
Under review as a conference paper at ICLR 2023

ADAM ACCUMULATION TO REDUCE MEMORY FOOT-
PRINTS OF BOTH ACTIVATIONS AND GRADIENTS FOR
LARGE-SCALE DNN TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Running out of GPU memory has become a main bottleneck for large-scale DNN
training. How to reduce the memory footprint during training has received intensive
research attention. We find that previous gradient accumulation reduces activation
memory but fails to be compatible with gradient memory reduction due to a
contradiction between preserving gradients and releasing gradients. To address this
issue, we propose a novel optimizer accumulation method for Adam, named Adam
Accumulation (AdamA), which enables reducing both activation and gradient
memory. Specifically, AdamA directly integrates gradients into optimizer states and
accumulates optimizer states over micro-batches, so that gradients can be released
immediately after use. We mathematically and experimentally demonstrate AdamA
yields the same convergence properties as Adam. Evaluated on transformer-based
models, AdamA achieves up to 23% memory reduction compared to gradient
accumulation with less than 2% degradation in training throughput. Notably,
AdamA can work together with memory reduction methods for optimizer states to
fit 1.26×~3.14× larger models over PyTorch and DeepSpeed baseline on GPUs
with different memory capacities.

1 INTRODUCTION

The past few years have witnessed the remarkable achievements of large-scale DNN models across
domains from computer vision to natural language processing (Devlin et al., 2018; Radford et al.,
2019; Dosovitskiy et al., 2020; Smith et al., 2022). Training such big models requires massive
powerful GPUs with indispensable large memory capacity, which is prohibitively expensive and
inaccessible to most researchers. Even for fine-tuning a large pre-trained model where computational
power is a less critical factor, running out of memory is increasingly becoming the first and foremost
serious limitation (Ren et al., 2021; Rajbhandari et al., 2021).

Recently, there has been an explosion of interest around methods to reduce the memory footprint
during model training (Sohoni et al., 2019; Rajbhandari et al., 2020; Pudipeddi et al., 2020; Chen
et al., 2016; Shazeer & Stern, 2018). However, there is hardly a one-size-fits-all solution to address
the out-of-memory issue for two reasons. Firstly, many memory reduction methods usually come at
the cost of sacrificing convergence (Mostafa & Wang, 2019; Micikevicius et al., 2017) or training
throughput (Chen et al., 2016; Pudipeddi et al., 2020). It remains unclear how significant the cost of
one method or a combination of methods would be for different models before testing. Secondly, the
ratio of the memory footprint of various parts (e.g., weights, gradients, optimizer states, activations)
varies with the model and training configurations. No single method always performs best in different
cases.

Among memory reduction methods, gradient accumulation and gradient release are two effec-
tive methods to reduce activation memory and gradient memory, respectively (Huang et al., 2019;
Pudipeddi et al., 2020). Both methods have no negative impact on model convergence and training
throughput. Unfortunately, these two methods are inherently mutually exclusive. Gradient accumula-
tion reduces the activation memory by splitting a mini-batch into a sequence of micro-batches and
accumulating the gradients of all micro-batches. Gradient release reduces the gradient memory by
freeing up the gradient-occupied space in a layer-by-layer manner. The contradiction preventing

1

Under review as a conference paper at ICLR 2023

the two from being used together is one must preserve accumulated value of gradients until the
last micro-batch, but the other releases the gradients immediately after use. Saving activations or
gradients, previous works prefer the former as activations usually consume the most memory during
training, while the gradients memory can be ignored when models are small. However, with the
ever-increasing model size, the gradient memory consumption cannot be ignored.

FWD0 & BWD0 Accumulate g0 FWD1 & BWD1 Accumulate g1 Update w

Micro-batch0 Micro-batch1

Gradient accumulation
with Adam

FWD0 & BWD0 FWD1 & BWD1
Accumulate m & v

with g1

Micro-batch0

Optimizer accumulation
with AdamA

Accumulate m & v
with g0

Micro-batch1

Update m & v with
accumulated g

Update w

Figure 1: AdamA to integrate gradients into optimizer states and accumulate optimizer states over
micro-batches.

To enable saving memory footprints of both activations and gradients, we propose a novel opti-
mizer accumulation method for large-scale DNN training with Adam, named Adam Accumulation
(AdamA), which can still maintain the convergence and training throughput. Specifically, instead
of accumulating gradients, AdamA integrates gradients into optimizer states (m and v in Adam)
immediately after the gradients are produced, and accumulates optimizer states sequentially over
micro-batches, as shown in Figure 1. This subtle change of directly integrating gradients to optimizer
states makes the memory space for whole model gradients no longer needed, eliminating the afore-
mentioned contradiction between preserving gradients and releasing gradients. Consequently, AdamA
can reduce the gradient memory to 1/M of the original (M is the number of layers), and the activation
memory to 1/N of the original (N is the number of micro-batches). We further mathematically and
experimentally demonstrate AdamA performs the same as standard Adam in terms of the convergence
properties and final model accuracy, although the optimizer update of AdamA deviates a little from
standard Adam. Notably, AdamA is complementary to previous methods that reduce weights and
optimizer states, providing a possibility to achieve an even higher memory reduction rate.

We evaluate AdamA on both language and vision tasks, with the typical transformer architecture and
convolution architecture. Our experimental results show that AdamA performs the same convergence
properties as Adam. Compared with gradient accumulation baseline, AdamA can reduce memory
footprint up to 23% with less than 2% degradation in training throughput. We further combine
AdamA with DeepSpeed ZeRO-DP Pos, which aims to reduce optimizer states in distributed data
parallel scenario. Training with AdamA, a DGX system can fit a model 1.26×~3.14× larger over
PyTorch and DeepSpeed baseline can do.

Our contributions can be summarized as follows:

• We propose AdamA, a novel optimizer accumulation method to enable reducing memory
footprints of activations and gradients simultaneously. Compared with gradient accumulation
baseline, AdamA can save up to 23% memory footprint.

• We conduct a convergence analysis for AdamA. Mathematical and experimental results on
real workloads show AdamA performs the same convergence properties as Adam.

• We implement the training pipeline of AdamA with Pytorch and DeepSpeed. The system is
easy to use and incurs less than 2% effect on training throughput.

2 BACKGROUND AND RELATED WORK

The memory footprint during model training can be categorized into four parts: weights, gradients,
optimizer states and activations. As different models, optimizers, or batch sizes lead to different
ratios of the four parts, many works have been proposed to reduce them accordingly.

Reducing weight and optimizer state memory. In model training iterations, weights and optimizer
states inherently have the temporal dependency, i.e., the values at time step t update on the basis of

2

Under review as a conference paper at ICLR 2023

their values at time step t− 1. Hence, the training system must maintain weights and optimizer states
for updates between two consecutive iterations. To reduce the weight and optimizer state memory,
many compression-based methods (e.g., sparsification, quantization and matrix approximation) have
been proposed, but often sacrifice the convergence or end model accuracy (Mostafa & Wang, 2019;
Micikevicius et al., 2017; Shazeer & Stern, 2018).

Reducing activation and gradient memory. Activations and gradients are computed and used
only inside each training iteration, indicating a potential to release the memory occupation after
finished. Gradient accumulation and gradient release are effective methods to reduce activations and
gradients, respectively (Huang et al., 2019; Pudipeddi et al., 2020). The key idea behind gradient
accumulation is to split a mini-batch into several micro-batches. This method computes the gradients
of micro-batches sequentially and accumulates them to reduce the memory footprint of activations as
well as to keep the same convergence properties as the original mini-batch. Gradient release executes
the backward process in a layer-by-layer manner, which immediately releases the gradient-occupied
memory after the weight updating is finished, so that the memory allocated for gradients can be
reduced from the size of the whole model size to the size of the maximum layer.

The contradiction between gradient accumulation and gradient release. Unfortunately, gradient
accumulation to save activation memory and gradient release to save gradient memory are mutually
exclusive. Because one must maintain all gradients for accumulation until the last micro-batch,
while the other frees up the gradients immediately after use. Our proposed AdamA resolves this
contradictory and enables saving both activation and gradient memory. Please note that our method
is complementary to previous memory reduction methods (e.g., checkpointing (Chen et al., 2016),
Adafactor (Pudipeddi et al., 2020), offloading (Rajbhandari et al., 2021; Ren et al., 2021; Pudipeddi
et al., 2020)), and can be applied together with these methods to achieve even higher memory
reduction rate.

3 METHODS

3.1 ADAM ACCUMULATION (ADAMA)

As mentioned, gradient accumulation to save activation memory contradicts gradient release to save
gradient memory. The core reason is that gradient accumulation accumulates gradients till the last
micro-batch, so that the gradient memory of the whole model must be preserved. Intuitively, as
gradients are eventually used to update the optimizer states (m and v in Adam), if we can integrate
gradients into optimizer states in advance, the gradients memory can be released, thus resolving this
dilemma. Inspired by this insight, we for the first time propose an optimizer accumulation method,
namely AdamA, that integrates gradients into optimizer states immediately after produced and then
accumulates optimizer states sequentially over micro-batches.

Algorithm 1 Adam v.s. AdamA with micro-batches
Initialize θ0, m0 ← 0 , v0 ← 0, t← 0, N ← # of microbatches
while θt not converged do

t← t+ 1
for each micro-batch i in a mini-batch do

gt,i ← 1
N∇θft,i(θt−1)

end
mt = β1mt−1 + (1− β1)

∑N−1
i=0 gt,i

vt = β2vt−1 + (1− β2)[(
∑N−1

i=0 gt,i)
2v.s.

∑N−1
i=0 (g2t,i)]

Update
m̂t ← mt

1−βt
1

, v̂t ← vt
1−βt

2
, θt ← θt−1 − αm̂t√

v̂t+ϵ

end

Algorithm 1 illustrates the difference between standard Adam and our proposed AdamA, in the case
of micro-batching. Standard Adam first accumulates gradients of all micro-batches, then updates
mt with the accumulated gradients and vt with the square of the accumulated gradients (as shown in

3

Under review as a conference paper at ICLR 2023

the blue text). Different from the vt update mechanism in Adam, our proposed AdamA updates vt
through accumulating the square of gradients generated from each micro-batch. This slight change in
AdamA allows that gradients can be used and released immediately once they are generated, leading
to a significant reduction on gradient memory during training. In order to analyze AdamA’s impact
on model convergence, we mathematically prove that AdamA yields the same convergence rate as
Adam (shown in Section 3.2), and experimentally demonstrate AdamA performs the same as Adam
in vision and language tasks (shown in Section 4.1).

In Algorithm 2, we show the detailed training pipeline of AdamA to reduce both activation and
gradient memory. Similar to gradient accumulation, AdamA divides a mini-batch of training data
into several micro-batches to reduce activation memory to 1

N of the original without micro-batches.
During the backward pass of each micro-batch, once the gradients of a layer (gt,i,j) are produced,
gt,i,j and g2t,i,j will be accumulated to the optimizer states of this layer (mt,j and vt,j), respectively.
In this process, gt,i,j memory is released after the accumulation procedure. As a result, the peak
memory allocated for gradients can be reduced to only 1

M of the full model gradient size.

Algorithm 2 The training pipeline using AdamA to reduce both activation and gradient memory
Initialize θ0, m0 ← 0 , v0 ← 0, t← 0, N ← # of micro− batches, M ← # of layers
while θt not converged do

t← t+ 1, mt ← β1mt−1, vt ← β2vt−1

for each micro-batch i in a mini-batch do
// Reduce activation memory to 1/N of the original without micro-batches
for each layer j in backward computing do

gt,i,j ← 1
N∇θft,i,j(θt−1)

Assign memory for gt,i,j // Reduce gradient memory to 1/M of full model gradients
mt,j ← mt,j + (1− β1)gt,i,j
vt,j ← vt,j + (1− β2)g

2
t,i,j

Release memory for gt,i,j // The gt,i,j values are not needed any more
end

end
Update
m̂t ← mt

1−βt
1

, v̂t ← vt
1−βt

2
, θt ← θt−1 − αm̂t√

v̂t+ϵ

end

3.2 CONVERGENCE ANALYSIS

In this section, we demonstrate the convergence properties of AdamA. Adam (Kingma & Ba, 2014)
is a optimization method that adaptively rescales the updating vector with second moment of the
gradient. Compared with Adam, AdamA has the same updating direction (i.e., mt), but different
adaptive scaling length (i.e., 1√

v
). We refer to Adam’s proof methods to show that AdamA has the

same theoretical convergence properties as Adam.

Following analysis method in the online learning framework(Zinkevich, 2003), we define ft as the
convex cost function at time t, and θt as the parameter we predict. We evaluate the convergence
properties of AdamA using the regret R(T) =

∑T
t=1[ft(θt)− ft(θ

∗)], which is the sum of all the
previous difference between our prediction ft(θt) and the best fixed point parameter ft(θ∗) (Kingma
& Ba, 2014). In Theorem 1, we guarantee that AdamA has the same regret bound O(

√
T) with

Adam and the detailed proof is given in the appendix. We define the vector g1:T,i, b ∈ Rt as the ith

dimension of gradients from the bth micro-batch in one mini-batch till T . Following Adam paper,
Theorem 1 holds when the learning rate αt is decaying at a rate of t−

1
2 and first moment running

average coefficient β1,t decay exponentially with λ. (Kingma & Ba, 2014)

Theorem 1. Assume β1, β2 ∈ [0, 1) satisfy γ =
β2
1√
β2

< 1. N is the number of micro-batches in
a mini-batch. The function ft has bounded gradients, ∥∇ft(θ)∥ ≤ G, ∥∇ft(θ)∥∞ ≤ G∞ for all
θ ∈ Rd. For any m,n ∈ {1, ..., T}, the distance between any θt generated by AdamA is bounded,

4

Under review as a conference paper at ICLR 2023

which can be presented as ∥θn − θm∥2 ≤ D, ∥θn − θm∥∞ ≤ D∞. AdamA achieves the following
guarantee, for all T ≥ 1.

R(T) ≤ D2

2α(1− β1)

d∑
i=1

√
T v̂T,i+

α(β1 + 1)G∞

(1− β1)
√
1− β2

d∑
i=1

N∑
b=1

∥g1:T,i, b∥2+
d∑

i=1

D2
∞G∞

√
1− β2

2α(1− β1)(1− λ)2

In Corollary 1, we show the average regret of AdamA is O(1√
T
), which is the same as Adam. It is

obvious the limit of the average regret is 0 when T gets larger.

Corollary 1. Assume that the function ft has bounded gradients, ∥∇ft(θ)∥ ≤ G, ∥∇ft(θ)∥∞ ≤ G∞
for all θ ∈ Rd. For any m,n ∈ {1, ..., T}, the distance between any θt generated by AdamA is
bounded, which can be presented as ∥θn − θm∥2 ≤ D, ∥θn − θm∥∞ ≤ D∞. Combining Theorem 1
with the upper bound

∑d
i=1

∑N
b=1 ∥g1:T,i, b∥ ≤ dG∞

√
T we can get the average regret of AdamA:

R(T)

T
= O(

1√
T
)

3.3 SYSTEM IMPLEMENTATION TO REDUCE MEMORY FOOTPRINT

Our system design is intended to reduce memory and incur little impact on training throughput at the
same time. The challenge is to achieve efficient memory allocation and low communication cost.

In the single device scenario, the model forward computing is done as normal. When doing backward
computing, we interleave back propagation and optimizer states update. For each model layer,
gradients are accumulated to the corresponding optimizer states and immediately released. We
implement this mechanism in PyTorch with backward hook to insert the optimizer states accumulation
and layer gradient release operations. It should be mentioned that frequent memory allocation and
free operations are costly. Nevertheless, the deep learning framework would maintain a memory pool
for tensor memory assignment and release. This prevents the heavy overhead of system calls.

In the distributed data parallel scenario, the same operations apply except that gradients need to be all-
reduced among distributed devices. When training with AdamA, the straightforward implementation
is to insert layer gradients all-reduce operation in each micro-batch to update optimizer states. And
yet, compared with standard Adam procedure, where all-reduce only needs to be done once after all
micro-batches, the communication cost would be increased from O(1) to O(N) in one mini-batch (N is
accumulation steps). To reduce the communication volume, we choose to all-reduce optimizer states
instead of gradients. In this way, local optimizer states are updated on each device and synchronized
at the end of the mini-batch with PyTorch all-reduce API. Therefore, the communication volume
stays constant in one mini-batch. The details about our system design can be found in Appendix.

4 EXPERIMENTS

In this section, we evaluate AdamA on both vision and language tasks. We show that AdamA does
no harm to the convergence properties compared with Adam. Then, we demonstrate the memory
reduction result of AdamA and its impact on training throughput. Finally, we include a case study
where AdamA is combined with DeepSpeed ZeRO-DP to further explore the ability to train large-scale
models and push the limit to reduce memory of gradients, activations and optimizer states.

4.1 CONVERGENCE BEHAVIOR

To verify the convergence properties of AdamA, we experiment on both NLP (transformer-based)
and CV (convolution-based) models. We set the same mini-batch size when training with Adam and
AdamA. We set the accumulation steps N to 2,4,8 when training with AdamA.

For NLP model, we follow RoBERTa method (Liu et al., 2019) to pre-train BERT-Large (L =
24, H = 1024, A = 16, 340M) on a DGX A100 with sequence length of 128 and mini-batch size of
1024. We use the implementation of BERT model from Microsoft DeepSpeed (Rasley et al., 2020).

5

Under review as a conference paper at ICLR 2023

0 50M 100M 150M 200M 250M
Samples

0

1

2

3

4

5

6

Tr
ai

nl
in

g
lo

ss

Adam
AdamA(N=2)
AdamA(N=4)
AdamA(N=8)

Figure 2: Sample-wise convergence properties for BERT-Large pre-training with sequence length
128 using a DGX A100. AdamA has almost the same training loss curve with Adam.

For the pre-training corpus, we use the English Wikipedia and BooksCorpus downloading from
NVIDIA GitHub (NVIDIA). It should be noted that the corpus we use is different from that used in
original BERT (Devlin et al., 2018) because the BERT corpus is not available to the public at this
time. For the pre-training hyper-parameters, we follow the method in RoBERTa.

Table 1: Similar accuracy can be achieved by fine-tuning on the BERT-Large model pre-trained by
Adam and AdamA. F1 scores are reported for MRPC, Spearman correlations are reported for STS-B,
and accuracy scores are reported for other tasks.

Setting MNLI-M MNLI-MM SST-2 MRPC STS-B QNLI QQP RTE CoLA

Adam 80.62 80.96 90.48 84.03 86.56 87.46 86.53 58.48 43.25
AdamA (N=2) 80.50 80.72 90.83 86.27 84.18 87.59 86.49 57.04 43.27
AdamA (N=4) 80.38 80.93 90.48 85.39 85.71 87.30 86.52 56.68 43.11
AdamA (N=8) 80.39 80.97 89.79 85.67 85.62 87.44 86.51 61.01 43.86

Figure 2 presents the sample-wise convergence results when training BERT-Large with Adam and
AdamA. No matter how many micro-batches in one mini-batch, we find the convergence curve of
AdamA coincides with that of Adam. To further evaluate the convergence of the BERT-Large model
trained by Adam and AdamA, we fine-tune the models on all tasks from GLUE benchmark (Wang
et al., 2018). We fine-tune for 3 epochs for all tasks and select the best fine-tuning learning rate
(among 2e-5, 3e-5, 4e-5, 5e-5) on the Dev set. Table 1 shows the fine-tuning results. Obviously, the
model pre-trained with AdamA provides similar accuracy with that pre-trained with Adam.

0 20k 40k 60k 80k 100k 120k
Steps

0
1
2
3
4
5
6
7

Tr
ai

nl
in

g
lo

ss

Adam
AdamA (N=2)
AdamA (N=4)
AdamA (N=8)

(a) Training loss

0 20 40 60 80 100
Epoches

10
20
30
40
50
60
70
80

To
p1

 A
cc

ur
ac

y
(%

)

Adam
AdamA (N=2)
AdamA (N=4)
AdamA (N=8)

(b) Test Top-1 accuracy

Figure 3: The training loss curve and the test accuracy of ResNet-50 on ImageNet.

For CV model, we train ResNet-50 with 4 A100 GPUs on ImageNet (Deng et al., 2009) dataset to
evaluate the convergence properties of AdamA. Following the training setting provided by MMClas-
sification (mmlab), we train ResNet-50 with mini-batch size of 1024. For the learning rate, we initial

6

Under review as a conference paper at ICLR 2023

it to 1e-3 and cosine decay it to 1e-5. Figure 3 presents the training loss curve and the test accuracy of
ResNet-50, from which we can jump to the conclusion that AdamA has almost the same convergence
properties with that of Adam in CV tasks.

Considering that Batch Normalization (BN) (Ioffe & Szegedy, 2015) is used in ResNet, we also pay
attention to the effect on model accuracy which may be brought by the difference of the micro-batch
normalization statistics and that statistics of the entire mini-batch. Mentioned in (Sohoni et al., 2019),
the influence of BN on model convergence tends to be constant if the micro-batch size increases
above a certain extent. Therefore, we do not pay efforts to keep exactly the same BN algorithm
between micro-batched training and non-micro-batched one. In the experimental results shown in
Figure 3, we also find the impact on convergence can be ignored.

To help understand the difference between AdamA and Adam during training process, we make the
following statistics. From the update equation θt ← θt−1 − αm̂t√

v̂t
, it is clear that our adaptive scaling

length differs from the standard Adam in a coefficient
√
v̂t/

√
v̂t

′. We track the coefficient in training
ResNet-50 on CIFAR-100 dataset. In Figure 4, we plot the mean value of

√
v̂t/

√
v̂t

′ during each
training step and its value range. It shows generally the coefficient keeps around 1.0 and the deviation
value range is within 1%. We think the minimal deviation in each iteration might contribute to the
same convergence properties of Adam and AdamA during training.

0 10000 20000 30000 40000 50000
steps

1.000

1.005

1.010

1.015

de
vi

at
io

n
co

ef
fic

ie
nt

 v
al

ue

Figure 4: Statistics on the value of
√
v̂t√
v̂′
t

generated from ResNet-50 on CIFAR-100. The real line

shows the coefficient mean during iterations and the area shows its range. It shows that the value
AdamA deviates from the standard Adam is within 1%.

4.2 MEMORY REDUCTION

N = 2 N = 4 N = 8
Accumulation Steps

0

2

4

6

8

10

12

14

Al
lo

ca
te

d
M

em
or

y
(G

B) 11.7

8.7
7.2

10.3

7.1
5.6

Gradient Accumulation
AdamA

Figure 5: The memory reduction of AdamA compared with gradient accumulation when training
BERT-Large.

As AdamA eliminates the contradiction when combining gradient accumulation and gradient release,
we first show the improvement of AdamA compared with gradient accumulation. Compared with
gradient accumulation, AdamA can save the memory footprint of both activations and gradients. We
measure the memory footprint when training BERT-Large with AdamA on a DGX A100 (8 A100
GPUs) with the mini-batch size of 256 and the sequence length of 128. As shown in Figure 5, AdamA

7

Under review as a conference paper at ICLR 2023

can save 1.6GB more memory than gradient accumulation no matter how many the accumulation
steps are set in a mini-batch.

Table 2: When training BERT-Large, AdamA achieves less memory usage than Adafactor (Shazeer
& Stern, 2018) and SM3 (Anil et al., 2019).

Optimizers Reduction target Mini-batch size per GPU Memory usage per GPU (GB)

Adam (baseline) N/A 8 6.15
Adafactor Optimizer states 8 4.83

SM3 Optimizer states 8 4.90
AdamA(N=8) Activations and gradients 8 4.18

To further show the memory saving effect of AdamA, we expand BERT model to BERT-4B with 4
billion weights using the scaling method of GPT-3 (Brown et al., 2020). We set the mini-batch size to
64 and accumulation steps to 8 in this experiment. In Figure 6(a), we train BERT-4B with gradient
accumulation and AdamA using PyTorch framework. It can be found that AdamA can save 23.2%
memory footprint compared with gradient accumulation when the weights number of a model get to
4 billion.

Compared with other memory-efficient optimizers, e.g. Adafactor (Shazeer & Stern, 2018) and
SM (Anil et al., 2019), the memory reduction of our proposal is bigger under the same experiment
setting. The comparison with Adam baseline is shown in Table 2. The reason AdamA can reach more
significant memory reduction is AdamA targets at reducing the memory usage of both activations
and gradients, while other works only aimed to reduce optimizer states memory. At the same time,
AdamA can work well with these previous works to get further memory reduction.

Baseline Gradient Accumulation AdamA
0

10

20

30

40

50

60

70

80

Al
lo

ca
te

d
M

em
or

y
(G

B) 69.3
62.9

48.3

Activations
Gradients
Weights
Optimizer States
Other

(a) PyTorch
Baseline ZeRO-DP Pos ZeRO-DP Pos + g ZeRO-DP Pos + AdamA

0

10

20

30

40

50

60

70

80

Al
lo

ca
te

d
M

em
or

y
(G

B) 69.9

42.2

29.7
22.1

Optimizer States
Gradients
Activations
Weights
Other

(b) DeepSpeed

Figure 6: The memory reduction of AdamA when training BERT-4B using PyTorch and DeepSpeed.

To show the compatibility of AdamA with existing methods, we combine AdamA with ZeRO-DP
(Rajbhandari et al., 2020), a popular memory reduction method for optimizer states. ZeRO-DP Pos

partitions the optimizer states to different GPUs when training with data parallelism. In Figure 6(b),
we combine AdamA with ZeRO-DP Pos to further reduce gradients and activations. It shows that
AdamA with ZeRO-DP Pos can save 20.1 GB more memory footprint than only ZeRO-DP Pos. Even
compared with ZeRO-DP Pos+g , which partitions both optimizer states and gradients, our combined
method can reduce 7.6 GB more memory.

Table 3: The largest model size can fit on different DGX systems with AdamA.
PyTorch DeepSpeed

Gradient accumulation AdamA ZeRO-DP POS ZeRO-DP POS + AdamA
DGX-1 1.4B 1.8B 1.1B 3.3B
DGX-2 3.0B 4.0B 2.5B 6.8B

DGX A100 7.6B 9.6B 5.8B 18.2B

8

Under review as a conference paper at ICLR 2023

In Table 3, we explore the largest transformer-based model can fit on DGX systems with various
memory capacity with AdamA. At present, the mainstream DGX systems on the market include
DGX-1 (8 V100-16GB GPUs), DGX-2 (16 V100-32GB GPUs), and DGX A100 (8 A100-80GB
GPUs). In order to keep the same experimental settings, we set the number of GPUs to 8. The
mini-batch size and accumulation steps are set to 256 and 8, respectively. With PyTorch framework,
the largest model AdamA can train is 1.26x to 1.33x larger than gradient accumulation can train.
Combined with DeepSpeed ZeRO-DP, AdamA can train a model with 18.2 billion weights in a DGX
A100, which is 3.14x larger than the model the system can train with only ZeRO-DP Pos.

4.3 TRAINING THROUGHPUT

N = 2 N = 4 N = 8
Accumulation Steps

2400
2600
2800
3000
3200

Tr
ai

ni
ng

 S
am

pl
es

/s

Adam
AdamA

(a)

N = 2 N = 4 N = 8
Accumulation Steps

1800
2000
2200
2400
2600
2800
3000

Tr
ai

ni
ng

 S
am

pl
es

/s
Adam
AdamA

(b)

N = 2 N = 4 N = 8
Accumulation Steps

1000
1200
1400
1600
1800
2000
2200
2400

Tr
ai

ni
ng

 S
am

pl
es

/s

Adam
AdamA

(c)

Figure 7: AdamA has less than 2% effect on the training throughput compared with gradient
accumulation using Adam: (a) training ResNet-50 with single GPU; (b) training BERT-Base with 4
A100 GPUs; (c) training BERT-Large with 8 A100 GPUs.

In this section, we show AdamA has negligible impact on training throughput. During training, it is
reasonable to set the micro-batch size as large as the device memory can contain, in order to saturate
GPUs to achieve maximal training throughput. Therefore, the micro-batch size is fixed in this section.

Single-GPU Scenario As mentioned in Section 3.3, our system design for AdamA Single-GPU
implementation is intended to incur no extra throughput overhead. In Figure 7(a), we conduct a
throughput comparison with standard Adam training ResNet-50 with one A100 GPU. We keep the
micro-batch size to 256 and switch accumulation steps to 2, 4 and 8. We can conclude that training
with AdamA has little throughput impact in single-GPU scenario.

Distributed Data Parallel Scenario Explained in Section 3.3, our system design keep the com-
munication number to be constant by synchronizing the optimizer states. Although it may incur
more communication volume compared with standard Adam that synchronizes the gradient, the
impact on throughput is minimal. In Figure 7(b)(c), we conduct multi-GPU experiments with two
models: BERT-Base with 4 A100 GPUs and BERT-Large with 8 A100 GPUs. The micro-batch
size of all the models is set to 1024. The experiments show that the training throughput difference
is within 2%. The throughput gap between AdamA and Adam is gradually decreasing with the
increase of gradient accumulation steps. This is because the communication volume is constant in
a mini-batch, the communication overhead proportion becomes smaller in a mini-batch with larger
gradient accumulation steps.

5 CONCLUSION

This paper presents Adam Accumulation (AdamA), a novel optimizer method for large-scale DNN
training. It enables saving memory footprints of activations and gradients simultaneously. Besides,
AdamA yields the same convergence properties as Adam. Compared with gradient accumulation,
AdamA can reduce the memory footprint up to 23% with less than 2% degradation in training through-
put. Combined with memory reduction methods for optimizer states, AdamA can fit 1.26×~3.14×
larger models over PyTorch and DeepSpeed baseline on different DGX systems.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory efficient adaptive optimization.
Advances in Neural Information Processing Systems, 32, 2019.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In International Conference
on Learning Representations, 2020.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. Advances in neural information processing systems, 32, 2019.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
PMLR, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv preprint arXiv:1710.03740, 2017.

Open mmlab. Open mmlab mmclassification. https://github.com/open-mmlab/
mmclassification/ Accessed May 17, 2022.

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks
by dynamic sparse reparameterization. In International Conference on Machine Learning, pp.
4646–4655. PMLR, 2019.

NVIDIA. Nvidia deep learning examples for tensor cores. https://github.com/NVIDIA/
DeepLearningExamples/ Accessed May 17, 2022.

Bharadwaj Pudipeddi, Maral Mesmakhosroshahi, Jinwen Xi, and Sujeeth Bharadwaj. Training
large neural networks with constant memory using a new execution algorithm. arXiv preprint
arXiv:2002.05645, 2020.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

10

https://github.com/open-mmlab/mmclassification/
https://github.com/open-mmlab/mmclassification/
https://github.com/NVIDIA/DeepLearningExamples/
https://github.com/NVIDIA/DeepLearningExamples/

Under review as a conference paper at ICLR 2023

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. Zero-infinity:
Breaking the gpu memory wall for extreme scale deep learning. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–14, 2021.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System optimiza-
tions enable training deep learning models with over 100 billion parameters. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
3505–3506, 2020.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Minjia
Zhang, Dong Li, and Yuxiong He. {ZeRO-Offload}: Democratizing {Billion-Scale} model
training. In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pp. 551–564, 2021.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, et al. Using deepspeed
and megatron to train megatron-turing nlg 530b, a large-scale generative language model. arXiv
preprint arXiv:2201.11990, 2022.

Nimit Sharad Sohoni, Christopher Richard Aberger, Megan Leszczynski, Jian Zhang, and Christopher
Ré. Low-memory neural network training: A technical report. arXiv preprint arXiv:1904.10631,
2019.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th international conference on machine learning (icml-03), pp. 928–936,
2003.

11

Under review as a conference paper at ICLR 2023

A CONVERGENCE PROOF

In this section, we show the convergence analysis of AdamA. Compared with proof in the original
Adam paper Appendix, it’s easy to see AdamA follows almost the same analysis proof with Adam.
The most obvious difference is that Adam doesn’t take micro-batch into consideration. Here we use
symbol N as the number of micro-batch in AdamA and b as subscript for micro-batch index.

Here we highlight those conclusions that differs between Adam and AdamA from Adam paper
Appendix.

First, we construct our proof based on the claim a convex function can be lower bounded by a
hyperplane, which is Mathematically expressed in Lemma 2.

Definition 1. A function f : Rd → R is convex if for all x, y ∈ Rd , for all λ ∈ [0, 1],

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y)

Lemma 2. If a function f : Rd → R is convex, then for all x, y ∈ Rd,

f(y) ≥ f(x) +∇f(x)T (y − x)

Lemma 3 and Lemma 4 are proved to support the proof of Theorem 5.

Lemma 3. Let gt = ∇ft(θt) and g1:t be defined as above and bounded,∥gt∥2 ≤ G, ∥gt∥∞ ≤ G∞.
Then.

T∑
t=1

√
g2t,i
t
≤ 2G∞∥g1:T,i∥2

Proof. The proof is the same as Lemma 10.3 in Adam Appendix(Kingma & Ba, 2014) and hence is
ommitted here.

Lemma 4. Let γ ≜ β2
1√
β2

. For β1, β2 ∈ [0, 1) that satisfy β2
1√
β2

< 1 and bounded gt, ∥gt∥2 ≤ G,
∥gt∥∞ ≤ G∞, and the micro-batch number equals to N , the following inequality holds

T∑
t=1

m̂2
t,i√
tv̂t,i

≤ 2

1− γ

1√
1− β2

N∑
b=1

∥g1:T,i, b∥2

12

Under review as a conference paper at ICLR 2023

Proof.

T∑
t=1

m̂2
t,i√
tv̂t,i

=

T−1∑
t=1

m̂2
t,i√
tv̂t,i

+

√
1− βT

2

(1− βT
1)

2

(
∑T

k=1(1− β1)β
T−k
1 gk,i)

2√
T
∑T

j=1(1− β2)β
T−j
2 g2j,i

≤
T−1∑
t=1

m̂2
t,i√
tv̂t,i

+

√
1− βT

2

(1− βT
1)

2

T∑
k=1

((1− β1)β
T−k
1 gk,i)

2√
T (1− β2)β

T−k
2 g2k,i

≤
T−1∑
t=1

m̂2
t,i√
tv̂t,i

+

√
1− βT

2

(1− βT
1)

2

(1− β1)
2√

T (1− β2)

T∑
k=1

T (
β2
1√
β2

)T−k∥gk,i∥2

=

T−1∑
t=1

m̂2
t,i√
tv̂t,i

+

√
1− βT

2

(1− βT
1)

2

(1− β1)
2√

T (1− β2)

T∑
k=1

T (
β2
1√
β2

)T−k∥
N∑
b=1

gk,i, b∥2

≤
T−1∑
t=1

m̂2
t,i√
tv̂t,i

+

√
1− βT

2

(1− βT
1)

2

(1− β1)
2√

T (1− β2)

T∑
k=1

T (
β2
1√
β2

)T−k
N∑
b=1

∥gk,i, b∥2

≤
T−1∑
t=1

m̂2
t,i√
tv̂t,i

+
T√

T (1− β2)

T∑
k=1

γT−k
N∑
b=1

∥g1:T,i, b∥2

≤
T∑

t=1

∑N
b=1 ∥g1:T,i, b∥2√

t(1− β2)

T−t∑
j=0

tγj

≤
T∑

t=1

∑N
b=1 ∥g1:T,i, b∥2√

t(1− β2)

T∑
j=0

tγj

Applying Lemma 3,

T∑
t=1

m̂2
t,i√
tv̂t,i

≤ 2G∞

(1− γ)2
√
(1− β2)

N∑
b=1

∥g1:T,i, b∥2

□

Theorem 5. Assume that the function ft has bounded gradients, ∥∇ft(θ)∥ ≤ G, ∥∇ft(θ)∥∞ ≤ G∞
for all θ ∈ Rd and distance between any θt generated by AdamA is bounded, ∥θn − θm∥2 ≤ D,
∥θn − θm∥∞ ≤ D∞ for any m,n ∈ {1, ..., T}, and β1, β2 ∈ [0, 1) satisfy β2

1√
β2

< 1, and the
micro-batch number equals to N . Let αt =

α√
t

and β1,t = β1λ
t−1, λ ∈ (0, 1).

AdamA achieves the following guarantee, for all T ≥ 1.

R(T) ≤ D2

2α(1− β1)

d∑
i=1

√
T v̂T,i+

α(β1 + 1)G∞

(1− β1)
√
1− β2

d∑
i=1

N∑
b=1

∥g1:T,i, b∥2+
d∑

i=1

D2
∞G∞

√
1− β2

2α(1− β1)(1− λ)2

Proof.

Following the proof in Adam Appendix Theorem 10.5, by applying Lemma 4, we can get the final
convergence bound by substituting

∑d
i=1

∑N
b=1 ∥g1:T,i, b∥2 for

∑d
i=1 ∥g1:T,i∥2. □

Thus, it can be claimed that the convergence rate R(T)
T = O(1√

T
), the same as Adam does.

B MORE DETAILS ABOUT ADAMA IN THE DISTRIBUTED DATA PARALLEL
SCENARIO

In the distributed data parallel scenario, we pay efforts to make the update effect of mt and vt of
AdamA (number of GPUs = M, number of microbatches per minibatch = N) consistent with the

13

Under review as a conference paper at ICLR 2023

update effect of AdamA (number of microbatches per minibatch = NM) in single device scenarios.
To achieve the effect, we propose a new update method for m and v among different GPUs.

As mentioned in Section 3.3, we choose to all-reduce optimizer states instead of gradients at the end
of each mini-batch. In this way, the value of mt and vt are shown below before optimizer states
are all-reduced. M equals to the number of GPUs, and N equals to the number of microbatches per
minibatch. Other symbols follow our definition in Algorithm 1, and gt,i ← 1

N∇θft,i(θt−1). Notice
that we will multiply vt−1 by Mβ2 instead of β2 before the start of each minibatch.

mt = β1mt−1 + (1− β1)

N−1∑
i=0

gt,i = β1mt−1 + (1− β1)

N−1∑
i=0

∇θft,i(θt−1)

N

vt = Mβ2vt−1 + (1− β2)

N−1∑
i=0

g2t,i = Mβ2vt−1 + (1− β2)

N−1∑
i=0

(
∇θft,i(θt−1)

N
)2

During all-reduce operations for mt, we take the average of mt from each GPU (add them together
and divide by M). For vt, we divide by M2 instead of M after summing vt from each GPU. After
that, the value of mt and vt in each GPU are:

mt = β1mt−1 + (1− β1)

NM−1∑
i=0

∇θft,i(θt−1)

NM

vt = β2vt−1 + (1− β2)

NM−1∑
i=0

(
∇θft,i(θt−1)

NM
)2

It is easy to find the mt and vt keep consistent with the mt and vt from Algorithm 1, as long as we
replace N with NM in line 5 "gt,i ← 1

N∇θft,i(θt−1)". In this way, we make the update effect of mt

and vt in distributed scenarios (number of GPUs = M, number of microbatches per minibatch = N)
consistent with the update effect of AdamA in single device scenario (number of microbatches per
minibatch = NM). As the convergence properties of AdamA has been proven the same with Adam in
single device scenarios, its convergence properties can also be guaranteed in distributed scenarios.

14

	Introduction
	Background and Related Work
	Methods
	Adam Accumulation (AdamA)
	Convergence Analysis
	System Implementation to Reduce Memory Footprint

	Experiments
	Convergence Behavior
	Memory Reduction
	Training Throughput

	Conclusion
	Convergence Proof
	More details about AdamA in the distributed data parallel scenario

