auctionwas formed by logging 100% of auctions
data but only for 1% of advertising campaigns. We consider this
dataset to have more descriptive power over VCG auctions dataset.
This dataset contain information about 9000 sampled campaigns
with statistics over 21 days period.
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Furthermore, the datasets were filtered to contain only cam-
paigns that are fully covered by statistics data over the lifetime
of the campaign, and the auction data was logged correctly. The
filtering process included several steps: removal of invalid or incom-
plete data points, ensuring all necessary metrics were present and
positive, verification of data completeness, including checks for full
period coverage and alignment of log start times with campaign
start times, exclusion of campaigns shorter than one day or with
duplicate entries, other various quality indicators, such as budget
adequacy for both VCG and FP auctions, sufficient click and contact
volumes, and minimum campaign durations.

6 Dataset statistics
Logging and aggregating a large amount and range of data on adver-
tisements and auctions allows you to use the dataset for debugging
RTB algorithms with fine-tuning on many parameters. Here we
provide a brief overview of the details of the statistics.

The weekly traffic distribution graph (see Fig. 1) indicates sig-
nificant daily fluctuations - a 30-fold difference with a maximum
at noon and a minimum at 3 a.m., which should be taken into ac-
count when calculating rate changes during the day. The maximum
activity in all regions is observed on Monday, the minimum on
Saturday.

Figure 1: The statistics on week traffic distribution for all
regions on average.

Table 4 shows the distribution of logged campaigns by timelife:
most campaigns participated in auctions for 1 day, the next position
is duration for a week, the remaining campaigns make a smaller
contribution. These statistics are explained by the naturalness and
convenience of choosing a reporting period of 1 day and 1 week.

Days VCG FP
Campaigns % Campaigns %

1 24280 75.85% 308732 83.46%
2-6 2205 8.45% 27433 7.41%
7 4985 15.57% 30588 8.27%

8-14 41 0.13% 3180 0.86%
Table 4: Distribution of campaigns by timelife.

Figure 2 shows the dependence of the average increase in write-
offs, visibility, clicks and contacts on the bin for one random micro-
category for both auction types, compared to previous bin. These
dependencies are extremely useful for analyzing and adjusting the

operation of algorithms, for example, one can estimate that for
contact price bin 55 for VCG auctions and 40 for FP auctions, there
is a maximum increase in visibility and budget write-offs, as well
as a maximum increase in clicks and contacts. The characteristic
growth of surpluses at small bins is the result of the reserve prices
using.

Figure 2: Dependences of AuctionClicksSurplus, AuctionVis-
ibilitySurplus, AuctionContactsSurplus, AuctionWinBidSur-
plus on contact price bin for an example of micricategory.

On average, auction items are more expensive at night, as shown
in Fig. 3. This is due to the decrease in traffic during these hours.
However, this dependence has a large scatter, as demonstrated by
the curves of several specific campaigns.

Figure 3: Dependence of contact price bin on hour: blue
shades for VCG, orange for FP. The graph shows the time-
averaged price bin, standard deviation, and one example of
values for a specific campaign for each auction type.

Table 5 provides a concise descriptive analysis of campaign bud-
gets in both components (VCG and FP) of our dataset. This distri-
bution is particularly valuable for consideration when designing
and analyzing simulations. For instance, given our constraints, it
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significantly influences the theoretical maximum number of clicks
that campaigns can procure at a fixed CPC.

Budget VCG FP
Campaigns % Campaigns %

0-500 6349 73.53 0 0.00
500-1000 635 7.35 0 0.00
1000-10000 1233 14.28 6895 82.96
10000-50000 418 4.84 1416 17.04
Table 5: Distribution of campaigns by initial budget.

The characteristics of auction prices and their quantity may have
a strong dependence on the logical category. Figure 4 presents a
histogram illustrating the distribution of campaign volumes across
various logocal categories. The category nomenclature employs
separated by a dot hierarchical subdivision, so for example 1.2 could
be the equivalent of Cars.Ferrari.

Figure 4: The number of campaigns per logical category.

Figure 5 illustrates the relationship between the winning bid
and the predicted CTR for a single micro-category. While the ob-
served relationship is non-monotonic, there is a discernible trend
indicating an increase in the average bin value for higher CTRs.

Figure 5: Dependence of CTR on contact price bin for two
auction types.

7 Problem formulation
The task is based on a common problem, which is caused by the need
for modern platforms to provide advertisers with an automated
bidding strategy for their advertising campaigns with a limited
budget. The goal is to have a fixed duration during which spending
is desirable to be consistent, and the number of additional clicks
received during the campaign should be as high as possible.

This setting coincide with the work of [34], which considered
the case where each ad campaign occurs in 𝑁 auctions per day.
Each auction has winning price 𝑤𝑝𝑖 , which is determined when
platform gets all bids. In VCG auction, if 𝑏𝑖𝑑𝑖 is higher than 𝑤𝑝𝑖 ,
then campaign will win that auction, platform sets 𝑥𝑖 to be 1, and
0 otherwise. In FP case, if campaign wins the auction the 𝑏𝑖𝑑𝑖 is
equal to𝑤𝑝𝑖 . Budget of the agent is decreased on 𝑏𝑖𝑑𝑖 if user clicks
on the ad.

Authors of work [34] solve the task under constraints of budget
𝐵 and average CPC which has to be less than 𝐶 . In the original
work the problem was formulated as:

max
𝑥𝑖

∑︁
𝑖=1...𝑁

𝑥𝑖 ·𝐶𝑇𝑅𝑖 ·𝐶𝑉𝑅𝑖

s.t.
∑︁

𝑖=1...𝑁
𝑥𝑖 ·𝑤𝑝𝑖 ≤ 𝐵∑

𝑖=1...𝑁 𝑥𝑖 ·𝑤𝑝𝑖∑
𝑖=1...𝑁 𝑥𝑖 ·𝐶𝑇𝑅𝑖

≤ 𝐶

where 0 ≤ 𝑥𝑖 ≤ 1,∀𝑖
Sincewe aim to address a similar task, wewill utilize this problem

formulation. The budget constraints for the campaigns (𝐵) are taken
from Campaigns data, ’auction_budget’ field, while the cost per
click (𝐶) constraints are set manually depending on the experiment
and are uniform across all campaigns. The winning price (𝑤𝑝) is
determined based on aggregated data for each individual campaign,
specifically from the ’contact_price_bin’.

The problem under consideration is a linear programming prob-
lem. Authors turn to the primal-dual method, as described in [34],
and obtain the known theorem for the optimal bid, which relies
on the solution of the dual problem. We use this algorithm as one
of baselines, introducing into the formula a dependence on traffic
distribution. We also use algorithm from work [19] which takes
into account the CPC constraint mentioned above.

We also suggest testing two algorithms that have proven empiri-
cally successful in the budget pacing process, as they are already
in use in the production environment. These algorithms, as well
as [29], aim at uniformity of spending, which in real bidding is
necessary to avoid the situation of buying clicks too quickly at too
high price. These algorithms do not have a cost-per-click limit.

We will compare these algorithms to explore their effectiveness
in several disciplines: budget pacing, satisfying the CPC condition,
and buyout of the largest number of clicks per budget.

8 Baselines
We have tested our dataset on several baselines, taking into account
the specifics of the data we provide.

We introduce the terms of traffic share as shown in the Figure 6.
The time interval between 𝑡𝑘−1 and 𝑡𝑘 represents the time window
that corresponds to a single step of the algorithm. 𝑇𝑘 and 𝑇𝑘−1
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Figure 6: Traffic definitions.

are denoting expected traffic share in the current and previous
auction time windows; 𝑇𝑙𝑒 𝑓 𝑡 and 𝑇𝑝𝑟𝑒𝑣 are signifying remaining
traffic share and traffic share from start up to now for the campaign.
Additionally we use notation 𝑇𝑎𝑙𝑙 = 𝑇𝑝𝑟𝑒𝑣 +𝑇𝑙𝑒 𝑓 𝑡 .

Consequently, the bid is discretized as Δ = ⌊ log(𝑏 )log𝛾 ⌋. Since, to
compute a bid, the algorithm uses formula 𝑏 = 𝛾Δ, with the parame-
ter 𝛾 is confined by the design of the auction system. We will name
𝐵0 as campaign’s initial balance, and 𝐵𝑘 as campaign’s balance at
the moment 𝑘 .

8.1 Adaptive Linear Model (ALM)
We use a fast and easy-to-implement baseline of an autobidding
system employing linear prediction techniques, drawing inspiration
from existing linear models utilized for bidding prediction [8], [22],
[30], [32].

In the event of absence of prior bidding data for the campaign, the
algorithm would initiate with an initial bid 𝑏0, as each campaign
in the dataset undergoes a cold start. Therefore, we selected a
value for 𝑏0 at which this problem occurred least frequently for all
campaigns, iterating over it as a hyperparameter with optimization
of the baseline metrics.

By considering �̂�𝑛 =
𝐵𝑛

𝐵0
as the relative current campaign budget

and �̂�𝑛−1 = 𝐵𝑛−1
𝐵0

as the relative previous balance, with a slope

𝑘 =
�̂�𝑛 − �̂�𝑛−1
𝑇𝑛 −𝑇𝑛−1

,

the algorithm conducts a linear prediction of the campaign bud-
get output at the end of campaign lifetime:

�̂�𝑙𝑒 𝑓 𝑡 = �̂�𝑛 + 𝑘 ·𝑇𝑙𝑒 𝑓 𝑡 .

Algorithm 1 ALM
Input: Campaign, campaign’s budget 𝐵, expected traffic

distribution 𝑇𝑛, 1 ≤ 𝑛 ≤ 𝑁

Parameters: Degree base 𝛾 , control parameter 𝛽 , cold start value
𝑏0

Output: Bids for each timestamp
1: Play bid 𝑏 = 𝑏0, Δ0 = 𝑙𝑜𝑔𝛾𝑏0
2: for 𝑛 in 1, ..., 𝑁 do
3: Receive clicks, spend budget
4: Compute relative budget �̂�𝑛, �̂�𝑛−1 and slope 𝑘
5: Compute �̂�𝑙𝑒 𝑓 𝑡 and then bin Δ𝑛
6: Update and play bid 𝑏 ←− 𝛾Δ𝑛

7: end for

Subsequently, it calculates Δ𝑛−1, where the current bin is Δ𝑛 =

Δ𝑛−1 + 𝐵𝑙𝑒 𝑓 𝑡 · 𝛽 , with control parameter 𝛽 chosen empirically.
In the final stage, the algorithm clips relative bin change Δ𝑛 to

avoid excessive fluctuation with clip boundaries (also as hyperpa-
rameters), and then computes 𝑏𝑛 based on the calculated bin.

8.2 Traffic-aware PID (TA-PID)
The classic PID uses the difference between the true and estimated
value, to produce a control signal. This control signal is then sent
to adjust the system’s input.

Since PID controllers are still used as baseline methods [18] and
in industries [5], we decided to propose this method as one of the
baseline methods to make our dataset more accesible to use.

Keeping the previous designations of variables the same, we will
describe a baseline based on a PID controller for managing a bid by
comparing the spending speed with a reference value, taking into
account historical traffic data.

As in the previous baseline, the algorithm would initiate with
fixed bid 𝑏0 for all campaigns.

Then algorithm begins by calculating the desired average budget
spending rate 𝑠𝑖𝑑𝑒𝑎𝑙 :

𝑠𝑖𝑑𝑒𝑎𝑙 =
𝐵0
𝑇𝑎𝑙𝑙

Then we calculate the control error as the difference between
the desired and actual spend rates:

𝑒𝑛 = 𝑠𝑖𝑑𝑒𝑎𝑙 − 𝑠𝑛 = 𝑠𝑖𝑑𝑒𝑎𝑙 −
𝐵0 − 𝐵𝑛
𝑇𝑝𝑟𝑒𝑣

The PID controller takes 𝑒𝑛 to calculate the exponent bin ad-
justment Δ with the coefficients of proportional 𝑘𝑝 , integral 𝑘𝑖 and
differential 𝑘𝑑 dependence:

𝑢 (𝑛) = 𝑘𝑝𝑒𝑛 + 𝑘𝑖
𝑛∑︁
𝑡=1

𝑒𝑡 (𝑇𝑡 −𝑇𝑡−1) + 𝑘𝑑
𝑒𝑛 − 𝑒𝑛−1
𝑇𝑛 −𝑇𝑛−1

Δ𝑛 = Δ𝑛−1 + 𝑢 (𝑛)

.

Algorithm 2 TA-PID
Input: Campaign, campaign’s budget 𝐵, expected traffic

distribution 𝑇𝑛, 1 ≤ 𝑛 ≤ 𝑁

Parameters: Degree base 𝛾 , PID coefficients 𝑘𝑝 , 𝑘𝑖 , 𝑘𝑑 , cold start
value 𝑏0

Output: Bids for each timestamp
1: Compute desired average budget spending rate 𝑠𝑖𝑑𝑒𝑎𝑙 and
2: Play bid 𝑏 = 𝑏0
3: for 𝑛 in 1, ..., 𝑁 do
4: Receive clicks, spend budget
5: Compute control error 𝑒𝑛 and control signal 𝑢 (𝑛)
6: Update Δ𝑛 by 𝑢 (𝑛)
7: Play bid 𝑏 ←− 𝛾Δ𝑛

8: end for
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8.3 Model predictive PID (M-PID)
This baseline was described in [34]. The authors use formula for
optimal bid:

bid𝑛 =
1

𝑝 + 𝑞 ·𝐶𝑇𝑅𝑛 ·𝐶𝑉𝑅𝑛 +
𝑞

𝑝 + 𝑞 ·𝐶𝑇𝑅𝑛 ·𝐶

where 𝑝 and 𝑞 are correspond to budget spending and CPC. These
parameters will be used as reference signals for PID. M-PID also
involves taking into account the indirect influence of reference
signals on each other.

We modify the authors version of the PID for the described task
as follows.

Our goal is to help advertisers to maximize the quantity of con-
versions with the budget 𝐵0, get desired total number of clicks
𝐶𝑙𝑖𝑐𝑘𝑠 , and spend the budget as evenly as possible over a given
period campaign lifetime 𝑇𝑖𝑚𝑒 . For the CPC reference, we use the
ratio

𝐶𝑃𝐶 =
𝐵0

𝐶𝑙𝑖𝑐𝑘𝑠
.

To determine the budget spend reference for each step, we also
normalize the current campaign’s balance relative to the remaining
traffic aggregated for the campaign’s region, ensuring uniform ideal
spending 𝑠𝑛 at the moment 𝑛:

𝑠𝑛 = 𝐵𝑛 · 𝑇𝑐𝑢𝑟𝑇𝑙𝑒 𝑓 𝑡
,

The weights 𝑘𝑝 , 𝑘𝑖 , and 𝑘𝑑 are determined during offline testing
and adjusted during online testing. Otherwise the same formulas
and algorithm for PID as in [34] are applied.

8.4 Mystique
The algorithm in [29] optimizes the linearity of budget spending
based on the expected lifetime of the campaign and the total budget.
If the campaign experiences underspending or overspending in
relation to the linear function, the algorithm, based on the difference
between the desired and actual spending, as well as the slope of
the desired and actual spend curves, changes the rate to reduce this
difference.

Note that we implement only bid control from the algorithm,
without implementing a daily update of the desired spend curve,
for comparability of the algorithm’s work with the work of M-PID.

8.5 BROI (Budget-ROI)
This algorithm has been selected due to its robust theoretical foun-
dations and practical applicability, as well as its consideration of
agents utilizing an equal bidding strategy, which is essential for the
platform in question.

In the subsequent section, the optimistic variant of the algorithm
proposed by Lucier et al. will be adopted. This study introduced
an autobidding algorithm that integrates budget and return on
investment (ROI) constraints. For the purposes of this analysis, ROI
is interpreted as a cost-per-click (CPC) constraint. A significant
theoretical finding of this research indicates that if all participants
in the auction employ this algorithm, the resulting liquid welfare
across all rounds can achieve at least fifty percent of the expected
optimal liquid welfare. This algorithm has been selected due to its
theoretical foundations and practical applicability, as well as its

consideration of agents using an equal bidding strategy, which may
be essential for some platforms.

9 Experiments and Metrics
This section will present experiments and relevant metrics to ex-
amine how the constraints for adaptive budget pacing and CPC
tasks influence the performance of the provided algorithms. This
analysis will focus on constraints beyond the budget constraint,
which must always be satisfied.

9.1 Budget pacing experiment
The first 4 baselines (Linear, TA-PID, M-PID, Mystique) were devel-
oped for budget pacing, so the first experiment will be conducted
for them with minimization of the deviation of the spend function
from the uniform, normalized to traffic share.

To ensure uniformity in spending, a metric 𝑅𝑀𝑆𝐸𝑇 is proposed
and used to optimize baselines hyperparameters. This metric could
be measured as the RMSE between the user’s actual spend and an
ideal spending curve, normalized by traffic share. This is calculated
as follows: normalize hourly traffic for the campaign’s lifetime
𝑇𝑛 =

𝑇𝑛
𝑇𝑎𝑙𝑙

, calculate the ideal budget at time 𝑛: 𝐵∗𝑛 = 𝑇𝑛 · 𝐵0, and

compute RMSE: 𝑅𝑀𝑆𝐸𝑇 =

√︃∑𝑁
𝑛=1 (𝐵∗𝑛−𝐵𝑛 )2

𝑁
, where 𝑁 is the number

of time points.
Since M-PID has an additional constraint on the CPC, which

is set equal to the initial budget so that the contribution of this
condition does not affect the bidding results.

The Sum Click Ratio (SCR) will also be measured - sum of clicks
achieved for all campaigns in experiment to compare the efficiency
of algorithms.

9.2 CPC constraint experiment
The second experiment will be held for algorithms optimizing the
solution of the RTB problem with the constraint of the CPC: M-PID
and BROI. The CPC will be set 10 times smaller than the average
value for the logical category under study, in order to formulate a
result that is obviously difficult to achieve.

The metrics under study (used to optimize hyperparameters)
will be Relative Cost Per Click, 𝑅𝐸𝐿_𝐶𝑃𝐶 = 𝐶𝑃𝐶𝑅𝑒𝑎𝑙/𝐶𝑃𝐶 , where
𝐶𝑃𝐶𝑅𝑒𝑎𝑙 is empiric mean cost per click for all campaigns.

9.3 Click sum maximizing experiment
Also, having equalized the chances of two types of algorithms (with
and without CPC constraint) as in experiment 1, setting CPC equal
to the initial budget, we examine the SCR metric itself to directly
evaluate the efficiency of algorithms without CPC constraints.

10 Experimental settings
This section provides a detailed overview of the auction simulation
process for all baseline models.

At the beginning of the simulation, we accept campaigns from
both parts (VCG and FP) of the BAT as input, setting the budget
and campaign lifetime based on statistics.

The simulation then commences. At each timestamp (one hour),
the algorithms determine the bid for that period. The campaign
budget for each timestamp is reduced by expected price of auction
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participation. For the FP auction the expected price is the product
of AuctionContactsSurplus and bid as if we buy each auction with
defined bid. For the VCG auction, the result price is the sum of
AuctionWinBidSurplus for each bin less or equal than campaign’s
one. Each campaign receives feedback at every timestamp, including
write-off, additional clicks, contacts, visibility, and the number of
won auctions.

It’s important to note that the mechanism uses reference CTR
and CVR values, which are necessary for solving the Linear Pro-
gramming problem in M-PID, as mentioned in the original article
[34], and are also part of the solution in BROI [19]. For estimating
CTR and CVR, we utilize aggregated statistics from the Auction
Statistics dataset, compiling data hourly, by category, and current
bid range, since both CTR and CVR tend to strongly increase with
bid value.

To optimize parameters more effectively, the campaign dataset
is divided into two subsets, 𝑆1 and 𝑆2, ensuring that all campaigns
in 𝑆1 conclude before any campaign in the validation set begins.
A Bayesian optimization package Optuna [1] is utilized on 𝑆1 to
maximize the metric involved, calculated as the total across all
campaigns and then averaged. This method helps identify the opti-
mal values for bidder constants for all baselines. Finally, the bidder
mechanism is evaluated on 𝑆2 to measure how effectively our pa-
rameter optimization performs, offering a more reliable assessment
than optimizing on the entire dataset.

Note that the benchmark implements a convenient feature that
allows for the generation of detailed plots, enabling users to observe
the behavior of auction bids, the dynamics of budget expenditure,
the number of clicks won, the average price per click won, and the
speed of spending for each timestamp. In addition, a visualization
of the comparison of the preformance of each of the prescribed
baselines on the selected campaign instance is provided. This option
makes debugging the algorithm and determining its behavior in
edge cases convenient and user-friendly.

11 Experimental results
This section provides a quantitative analysis of the baseline per-
formance based on the metrics, with results aggregated for logical
category 1.

𝑅𝑀𝑆𝐸𝑉𝐶𝐺
𝑇

𝑆𝐶𝑅𝑉𝐶𝐺 𝑅𝑀𝑆𝐸𝐹𝑃
𝑇

𝑆𝐶𝑅𝐹𝑃

ALM 8.73 756127 1.27 1612707
TA-PID 1.42 896534 1.61 1245836
M-PID 1.38 917521 1.26 1235585
Mystique 1.25 822787 1.18 696963

Table 6: The results of experiment 1 - tuning budget pacing.

Table 6 displays the results of first experiment focused on achiev-
ing the most uniform spending. The leading algorithm, Mystique,
performs best in both auction types, as this was the target metric in
its development. M-PID takes second place for FP auctions, while
TA-PID comes in second for VCG auctions. ALM was the least ef-
fective in achieving uniform spending for VCG auctions, but its
results for FP auctions are close to the winning algorithm

𝑅𝐸𝐿_𝐶𝑃𝐶𝑉𝐶𝐺 𝑅𝐸𝐿_𝐶𝑃𝐶𝐹𝑃

M-PID 0.91 0.49
BROI 0.88 0.94

Table 7: The results of experiment 2 - tuning CPC.

Table 7 displays the results from second experiment focused on
satisfying the CPC constraint. It is evident that the algorithms per-
form with varying success in FP and VCG auctions. Notably, M-PID
demonstrates significantly better results in FP auctions compared
to its competitors than it does in VCG auctions.

𝑆𝐶𝑅𝑉𝐶𝐺 𝑆𝐶𝑅𝐹𝑃

ALM 662466 1085836
TA-PID 909282 1478538
M-PID 889251 1240244
Mystique 932152 1073291
BROI 495169 1098184

Table 8: The results of experiment 3 - tuning sum of clicks.

Table 8 shows the results of third experiment focused on max-
imizing click gains. The leading algorithms, TA-PID and ALM,
achieve very similar results. Additionally, M-PID demonstrates
excellent performance in FP auctions, while Mystique achieves
strong results in VCG auctions.

In addition to the high efficiency of the mentioned algorithms
in achieving the desired outcomes, we would like to highlight the
transparency of the autobidder algorithms.This clarity allows re-
searchers to easily track the key features of the algorithm’s behav-
ior—specifically, based on traffic in our case, and on other relevant
parameters in general. Furthermore, the consistent performance of
these algorithms across the dataset validates its effectiveness as a
benchmark for autobidding research

12 Conclusion
The work presents a user-friendly benchmark BAT for RTB algo-
rithms developement. The benchmark includes a new large-scale
dataset, containing data on both VCG and FP auctions. This dataset
reveals detailed information not only about the distribution of win-
ning bids but also about traffic details, statistics of logical categories
and geographic regions, aggregated information about CTR, CVR
ads, purchased clicks, visibility, contacts, and funds deducted when
winning an auction. Additionally, the dataset includes logs of all
auction winners and several losers to ensure the completeness of
statistics.

In addition, a series of RTB algorithms (novel and well-known)
was implemented within the benchmark. Metrics were proposed,
and experiments were conducted for various formulations of the
budget pacing problem. This makes the technique of working with
the dataset as transparent as possible. We believe a benchmark
based on real-world dataset from modern online advertisement
platform will indeed benefit the scientific community and promote
the development of online bidding algorithms.
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