CodeMerge: Codebook-Guided Model Merging for
Robust Test-Time Adaptation in Autonomous Driving

Huitong Yang Zhuoxiao Chen Fengyi Zhang Zi Huang Yadan Luo*

UQMM Lab, The University of Queensland
{huitong.yang, zhuoxiao.chen, fengyi.zhang, helen.huang, y.luo}Ouq.edu.au

Abstract

Maintaining robust 3D perception under dynamic and unpredictable test-time con-
ditions remains a critical challenge for autonomous driving systems. Existing
test-time adaptation (TTA) methods often fail in high-variance tasks like 3D object
detection due to unstable optimization and sharp minima. While recent model
merging strategies based on linear mode connectivity (LMC) offer improved sta-
bility by interpolating between fine-tuned checkpoints, they are computationally
expensive, requiring repeated checkpoint access and multiple forward passes. In
this paper, we introduce CodeMerge, a lightweight and scalable model merg-
ing framework that bypasses these limitations by operating in a compact latent
space. Instead of loading full models, CodeMerge represents each checkpoint
with a low-dimensional fingerprint derived from the source model’s penultimate
features and constructs a key-value codebook. We compute merging coefficients
using ridge leverage scores on these fingerprints, enabling efficient model com-
position without compromising adaptation quality. Our method achieves strong
performance across challenging benchmarks, improving end-to-end 3D detection
14.9% NDS on nuScenes-C and LiDAR-based detection by over 7.6% mAP on
nuScenes-to-KITTI, while benefiting downstream tasks such as online mapping,
motion prediction and planning even without training. The code is released at
https://github.com/UQHTy/CodeMerge,

1 Introduction

Real-world autonomous driving scenarios often encounter rapid and unpredictable environmental
variations, such as sudden adverse weather conditions (e.g., fog, snow) or sensor malfunctions (e.g.,
dropped frames, missing beams) arising from LiDAR and camera systems, as illustrated in Fig.
These abrupt disruptions momentarily render 3D perception modules partially or fully “blind”,
propagating erroneous decision-making downstream and leading to severe safety hazards in the
end-to-end autonomous driving (AD) pipeline. Consequently, a critical yet unresolved question
emerges: Can perception models efficiently and robustly adapt onboard to address such unforeseen
distributional shifts?

Test-time adaptation (TTA) offers a promising direction by enabling models to adapt online during
inference. Prior TTA approaches typically handle shifts by aligning BatchNorm statistics [44} 34,
enforcing consistency through data augmentations [46[], or minimizing sharpness via adversarial
perturbations [14} 34]. Nonetheless, when directly extending them to complex tasks such as 3D
detection, these approaches often suffer from brittle optimization dynamics and fall into sharp local
minima, which can lead to the loss of previously acquired generalization and the ability to cope with
future task distributions [9].

*Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/UQHTy/CodeMerge

'#] Camera Corruption LIDAR Corruption

Bright

Fog Motion ~ Frame Lost E

) T Y 5

- —— Qe
) PN @
d

o Rl B

On-board B i y y 1 Lo 3 ¥
Detection Dark Snow Quant Crash Beam Missing Fog Wet Ground
End-to-End AD System LiDAR-based Detector

i@ Finger Print Z;

&
- 0O a - < w o .
u Detect/Track sII&|(g Motion ‘% 2 & Classifier
“Yay Transfomer a1 3|4 Head 2| |35 = -
l Zla|Z g a e 3D Box
! s 7 y o - & &
o0 Mapping | SI218 Planning LDAR | | 8 O -§ Regressor
[+] Transfomer g' S|a Head 8 g @ ” i
3 = 5

Camera E%]o %ule;y
Figure 1: Overview of real-world test-time shifts (top) and 3D perception systems considered
in this work (bottom). We study test-time adaptation (TTA) in two settings: (1) an end-to-end
autonomous driving system and (2) a modular LiDAR-based detector, both affected by adverse
weather and sensor failures. CodeMerge enables efficient TTA by leveraging compact fingerprints to
guide model merging.

Recent studies improve long-term adaptation stability by leveraging model merging techniques [24]]
grounded in linear mode connectivity (LMC), which posits that models fine-tuned on different target
samples but initialized from the same pretrained source model are “linearly connected” in weight
space. Thus, interpolating between such models has been shown to produce reliable pseudo-labels
and alleviate model collapse issues in TTA [34]]. Techniques such as Mean Teacher and its variants
exponentially average the weights of past models, but often underutilize valuable diversity across past
checkpoints. More recently, Model Synergy (MOS) [8] extends this idea by maintaining a buffer of
Top-K important checkpoints and dynamically merging them using synergy weights, computed via
kernel similarities among each model’s predictions of the current test sample. While effective, MOS
incurs significant overhead from repeatedly checkpoint loading and performing K forward passes for
calculating synergy weights, limiting its scalability in high-throughput driving applications.

In this work, we introduce a codebook-guided model merging (CodeMerge) approach for adapting
3D perception modules against various shifts at test time. The core idea is to represent each fine-
tuned checkpoint ®g:) by a compact “fingerprint” derived from the source model’s penultimate
activations. These fingerprints serve as keys in a model codebook, mapping to their corresponding
checkpoint weights. Crucially, correlations in this low-dimensional fingerprint space reliably mirror
those in the high-dimensional weight space (see Fig. [3), enabling informed merging decisions without
loading full model parameters. CodeMerge employs ridge leverage scores to rank the informativeness
of fingerprints, a technique theoretically linked to approximations of the inverse Hessian in the
parameter space. This procedure needs memory that scales only with the fingerprint dimension and
adds negligible latency, yet it lifts end-to-end 3D detection NDS by 14.9%, tracking AMOTA on
the nuScenes-C corruption benchmark by 19.3%, and LiDAR-based detection 3D mAP by 7.6% on
the challenging nuScenes-to-KITTI shift. These improvements seamlessly propagate to downstream
motion prediction and planning modules without modification or additional training.

2 Preliminaries

We begin by formalizing the problem setting for test-time adaptation (TTA) in 3D object detection
and reviewing model merging strategies that exploit linear mode connectivity in such context.

Task Formulation. Let g0y = ¢g©) © hgo) denote a pretrained 3D object detection model,
comprising a feature extractor ¢ (-) : X + Z € R? maps an input x € X (e.g., a point
cloud or multi-view images) to a latent feature map z € Z, and the head regresses 3D boxes
hewo(:) : Z — Y € R'. The goal of TTA is to sequentially adapt the model to a stream of
unlabeled target-domain inputs Dy, = {x;}7_,, which may exhibit significant distributional shifts
or corruptions. The online adaptation must follow in a single forward-pass setting, incrementally
evolving the model parameters ©(©) — @) — .. — ©*) to improve detection over time.

Linear Mode Connectivity (LMC). LMC [24] [12] [52] refers to the empirical property that two
models ©1) and ©() trained from a shared initialization (or sufficiently close regions in weight
space), can be connected by a “linear path” without significant loss degradation. Formally, for any

ndeMerge

i @ Fingerprint Z;
RN = Fingerprint Zy

Figure 2: Conceptual comparison of model merging strategies for TTA. Unlike EMA (left),
which ignores model behavior, or MOS (middle), which requires multiple inferences to compute
merging weights, CodeMerge (right) leverages ridge leverage scores in a compact fingerprint space
to efficiently guide model merging.

A€0,1],
c ((1 —new ¢)\@(2)) ~ (1 - NLOW) +AcO@). 1)
This property facilitates efficient model merging through linear interpolation.

Implication for Model Merging in TTA. If LMC holds true between each pair of successive
parameters (O~ ©®)) fine-tuned from ©(%), then their interpolated model should yield low loss.
This underpins methods like Mean Teacher shown in Fig. [2] in which teacher models are recursively
updated with an exponential moving average (EMA) with a decay factor 8 € (0,1):

t
Ofaa = BOhia + (1 - 80V = 6, = (1-) 0. @
=0

Under LMC, this leads to approximately linear combinations of multi-task losses:
t

LOR) ~ (1= 8) 3 B LOD). 3)

=0
This shows that averaging can reduce variance from balancing multi-task losses. However, EMA’s co-
efficients are solely based on time steps rather than model behavior, making it potentially suboptimal.
In contrast, MOS [8] (middle in Fig. [2) adaptively merges model parameters by solving a kernel-

weighted least squares problem over a buffer of K candidate checkpoints {©() 1}/ . Given a test
batch x;, the merged model is computed as:

K -1
(:)(t) _ sz(t)@(z)’ where wl(t) — L]Ul’ (4)
2 Zi’,j' [K(t)]i—,j,
Kz(;) = Sim (P (x¢), Peu) (X¢)) - Sim (dg) (Xt), Pou) (Xt)) »)

where kernel matrix K(*) € RE*K captures pairwise similarity between model outputs under
the current batch. To evaluate wﬁ“, MOS requires K forward passes over x;, making it more

computationally intensive and thus hard to scale up the horizon K in TTA.

3 Our Approach

We introduce CodeMerge, a codebook-guided model merging scheme for efficient TTA in 3D object
detection without triggering repeated inference across past models. To achieve this, we construct a
model codebook (Sec. B.I), where each checkpoint is represented by a compact fingerprint derived
from intermediate features of a fixed source model. During inference, we compute curvature-aware
ridge leverage scores (Sec. 3.2) in the fingerprint space. Finally, we perform a sign-consistent
weighted merge of top-scoring candidate models (Sec. [3.3), promoting both stability and diversity.

3.1 Model CodeBook

At each step ¢, we maintain a model codebook for all past checkpoints along the adaptation trajectory,
denoted as: _
cW ={z:0W}L (6)

SECOND: Waymo—KITTI

SECOND: nuScenens—KITTI SparseDrive: Snow Corruption

&

SparseDrive: Motion Corruption

[[[[

o o o 9]

c c < c

o < RN 2 o

L & L L p o

£ k= =N k=

a 8. (SRS a

[[[ERY =

[T a o 9]

5 g g o 5

IS =N 1= £

© © o ©

o e LN o

T o © © G

a a a o o

g @ o r=0.862 9 o 5]

2 o w =067 2 e R

e ERN 0.676] 3 s

£ T T T T £J T T T £ — £ T T T T

o J S} 4 > ol © P o s > Y 3) N > N 2 N N »

o Q‘b(Q(:) Q‘" Q(:) o Q’b Q’b le le le a le Q‘b(Q’b Q"’ Q'ﬁ Q‘a o b'b\ Q"’ Q¢) b'ﬁ
Pairwise Fingerprint Difference Pairwise Fingerprint Difference Pairwise Fingerprint Difference Pairwise Fingerprint Difference

Figure 3: Pairwise fingerprint differences correlate strongly with model weight differences (Pearson
r and Kendall Tau 7 > 0.7) across SparseDrive [41] and SECOND [55]], showing that the low-
dimensional fingerprint space reliably reflects parameter space structure.

Each entry is a key-value pair, where the key 2, € R% is a low-dimensional fingerprint and the value
©() is the corresponding checkpoint fine-tuned at time step i. To compute the key 2;, we extract
intermediate features from the i-th input batch x; using a pretrained feature extractor ¢g) and
randomly project them to a low-dimensional subspace for efficiency:

z; = RandProj(de (x;))- (N

Here, RandProj(-) : RY R? is implemented via a fixed Gaussian projection matrix where d’ < d
ensures the keys are compact. As the test-time adaptation progresses, we update the codebook
incrementally by appending new pairs, i.e., C“t1) « (7, 0®).

3.2 Curvature-Aware Merge Scores

To determine which checkpoints in the codebook should be merged at time step ¢, we first compute a
merge score for each checkpoint ©(9) € C*) using the ridge leverage score.

Definition 1 (Ridge Leverage Score (RLS)). Let Zy 1= [Z1,...,2¢-1] € R(E-1xd" be the matrix
of all stored keys (fingerprints), where 7, be the fingerprint of the i-th candidate model ©(). We
define the ridge leverage scores of the fingerprint z; as

1. =il
sgt) =3z, (sz_lzt—l T AI) Z;,
where) is a regularization parameter. A high leverage score indicates z; is influential and lessly
observed within the current feature space defined by past direction.

Theoretical Analysis. We now connect this leverage score to the inverse of curvature through the
lens of LMC. We begin by revisiting the LMC assumption (Eq. (I))) through a second-order Taylor
expansion around ©(?):

, 1
LOD)~ LOO) VLTS, + 55}1{@, with H := V2£(0"), (8)

where §; := ©(*) — ©(0) refers the model update direction and H is the Hessian at ©(?). In this view,
the curvature along d; is quantified by the quadratic term &, H¢;. Its inverse &, H 13, suggests §;
explores a novel region of the loss landscape, making it an indicator for selecting diverse checkpoints.

However, computing the full Hessian in high-dimensional parameter space is impractical, especially
in TTA tasks. However, considering that 3D object detection models commonly use linear layers
as final regression heads, we can effectively analyze curvature through the simpler and analytically
tractable ridge regression setting. Specifically, assume a linear regression head parameterized by
weights w € R? and a fixed feature extractor ¢(-), yielding a ridge regression objective of the form:

N
= i T N — v 2 2 _ i T
E*N;Hw 0(i) = yill* + Mwl*, Hy = 2(72"Z + A1), ©)

where H,, is Hessian matrix in parameter space. More precisely, this reveals the inverse of parameter-
space curvature is linked to the proposed ridge leverage score under the low-rank surrogate Z, ;Z; ;:

2 —1
2] H'z; = 2] (szlztl + 2)\1') z; o s\, (10)

Empirical analysis (see Fig. [3)) confirms that fingerprint vectors strongly correlate (Pearson correlation
and Kendall Tau scores often exceeding 0.7) with parameter deltas, confirming that the geometry of
fingerprint space reliably mirrors that of parameter space.

3.3 Model Merging

To perform stable model merging, we select top- K high-scoring checkpoints based on ridge leverage
scores, yet their associated parameter directions may exhibit destructive interference. To resolve such
conflicts, we adopt a sign-consistent merging inspired by [54]], which aligns model parameters based
on majority sign consensus before merging. Let {6(“ 1K | denote the top-K selected checkpoints

and {sgt) K | their corresponding leverage scores. For each parameter dimension j, we compute the

majority sign sign,,,,:(j) := mode({sign(@y)) K), and zero out inconsistent components. The
merged model is then given by:
()
S
= (1D
K (0
Zj:l 85

where ® denotes element-wise multiplication, and I[-] is a binary mask that retains only parameters
aligned with the majority sign. This sign-consistent merge ensures coherent parameter updates and
stabilizes adaptation under distribution shifts.

K
ol = Z Egt) -1 {sign(@(i)) = sigh,; | © 10N égt) =
i=1

Optimization. Following the protocol in [], we use the merged model to generate pseudo-labeled
bounding boxes for self-training the LiDAR-based detector online. In realistic end-to-end AD systems
(see Fig. [T), perception, mapping, and planning modules are often integrated into a monolithic
architecture. For efficiency, we freeze all components except for the 3D box regression head.
Experiments show that CodeMerge not only improves detection performance but also yields gains in
downstream mapping and planning without requiring additional training or modifications (Table [2).

4 Experiments

4.1 Experimental Setup

Datasets and Tasks. We conduct comprehensive experiments across five benchmarks for end-to-end
autonomous driving and outdoor 3D object detection: KITTI [13]], KITTI-C [25], Waymo [40],
nuScenes [4]], and nuScenes-C [53]]. For test-time adaptation in end-to-end autonomous driving, we
pre-train models on the nuScenes driving benchmark and adapt them to eight real-world corruptions
in nuScenes-C: Motion Blur (Motion), Color Quantization (Quant), Low Light (Dark), Brightness
(Bright), Snow, Fog, Camera Crash (Crash), and Frame Lost. For LiDAR-based 3D object detection,
we first tackle cross-dataset adaptation (Waymo — KITTI, nuScenes — KITTI) following [356, 157, 6],
addressing both object-level shifts (e.g., scale and point density) and environmental differences (e.g.,
deployment location, beam configuration). We then evaluate adaptation to sensor failures and weather
effects via KITTI— KITTI-C, covering Fog, Wet Conditions (Wet.), Snow, Motion Blur (Moti.),
Missing Beams (Beam.), Crosstalk (Cross.T), Incomplete Echoes (Inc.), and Cross-Sensor (Cross.S).
The detailed evaluation metric and implementation details can be found in Appendix[A.T]

Baselines. We compare the proposed CodeMerge against a broad range of methods: (i) No Adapt.,
the pretrained model evaluated directly on the target datasets; (ii) SN [48]], a weakly supervised
DA technique that rescales source objects using target size statistics; (iii) ST3D [56], the first UDA
method for 3D detection, employing multi-epoch self-training with pseudo labels; (iv) Tent [44]], an
TTA approach that minimizes prediction entropy; (v) CoTTA [46]], which combines mean-teacher
supervision with stochastic augmentations for 77A; (vi) SAR [34], enhancing Tent by sharpness-aware
and reliability-aware entropy minimization; (vii) MemCLR [43]], the first online TTA method that
uses memory-augmented mean-teacher for 2D detection; (viii) Reg-TTA3D [58]], which regularizes
3D box regression by enforcing noise-consistent pseudo labels during 3D TTA; (ix) MOS [8]],
dynamically fusing a bank of top-K checkpoints through kernel-based synergy for 3D TTA; (x)
DPO [9], flattening the test-time loss landscape via dual perturbations for 3D TTA; (xi) Oracle, a
fully supervised model trained with annotated target datasets.

Table 1: Perception and tracking results of the end-to-end SparseDrive model [41] with and without
TTA on the nuScenes-C [53] validation set under different corruptions at the highest severity level.
The best results for each metric and corruption are highlighted in bold.

3D OBJECT DETECTION MULTI-OBJECT TRACKING
mAP{ NDSt mATE| mASE| mAOE| mAVE| mAAE| AMOTA?T AMOTP| Recallt

CORRUPTION METHOD

z No Adapt. 0.1468 0.3136 0.7792 0.2908 0.8048 0.4835 0.2398 0.0896 1.7983 0.1837
E MOTION Tent [44] 0.2462 0.4113 0.6802 0.2839 0.6039 0.3243 0.2264 0.1736 1.5122 0.2918
2 MOS [8] 02611 0.4125 0.6848 0.2827 0.6588 0.3455 0.2087 0.1902 1.5239 0.3332
& Ours 0.2759 0.4206 0.6697 0.2815 0.6437 0.3618 0.2169 0.2192 1.5485 0.3456
g No Adapt. 0.2022 0.3767 0.7095 0.2896 0.6478 0.3814 0.2160 0.1548 1.5398 0.2873
g Tent [44] 0.1424 0.3043 0.6527 0.4169 0.6032 0.5758 0.4200 0.0981 1.6930 0.1788
; QuANT MOS [8] 0.2560 0.4172 0.6781 0.2848 0.6115 0.3103 0.2231 0.2096 1.5195 0.3287
- Ours 0.2742 0.4331 0.6575 0.2764 0.5903 0.3018 0.2137 0.2339 1.4868 0.3330
= No Adapt. 0.1386 0.2804 0.7375 0.4180 0.6880 0.6285 0.4164 0.1169 1.7520 0.1995
5} DARK Tent [44] 0.1266 0.2795 0.7243 04116 0.6396 0.6474 0.4151 0.0776 1.7014 0.1697
z MOS [8] 0.1726 0.3500 0.7482 0.2920 0.6570 0.4202 0.2459 0.1399 1.7148 02153
[C:> Ours 0.2060 0.3727 0.7206 0.2852 0.6782 0.3993 0.2196 0.1762 1.6333 0.2557
2 No Adapt. 0.3300 0.4641 0.6355 0.2749 0.6084 03013 0.1892 0.2829 1.4257 0.3982
§ BRIGHT Tent [44] 0.2557 0.4289 0.6345 0.2896 0.5666 0.3143 0.1848 0.1879 1.4836 0.3002
; MOS [8] 0.3595 0.4825 0.6100 0.2757 0.6053 0.2908 0.1909 0.3126 1.3566 0.4387
Ours 0.3692 0.4939 0.6138 02779 0.5343 0.2885 0.1928 0.3317 1.3389 0.4632

o No Adapt. 0.0970 0.2206 0.7974 0.4586 0.9349 0.6614 0.4264 0.0469 1.8822 0.1070
= SNOW Tent [44] 0.1417 0.2791 0.7312 0.4165 0.6904 0.6714 0.4077 0.0779 1.7440 0.1838
E MOS [8] 0.1478 0.3207 0.7740 0.2995 0.7092 0.5211 0.2284 0.0887 1.7828 0.1747
= Ours 0.1828 0.3581 0.7558 0.2930 0.6009 0.4604 0.2222 0.1136 1.7119 0.2293
‘Z’ No Adapt. 0.3162 0.4612 0.6295 0.2775 0.5727 02984 0.1910 0.2756 1.4469 0.3859
g FoG Tent [44] 0.2964 0.4515 0.6372 0.2837 0.5190 03149 0.2121 0.2312 1.4311 0.3623
S: MOS [8] 0.3362 0.4690 0.6339 0.2797 0.5798 0.2961 0.2019 0.2907 1.3833 0.4007
Ours 0.3421 0.4761 0.6184 0.2739 0.5597 0.2995 0.1981 0.2997 1.3749 0.4124

No Adapt. 0.0785 0.2753 0.6467 0.4060 0.6078 0.5953 0.3840 0.0670 1.8241 0.1519

é’ CRASH Tent [44] 0.0722 0.2679 0.7426 0.3469 0.6294 0.6658 0.2976 0.0462 1.9007 0.1155
] MOS [8] 0.0702 0.2659 0.7614 0.3460 0.6169 0.6685 0.2990 0.0454 1.8978 0.1155
E Ours 0.0973 0.3288 0.6979 0.2889 0.6061 0.4175 0.1876 0.0810 1.8372 0.1550
g No Adapt. 0.0886 0.3109 0.7314 0.2792 0.6206 0.4717 0.2310 0.0549 1.7638 0.1644
;% LosT Tent [44] 0.0372 0.2371 0.8386 0.2913 0.7439 0.7068 0.2337 0.0029 1.9856 0.0406
@ MOS [8] 0.0479 0.2116 0.8913 0.3464 0.7567 0.8008 0.3281 0.0131 1.9670 0.0624
Ours 0.1172 0.3292 0.7638 0.2787 0.5810 0.4461 0.2243 0.0700 1.7605 0.1788

No Adapt. 0.1747 0.3378 0.7083 0.3368 0.6856 0.4777 0.2867 0.1361 1.6791 0.2347

AVERAGE Tent [44] 0.1648 0.3325 0.7052 0.3426 0.6245 0.5276 0.2997 0.1119 1.6815 0.2053

MOS [8] 02028 0.3551 0.7269 0.3205 0.6633 0.4829 0.2711 0.1599 1.6461 0.2532
Ours 0.2334 0.4016 0.6872 0.2819 0.5993 0.3719 0.2094 0.1907 1.5865 0.2966

4.2 Main Results and Analysis

TTA on End-to-End Autonomous Driving. We comprehensively evaluate our CodeMerge method
on nuScenes-C [53]] with the end-to-end SparseDrive model [41], covering five downstream tasks: 3D
detection, multi-object tracking, online mapping, motion prediction, and trajectory planning under
diverse corruptions. Table [I] shows CodeMerge consistently outperforms all baselines, including
No Adapt, Tent, and the state-of-the-art MOS [8] in averaged results. In 3D detection, we boost
mAP by 33.6% over no adaptation (0.1747 — 0.2334) and by 13.3% over MOS. CodeMerge also
reduces mASE by 4.4% relative to MOS, and lowers mAVE by 19%. Under the Bright corruption,
CodeMerge improves mAP by 11.9% over no adaptation, with consistent gains in other metrics. In
multi-object tracking, CodeMerge improves AMOTA by 19.3%, reduces AMOTP by 13.8%, and
raises recall by 16.5% when compared with the SOTA baseline, MOS. Notably, under the most
safety-critical Lost scenario, the proposed method achieves the highest recall (0.1788) and lowest
tracking error among all methods. Although only perception weights are adapted, downstream tasks
benefit markedly. As reported in Table [2] CodeMerge increases online mapping mAP by 42.3%
(0.2009 — 0.2859) over no adaptation, with +45.7% on lane boundaries and +39.5% on obstacles,
especially +94.2% under Dark. For motion prediction, mADE and mFDE fall by 9.3% and 9.7%
compared to no adaptation, respectively, while EPA (higher is better) rises by 13.8%. For planning,
average lateral deviation falls 8.3% (0.7923 m — 0.7266 m) and collision risk drops 6.1% compared
to no adaptation. These consistent gains achieved without touching non-perception modules, confirm

Table 2: Impact of TTA on downstream modules of end-to-end SparseDrive [41]]. We evaluate
online mapping, motion prediction, and trajectory planning on the nuScenes-C [53]] under the highest
severity of various corruptions. These modules are not fine-tuned; all performance gains stem from
TTA applied to the detection module. Best results per metric and corruption are shown in bold.

ONLINE MAPPING MOTION PREDICTION PLANNING

CORRUPTION METHOD

APpedT AP, T

AP, mAP{ mADE| mFDE, MR| EPA} L2-Avgl CR-Avgl

z No Adapt. 0.1988 0.2343 0.1999 0.2110 0.8630 1.3483 0.1750 0.2616 0.7877 0.2150
E MOTION Tent [44] 0.3425 0.3794 0.3876 0.3698 0.7786 1.1825 0.1520 0.3712 0.6474 0.0900
a MOS [8] 0.3452 0.3943 0.4012 0.3802 0.7348 1.1278 0.1560 0.3742 0.6694 0.1340
% Ours 0.3660 0.4212 0.4283 0.4052 0.7264 1.1200 0.1570 0.3945 0.6580 0.1100
S No Adapt. 0.1742 0.2317 0.2069 0.2043 0.7620 1.1734 0.1526 0.3204 0.7301 0.1590
g Tent [44] 0.1526 0.2153 0.2088 0.1922 0.8489 1.3551 0.1602 0.2987 0.6966 0.1200
§ QuANT MOS [8] 0.2346 0.3208 0.2918 0.2824 0.7040 1.0822 0.1445 0.3668 0.6848 0.1180
. Ours 0.2600 0.3445 0.3267 0.3104 0.7002 1.0859 0.1454 0.3840 0.6762 0.1250
£ No Adapt. 0.1173 0.2038 0.1812 0.1675 0.8428 1.3255 0.1714 0.2757 0.7535 0.2760
UE) DARK Tent [44] 0.2116 0.2560 0.2481 0.2386 0.8603 1.3314 0.1786 0.2722 0.7049 0.1230
z MOS [8] 0.2261 0.3090 0.2892 0.2748 0.7956 1.2443 0.1730 0.3066 0.6824 0.1360
E Ours 0.2825 0.3637 0.3291 0.3251 0.7493 1.1639 0.1644 0.3397 0.6602 0.1170
_<Z_t No Adapt. 0.3777 0.4847 0.4833 0.4486 0.6646 1.0246 0.1369 0.4468 0.6306 0.1260
§ BRIGHT Tent [44] 0.3550 0.4342 0.4591 0.4161 0.6882 1.0739 0.1369 0.3978 0.6487 0.0950
; MOS [8] 0.4053 0.4960 0.5127 0.4713 0.6468 1.0031 0.1357 0.4593 0.6243 0.1230
Ours 0.4305 0.5224 0.5398 0.4976 0.6504 1.0122 0.1392 0.4680 0.6209 0.0940

o No Adapt. 0.0061 0.0322 0.0369 0.0250 1.0643 1.7042 0.1930 0.2113 0.8897 0.4310
g SNOW Tent [44] 0.1083 0.1320 0.1359 0.1254 09147 14192 0.1753 0.2804 0.7552 0.1320
E MOS [8] 0.1237 0.1564 0.1545 0.1448 0.8736 1.3476 0.1737 0.2994 0.7684 0.1920
= Ours 0.1134 0.1812 0.1740 0.1562 0.8074 1.2589 0.1717 0.3135 0.7634 0.1900
z’ No Adapt. 0.3600 0.4649 0.4076 0.4109 0.6482 0.9904 0.1347 0.4380 0.6257 0.1050
g FoG Tent [44] 0.3786 0.4492 0.4438 0.4239 0.6861 1.0631 0.1405 0.4182 0.6533 0.0870
2 MOS [8] 0.4161 0.4950 0.4785 0.4632 0.6549 1.0087 0.1401 0.4539 0.6225 0.1060
Ours 0.4276 0.5022 0.4843 0.4714 0.6501 1.0008 0.1394 0.4557 0.6200 0.1100

No Adapt. 0.1029 0.1019 0.0618 0.0889 0.8662 1.3375 0.1652 0.1920 0.9276 0.3740

§ CRASH Tent [44] 0.0431 0.0764 0.0141 0.0445 0.8691 13548 0.1710 0.1771 0.8852 0.7040
2 MOS [8] 0.0394 0.0706 0.0100 0.0400 0.8878 1.3895 0.1766 0.1721 0.8977 0.7300
E Ours 0.0727 0.1154 0.0279 0.0720 0.8302 1.3022 0.1637 0.1974 0.8539 0.6300
g No Adapt. 0.0892 0.0388 0.0250 0.0510 1.0327 1.4772 0.1740 0.1826 0.9932 0.4830
% LOST Tent [44] 0.0431 0.0547 0.0163 0.0380 1.4194 2.1114 0.2383 0.0737 0.9985 0.6220
n MOS [8] 0.0180 0.0153 0.0038 0.0124 1.5468 2.3163 0.2155 0.0873 1.0628 0.7340
Ours 0.0723 0.0503 0.0250 0.0492 1.0004 1.4304 0.1739 0.0952 0.9600 0.6610

No Adapt. 0.1783 0.2240 0.2003 0.2009 0.8430 1.2976 0.1629 0.2911 0.7923 0.2711

AVERAGE Tent [44] 0.2044 0.2497 0.2392 0.2311 0.8832 1.3614 0.1691 0.2862 0.7487 0.2466

MOS 0.2260 0.2822
Ours 0.2531 0.3126

0.2677 0.2586 0.8555 1.3149 0.1644 0.3150 0.7515 0.2841
0.2919 0.2859 0.7643 1.1718 0.1568 0.3312 0.7266 0.2546

that the proposed lightweight, fingerprint-guided merging framework stabilizes the detector and
unlocks robust performance across all autonomous driving tasks.

TTA on LiDAR-based Detection. We examine CodeMerge’s performance in 3D object detection

across two distinct types of domain
shifts: Cross-dataset (Waymo —
KITTI, nuScenes — KITTI) and
Corruption-induced shifts (KITTI —
KITTI-C). (1) Cross-dataset (Ta-
ble B). Compared with the non-
adapted model, CodeMerge lifts
APBEV by 25.1% and AP3D by
141% on Waymo — KITTI, closing
108.5%/84.5% of the domain gap
and even surpassing the multi-epoch

Table 4: TTA results on KITTI-C. We evaluate the LiDAR-
based SECOND detector [[55]] under the highest severity level
of various corruptions, reporting APsp (hard).

No Adapt. Tent [44] CoTTA [46] SAR [34] MemCLR [43] DPO [9] MOS [§8] Ours

Fog 68.23 68.73 68.49 68.14 68.23 68.72 69.11 75.96
Snow 59.07 59.50 59.45 58.78 58.74 60.80 62.72 63.53
Inc. 25.68 26.44 27.85 26.42 27.47 27.16 3453 3218
CrossT. 75.49 74.67 72.22 7451 74.25 75.52 7547 75.76
Moti. 38.21 38.15 38.62 38.12 37.57 38.71 40.59 44.87
CrossS. 41.08 41.17 40.80 40.63 40.90 42.09 43.68 4236
Wet. 76.25 76.36 76.43 76.23 76.25 76.89 7179 79.82
Beam. 53.93 53.85 53.98 53.75 53.49 54.06 5591 57.26
Mean 54.74 54.86 54.73 54.57 54.61 55.49 5748 58.97

ST3D and fully supervised Oracle in APggy. On nuScenes — KITTI, it narrows the gap by
81.3%/73.15%, again outperforming the strongest TTA baselines (MOS, DPO) and exceeding

Table 3: TTA results for LiDAR-based 3D detection across different datasets. We report APggy /
APsp (moderate). “Oracle” = fully—supervised on target; Bold = best; underline = second best.

METHOD VENUE TTA Wwaymo — KITTI NUSCENES — KITTI
APggv / AP3p Closed Gap APggv / AP3p Closed Gap
No Adapt. - 67.64/27.48 - 51.84/17.92 -
SN [48] CVPR’20 « 78.96 /59.20 +72.33% | +69.00% 40.03/21.23 +37.55% / +5.96%
ST3D [56] CVPR’21 82.19/61.83 +92.97% I +74.72% 75.94/54.13 +76.63% / +65.21%
Oracle - 83.29/73.45 - 83.29/73.45 -
Tent [44] ICLR21 65.09/30.12 -16.29% / +5.74% 46.90/18.83 -15.71% / +1.64%
CoTTA [46] CVPR’22 67.46/35.34 -1.15% / +17.10% 68.81/47.61 +53.96% / +53.47%
SAR [34] ICLR’23 65.81/30.39 —11.69% / +6.33% 61.34/35.74 +30.21% / +32.09%
MemCLR [43] WACV’23 v 65.61/29.83 -12.97% 1 +5.11% 61.47/35.76 +30.62% / +32.13%
DPO [9] MM’24 75.81/55.74 +52.20% / +61.47% 7327715438 +68.13% / +65.66%
Reg-TTA3D [58] ECCV’24 81.60/56.03 +89.20% / +62.11% 68.73/44.56 +53.70% / +47.97%
MOS [8] ICLR’25 81.90/64.16 +91.12% / +79.79% 71.13/51.11 +61.33% / +59.78%
Ours - 84.62/66.31 +108.50% / +84.47% 77.41/58.54 +81.30% / +73.15%

Table 5: Ablation study on different checkpoint selection strategies, number of checkpoints to merge
(K), and random projection dimension (d") on nuScenes-C [53] (motion blur at the heaviest level).

DETECTION TRACKING MAPPING MOTION PLANNING
MERGE K PRoOJ.-D

mAP{ NDST AMOTAT AMOTP| mAPt AP,,! mADE| mFDE| L2-Avg| CR-Avg|
Random 5 - 02740 04185 02152 1.5461 04011 03678 0.7251 1.1192 06631 0.1120
Recent 5 - 0.2480 03985 0.1866 1.6040 03748 03410 0.7368 1.1436 0.6795 0.1490
EMA - - 02478 03992 0.1869 1.6016 03748 03413 07375 1.1447 06778 0.1250
KMeans++ 5 1024 02746 04192 02157 15490 04010 03678 07246 1.1182 0.6625 0.1050
Leverage 5 1024 02851 04264 02241 1.5206 04103 03713 07228 1.1146 0.6504 0.1090
Leverage 3 1024 02655 04122 02077 15630 03623 03928 07407 1.1461 0.6651 0.1200
Leverage 9 1024 02818 04231 02195 1.5240 04167 03814 0.7180 11066 0.6534 0.1030
Leverage 5 256 02749 04176 02168 1.5488 04010 03678 07228 1.1142 0.6615 0.0960
Leverage 5 512 02708 04142 02117 15525 03991 03695 0.7378 1.1428 0.6588 0.1170
Leverage 5 2048 02799 0.4207 02140 15224 04033 03630 0.7324 11204 0.6488 0.0950

ST3D by +1.9% APggy and +8.1% APsp. (2) Corruption-induced (Table). Against KITTI —
KITTI-C corruptions, CodeMerge raises mean APsp by +7.7% over no adaptation and +2.6% over
the best prior TTA baseline. Under Fog and Wet corruption, gains are pronounced: +9.9% (75.96
vs. 69.11) and +2.6% (79.82 vs. 77.79), respectively, indicating enhanced resilience to visibility
and environment degradations. These results demonstrate that our latent-space, fingerprint-guided
merging not only closes cross-domain gaps more effectively than existing TTA methods but also
surpasses dedicated domain adaptation approaches, providing robust performance across diverse and
challenging environments.

4.3 Ablation and Sensitivity Study

Impact of Checkpoint Selection Strategy. In Table 5| we compare five strategies for choosing
K = 5 checkpoints under heavy Motion Blur: Random sampling, Recent (the latest five), KMeans++
clustering in feature space, Exponential Moving Average (EMA) model, and our Leverage-score
ranking. Random yields a reduced detection mAP of 0.2740, weaker tracking (AMOTA = 0.2152),
and planning (CR-Avg = 0.1120). Recent performs worst across all tasks (mAP 0.2480, AMOTA
0.1866, CR-Avg 0.1490), indicating catastrophic forgetting when only the newest checkpoints are
merged. KMeans++ yields a marginal 0.17% lift in NDS over Random and reduces collision risk
by 6.3%, reflecting its ability to capture diverse feature modes. However, KMeans++ is still outper-
formed by the proposed method (-3.8% mAP for detection), highlighting that pure feature clustering
cannot match the important informativeness captured by leverage-score ranking. Futhermore, Code-
Merge (K = 5, projection dimension d’ = 1024) consistently outperforms EMA across all tasks:
Detection mAP/NDS +0.0373/+0.0272; Tracking AMOTA +0.0372 and AMOTP -0.0810 ({ bet-
ter); Mapping mAP/AP,q +0.0355/+0.0300; Motion mADE/mFDE —-0.0147/-0.0301; Planning
L2-Avg/CR-Avg —0.0274/-0.0160. These gains indicate that our fingerprint-guided merging, which
selects complementary checkpoints, offers stronger generalization than the uniform, time-local
smoothing performed by EMA. Overall, the proposed Leverage-score selection consistently achieves
the best results by explicitly identifying the most informative, complementary checkpoints carrying
long-term knowledge.

Figure 4: Visualization of outputs of SparseDrive (bottom) and after CodeMerge adaptation
(upper) under severe motion blur. TTA greatly improves detection by capturing more true positive
instances, which consequently enhances downstream mapping and planning accuracy (right).

Impact on Number of Merged Checkpoints. Table [5]compares selecting K =3, 5, or 9 checkpoints
(with d’ = 1024) for model merging under Motion Blur corruption. With only K = 3, detection
mAP drops from 0.2851 to 0.2655, and tracking AMOTA falls from 0.2241 to 0.2077, indicating
insufficient coverage of knowledge diversity. Increasing to K =9 recovers much of this gap (mAP
0.2818, AMOTA 0.2195) but yields only marginal gains, in mapping mAP (0.4167 vs. 0.4103 at
K =5). The near-parity between K =5 and 9 suggests redundant information beyond five checkpoints.
Balancing performance and memory fingerprint, we thus adopt K =5 in all experiments.

Impact on Dimension of Random Projection. We additionally examine the effect of varying the
random projection dimension d’ among {256, 512, 1024, 2048}. As Table shows, at d = 256,
the performance is only slightly below that of ' = 1024 (mAP 0.2749 vs. 0.2851; NDS 0.4176 vs.
0.4264), demonstrating that very compact fingerprints still capture most of the critical variability. At
d’ = 2048, results nearly match the d = 1024 but at twice the memory cost. Therefore, d’ = 1024
offers the best trade-off between performance and fingerprint.

Efficiency Analysis. We further compare the GPU memory and total TTA run-
time of CodeMerge against MOS on both the SECOND and SparseDrive detectors.
As reported in Table |6 with SECOND, MOS 1,10 6. GPU memory (MiB) and total TTA
consumes 17.4 GiB and requires 1,813 seconds runtime (s) for a single TTA run

per adaptation run, whereas CodeMerge uses only i

16.0 GiB (-8.0%) and completes in 1,054 seconds Model Method GPU Memory Runtime
(—41.8%). The savings are even more pronounced MOS 17411 1813
on SparseDrive: MOS demands 39.4 GiB and 37,619 SECOND 5 16,041 1,054

seconds, while CodeMerge needs just 29.8 GiB
(-21.0%) and 27,359 seconds (-37.48%). These SparseDrive
gains arise from our fingerprint-guided merging,
which projects each checkpoint into a compact embedding and computes leverage weights on
the fly (requiring only one extra forward pass), rather than loading and forwarding K full models
as MOS does. This design drastically reduces memory footprint and latency, making CodeMerge
well-suited for real-time autonomous driving applications.

MOS 39,420 37,619
Ours 29,868 27,359

Quantitative Analysis. We visualize predictions with CodeMerge (top row) against the non-adapted
SparseDrive baseline (bottom row) in Fig. @ to illustrate how on-the-fly merging enhances every stage
of the end-to-end pipeline. In detection and tracking, CodeMerge produces tight, correctly aligned 3D
boxes, but the baseline suffers a large number of missed or misplaced detections (highlighted in red
dashed circles). In mapping, our method reconstructs dense, straight-lane boundaries and curb lines,
validating its ability to preserve semantic consistency. In contrast, the baseline yields sparse, crooked
lanes and missing curbs (highlighted in purple circles/arrows), degrading map fidelity. Finally,
CodeMerge’s planned trajectory remains centered in the lane and safely avoids dynamic objects,
while the baseline’s path drifts toward the curb (highlighted in an orange arrow) and even intersects
an oncoming track, demonstrating unsafe behavior. In summary, these qualitative results confirm that

leveraging compact fingerprints and leverage-score—guided merging yields better detections, more
robust tracking, and safer trajectories under severe real-world corruptions.

5 Conclusion

In this work, we address the challenge of online adaptation to domain shifts for both LIDAR-based and
vision-centric end-to-end AD detection under extreme conditions. Our proposed CodeMerge frame-
work effectively mitigates cross-dataset and corruption-induced distribution shifts, while reducing
GPU memory consumption and inference latency by approximately 27% compared to state-of-the-art
TTA methods. Notably, other downstream modules, such as mapping and planning, receive perfor-
mance improvements without task-specific fine-tuning due to enhanced detection outputs. However,
this study represents an early attempt to address robustness in end-to-end AD, and major experiments
have been primarily conducted on the SparseDrive architecture. The primary bottleneck remains that
popular architectures, such as UniAD and VAD, experience over tenfold performance degradation on
nuScenes-C, hindering effective adaptation training. Future work will investigate strategies to further
accelerate adaptation and enhance robustness under dynamic driving conditions.

6 Acknowledgements

This work was partially supported by ARC DE240100105, DP240101814, DP230101196,
DP230101753, BA24006, DE250100363, IH230100013.

References

[1] Samuel K. Ainsworth, Jonathan Hayase, and Siddhartha S. Srinivasa. Git re-basin: Merging
models modulo permutation symmetries. In Proc. International Conference on Learning
Representations (ICLR), 2023.

[2] Devansh Arpit, Huan Wang, Yingbo Zhou, and Caiming Xiong. Ensemble of averages: Im-
proving model selection and boosting performance in domain generalization. In Proc. Annual
Conference on Neural Information Processing (NeurlPS), 2022.

[3] Y-Lan Boureau, Jean Ponce, and Yann LeCun. A theoretical analysis of feature pooling in
visual recognition. In Proceedings of the 27th International Conference on Machine Learning
(ICML-10), June 21-24, 2010, Haifa, Israel.

[4] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu,
Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal
dataset for autonomous driving. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 11618-11628, 2020.

[5] Dian Chen, Dequan Wang, Trevor Darrell, and Sayna Ebrahimi. Contrastive test-time adaptation.
In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 295-305,
2022.

[6] Zhuoxiao Chen, Yadan Luo, Zheng Wang, Mahsa Baktashmotlagh, and Zi Huang. Revisiting
domain-adaptive 3d object detection by reliable, diverse and class-balanced pseudo-labeling. In
Proc. International Conference on Computer Vision (ICCV), pages 3691-3703, 2023.

[7] Zhuoxiao Chen, Yadan Luo, Zixin Wang, Zijian Wang, Xin Yu, and Zi Huang. Towards open
world active learning for 3d object detection. CoRR, abs/2310.10391, 2023.

[8] Zhuoxiao Chen, Junjie Meng, Mahsa Baktashmotlagh, Yonggang Zhang, Zi Huang, and Yadan
Luo. MOS: model synergy for test-time adaptation on lidar-based 3d object detection. In Proc.
International Conference on Learning Representations (ICLR), 2025.

[9] Zhuoxiao Chen, Zixin Wang, Yadan Luo, Sen Wang, and Zi Huang. DPO: dual-perturbation
optimization for test-time adaptation in 3d object detection. In Proc. ACM International
Conference on Multimedia (MM), pages 4138—4147, 2024.

[10] Nico Daheim, Thomas Méllenhoff, Edoardo M. Ponti, Iryna Gurevych, and Mohammad Emtiyaz
Khan. Model merging by uncertainty-based gradient matching. In Proc. International Confer-
ence on Learning Representations (ICLR), 2024.

10

[11] Marius-Constantin Dinu, Markus Holzleitner, Maximilian Beck, Hoan Duc Nguyen, Andrea
Huber, Hamid Eghbal-zadeh, Bernhard Alois Moser, Sergei V. Pereverzyev, Sepp Hochreiter,
and Werner Zellinger. Addressing parameter choice issues in unsupervised domain adaptation
by aggregation. In Proc. International Conference on Learning Representations (ICLR), 2023.

[12] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. Linear
mode connectivity and the lottery ticket hypothesis. In Proc. International Conference on
Machine Learning (ICML), volume 119 of Proceedings of Machine Learning Research, pages
3259-3269, 2020.

[13] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the
KITTT vision benchmark suite. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3354-3361, 2012.

[14] Taesik Gong, Yewon Kim, Taeckyung Lee, Sorn Chottananurak, and Sung-Ju Lee. Sotta: Robust
test-time adaptation on noisy data streams. In Proc. Annual Conference on Neural Information
Processing (NeurIPS), 2024.

[15] Sachin Goyal, Mingjie Sun, Aditi Raghunathan, and J Zico Kolter. Test time adaptation
via conjugate pseudo-labels. In Proc. Annual Conference on Neural Information Processing
(NeurlIPS), 2022.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling in deep
convolutional networks for visual recognition. In Computer Vision - ECCV 2014 - 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part II1.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015.

[18] Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Ha-
jishirzi, and Ali Farhadi. Editing models with task arithmetic. In Proc. International Conference
on Learning Representations (ICLR), 2023.

[19] Bo Jiang, Shaoyu Chen, Qing Xu, Bencheng Liao, Jiajie Chen, Helong Zhou, Qian Zhang,
Wenyu Liu, Chang Huang, and Xinggang Wang. VAD: vectorized scene representation for
efficient autonomous driving. In IEEE/CVF International Conference on Computer Vision,
ICCV 2023, Paris, France, October 1-6, 2023, pages 8306-8316. IEEE, 2023.

[20] Jincen Jiang, Qianyu Zhou, Yuhang Li, Xinkui Zhao, Meili Wang, Lizhuang Ma, Jian Chang,
Jian Jun Zhang, and Xuequan Lu. Pcotta: Continual test-time adaptation for multi-task point
cloud understanding. In Proc. Annual Conference on Neural Information Processing (NeurlPS),
2024.

[21] Ian T. Jolliffe. Principal Component Analysis. Springer Series in Statistics. Springer, 1986.

[22] Sanghun Jung, Jungsoo Lee, Nanhee Kim, Amirreza Shaban, Byron Boots, and Jaegul Choo.
Cafa: Class-aware feature alignment for test-time adaptation. In Proc. International Conference
on Computer Vision (ICCV), pages 19060—19071, 2023.

[23] Adilbek Karmanov, Dayan Guan, Shijian Lu, Abdulmotaleb El-Saddik, and Eric P. Xing.
Efficient test-time adaptation of vision-language models. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 14162-14171, 2024.

[24] Byungjai Kim, Chanho Ahn, Wissam J. Baddar, Kikyung Kim, Huijin Lee, Sachyun Ahn,
Seungju Han, Sungjoo Suh, and Eunho Yang. Test-time ensemble via linear mode connectivity:
A path to better adaptation. In Proc. International Conference on Learning Representations
(ICLR), 2025.

[25] Lingdong Kong, Youquan Liu, Xin Li, Runnan Chen, Wenwei Zhang, Jiawei Ren, Liang
Pan, Kai Chen, and Ziwei Liu. Robo3d: Towards robust and reliable 3d perception against
corruptions. In Proc. International Conference on Computer Vision (ICCV), pages 19937-19949,
2023.

11

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Jian Liang, Ran He, and Tieniu Tan. A comprehensive survey on test-time adaptation under
distribution shifts. International Journal of Computer Vision, 133(1):31-64, 2025.

Bencheng Liao, Shaoyu Chen, Haoran Yin, Bo Jiang, Cheng Wang, Sixu Yan, Xinbang Zhang,
Xiangyu Li, Ying Zhang, Qian Zhang, and Xinggang Wang. Diffusiondrive: Truncated diffusion
model for end-to-end autonomous driving. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2025, Nashville, TN, USA, June 11-15, 2025. Computer Vision
Foundation / IEEE, 2025.

Yadan Luo, Zhuoxiao Chen, Zhen Fang, Zheng Zhang, Mahsa Baktashmotlagh, and Zi Huang.
Kecor: Kernel coding rate maximization for active 3d object detection. In Proc. International
Conference on Computer Vision (ICCV), pages 18233-18244, 2023.

Yadan Luo, Zhuoxiao Chen, Zijian Wang, Xin Yu, Zi Huang, and Mahsa Baktashmotlagh.
Exploring active 3d object detection from a generalization perspective. In Proc. International
Conference on Learning Representations (ICLR), 2023.

Yadan Luo, Zijian Wang, Zhuoxiao Chen, Zi Huang, and Mahsa Baktashmotlagh. Source-free
progressive graph learning for open-set domain adaptation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(9):11240-11255, 2023.

Muhammad Jehanzeb Mirza, Jakub Micorek, Horst Possegger, and Horst Bischof. The norm
must go on: Dynamic unsupervised domain adaptation by normalization. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 14745-14755. IEEE,
2022.

Jacob Morrison, Noah A. Smith, Hannaneh Hajishirzi, Pang Wei Koh, Jesse Dodge, and
Pradeep Dasigi. Merge to learn: Efficiently adding skills to language models with model
merging. In Findings of the Association for Computational Linguistics (Findings of EMNLP),
pages 15604-15621, 2024.

Shuaicheng Niu, Chunyan Miao, Guohao Chen, Pengcheng Wu, and Peilin Zhao. Test-time
model adaptation with only forward passes. In Proc. International Conference on Machine
Learning (ICML), 2024.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and
Mingkui Tan. Towards stable test-time adaptation in dynamic wild world. In Proc. International
Conference on Learning Representations (ICLR), 2023.

Haoxuan Qu, Xiaofei Hui, Yujun Cai, and Jun Liu. LMC: large model collaboration with
cross-assessment for training-free open-set object recognition. In Proc. Annual Conference on
Neural Information Processing (NeurIPS), 2023.

Alexandre Ramé, Matthieu Kirchmeyer, Thibaud Rahier, Alain Rakotomamonjy, Patrick Galli-
nari, and Matthieu Cord. Diverse weight averaging for out-of-distribution generalization. In
Proc. Annual Conference on Neural Information Processing (NeurlPS), 2022.

Dominik Scherer, Andreas C. Miiller, and Sven Behnke. Evaluation of pooling operations in
convolutional architectures for object recognition. In Artificial Neural Networks - ICANN 2010
- 20th International Conference, Thessaloniki, Greece, September 15-18, 2010, Proceedings,
Part 111, 2010.

Hajin Shim, Changhun Kim, and Eunho Yang. Cloudfixer: Test-time adaptation for 3d point
clouds via diffusion-guided geometric transformation. In Proc. European Conference on
Computer Vision (ECCV), 2024.

Ziying Song, Caiyan Jia, Lin Liu, Hongyu Pan, Yongchang Zhang, Junming Wang, Xingyu
Zhang, Shaoqing Xu, Lei Yang, and Yadan Luo. Don’t shake the wheel: Momentum-aware
planning in end-to-end autonomous driving. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2025, Nashville, TN, USA, June 11-15, 2025. Computer Vision
Foundation / IEEE, 2025.

12

[40] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul
Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han, Jiquan
Ngiam, Hang Zhao, Aleksei Timofeev, Scott Ettinger, Maxim Krivokon, Amy Gao, Aditya Joshi,
Yu Zhang, Jonathon Shlens, Zhifeng Chen, and Dragomir Anguelov. Scalability in perception
for autonomous driving: Waymo open dataset. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2443-2451, 2020.

[41] Wenchao Sun, Xuewu Lin, Yining Shi, Chuang Zhang, Haoran Wu, and Sifa Zheng. Sparsedrive:
End-to-end autonomous driving via sparse scene representation. In Proc. International Confer-
ence on Robotics and Automation (ICRA), 2025.

[42] Yun-Yun Tsai, Fu-Chen Chen, Albert Y. C. Chen, Junfeng Yang, Che-Chun Su, Min Sun, and
Cheng-Hao Kuo. GDA: generalized diffusion for robust test-time adaptation. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 23242-23251, 2024.

[43] Vibashan VS, Poojan Oza, and Vishal M. Patel. Towards online domain adaptive object detection.
In Proc. Winter Conference on Applications of Computer Vision (WACV), pages 478488, 2023.

[44] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno A. Olshausen, and Trevor Darrell. Tent:
Fully test-time adaptation by entropy minimization. In Proc. International Conference on
Learning Representations (ICLR), 2021.

[45] Haiyang Wang, Chen Shi, Shaoshuai Shi, Meng Lei, Sen Wang, Di He, Bernt Schiele, and Liwei
Wang. DSVT: dynamic sparse voxel transformer with rotated sets. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24,
2023, pages 13520-13529. IEEE, 2023.

[46] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation.
In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 7191—
7201, 2022.

[47] Shuai Wang, Daoan Zhang, Zipei Yan, Jianguo Zhang, and Rui Li. Feature alignment and
uniformity for test time adaptation. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 20050-20060, 2023.

[48] Yan Wang, Xiangyu Chen, Yurong You, Li Erran Li, Bharath Hariharan, Mark E. Campbell,
Kilian Q. Weinberger, and Wei-Lun Chao. Train in germany, test in the USA: making 3d object

detectors generalize. In Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 11710-11720, 2020.

[49] Yanshuo Wang, Ali Cheraghian, Zeeshan Hayder, Jie Hong, Sameera Ramasinghe, Shafin
Rahman, David Ahmedt-Aristizabal, Xuesong Li, Lars Petersson, and Mehrtash Harandi.
Backpropagation-free network for 3d test-time adaptation. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2024.

[50] Zixin Wang, Yadan Luo, Liang Zheng, Zhuoxiao Chen, Sen Wang, and Zi Huang. In search
of lost online test-time adaptation: A survey. International Journal of Computer Vision,
133(3):1106-1139, 2025.

[51] Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo
Lopes, Ari S. Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and
Ludwig Schmidt. Model soups: averaging weights of multiple fine-tuned models improves
accuracy without increasing inference time. In Proc. International Conference on Machine

Learning (ICML), volume 162, pages 23965-23998, 2022.

[52] Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca
Roelofs, Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong,
and Ludwig Schmidt. Robust fine-tuning of zero-shot models. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 7949-7961, 2022.

[53] Shaoyuan Xie, Lingdong Kong, Wenwei Zhang, Jiawei Ren, Liang Pan, Kai Chen, and Ziwei
Liu. Benchmarking and improving bird’s eye view perception robustness in autonomous driving.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 47(5):3878-3894, 2025.

13

[54] Prateek Yadav, Derek Tam, Leshem Choshen, Colin A. Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models. In Alice Oh, Tristan Naumann, Amir Globerson,
Kate Saenko, Moritz Hardt, and Sergey Levine, editors, Advances in Neural Information
Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

[55] Yan Yan, Yuxing Mao, and Bo Li. SECOND: sparsely embedded convolutional detection.
Sensors, 18(10):3337, 2018.

[56] Jihan Yang, Shaoshuai Shi, Zhe Wang, Hongsheng Li, and Xiaojuan Qi. ST3D: self-training for
unsupervised domain adaptation on 3d object detection. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 10368-10378, 2021.

[57] Jihan Yang, Shaoshuai Shi, Zhe Wang, Hongsheng Li, and Xiaojuan Qi. St3d++: denoised
self-training for unsupervised domain adaptation on 3d object detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022.

[58] Jiakang Yuan, Bo Zhang, Kaixiong Gong, Xiangyu Yue, Botian Shi, Yu Qiao, and Tao Chen.
Reg-tta3d: Better regression makes better test-time adaptive 3d object detection. In Proc.
European Conference on Computer Vision (ECCV), volume 15101, pages 197-213, 2024.

[59] Longhui Yuan, Binhui Xie, and Shuang Li. Robust test-time adaptation in dynamic scenarios.
In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 15922—
15932, 2023.

[60] Longbin Zeng, Jiayi Han, Liang Du, and Weiyang Ding. Rethinking precision of pseudo label:
Test-time adaptation via complementary learning. Pattern Recognition Letters, 177:96—-102,
2024.

[61] Shuangfei Zhai, Hui Wu, Abhishek Kumar, Yu Cheng, Yongxi Lu, Zhongfei Zhang, and
Rogério Schmidt Feris. S3pool: Pooling with stochastic spatial sampling. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017, 2017.

[62] Marvin Zhang, Sergey Levine, and Chelsea Finn. MEMO: test time robustness via adaptation
and augmentation. In Proc. Annual Conference on Neural Information Processing (NeurlPS),
2022.

[63] Bowen Zhao, Chen Chen, and Shu-Tao Xia. Delta: degradation-free fully test-time adaptation.
In Proc. International Conference on Learning Representations (ICLR), 2023.

[64] Tianpei Zou, Sanqing Qu, Zhijun Li, Alois Knoll, Lianghua He, Guang Chen, and Changjun
Jiang. HGL: hierarchical geometry learning for test-time adaptation in 3d point cloud segmenta-
tion. In Proc. European Conference on Computer Vision (ECCV), 2024.

14

A Technical Appendices and Supplementary Material

We include additional technical details in the following appendices:

* Section (Implementation Details): Describes the full experimental setup, including
training schedules and hyperparameter configurations.

* Section[A.7](Evaluation Metrics): Provides definitions and explanations for all evaluation
metrics used across detection, tracking, mapping, and planning tasks.

* Section [A.3] (Additional Visualizations): Presents qualitative results and visual compar-
isons illustrating the adaptation performance of the end-to-end AD system under various
distribution shifts.

* Section[A.4] (Related Work): Summarizes the relevant literature in TTA and model merging.

* Section[A.5](Runtime): Reports the computational cost and per-frame latency of each TTA
step.

* Section[A.6] (Random Projection): Evaluates the determinism and robustness of our random
projection strategy.

* Section[A.7] (Fingerprint Generation): Demonstrates that our fingerprint generation strategy
significantly outperforms alternative methods.

* Section[A.8](3D Applicability Analysis): Assesses CodeMerge across other detectors beyond
SECOND, confirming its strong model-agnostic applicability.

* Section[A.9] (3D Robustness Analysis): Analyses the robustness of CodeMerge in heavy
distribution shift occurs (e.g., Fog & LiDAR dropout).

* Section (Backbone Adapted Analysis): Validates robustness performance when adap-
tation is applied solely to the backbone.

* Section[A.TT]| (End-to-end Generalizability Analysis): Verifies CodeMerge’s extensibility
and transferability across diverse end-to-end architectures.

A.1 Implementation Details

For the end-to-end autonomous driving task, we employ ResNet50 [17] as the backbone network to
uniformly process image data from both nuScenes and nuScenes-C [53] datasets. All input images
are resized to 256x704. We use a 900x256 instance query as input to the transformer layers. Our
optimization strategy utilizes the AdamW optimizer, configured with a weight decay of 0.001 and an
initial learning rate of 1 x 10~". To balance computational efficiency and prediction accuracy, we
apply a random projection module to reduce the dimensionality of query features extracted from the
pretrained model, resulting in a compact 1024-dimensional feature vector, and manage predictions
through a model bank with a limited capacity of five models. Through self-supervised training on
detection and tracking heads, the model accurately predicts ten classes as well as the associated
instance IDs. For the point cloud detection tasks, we adopt the SECOND [55] as our pretrained
model. We configure the training with a batch size of 8, a learning rate of 0.01, and a weight decay
of 0.01. Additionally, we utilize a 900x256 dimensional 3D feature vector as input to the leverage
module, enabling efficient and effective model merging.

A.2 Evaluation Metrics in End-to-End AD

We follow standard evaluation protocols to assess each task module for end-to-end AD system.
Detection Metrics. We use nuScenes metrics, including mean Average Precision (mAP) and five
error-based scores: mean Average Translation Error (mATE), Scale Error (mASE), Orientation
Error (mAOE), Velocity Error (mAVE), and Attribute Error (mAAE). Together, they evaluate spatial,
geometric, and semantic aspects of 3D box predictions. The nuScenes Detection Score (NDS)
aggregates these metrics into a single score for holistic performance evaluation.

Tracking Metrics. Tracking performance is measured using Average Multi-Object Tracking Ac-
curacy (AMOTA), Precision (AMOTP), and Recall. These metrics capture association quality,
localization precision, and coverage of tracked instances.

15

Online Mapping Metrics. We compute class-wise Average Precision (AP) for static map elements
(e.g., lane dividers, crossings, road boundaries) and report mean AP across categories to reflect
mapping accuracy and consistency.

Motion Prediction Metrics. We evaluate prediction with best-of-K trajectory metrics: minimum
Average Displacement Error (minADE), minimum Final Displacement Error (minFDE), and Miss
Rate (MR). We also report End-to-end Prediction Accuracy (EPA), which reflects cascading errors
across detection, tracking, and forecasting stages.

Planning Metrics. We assess planning quality using two key indicators: collision rate, which
measures the frequency of collisions during trajectory execution, and L2 distance to goal, which
quantifies the Euclidean distance between the final position and the intended goal. Together, these
metrics reflect the safety and goal-reaching accuracy of the planned motion.

A.3 More Visualizations

In Fig.[5] we present additional visualized predictions from both the non-adapted SparseDrive and
the SparseDrive model adapted at test-time using the proposed CodeMerge, illustrating performance
across a broader range of corruptions.

A.4 Related Work

Test-time adaptation (TTA) dynamically updates models during deployment to mitigate dis-
tribution shifts [26l [50]. Early approaches primarily focus on tuning BatchNorm layers via
entropy minimization, adaptive moment estimation, global statistic alignment, or loss land-
scape smoothing [44} 31, |59} 163} 134, [14} 133]]. Subsequent methods explore self-training with
confidence-filtered pseudo-labels [[15} 30, [60]], feature-level consistency or contrastive regulariza-
tion [3) 22,147,138l 164, 49]], robustness through data augmentation [62, 42]], and leveraging guidance
from language models [23]]. Extending TTA to more challenging perception tasks (e.g., image- or
LiDAR-based object detection [28, 29, [7]), MemCLR aligns 2D detector features using a memory-
augmented teacher—student framework [43]]; DPO stabilizes LiDAR-based detection via dual per-
turbation optimization [9]; Reg-TTA3D generates noise-consistent pseudo-labels to supervise low-
confidence 3D boxes using high-confidence ones [58]]; and MOS enhances adaptation stability by
dynamically merging the top-K diverse checkpoints for supervision [8]]. Despite their effectiveness,
existing methods adapt only perception tasks, while adapting unified end-to-end autonomous driving
systems at test time remains unexplored.

Model Merging studies how weight-space operations can effectively compose, refine, or repair
vision models through checkpoint averaging, gradient matching, or arithmetic edits to task-specific
weight vectors [32, 151,110, [18} 1, 154]]. Recent literature highlights the effectiveness of these merg-
ing techniques in enhancing generalization across tasks such as zero-shot learning [52]], open-set
learning [35]], domain adaptation and generalization [36} 2| [11]], and cross-domain tasks involving 3D
LiDAR point clouds [20}]]. In this work, we build upon the strengths of model merging techniques
to enable efficient, on-the-fly adaptation within end-to-end autonomous driving pipelines.

A.5 Computational cost of each TTA step

The runtime reported in Table[6]is the total time aggregated over all adaptation steps across the entire
test set. Below, we report GPU memory usage and per-frame latency alongside AP3p with SECOND
on the nuScenes — KITTI transfer in Table[7

Table 7: Comparison of different test-time adaptation methods on GPU memory usage, runtime per
frame, and 3D detection performance (AP3p).

Method GPU Memory (MiB) Runtime (s / Frame) AP;p
TENT 10,832 0.26 18.83
CoTTA 15,099 0.15 47.61
MOS 17,411 0.49 51.11
CodeMerge 16,041 0.28 58.54

16

CodeMerge

/)
) L]
u - _—
Turn Right i TR Tum Right —
| No Adaption
f /]
/ J
\ i
— .
Turn Right CEm— Tum Right - —
CodeMerge
4 AR
AR [
B
|
Go Straight CE—" Go Straight E—
\ \ | No Adaption i
il
i
v 4
Go Straight - — Go Straight e
CodeMerge
\
g . 1
J £ 1
i — T -
Go Straight I Go Straight - ———
I No Adaption
H
Il
Go Straight I Go Straight I

Figure 5: Visualization of outputs of SparseDrive (bottom) and after CodeMerge adaptation (upper)
under severe ColorQuant, LowLight, and Snow. TTA greatly improves detection by capturing more
true positive instances.

17

Table 8: Robustness under different random-projection seeds (RP1-RP3). Small variations
across perception, tracking, mapping, motion prediction, and planning indicate minimal sensitivity to
projection randomness.

Seed | 3D OBJECT DETECTION | MULTI-OBJECT TRACKING

| mAPt NDSt mATE[mASE! mAOE, mAVE, mAAE| | AMOTAT AMOTP, Recalll IDS|
RPl | 03735 04946 06137 02786 05468 02935 0.1892 0.3347 1.3359 04714 869
RP2 | 03693 04935 06149 0278 05353 02925 0.1897 0.3319 1.3372 04756 1256
RP3 | 03630 04920 0.6068 02764 05315 02837 0.1962 0.3252 1.3411 04553 892
Seed \ ONLINE MAPPING \ MOTION PREDICTION \ PLANNING

| APpea + APy T AP, © mAPT | mADE, mFDE, MR| EPAT | L2-Avgl CLJ
RP1 0.4305 0.5224 0.5398 0.4976 0.6504 1.0122 0.1392 0.4680 0.6209 0.094%
RP2 0.4229 0.5172 0.5349 0.4917 0.6415 0.9964 0.1362 0.4682 0.6219 0.110%
RP3 0.4106 0.5109 0.5198 0.4804 0.6406 0.9948 0.1356 0.4660 0.6255 0.125%

Speed comparison. Compared with MOS [8]], CodeMerge reduces per-frame latency by ~43%
(0.49 — 0.28 s) while improving AP;p by +14.5%. Relative to TENT [44]], it yields a +210.9%
AP;3p gain at essentially the same latency (0.26 vs. 0.28 s per frame). Compared with CoTTA [46],
CodeMerge adds only +0.13 s per frame yet improves APsp by +22.9%.

Memory comparison. CodeMerge uses less GPU memory than MOS (16,041 vs. 17,411 MiB)
and slightly more than CoTTA (15,099 MiB), while achieving the highest AP;p among all methods.
Compared with TENT, it requires +5,209 MiB (~5.1 GiB) but maintains comparable runtime and
delivers markedly larger performance gains (+210.9%).

Overall, CodeMerge offers strong accuracy—efficiency trade-offs on SECOND [S5]] for the nuScenes
— KITTI setting, it achieves the highest APsp with competitive latency and memory, making it
practical for real-time test-time adaptation (TTA) in dynamic deployment environments.

A.6 Random Projection Determinism and Robustness

We instantiate a fixed Gaussian random projection once before TTA and keep it frozen throughout
adaptation. It is applied to the pretrained source feature extractor’s intermediate activations ¢g o) (2)
to produce low-dimensional fingerprints 2 (refer to Eq. (7)), ensuring all checkpoints are embedded
into a shared, comparable space across time steps. Because both the fingerprinting features (from
the frozen feature extractor) and the projection matrix are fixed, this mapping is training-free and
lightweight.

As shown in Table[8] we verify robustness by resampling the projection matrix with three seeds (RP1-
RP3) and re-running the full pipeline. The results vary only slightly: For perception, NDS(0.4920 —
0.4946) and mAP(0.3630 — 0.3735); For tracking, AMOTA(0.3252 — 0.3347); For planning, L.2-
Avg(0.6209 — 0.6255). These small ranges indicate that the inherent randomness of the projection
has a minor impact on end-to-end AD performance.

Discussion This stability is expected because (i) the projection is a fixed Gaussian linear map
instantiated once and kept frozen during TTA, applied to features from the fixed source encoder to
produce low-dimensional fingerprints (Eq. (7)), ensuring all checkpoints are embedded in a shared
space; and (ii) the fingerprint space faithfully mirrors parameter-space geometry (Fig. |3} Pearson
r and Kendall 7 typically > 0.7), so different random draws that preserve this linear embedding
yield similar merge decisions. Overall, repeated experiments with different seeds exhibit only minor
fluctuations, consistent with our design rationale for a stable, geometry-preserving random projection.

A.7 Alternative Fingerprint Generation Strategies

Lightweight pooling-based strategies. We first investigate a suite of computationally efficient
feature-aggregation approaches, such as MaxPool [37]], AdaptiveAvgPool [16], Lp-Pooling [3l],
and Fractional-Max Pooling [61]. While computationally lightweight, these approaches compress
features into coarse statistics and underperform on the Waymo — KITTI transfer task. Our fixed

18

Table 9: Comparison of fingerprint generation strategies. Random projection (RP) achieves the
highest AP3p on Waymo — KITTI, showing that simple pooling operations lose geometric fidelity
required for reliable merging.

Method RP MaxPool AdaptiveAvgPool Lp-Pooling Fractional-Max
AP3p 63.23 58.58 60.34 61.40 61.78

Table 10: TTA with DSVT on Waymo — KITTI. CodeMerge yields the best AP across both BEV
and 3D metrics, indicating strong transferability beyond SECOND.

TTA Methods (w. DSVT) APgpyT AP3p?

No Adapt 65.06 27.14
Tent 63.94 31.07
CoTTA 66.63 34.51
SAR 66.12 37.45
DPO 75.46 45.06
MOS 77.38 57.41
CodeMerge 79.88 61.06

Gaussian Random Projection (RP) achieves AP;p = 63.23, outperforming the pooling variants
by +4.6%, +2.88%, +1.82%, and +1.44%, respectively in Table[9] This result suggests that simple
pooling loses the discriminative structure required for behavior-aware merging.

Learning-based dimensionality reduction methods. We also consider learning-based techniques
such as PCA [21]], which requires fitting or updating decompositions on streaming features. However,
these incur significant computational overhead at every TTA step, making them incompatible with
our single-pass, real-time adaptation setting.

Pooling is high-throughput yet discards geometry and discriminative structure, while PCA-like meth-
ods impose computational costs incompatible with real-time operation. Our fixed random projection
preserves model-space geometry, satisfies real-time efficiency requirements, and empirically delivers
the strongest accuracy among all tested strategies.

A.8 Applicability beyond SECOND

To assess generality, we further evaluate CodeMerge on DSVT [45] under the Waymo — KITTI
transfer in Table CodeMerge attains 79.88 APggy / 61.06 AP3p, outperforming the strongest
baseline MOS [8] by +3.2% and +6.4%, respectively, and surpassing No Adapt by +125% in AP;p.
Because CodeMerge builds on training-free random-projection fingerprints and codebook-guided
merging rather than architecture-specific modules, these results indicate our TTA is model-agnostic
and transfers effectively to detectors beyond SECOND.

A.9 Robustness under Fog & LiDAR Dropout

We conduct additional experiments adapting SECOND from KITTI — KITTI-C under heavy fog
with increasing point dropout (0% — 25% — 50%). We report AP at the moderate level in Table
With stronger dropout, performance degrades gradually rather than catastrophically: APsp drops
from 75.96 — 73.87 — 71.95 (—4.01%, ~5.3% relative), and APpgy from 88.16 — 85.73 — 85.04
(-3.12%, ~3.5% relative). This smooth, monotonic decline suggests that our checkpoint merging
remains reliable even under compounded shifts.

A.10 Backbone-only Adaptation

End-to-end AD framework. To verify the effect of merging and keep TTA lightweight, we
freeze all modules except the 3D detection head. As shown in Table [I2] we additionally enable
backbone (ResNet) adaptation and observe negligible deltas relative to head-only TTA (e.g., NDS
—0.0034, mAP —0.0055, AMOTA —0.0028, map mAP —0.0097, L2-Avg —0.0023), indicating that
CodeMerge remains effective even when only the backbone is updated.

19

Table 11: Fog & LiDAR point-dropout robustness on KITTI — KITTI-C (moderate). Perfor-
mance decays smoothly as dropout increases, indicating stable ranking/merging.

Dropout Ratio 0% 25% 50%

AP3p 7t 7596 7387 7195
APggv 1 88.16 8573 85.04

Table 12: Head-only vs. backbone-adapted TTA. Enabling ResNet backbone adaptation yields only
minor differences, indicating CodeMerge remains effective with backbone updates.

| 3D OBJECT DETECTION | MULTI-OBJECT TRACKING
ColorQuant
| mAPT NDSt mATE, mASE| mAOE, mAVE|, mAAE| | AMOTAT AMOTP, Recalll IDS|

CodeMerge + det head 0.2742 0.4331 0.6575 0.2764 0.5903 0.3018 0.2137 0.2339 1.4868 0.3330 490
CodeMerge + ResNet | 02687 04297 0.6574 02778 0.5906 0.3092 0.2119 0.2311 1.4799 03468 510

| ONLINE MAPPING | MAP | MOTION PREDICTION | PLANNING
ColorQuant

| APpat APg1 AP, 1 | mAPT | mADE|, mFDE, MR| EPAt | L2-Avg| CL}
CodeMerge + det head 0.2600 0.3445 0.3267 0.3104 0.7002 1.0859 0.1454 0.3840 0.6729 0.106%
CodeMerge + ResNet 0.2407 0.3452 0.3161 0.3007 0.7087 1.0930 0.1453 0.3793 0.6752 0.102%

3D detection framework. Following prior works [8, [9], we also consider adapting the entire
backbone (encoder, detection head, and all batch-norm layers). These studies have shown that, for
test-time adaptation in 3D detection, full-backbone adaptation typically surpasses BN-only updates;
CodeMerge fits seamlessly into this setting as well.

A.11 Generalizability Beyond SparseDrive

Early end-to-end models under corruption. Some previous end-to-end architectures (e.g., VAD
[19]) collapse on corrupted scenes even before any TTA is applied. Under heavy snow, VAD attains
only 0.0168 mAP and 0.0353 NDS for detection in Table indicating that the base model’s
predictions are already unreliable and nearly collapsed. In this regime, online self-supervision
becomes untrustworthy, so any TTA method has little signal to learn from. This reflects a robustness
limitation of the base model, not of TTA or CodeMerge. Even so, attaching CodeMerge to VAD yields
small but consistent gains across perception and planning, and does not degrade VAD’s performance,
underscoring that the bottleneck lies in model brittleness rather than our adaptation mechanism.

Table 13: VAD under Snow (severe). Detection collapses pre-TTA; CodeMerge yields small but
consistent improvements without degradation.

Method ‘ 3D OBJECT DETECTION ‘ MULTI-OBJECT TRACKING

| mAPt NDST mATE| mASE, mAOE| mAVE| mAAE| | AMOTAT AMOTP| Recall} IDS|
VAD 0.0168 0.0353 0.9691 0.8577 0.9713 1.1064 0.9327 - - - -
VAD+CodeMerge 0.0176 0.0356 0.9689 0.8576 0.9719 1.1019 0.9337 - - - -

| ONLINE MAPPING | wmApP | MOTION PREDICTION | PLANNING
Method

| APpea 1 APy 1 AP, + | mAP? | minADE, minFDE| MR} EPAT | L2-Avgl CL|
VAD 0.0006386 0.0014679 0.0002426 0.0007830 2.3891 3.7662 0.3022 0.0479 1.6230 0.01320
VAD+CodeMerge 0.0005710 0.0015413 0.0002724 0.0007949 2.3265 3.6645 0.2974 0.0519 1.6057 0.01307

Recent architectures with non-collapsed baselines. When the backbone remains minimally com-
petent under corruption, CodeMerge is highly effective and broadly applicable. On DiffusionDrive
[27] and MomAD [39]], CodeMerge delivers consistent improvements across detection, tracking, map-
ping, motion, and planning, and reduces collision rate under both Brightness and Snow corruptions,
indicating scalability beyond SparseDrive.

20

Table 14: Brightness corruption (severe). CodeMerge improves DiffusionDrive and MomAD across
modules and reduces collision (CL).

3D OBJECT DETECTION MULTI-OBJECT TRACKING

Method ‘

| mAPt NDSt mATE, mASE| mAOE| mAVE| mAAE| | AMOTAT AMOTP| Recallf IDS]
DiffusionDrive 03278 04588 0.6402 02782 0.6473 0.3005 0.1851 0.2818 14334 04076 787
DiffusionDrive+CodeMerge | 03580 0.4845 0.6210 02747 0.5767 0.2811 0.1916 0.3150 1.3529 0.4638 873
MomAD 03340 04711 06276 02734 0.5931 0.2900 0.1747 0.2944 1.4241 0.4101 731
MomAD+CodeMerge 03664 04952 0.6092 02741 0.5496 0.2670 0.1803 0.3341 1.3447 0.4737 824
| ONLINE MAPPING | MAP | MOTION PREDICTION | PLANNING
Method
| APpa APy + AP, T | mAP | mADE| mFDE| MR| EPAT | L2-Avg| CL{
DiffusionDrive 0.3651 0.4819 0.4794 0.4421 0.6624 1.0282 0.1380 0.4448 0.6001 0.089%
DiffusionDrive+CodeMerge 0.4125 0.5162 0.5333 0.4873 0.6582 1.0261 0.1380 0.4648 0.5919 0.062%
MomAD 0.2490 0.1808 0.3157 0.2485 1.3402 2.2509 0.2212 0.3965 7.3178 8.500%
MomAD+CodeMerge 0.2755 0.1976 0.3365 0.2699 1.1330 2.2389 0.2211 0.4147 7.3171 8.438%

Table 15: Snow corruption (severe). CodeMerge improves DiffusionDrive and reduces collision;
MomAD also benefits across modules.

Method ‘ 3D OBJECT DETECTION | MULTI-OBJECT TRACKING

‘ mAP?T NDS*T mATE| mASE] mAOE| mAVE| mAAE] ‘ AMOTAT AMOTP| Recallt IDS|

DiffusionDrive 01006 02373 07811 03794 09105 07007 03585 0.0503 1.8648 0.1064 305
DiffusionDrive+CodeMerge | 0.1797 03492 07389 02956 0.6673 04621 02424 0.1078 17171 0.1785 681
| ONLINE MAPPING | MAP | MOTION PREDICTION | PLANNING
Method
| APpea + APy + AP, T | mAPt | mADE, mFDE| MR| EPAt | L2-Avg] CL|

DiffusionDrive 0.0106 0.0426 0.0512 0.0348 1.0603 1.7077 0.1951 0.2063 0.9300 0.447%
DiffusionDrive+CodeMerge 0.1010 0.1713 0.1688 0.1471 0.8086 1.2838 0.1730 0.3070 0.7730 0.215%

21

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the core contributions: a compact
fingerprint-guided model merging framework, its theoretical grounding via leverage scores,
and demonstrated improvements (e.g. >100% gap closure on Waymo—KITTI and 7.7% AP
boost under KITTI — KITTI-C)—all of which are borne out by the experiments.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have included detailed limitations in the conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

22

Answer: [Yes]

Justification: The paper clearly states all assumptions underlying its theoretical results:
linear mode connectivity of fine-tuned checkpoints, the Gaussian—-Newton approximation of
the Hessian, and regularized leverage-score derivation, including the spectrum bound and
sampling error analyses that connect fingerprint correlations to optimal merging coefficients.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides exhaustive implementation details (frameworks, hardware,
batch sizes, hyperparameters). All datasets, corruption settings, and model checkpoints
are specified, and we commit to releasing our code and pretrained codebook, ensuring full
experimental reproducibility.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.

23

In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will publicly release our full implementation, including data preprocessing
scripts, checkpoint codebook, and evaluation pipelines, alongside the pretrained SparseDrive
weights and nuScenes/Waymo split configurations.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper details all training and testing settings, including dataset splits,
optimizer type, learning rates, batch sizes, and checkpoint schedules, in both the main text
and appendix, ensuring readers have sufficient information to reproduce every experimental
result.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: While our results clearly demonstrate consistent gains, we did not report error
bars, confidence intervals, or statistical tests across multiple runs.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report in Section 4 that all experiments run on a single NVIDIA RTX A6000
GPU with 48 GiB of memory. We specify batch sizes for each task, and the frameworks
used (SparseDrive / OpenPCDet), and provide per-checkpoint merging overhead. This level
of detail is sufficient for reproducing both runtime and memory requirements.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Our work uses only publicly available datasets (KITTI, nuScenes, Waymo)
and standard benchmarks under their license terms. No personal or sensitive data is involved,
and all experimental protocols conform to the NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

25

https://neurips.cc/public/EthicsGuidelines

10.

11.

12.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We build on standard open-source assets—SparseDrive and OpenPCDet
(Apache 2.0) and the KITTI, Waymo, and nuScenes datasets (with their respective academic
licenses)—all of which are explicitly cited in Section 4.

26

13.

14.

15.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

27

paperswithcode.com/datasets

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

28

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminaries
	Our Approach
	Model CodeBook
	Curvature-Aware Merge Scores
	Model Merging

	Experiments
	Experimental Setup
	Main Results and Analysis
	Ablation and Sensitivity Study

	Conclusion
	Acknowledgements
	Technical Appendices and Supplementary Material
	Implementation Details
	Evaluation Metrics in End-to-End AD
	More Visualizations
	Related Work
	Computational cost of each TTA step
	Random Projection Determinism and Robustness
	Alternative Fingerprint Generation Strategies
	Applicability beyond SECOND
	Robustness under Fog & LiDAR Dropout
	Backbone-only Adaptation
	Generalizability Beyond SparseDrive

