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Abstract

Automatically highlighting words that cause
semantic differences between two documents
could be useful for a wide range of applica-
tions. We formulate recognizing semantic dif-
ferences (RSD) as a token-level regression task
and study three unsupervised approaches that
rely on a masked language model. To assess
the approaches, we begin with basic English
sentences and gradually move to more complex,
cross-lingual document pairs. Our results show
that an approach based on word alignment and
sentence-level contrastive learning has a robust
correlation to gold labels. However, all unsu-
pervised approaches still leave a large margin
of improvement. Code to reproduce our experi-
ments is available.1

1 Introduction

A pair of documents can have semantic differences
for a variety of reasons: For example, one docu-
ment might be a revised version of the second one,
or it might be a noisy translation. Highlighting
words that contribute to a semantic difference is
a challenging task (Figure 1). Previous work has
studied word-level predictions in the context of in-
terpretable textual similarity (Lopez-Gazpio et al.,
2017) or evaluation of generated text (Fomicheva
et al., 2022), but did not necessarily focus on se-
mantic differences as the main target.

In this paper, we conceptualize the task of rec-
ognizing semantic differences (RSD) as a semantic
diff operation. We assume that there are relatively
few semantic differences and that many words are
negative examples. Our goal is to label words us-
ing self-supervised encoders such as XLM-R (Con-
neau et al., 2020) without additional training data.
Specifically, we investigate three simple metrics:

1. Performing word alignment and highlighting
words that cannot be aligned;

1https://github.com/ZurichNLP/
recognizing-semantic-differences

Figure 1: While diff is a common tool for comparing
code, highlighting the semantic differences in natural
language documents can be more challenging. In this
paper, we evaluate on synthetic documents that combine
several such challenges, including cross-lingual compar-
ison and non-monotonic sentence alignment.

2. Comparing document similarity with and
without a word present in the document;

3. Comparing masked language modeling sur-
prisal with and without the other document
provided as context.

To evaluate these approaches automatically, we
convert data from the SemEval-2016 Task for Inter-
pretable Semantic Textual Similarity (iSTS; Agirre
et al., 2016) into a token-level regression task, re-
labeling some words to better fit the goal of RSD.2

We then programmatically create increasingly com-
plex variations of this test set in order to study the
robustness of the metrics: We add more negative
examples, concatenate the sentences into synthetic
documents, permute the order of sentences within
the documents, and finally add a cross-lingual di-
mension by translating one side of the test set.

Our experiments show that the first metric cor-
relates best to the gold labels, since measuring the
alignability of words has a relatively consistent ac-
curacy across complexity levels. However, while
unsupervised approaches have the advantage of not
requiring manual annotations, we find that there is a
considerable gap to perfect accuracy, especially for
cross-lingual document pairs. Future work could
tackle the task by developing supervised models.
Besides providing a baseline, unsupervised metrics
could also serve as features for such models.

2In iSTS, opposites such as ‘higher’ and ‘lower’ are con-
sidered similar to each other, whereas we consider this to be a
semantic difference worth highlighting.

https://github.com/ZurichNLP/recognizing-semantic-differences
https://github.com/ZurichNLP/recognizing-semantic-differences


2 Task Formulation

The goal of RSD is to analyze two word sequences
A = a1, . . . , an and B = b1, . . . , bm and to es-
timate, individually for each word, the degree to
which the word causes a semantic difference be-
tween A and B. For example, given the sentences

‘Nice sweater!’ and ‘Great news!’, the correct la-
bels would be close to 0 for ‘Nice’ and ‘Great’ and
close to 1 for ‘sweater’ and ‘news’.

Transformer-based encoders usually process doc-
uments as sequences of subword tokens. Our strat-
egy is to predict labels for individual subwords
and to average the labels of the subword tokens
that make up a word. To make the notation more
readable, we use A and B to refer to the tokenized
sequences as well.

3 Recognition Approaches

Alignability of a Word The final hidden states of
a Transformer encoder (Vaswani et al., 2017) repre-
sent A as a sequence of token embeddings h(A) =
h(a1), . . . ,h(an). In the same way, B is indepen-
dently encoded into h(B) = h(b1), . . . ,h(bm).

A simple approach to RSD is to calculate a soft
token alignment between h(A) and h(B) and to
identify tokens that are aligned with low confi-
dence. A greedy alignment is usually calculated
using the pairwise cosine similarity between hid-
den states (Jalili Sabet et al., 2020; Zhang et al.,
2020). The prediction for a token ai is then given
by:

diffalign(ai) = 1−max
bj∈B

cos(h(ai),h(bj)).

Deletability of a Word Previous work has shown
that encoders such as XLM-R may be fine-tuned
such that the averages of their hidden states serve
as useful sentence representations (Reimers and
Gurevych, 2019; Gao et al., 2021). The similarity
of two sentences can be estimated using the cosine
similarity between these averages:

sim(A,B) = cos(avg(A), avg(B))

= cos(
1

|A|
∑
ai∈A

h(ai),
1

|B|
∑
bj∈B

h(bj)).

We approximate the similarity of a partial sequence
A \ ai, where ai is deleted, by excluding the token
from the average:

sim(A\ai, B) = cos(avg(A)− 1

|A|
h(ai), avg(B)).

The change in similarity when deleting ai can then
serve as a prediction for ai, which we normalize to
the range [0, 1]:

diffdel(ai) =
sim(A \ ai, B)− sim(A,B) + 1

2
.

Cross-entropy of a Word Encoders such as
XLM-R or BERT (Devlin et al., 2019) have been
trained using masked language modeling, which
can be leveraged for our task. Let H(ai|A′) be the
cross-entropy under a masked language model that
predicts the token ai given a context A′, where ai
has been masked. By concatenating B and A′ into
an augmented context BA′, we can test whether
the additional context helps the language model
predict ai. If the inclusion of B does not reduce
the cross-entropy, this could indicate that B does
not contain any information related to ai:

npmi(ai|A′;BA′) =
H(ai|A′)−H(ai|BA′)

max(H(ai|A′), H(ai|BA′)
,

diffmask(ai) = 1−max(0, npmi(ai|A′;BA′)).

We base our score on normalized pointwise mutual
information (npmi), with a simple transformation
to turn it into diffmask, a semantic difference score
between 0 and 1.

4 Evaluation Design

4.1 Annotations
We build on annotated data from the SemEval-2016
Task 2 for Interpretable Semantic Textual Similar-
ity (iSTS; Agirre et al., 2016). These data consist
of English sentence pairs that are related but usu-
ally do not have the same meaning. The iSTS task
is to group the tokens into chunks, to compute a
chunk alignment and to label the chunk alignments
with a type and a similarity score.

The iSTS annotations can be re-used for our task
formulation by labeling each word with the inverse
of the similarity score of the corresponding chunk
alignment. If two chunks are aligned and have a
high similarity, the words of the chunks receive a
label close to 0. In contrast, if two aligned chunks
have low similarity, or if a chunk is not aligned to
any chunk in the other sentence, the words receive
a label close to 1. Our evaluation metric is the
Spearman correlation between the gold labels and
the predicted labels across all words in the dataset.

Following iSTS, we do no consider punctuation,
i.e., we exclude punctuation when calculating the



correlation. We deviate from the original iSTS
annotations with regard to chunks with opposite
meaning, marking them as differences. Further
details are provided in Appendix A.

4.2 Negative Examples

Most sentence pairs in iSTS have a major seman-
tic difference. To simulate a scenario with fewer
such positive examples, we add additional negative
examples to the test set. We use human-verified
paraphrase pairs from PAWS (Zhang et al., 2019),
where we label each word in the two sentences
with a 0.

4.3 Synthetic Documents with Permutations

In addition, we experiment with concatenating
batches of sentences into documents. The docu-
ments should be considered synthetic because the
individual sentences are arbitrary and there is no
document-level coherence. Despite this limitation,
synthetic documents should allow us to test the ap-
proaches on longer sequences and even sequences
where the information is presented in slightly dif-
ferent order.

Specifically, we keep document A in place and
randomly permute the order of the sentences in B
to receive Bi, where i is the count of unordered
sentences (inversion number). We control the de-
gree of permutation via i, and sample a permuted
document Bi for each B in the dataset.

4.4 Cross-lingual Examples

Finally, we evaluate on the recognition of differ-
ences between a document in English and a doc-
ument in another language. For sentences from
PAWS, we use existing human translations into
German, Spanish, French, Japanese, Korean, and
Chinese (PAWS-X; Yang et al., 2019). For iSTS,
we machine-translate the sentences into these lan-
guages using DeepL, a commercial service. A
risk of machine translation are accuracy errors that
add (or eliminate) semantic differences. Our as-
sumption is that any such errors are negligible com-
pared to the absolute number of semantic differ-
ences in the dataset.3

In order to reduce annotation effort, we limit the
evaluation to an English-centric setup where only
the English sentence is annotated. When calculat-

3We manually analyzed a sample of 100 English–German
translations. While five samples had issues with fluency, only
one sample contained an accuracy error.

ing the evaluation metric, only the predictions on
the English documents are considered.

5 Experimental Setup

We concatenate the ‘headlines’ and ‘images’ sub-
sets of the iSTS dataset into a single dataset. We
create a validation split by combining the iSTS
training split with the PAWS-X validation split.
Similarly, we create a test split by combining the
iSTS test split with the PAWS-X test split. Ap-
pendix D reports data statistics.

We perform our experiments on the multilin-
gual XLM-R model of size ‘base’. In addition to
the standard model, we also evaluate a model fine-
tuned on SimCSE (Gao et al., 2021). SimCSE is a
self-supervised contrastive learning objective that
is commonly used for adapting a masked language
model to the task of embedding sentences. To train
XLM-R with SimCSE, we use 1M sentences from
English Wikipedia and calculate sentence embed-
dings by averaging the final hidden states of the
encoder. We train 10 checkpoints with different
random seeds and report average metrics across the
checkpoints. Details are provided in Appendix B.

6 Results

Table 1 presents validation results for the differ-
ent approaches. We observe positive correlations
throughout. Adding 50% paraphrases as negative
examples to the test set leads to a decreased ac-
curacy, indicating that imbalanced input is a chal-
lenge. When moving on to synthetic test documents
composed of 5 sentences, the approaches tend to
converge: word alignment becomes slightly less
accurate, while diffdel seems to benefit from the
increased sequence length. Furthermore, when one
of the two test documents is permuted with 5 inver-
sions, recognizing the differences becomes slightly
more difficult for most approaches.

Finally, cross-lingual document pairs clearly
present a challenge to all approaches, since we
observe a consistent decline in terms of the aver-
age correlation across the six language pairs. Ap-
pendix G provides results for the individual tar-
get languages, which show that comparing English
documents to documents in Japanese, Korean or
Chinese is particularly challenging. Appendices H
and I juxtapose monolingual cross-lingual compar-
isons, illustrating that the latter are less accurate.

Discussion of diffalign When using XLM-R with-
out further adaptation, the hidden states from the



Approach iSTS + Negatives + Documents + Permuted + Cross-lingual
50% paraphrases 5 sentences 5 inversions 6 language pairs

diffalign
– XLM-R (last layer) 51.6 51.5 49.1 45.9 17.1
– XLM-R (8th layer) 56.9 51.0 49.5 48.1 28.7
– XLM-R + SimCSE 64.4 62.3 57.9 56.9 33.5

diffdel (XLM-R + SimCSE) 29.6 9.8 29.3 25.8 4.0

diffmask (XLM-R) 51.2 46.1 49.4 49.7 24.9

Table 1: Comparison of different approaches and encoder models on the RSD validation split. The table reports
word-level Spearman correlation to the gold labels. The variations are cumulative: the last column refers to a
cross-lingual test set of permuted documents containing negative examples.

8th layer yield a more useful word alignment
than the last layer, which confirms previous find-
ings (Jalili Sabet et al., 2020; Zhang et al., 2020).
Interestingly, we find that fine-tuning the model
with SimCSE strongly improves these results. Even
though SimCSE is an unsupervised sentence-level
objective, the results suggest that learning sentence-
level representations also improves the quality of
word alignment. This is in line with a related find-
ing of Leiter (2021) that supervised fine-tuning on
NLI can improve the explainability of BERTScore.

Discussion of diffdel Relying on the deletability
of a word has a lower accuracy than word align-
ment. In Appendix F we test more complex for-
mulations of diffdel and find that accuracy can be
improved by deleting bigrams and trigrams in addi-
tion to subword unigrams, but does not reach the
accuracy of diffalign.

Discussion of diffmask Using the cross-entropy
of masked language modeling yields some com-
petitive results on longer documents. However,
latency measurements show that this approach is
much slower than the other approaches, since the
documents need to be re-encoded for each masked
word (Appendix C).

For the best-performing approach, diffalign with
SimCSE, we report results on the test split in Ap-
pendix E. The test results confirm the patterns we
have observed on the validation set.

7 Related Work

The idea of highlighting semantic differences or
similarities on the level of individual words has
influenced several research areas, notably inter-
pretable semantic textual similarity (Lopez-Gazpio

et al., 2017) and the evaluation of generated
text (Freitag et al., 2021; Fomicheva et al., 2022;
Zerva et al., 2022; Rei et al., 2023). Other applica-
tion areas include content synchronization across
documents (Mehdad et al., 2012) and the detec-
tion of relevant differences in legal texts (Li et al.,
2022).

Some previous work has explored unsupervised
or indirectly supervised approaches to such tasks.
Leiter (2021) measured the alignability of words
to identify words that negatively impact the qual-
ity of translations. Word alignment has also been
used to estimate sentence similarity (Mathur et al.,
2019; Zhang et al., 2020), and Lee et al. (2022)
fine-tuned such a similarity metric with sentence-
level supervision in order to promote word-level
interpretability.

Deleting words to measure their effect on
sentence similarity is related to occlusion-based
feature attribution methods (Robnik-Šikonja and
Kononenko, 2008). Yao et al. (2023) used a similar
method to evaluate sentence representations. Fi-
nally, the effect of context on cross-entropy (cross-
mutual information) has previously been analyzed
in the context of machine translation (Bugliarello
et al., 2020; Fernandes et al., 2021).

8 Conclusion

We formulated the task of recognizing semantic
differences (RSD) between two documents as a
token-level regression task and analyzed several
unsupervised approaches towards this task. Our
experiments use annotations from iSTS, which we
programmatically recombined into more challeng-
ing variants of the test set. We found that the
alignability of a word is the most accurate measure,



especially when the word alignment is computed
with a SimCSE-adapted masked language model.

Limitations

Like many NLP tasks, RSD is difficult to formal-
ize. In some edge cases, it is unclear which words
‘cause’ a semantic difference, given that natural
language is not entirely compositional. For exam-
ple, it is unclear which specific words should be
highlighted in the pair ‘flights from New York to
Florida’ and ‘flights from Florida to New York’.
Since iSTS focuses on the annotation of syntactic
chunks, we follow that convention and assign the
same label to all words in a chunk.

Another challenge is distinguishing between se-
mantic and non-semantic differences. This paper
re-uses annotations from the iSTS datasets and thus
inherits its guidelines (except for phrases with op-
posite meaning, where we stress semantic differ-
ence, while iSTS stresses semantic relatedness).

Furthermore, we assume that semantics is in-
variant to machine translation (MT) into another
language. In practice, MT might introduce errors
that add or eliminate semantic differences, and hu-
man translation might be more reliable. However,
we expect there to be little correlation between the
gold differences and any accuracy errors that might
be introduced by MT. Moreover, there are no low-
resource language pairs in the experiment, where
the risk of MT accuracy errors would be higher.

A methodical limitation is that our experiments
are based on synthetic documents that we com-
piled programmatically from human-annotated sen-
tences, such as headlines and image captions. Our
assumption is that synthetic documents can help
us learn about the accuracy of different recogni-
tion approaches and that the findings will roughly
translate to natural documents. Finally, we assume
that the gold labels that human annotators origi-
nally applied to individual sentence pairs remain
valid when the sentence pairs are embedded in an
arbitrary context.
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A Converting iSTS into an RSD Dataset

We derive our test set from the 2016 iSTS dataset
described by Agirre et al. (2016). The original
URLs of the data are:

• Train: http://alt.qcri.org/semeval2016/task2/
data/uploads/train_2015_10_22.utf-8.tar.gz

• Test: http://alt.qcri.org/semeval2016/task2/
data/uploads/test_goldstandard.tar.gz

Examples from the iSTS dataset consist of two
tokenized sentences and the corresponding chunk
alignments. Every chunk alignment is annotated
with an alignment type and a similarity score be-
tween 1 and 5, where 5 means semantic equiva-
lence. If no corresponding chunk is found in the
other sentence, the chunk has a similarity score of
NIL, which corresponds to 0.

We determine word-level labels for our differ-
ence recognition task as follows:

1. The similarity score for a chunk is applied to
the individual words in the chunk.

2. The label is calculated as 1− score/5.

A small number of chunks are aligned with the
OPPO type, which denotes opposite meaning. The
iSTS annotation guidelines encouraged the anno-
tators to assign relatively high similarity scores to
strong opposites. However, in the context of RSD,
we regard opposite meaning as a difference. To
account for this, we re-label the OPPO alignments
with the similarity score 0. An example are the
words ‘lower’ and ‘higher’ in Appendix H, which
were originally aligned with a score of 4.

When creating cross-lingual examples, we trans-
late all the sentence pairs (A,B) in the dataset
from English to the target languages, resulting in
the translations A′ and B′. We then combine them
into two cross-lingual examples: A compared to
B′ and B compared to A′. We only consider the
predictions on A and B, respectively, when calcu-
lating the correlations, since we lack gold labels
for the translations.

The converted data are available for down-
load at https://huggingface.co/datasets/
ZurichNLP/rsd-ists-2016.

B SimCSE Training Details

Positive examples for SimCSE (Gao et al., 2021)
are created by applying two random dropout masks
to a sentence Si, which results in two encodings
h(Si) and h′(Si). Negative examples are arbitrary
sentence pairs in the mini-batch. The training ob-
jective is:

ℓi = − log
esim(h(Si),h

′(Si))/τ∑N
j=1 e

sim(h(Si),h′(Sj))/τ
,

where N is the batch size, τ is a temperature pa-
rameter, and sim(h,h′) is a similarity measure. In
our experiments, we use the cosine similarity of
the average hidden states as a similarity measure:

simavg(h,h
′) = cos(avg(h), avg(h′)).

For training XLM-R on SimCSE, we use a maxi-
mum sequence length of 128. Otherwise we use
the hyperparameters recommended by Gao et al.
(2021), namely a batch size of 512, a learning rate
of 1e-5, and τ = 0.05, and we train the model for
one epoch.

A model checkpoint is made available at the
URL: https://huggingface.co/ZurichNLP/
unsup-simcse-xlm-roberta-base.

C Latency Measurements

Approach Time per 1000 Tokens

diffalign 0.44 s
diffdel 0.45 s
diffmask 97.04 s

Table 2: Comparison of inference time. We use XLM-R
of size ‘base’ with batch size of 16 on an RTX 3090
GPU. We report the number of seconds needed to make
predictions for 1000 tokens of the iSTS test set.

http://alt.qcri.org/semeval2016/task2/data/uploads/train_2015_10_22.utf-8.tar.gz
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D Dataset Statistics

Dataset Document pairs Tokens Labels < 0.5 Labels ≥ 0.5 Unlabeled Tokens

Validation split
iSTS 1506 27046 64.5% 28.2% 7.3%
+ Negatives (50% paraphrases) 3012 92443 80.6% 8.2% 11.1%
+ Documents (5 sentences) 602 92389 80.7% 8.2% 11.1%
+ Permuted (5 inversions) 602 92389 80.7% 8.2% 11.1%
+ Cross-lingual (DE) 1204 183609 40.6% 4.1% 55.2%

Test split
iSTS 750 13801 70.0% 22.9% 7.0%
+ Negatives (50% paraphrases) 1500 46671 82.4% 6.8% 10.8%
+ Documents (5 sentences) 300 46671 82.4% 6.8% 10.8%
+ Permuted (5 inversions) 300 46671 82.4% 6.8% 10.8%
+ Cross-lingual (DE) 600 92649 41.3% 3.4% 55.3%

Table 3: Statistics for the validation and test sets. The variations are cumulative, e.g., the bottom row combines all
previous variations.

E Test Results

Approach iSTS + Negatives + Documents + Permuted + Cross-lingual

diffalign XLM-R + SimCSE 62.1 61.1 57.0 55.1 31.7

Table 4: Results on the RSD test split for the best-performing approach. The table reports word-level Spearman
correlation to the gold labels.

F Ablations for diffdel

Approach iSTS + Negatives + Documents + Permuted + Cross-lingual

diffdel XLM-R + SimCSE 29.6 9.8 29.3 25.8 4.0
– unigrams and bigrams 35.2 10.5 32.3 28.3 4.3
– unigrams, bigrams and trigrams 38.1 10.2 33.5 29.2 4.4
– unigrams with re-encoding 42.4 11.5 24.0 22.2 6.2

Table 5: Evaluation of more complex variants of diffdel on the validation split. Measuring the deletability of bigrams
or trigrams of subword tokens (instead of only single tokens) tends to improve Spearman correlation. In contrast,
encoding the partial sentences from scratch (instead of encoding the full sentence once and then excluding hidden
states from the mean) does not consistently improve the metric.



G Additional Results
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(a) Recognizing differences among an increasing amount of
negative examples, which do not have semantic differences.
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(b) Recognizing differences between increasingly longer syn-
thetic documents (ratio of negative sentence pairs: 50%).
diffmask is limited to the maximum sequence length of the
masked language model.
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(c) Recognizing differences between increasingly permuted
documents (document length: 5 sentences; ratio of negative
sentence pairs: 50%).
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(d) Recognizing differences between English source sen-
tences and target sentences in various languages (ratio of
negative examples: 50%).

Figure 2: Additional results for variants of the validation set. The diffalign and diffdel approaches use an XLM-R
model fine-tuned with SimCSE; the diffmask approach uses the standard XLM-R model.



H Examples (English)

Gold labels

diffalign XLM-R (last layer)

diffalign XLM-R + SimCSE

diffdel XLM-R + SimCSE

diffmask XLM-R

Figure 3: Predictions for an example document pair with two English sentences each. The example contains one
inversion, since the two sentences in the second document have been swapped. The gold labels are derived from the
SemEval-2016 Task 2 for Interpretable Semantic Textual Similarity (Agirre et al., 2016).
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Figure 4: Predictions for the example in Figure 1, where the second document has been machine-translated into
French. Note that the non-English documents in our test examples do not have gold labels. In our experiments, we
only evaluate the predictions for the English document.


