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Figure 1: Examples of different expert provided protocols for brain MRI. Any biomedical
image can be segmented in many different ways. For example, protocol 1 here corresponds to a
coarse-grained categorization of tissue types. Colors correspond to distinct ROIs (the choice of colors
is arbitrary). Typical neural networks follow a fixed protocol, specified explicitly or implicitly by the
user.

Abstract

A single biomedical image can be meaningfully segmented in multiple ways,
depending on the desired application. For instance, a brain MRI can be segmented
according to tissue types, vascular territories, broad anatomical regions, fine-
grained anatomy, or pathology, etc. Existing automatic segmentation models
typically either (1) support only a single protocol – the one they were trained on –
or (2) require labor-intensive manual prompting to specify the desired segmentation.
We introduce Pancakes, a framework that, given a new image from a previously
unseen domain, automatically generates multi-label segmentation maps for multiple
plausible protocols, while maintaining semantic consistency across related images.
Pancakes introduces a new problem formulation that is not currently attainable
by existing foundation models. In a series of experiments on seven held-out
datasets, we demonstrate that our model can significantly outperform existing
foundation models in producing several plausible whole-image segmentations, that
are semantically coherent across images.
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1 Introduction

There are many ways to segment a biomedical image. Depending on their goals, clinicians or
biomedical researchers employ a specific segmentation protocol, which defines the regions of interest
(ROIs) to be segmented (Figure 1). This could involve, for example, segmenting major anatomical
classes, granular anatomical regions, diffuse tissue types, systemic structures like vessels or nerves,
pathologies, or functional areas [6, 28, 45, 63, 80, 119].

Existing learning-based biomedical image segmentation tools require specification of a segmentation
protocol [16, 58, 116, 123, 130]. Fully-automated models are trained to segment an image using
image-segmentation training pairs, which implicitly define the protocol [18, 48, 99]. Recent in-
context or few-shot models also use image-segmentation pairs, but take them as input to specify the
desired segmentation protocol for a target image [8, 16, 96, 117]. Interactive models rely on user
interactions to indicate the desired ROIs [58, 116, 122, 123]. In all of these strategies, the desired
segmentation protocol is specified by the user (interactively or by example). This is a substantial
burden on biomedical researchers, who commonly need to segment a new biomedical image with a
potentially new segmentation protocol [4, 16].

Our goal is to support a new capability: enabling biomedical researchers and clinicians to explore
a diverse set of plausible, semantically consistent segmentations for a previously unseen collection
of images. We propose a fundamentally new approach to segmenting a new biomedical dataset.
Instead of requiring the user to specify the protocol for a new task, our method, Pancakes, produces
segmentation maps for multiple plausible protocols simultaneously, each consistent across images.
After Pancakes has generated the label maps, a researcher or clinician can select which of the proposed
protocols best aligns with their intended downstream use (e.g., anatomical volume analysis). We
envision at least two broad classes of use:

(1) Rapid segmentation for new protocols. New protocols are frequently introduced [1, 36, 85],
and there is a need to produce corresponding segmentations. If a scientist has a particular protocol in
mind, but there are no existing tools for segmenting it, they can choose the protocol from Pancakes
that best aligns with their intended use.

(2) Exploratory population analysis. Pancakes will support users in discovering or selecting
segmentation strategies appropriate for their scientific or clinical questions. For example, a clinical
scientist who studies how anatomy relates to some outcome (e.g., progression of a disease) or
predictor (e.g., genetics) can use Pancakes to quickly extract segmentations of multiple candidate
anatomical regions that have never been segmented, compute their volumes, and test correlations
with clinical outcomes thereby identifying promising candidate regions.

Pancakes takes an image as input and produces a distribution over segmentation protocols. It then
uses a segmentation sampling mechanism to produce several complete, multi-label segmentation
maps from diverse protocols for that image. Importantly, within a chosen protocol, segmentation
maps are semantically consistent across subjects – a specific label denotes the same anatomical
structure in every image of the collection.

In a series of experiments, we demonstrate that our model can significantly outperform baselines in
producing several plausible whole-image segmentations that are semantically coherent across images.
We show that Pancakes outperforms foundation segmentation models by a wide margin on seven
held-out datasets.

2 Related work

Single-protocol biomedical image segmentation. Most existing biomedical image segmentation
models [18, 48, 99] are by design constrained to a specific biomedical domain and image type. For
example, some models specialize in segmenting images of brains [13, 28, 38, 77, 92], hearts [112,
134], or eye vessels [50, 70, 100]. Each model learns a specific segmentation protocol defined by the
image-segmentation pairs used during training.

Universal segmentation. Recent universal models can each segment a wide variety of structures
across biomedical domains. They are trained jointly on large data collections containing diverse
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Figure 2: Current automatic segmentation foundation models produce inconsistent segmen-
tations. Given a set of similar images to segment (left), automatic foundation models can fully
parcellate each image, but the obtained segmentations are not semantically consistent across images.
Even in rare cases where the same structure is labeled on two images, the label index (color-coded
here) is usually inconsistent. There is then no clear mapping between the segmentations from the two
samples, making it difficult for biomedical clinicians and researchers to use the results.

structures and image types, both for natural [8, 58, 97, 115, 117] and medical imaging [16, 44, 96, 123,
124, 130, 131]. Some methods generalize to new tasks by enabling a condition, or prompt, as input.
This conditioning could involve example image-segmentation pairs [8, 16, 30, 96, 115, 117, 122],
user interactions such as bounding boxes, clicks, or scribbles [58, 76, 97, 122–124, 135], or even
text [44, 130, 131, 135]. Providing this conditioning is labor-intensive, especially when tackling a
new segmentation task involving a large collection of images.

We also train Pancakes using large image collections, to generalize to new domains. However, we
avoid the need for the user to laboriously prescribe the protocol and instead automatically estimate
several segmentation maps from several plausible protocols.

Some universal models can completely partition an image from a new biomedical domain into
multiple labels [58, 68, 116]. As we show in our experiments and illustrate in Figure 2, these
segmentation maps are semantically inconsistent across subjects, with the same label having different
meanings across images. In the rare case when the same structure is segmented in two images, the
assigned label index is usually different, and establishing the correspondence is non-trivial.

Multi-protocol segmentation. Motivated by the fact that many objects in an image can be divided into
subparts, some methods produce labels from a hierarchy of protocols in an image [24, 88, 114, 125].
This restricts the types of segmentations produced to fixed protocols that are inherently hierarchical.
The methods are trained on limited domains or specialized to natural images. In either case, they
require the hierarchy to be explicitly provided, which makes them less broadly applicable. In contrast,
our approach produces label maps from multiple protocols that need not be hierarchically related,
while generalizing to unseen structures.

Ambiguity and uncertainty. Even within a well-defined protocol, many segmentation tasks and
biomedical images involve substantial ambiguity. This can be caused by problems with the image
acquisition (e.g., noise or low contrast), ambiguous definitions of the desired region, or the down-
stream goals following the segmentation step. Recent models capture variability among manual
raters [96, 102, 111], often by aggregating multiple predictions for a given structure or protocol to
obtain an uncertainty estimate [23]. In our work, we jointly capture the ambiguity of the possible
protocol and the inherent ambiguity in the image, but focus on the ability of a single framework to
produce segmentations that represent different protocols consistently across scans.

Deep-learning and sampling mechanisms. Deep-learning segmentation frameworks that produce
different outputs for a given input use an implicit or explicit mechanism to sample different solutions,
such as variational autoencoders [10, 59, 60], diffusion models [95, 120, 121, 126], multivariate
Gaussian [86], or in-context stochastic models [96]. We build on these methods, and propose a new
mechanism to sample different segmentation protocols that are varied but consistent among images
from the same domain.

3 Method

Given an image x, we let ym be a multi-label segmentation map for a specific protocol m composed
of non-overlapping labels. Typically, a segmentation model gθ(x) = ŷm follows a fixed predefined
protocol m.

3



{𝑥𝑖} 𝑓𝜃(⋅) 𝜙

ℎ𝜃(⋅) 𝑦𝑚

Random variable: 𝑟𝑚
To sample protocols

Subjects in set 𝑥𝑖
𝑆

Distribution 
Estimator

𝑓𝜃 ⋅
1 2 3

Label Maps predictions ො𝑦𝑚 
for subject in set 𝑥𝑖

𝑆 

…

1 2 3

Map 𝑚 = 0

Map 𝑚 = 1

Map 𝑚 = 𝑀

𝜙

Representation: 𝑣𝑚,𝑘

Reshape & Repeat 
Operations

Interaction between 
𝜙 and sample

 𝑔𝜃(⋅)

Sampler: ℎ𝜃(⋅)

Figure 3: Method Schematic. To produce multiple consistent label maps for an image set {xs}, we
first estimate the distribution parameters ϕ via fθf (x). We then sample from the distribution with
parameters ϕ through the random variable rm: hθh(rm, ϕ) = ŷm.

Instead, we design a framework that can produce a set of label maps {ym}Mm=1 for M different
protocols, summarized in Figure 3. We estimate high-dimensional parameters ϕ of a distribution
p(ym;ϕ|x) over segmentation maps ym spanning different segmentation protocols m, using the
function fθf (x) = ϕ. We model the distribution parameters ϕ as a vector for every image pixel,
encoding the likelihood of different labels at that pixel location across protocols.

We model fθf (x) = ϕ as a neural network with a UNet architecture, which takes in an image and
outputs the parameters ϕ. Below, we describe the mechanism for sampling segmentation maps from
the distribution p(ym;ϕ|x). We then define a loss that encourages segmentation maps for a given
protocol m to be semantically consistent across a set of S images from the same biomedical domain.

Protocol sampling. We design a new mechanism to produce diverse segmentation maps across
different protocols ym ∼ p(ym;ϕ|x). Let a random integer rm = (M,K) ∼ U(1,Mmax) ×
U(1,Kmax), where U is the discrete uniform distribution, Mmax is a maximum number of label maps
and Kmax a maximum number of labels for per map. We compute label map hθh(ϕ, rm) = ŷm given
a deterministic function hθh . The function first forms an intermediate representation vm = e(rm),
building on concepts from positional embedding. We concatenate this representation with the
distribution parameters at each image location, and use a shallow fully-convolutional network to yield
the final segmentation maps:

ŷm = hθh(ϕ||vm) (1)
= hθh(fθf (x)||e(rm)). (2)

We predict the distributional parameters ϕ once, and then efficiently compute hθh(ϕ||e({rm})) =
{ŷm} for a set of random integers {rm}.

The intermediate representations vm = {vm,k} capture all labels k in protocol m. Let um and uk be
vector representations corresponding to protocol m and label k, inspired by position embedding [113].
We model vm,k = um||uk, where || denotes the concatenation operation. Specifically, given integer
values t, we form vector representation ut as:

u2j
t = sin(zt,2j +

π

2
), u2j+1

t = sin(zt,2j −
π

2
) (3)

with
zt,j =

t π

T
2

2j π
J , (4)

where uj
t denotes entry j in vector ut, j = 1, . . . , J and J is a hyperparameter determining the size of

the vector. We use this formulation to form vectors for any desired um and uk, which, in turn, enables
us to form vm for any given protocol. Specifically, the periods T for both vector representations um

and uk are determined by the random variable rm, i.e. the values of M and K sampled.

Inference. During inference, Pancakes is given a set of images {xs} as input. For each image in the
set, Pancakes produces a variable number of label maps ŷs,m,k from various protocols with a variable
number of labels k semantically consistent across the images.

3.1 Training strategy

Our goal is to enable off-the-shelf multi-protocol segmentation of any biomedical image x, especially
for those not seen during training. To achieve this, we train a single Pancakes model on a wide
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Figure 4: Example input and binary label available at training. Images from the same set come
from the same domain.

array of biomedical datasets spanning diverse domains and segmentation protocols. In most realistic
scenarios, only a subset of the labels (often one label) in a protocol are available in each dataset, and
most often only one protocol. At each training iteration, we first sample a dataset from the biomedical
collection. If a dataset contains multiple protocols (which is rarely available in public data), we
sample a protocol, and then sample a specific label task t within that protocol. Finally, we randomly
sample a set of images from that dataset, with that label segmented.

At each iteration, for a set of images {xs} with associated ground-truth binary labels {ys}, we sample
M protocols containing at most K labels each, and predict label maps {ŷm,s} for all M protocols.

Loss function. We design a loss function that encourages the label maps of any produced protocol
to be consistent across the image set. The loss function also enables learning from data with only a
subset of labels segmented in each protocol, and encourages diversity of predicted candidate protocols.
We develop this further in the Supplementary Section B.

We define dm,k({ŷs,m,k}, {ys}) = Es[LDice(ŷs,m,k, ys)] as the average Dice score for a protocol m
and label k across the samples s, where ŷm,s,k is the binary map of label k of prediction ŷm,s.
Denoting T as the set of all possible tasks and S the set of all image sets, we optimize model
parameters θf and θh by minimizing the loss function

L(θf , θh; T ) = ET ES [Lseg({ŷs,m,k}, yts)], (5)

with Lseg({ŷs,m,k}, yts) = min
m,k

dm,k({ŷs,m,k}, {yts}). (6)

By only penalizing the segmentation of the best performing predicted protocol m and label k, the
loss function encourages diverse label map samples ŷm – at least one candidate segmentation map
matches the ground-truth binary label [58, 96]. By averaging the loss terms across the set, the loss
encourages label k of protocol m to refer to the same region in each image. Figure 4 shows examples
of the inputs and their corresponding binary labels used in the loss.

Augmentations. We apply standard data augmentations to improve generalization, such as Gaussian
noise, blur, contrast changes, affine, and elastic transforms. Building on recent strategies [16], we
distinguish between two types of augmentations, in-task augmentations and task augmentations. The
in-task augmentations are applied independently to each element in a set and aim to increase the
diversity of sets. The task augmentations are applied consistently across elements of the same set and
aid in increasing the number of protocols available at training. A complete list of augmentations and
parameters is provided in the supplemental material in F.3.

Synthetic Data. To improve the generalization to new domains, we use synthetic data [13, 16, 43]
build on Anatomix [27]. First, we create maps by sampling binary segmentations from TotalSeg-
mentator [118]. To simulate images from the same set representing the same biomedical region, we
first sample a single label map, which is shared across the elements of one set. We then create label
maps by applying affine and elastic transforms to the original label map independently. We assign an
intensity to all pixels in a given label, and apply several related augmentations to create a synthetic
corresponding image set.
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3.2 Implementation details

For function fθf (·), we use a UNet-like architecture, with convolutional layers of 32 features followed
by PReLU activation [39]. The function hθh(·) is a series of convolution layers with skip connections.
We use the SoftMax function across the K dimension to obtain multi-label segmentation maps, with
non-overlapping labels. This ensures that our protocols are complete, assigning a label to each image
pixel, instead of partial, assigning labels to only specific regions of the image. During training, we
sample the maximum number of labels K, the number of protocols M , and the set size S uniformly
from a fixed range: K ∈ [5, 40],M ∈ [5, 15], S ∈ [2, 5]. Within the same batch, different sets
come from different domains. At inference time, K and M can be chosen by the user, while S is
determined by the number of images in the set to segment. We use the AdamW optimizer [74] with a
learning rate of 0.0001 [56].

4 Experiments

We evaluate Pancakes on a broad battery of biomedical segmentation tasks, with three goals: (1) verify
that each protocol generated by the model is semantically consistent across images; (2) quantify
how well Pancakes matches manual segmentations of a provided protocol; and (3) study how design
choices during training and inference affect diversity and accuracy. We pay special attention to
datasets and imaging domains unseen during training.

Evaluation. The evaluation of a method’s ability to produce segmentation maps for different plausible
protocols, consistently across subjects, is substantially more challenging than evaluation in standard
(fixed protocol) segmentation tasks. In most test datasets, only one protocol is provided and only one
label is available from that protocol.

We start by assessing if any of the predicted protocols produce a label that closely matches a ground-
truth label. We then capture whether this label is consistent across the set. Specifically, we compute
the Dice score [107, 109] between the available ground-truth yts and the labels produced for each
label map and each image in the set ŷs,m,k. We then compute the average across subjects in the
set: Es{Dice(ŷs,m,k, y

t
s)}]. Finally, we record the produced label that performs best, identified by a

specific map m and label k. We call this Set Dice:

max
m,k

Es{Dice({ŷs,m,k}, yts)}. (7)

This metric captures: (1) Consistency: a given label should represent the same region in all images in a
set; and (2) Accuracy: for each individual image, how well does the best label match the ground-truth
segmentation?

Because our goal is to generate a family of anatomically coherent multi-protocol label maps, no single
user-provided mask can serve as a universal "ground-truth". Therefore, overlap metrics such as Dice
score offer only a partial assessment. We complement our quantitative evaluation with visualizations
that illustrate the range of protocols generated by Pancakes. We assess these examples in two aspects:
(1) each protocol should be consistent across subjects; and (2) different protocols should generate
different, yet still anatomically plausible, partitions. Inevitably, some protocols will resonate more
with readers’ expectations than others. Our goal in this visualization is to demonstrate the diversity
and semantic coherence Pancakes can achieve.

Data. We train Pancakes on a large, diverse collection of biomedical data, and evaluate the multi-
protocol segmentations produced on images from held-out datasets. We use Megamedical [16, 96,
123], which covers many biomedical domains [2, 3, 6, 11, 12, 14, 16, 19, 22, 29, 31, 32, 35, 37, 41,
42, 47, 49, 51, 52, 54, 61–67, 69, 71–73, 75, 78–82, 87, 93, 94, 98, 101, 103, 105, 106, 108, 110, 127,
129, 132, 133].This dataset has diverse anatomies such as thoracic organs [75], brain [80], eye [78];
and diverse modalities including XRay [47], CT [75], ultrasound [66] and fundus images [46]. We
partition this collection into three subgroups. Training datasets are used at training time, including
model weight optimization and backpropagation. A complete list of the training datasets can be
found Table 4 in the supplemental material. Development datasets, ACDC [11], PanDental [2], and
SpineWeb [132], are not used in training but are to evaluate models during development. Held-out
datasets. These datasets are only used for final evaluation. They include QUBIQ Prostate dataset [83],
SCD [94], WBC [133], BUID [3], LIDC-IDRI [5], DDTI [90], and STARE [46].
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Figure 5: Pancakes generalizes well to unseen datasets. We evaluate Pancakes and baselines with
the Set Dice metric.

The images within each dataset are also split into training, validation, and test splits. We train the
models on the training split of the training datasets. We used the training split of the development
datasets to monitor out-of-distribution capabilities. We report results on the test splits of both the
development (in the supplemental material) and held-out datasets. We split the dataset based on
subjects, and ensured that there was no train/validation/test subject cross-contamination.

We also synthesized 120, 000 training image-segmentation pairs as described in Section 3. We refer
to these examples as Anatomix data.

Benchmarks. To our knowledge, there are no methods that attempt the same task as Pancakes. We
compare our work to four methods that can be used to produce segmentation maps for new images,
but none of these were designed to produce multiple protocols consistently across subjects.

SAM [58, 97]: the Segment Anything Model (SAM) is an interactive image segmentation model
trained mostly on natural images. SAM involves a whole-image-segmentation mode, which produces
a grid of simulated clicks over the whole image, removes high-overlapping regions and selects the
most likely masks using a confidence threshold. We use this mode, and produce diverse whole-image
segmentations by varying the confidence threshold.

ScribblePrompt [123]: ScribblePrompt (SP), is an interactive segmentation tool trained on Megamed-
ical. We use the SP-SAM, which performs best on clicks, and obtain multi-protocol and multi-label
using the same whole-image strategy we used for SAM.

MedSAM [76]: trained specifically on medical data, this model uses a SAM-like architecture and is
optimized for bounding box interactions. We produce whole-image segmentations using the SAM
whole-image segmentation mode.

UnSAM [116]: trained on a curated set of natural images, this model produces segmentation masks
using a DINO [20] backbone (pretrained ResNet50 [40]) and the Mask2Former [21] mask decoder.
UnSAM produces a list of labels to serve as label maps. We use the UnSAM+ model version, trained
on a part of the SA-1B dataset [58]. To produce segmentations with diverse protocols and labels, we
use the UnSAM’s existing whole-image segmentation scheme.

5 Results

For our main evaluation, all error bars are 95% confidence interval using 1000 bootstraps of all sets.
Additional per-dataset performance and ablations are shown in the supplemental material.
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S = 3. Middle: Pancakes can produce diverse label maps with fixed K labels per protocol. Right:
Increasing the maximum number of labels K tends to lead to finer structures in the produced label
maps.

Quantitatively, Figure 5 shows that Pancakes outperforms the baselines on all unseen datasets, often
by a margin of more than 20 Dice points. For a more detailed assessment, we separately report
accuracy, consistency, and the effects of hyperparameters, and visualize results in several scenarios.

Accuracy versus consistency. Figure 8 shows that Pancakes performs well on both segmentation
accuracy and semantic consistency across images. For individual accuracy (set size S = 1), which
does not penalize semantic consistency across images, Pancakes performs similarly to SAM, and is
superior to all the other baselines. As the set size S increases, all baselines fail to produce semantically
consistent segmentations, while Pancakes segmentations remain consistent across the set, leading
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Figure 8: Pancakes is both consistent and accurate compared to baselines. When evaluated solely
on accuracy (S = 1), Pancakes is comparable to SAM and outperforms baselines. As S increases,
Pancakes is the only model whose performance is not degraded.
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Table 1: Inference time and number of parameters.
Pancakes has substantially fewer parameters and is sig-
nificantly faster than baseline methods.

#Param S=1 (sec.) S=3 (sec.)
Ours 0.22 M 0.10 ± 0.04 0.12 ± 0.03
SAM 641M 3.13±0.16 2.94 ± 0.24
SP 93.7M 1.99 ± 0.13 1.85 ± 0.18
MedSAM 93.7M 2.12 ± 0.17 1.94 ± 0.18
UnSAM 23M 0.54 ± 0.012 0.45 ± 0.03

to a steady Set Dice. We hypothesize that SAM is better than biomedical baselines because it was
trained on a wider variety of labels and images. Therefore, SAM is less prone to task-overfitting. In
the Supplementary Section C, we also report results for various M and K, and also evaluate using the
Set Surface Distance and Set IoU metrics.

Figure 6 illustrates Pancakes predictions for a fixed protocol, and highlights visually the semantic
consistency across the images of a set. Additional visualizations with the baselines are shown in
Section C.1.

Overall, Pancakes outperforms or matches the other methods in producing plausible protocols, and
outperforms all methods by a substantial margin in producing semantically consistent protocols.

Influence of M and K. Figure 7 illustrates the diversity of protocols captured in Pancakes segmenta-
tion outputs. They are produced by fixing the set size S and the maximum number of labels K and
performing one forward pass through the network. The label maps are different from one another
across protocol ID m and maximum labels K, capturing structures at various granularity levels.
Figure 7 also shows that increasing the number of labels K per protocol results in segmentations of
finer structures.

Figure 9 captures the quantitative effects of the number of label maps M and maximum label number
K for a fixed set size S. Producing more protocols leads to better performance in general, while
performance as a function of K is more variable. We hypothesize that this arises from the non-
overlapping nature of labels within each protocol. Ambiguous regions that could belong to multiple
labels require separate protocols to represent each plausible interpretation, so having more protocols
enables the model to better capture such ambiguities.

Efficiency. We study runtime requirements by running all the models on the HipXRay [37] test
split. Table 1 shows the average run time across 1000 trials. Pancakes is substantially faster than
all baselines, because of its efficient fully-convolutional architecture, leading to a leaner model and
fewer parameters.

Analysis. We use Set Dice with S = 3, and use M = 8 and K = 20 for Pancakes. As supplementary
Figure 15 shows, performance on the development datasets saturates at M = 8 and K = 20, with
only marginal gains achieved by further raising M . We therefore chose to use these parameters as a
balance between performance and the number of structures clinical users might actually expect in
practice.

Influence of synthetic data. We compare versions of Pancakes trained with real data only, synthetic
data only, or both. When trained with both real and synthetic data, Pancakes consistently outperforms
the other variants in Dice score (p < 0.05 with a paired Student-t test), for M = 16, as shown in
Table 2. We find that for M = 8, the performance change is not statistically significant.

Pancakes and interactive segmentation. If a user has a particular segmentation protocol in mind,
but there are no existing tools for it, they can choose the protocol from Pancakes’ outputs that best
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Table 2: Influence of synthetic data across set size.
For M = 16, training with both synthetic data and
Megamedical yields a small yet consistent improvement
over only training with Megamedical.

Both Megamedical Synthetic
S = 1 73.2 ± 5.5 71.1 ± 6.2 56.3 ± 4.9
S = 2 67.3 ± 6.0 65.8 ± 6.7 45.8 ± 5.0
S = 3 67.4 ± 6.0 65.7 ± 6.8 44.3 ± 5.4
S = 5 68.4 ± 5.6 67.4 ± 6.9 42.7 ± 5.5

aligns with their intended use. This choice will often suffice. In cases where Pancakes’ segmentations
are not sufficiently accurate–for example, when targets are far from the training distribution–the
segmentation maps can offer excellent initializations to interactive segmentation systems such as
ScribblePrompt [123]. To demonstrate this, we compared using ScribblePrompt with and without
initialization using Pancakes’ predictions: (1) on average, Pancakes’ predictions can be improved
by 5 Dice points with a single interactive click, for set sizes larger than one. (2) on average, using
ScribblePrompt with a Pancakes-initialized segmentation reduces the number of required interactions
by half. If used alone, it takes ScribblePrompt 5 to 8 clicks for the prediction quality to plateau, while,
when initialized with Pancakes’ predictions, ScribblePrompt can reach the same results in 3 to 4
clicks.

6 Assumptions & Social Impact

In this work, we made several core assumptions. First, we assume that the user has an idea of the
desired labels and can select a few K values a priori. Pancakes is intended for biomedical experts.
We assume that as they use the tool, they can identify the mapping between a label and a known
structure. Second, we assume that visualizing several protocols simultaneously is reasonable. Third,
we assume that while we trained and evaluated on a diverse set of medical images, we likely did not
capture all biomedical image types and domains that a user might encounter. Fourth, Pancakes is not
intended to replace existing clinically validated segmentation protocols. If there is an existing tool for
a particular protocol, we would advise using it.

We aim for this work to inspire a new approach to using foundation models in biomedical imaging.
Pancakes is designed to be efficient and accessible, especially in resource-constrained settings. It can
support both data annotation and exploratory analysis, as well as serve as a tool for developing future
foundation models. However, this version is intended for research use only. While trained on a broad
collection of small biomedical datasets, we have not evaluated it for potential societal biases.

7 Conclusion

We introduced Pancakes, a new framework that predicts segmentation maps for multiple protocols in
previously unseen biomedical imaging domains, with each protocol being semantically consistent
across images. Pancakes estimates a distribution over plausible label map protocols and provides a
mechanism to sample multiple segmentation maps from this distribution.

Predicting plausible segmentations in a new domain, without prior knowledge of the number of
labels or their associated shapes, is a challenging task. Our experiments demonstrate that Pancakes
achieves state-of-the-art performance on seven held-out datasets. We believe this work addresses
an important, previously unaddressed problem, enabling biomedical researchers to segment entire
collections of images without requiring manual annotations or example segmentations. This can, in
turn, substantially speed up downstream biomedical studies.
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Justification: Our claims are justified through rigorous experiments evaluated on held-out
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much the results can be expected to generalize to other settings.
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are not attained by the paper.
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Question: Does the paper discuss the limitations of the work performed by the authors?
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a dedicated limitations section at the end of the paper.
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• The authors should reflect on the factors that influence the performance of the approach.
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address problems of privacy and fairness.
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Answer: [NA]

Justification: There are no theoretical results in this paper.
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• The answer NA means that the paper does not include theoretical results.
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
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(d) We recognize that reproducibility may be tricky in some cases, in which case
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The data we use comes from a collection of public datasets. They are all cited
accordingly in the paper but we do not have authorization to release the data ourselves. Code
will be made available upon acceptance.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All hyperparameters are specified in the main paper in Section 3 and 4 or in
the supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All error bars are reported in the corresponding graphs and for each graph, we
explain what they mean. The only graph were error bars are not directly visible is the heat
map. We present the error bars in the supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: For the infrastructure experiment, we specify the compute resources details in
Section 5. We also provide additional information in the supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We comply to the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have a dedicated social impact section that discusses both.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our model is a segmentation model, not a pretrained LLM, image generator or
scraped dataset. We do caution against the use of our model for out of distribution data.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Original owners of assets are credited for code, data and models.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
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Justification: Commented and licensed code will be made public upon acceptance
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects or crowd-sourcing was involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects were involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were only used for formatting, editing, and standard code cleaning and
development.
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Guidelines:
• The answer NA means that the core method development in this research does not

involve LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)

for what should or should not be described.
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A Table of Content

We divide this supplemental material into five major parts:

Frequently asked questions ( B). We address some questions that have been asked by colleagues
about this work. We think this might be relevant to reviewers if this remains unclear in the paper.

Additional analysis on Held-out Datasets ( C). We report results for the Set Surface Distance and
Set IoU metrics. We analyze further architectural choices and their impact on performance. This
includes the size of the set and the choice of M and K. We provide per-dataset performance when
results are shown aggregated in the main paper.

Additional analysis on Development data ( D). We present performance for the Development
datasets, which were used to evaluate the generalization capabilities of the model.

Training infrastructure ( E). We detail our training infrastructure and requirements.

Data ( F). We provide additional information on Megamedical and Anatomix as well as the augmen-
tations applied.

B Frequently Asked Questions

Instead of Pancakes, could a user fine-tune a model on a set of curated images? Pancakes
tackles the prevalent scenario where there is no preexisting annotated data. It relieves the user of
the requirement imposed by existing methods: annotating sufficient images to use for few-shot or
in-context methods.

What is the difference between Pancakes and stochastic segmentation methods [10, 59]? Pan-
cakes is focused on segmenting images in new tasks, not seen at training, while existing methods
are specifically designed to model stochasticity in a given pre-specified task, essentially tackling a
different problem. While Pancakes can also capture diversity for a fixed single protocol like existing
models do, we model the substantially more challenging problem of presenting different plausible
(multi-label) protocols for the new task.

What does it mean for segmentations to be consistent across a set? If a label ID appears across a
set of anatomically similar images, this ID semantically corresponds to the same ROI in each image.
For example, if label 1 represents the hippocampus in the first image, it should also represent the
hippocampus in the second image.

Why is consistency important? Consistency is critical when the user wants to analyze the same set
of structures for multiple images as is prevalent in population and longitudinal studies.

Is it possible to achieve consistency through post-processing if a method is inconsistent? For
previous methods, matching segmentation maps across scans is not trivial for several reasons. Among
them: (1) The segmentation maps in different scans are often so different that there are no clear
labels to match. The same segmentation model could segment images on different bases and different
images can contain different structures (2) Even when the same anatomical structure is segmented in
two different images, they usually don’t share the same label ID or don’t have the same size as shown
in Figure 2. This makes automated matching as post-processing step ill-posed.

How are the sets treated at training? We train with input tensors of dimension B × S × C ×
H ×W , for batch B, set S, channel C, image height H and width W . We flatten these tensors to
(B × S)× C ×H ×W so that we can use architectures based on 2D-convolutions and 2D-UNets.

What is the intuition behind the min Dice loss? Using a regular expectation over the candidate
label maps would lead the model to regress to the mean. This might be particularly harmful when
there is high uncertainty around the set of plausible labels to output. Instead, using the best values
leads to more diverse predictions. We refer to [96] for a more extensive comment on this type of loss.
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Figure 11: Pancakes and baselines set consistency. Evaluated on 3 held-out datasets (left to
right: WBC, HipXRAY, QUBIQ Prostate), Pancakes is the method that is the most consistent across
predictions compared to the baselines.

C Additional Analysis on Held-out Datasets

We present more in-depth results for the held-out datasets that remained unseen until the final phase
of evaluation.

C.1 Qualitative comparison with baselines

We visually compare predictions for three held out datasets: WBC, HipXRay and QubiqProstate.
Figure 11 shows that even though some baselines produce more accurate individual labels, Pancakes
provides the most consistent labels across images of the same set.

C.2 Interpolation

This additional visualization explores the space of protocols M for multiple numbers of labels: K.
For M = 16, we sample the 16 protocols available for different K values: [5, 10, 15, 20, 25]. We
show in Figure 12 how this impacts the produced label maps for two samples in the WBC dataset.
We find that segmentation maps that come from protocols close to one another in the embedding
space are similar. Interestingly, the label space interpolated is relatively smooth, as indicated by the
color and shape variations.

C.3 Additional Metrics

In Figure 13, we report results evaluated using two additional metrics: Set IoU and Set surface
distance. They are computed in the same way as Set Dice but replacing Dice score with IoU and
Surface Distance respectively. For the surface distance, we keep the percentile 95. When the set size
is one (S = 1), the set metric reduces to the standard metric, ignoring consistency.

C.4 Per set size performance

We report additional per-set-size results that were summarized in the main paper.
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Figure 12: Interpolation Analysis. By covering the space of protocol (rows) for several fixed K
values, we observe that label maps resulting from protocols close to another in the embedding space
are similar.
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Figure 13: Evaluation on additional metrics: IoU and surface distance. For individual predictions
(S = 1), Pancakes is comparable to SAM and outperforms baselines. As the set size S increases,
Pancakes is the only model whose performance is not severely degraded, as it can produce consistent
segmentations.
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Figure 14: Per-dataset Set Dice performance under various set sizes. We evaluate Pancakes and
baselines with various set sizes: 1, 2, 3 and 5. For Pancakes, we evaluate with M = 8 and K = 20.

Per-dataset Set Dice performance. This experiment evaluates how segmentation accuracy and
label consistency vary jointly with set size. Figure 14 shows that Pancakes’s improvement over the
baselines increases with the set size. Figure 14a focuses on accuracy only as the set size is one
(S = 1). In this case, Pancakes is comparable to the baselines (Figure 14a). We observe a large
variability across different datasets.

Influence of M and K. Figure 15 shows the influence of the number of protocols and labels on
the Pancakes predictions as the set size varies. As the number of protocols increases, performance
increases. Best performing K seems to be in the middle of the range for K=20. Results are consistent
across set sizes.

D Additional Analysis on Development Datasets

We include performance on the Development datasets that were used to evaluate generalization
capabilities during model development: ACDC [11], PanDental [2] and SpineWeb [132].

We evaluate on the test split of all datasets. When reporting performance with a certain set size, we
exclude tasks with subjects fewer than this set size. (For example, the test split of SpineWeb has only
2 subjects, so we do not include it in set size 3 and 5 experiments.) We report Pancakes performance
with M = 8 and K = 20. Figure 16 shows Pancakes demonstrates both accurate and consistent
predictions compared to the baselines.

Per-Dataset Set Dice Performance for Different Set Sizes. Figure 17 shows per-dataset performance,
separated by set size.

Influence of M and K. Figure 18 shows effect of number of protocols and labels per protocol on
prediction accuracy, as set size varies. The trend aligns with results using the held-out datasets (C.4).

Learning a complete protocol. The primary objective of Pancakes is to propose a diverse set of
consistent protocols for an image group. We do not enforce constraints across protocols produced,
but at times it would be good to do so. For example, symmetric labels (left and right ventricles or
posterior and anterior hippocampus) in the same protocol may be desirable. One way to incorporate
this into the Pancakes framework is to apply the loss function to two randomly chosen segmentation
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Figure 15: Influence of varying M and K for various set sizes on the Held-out datasets. We
evaluate Pancakes with various set sizes, number of protocols (M ) and number of labels in each
protocol (K).

targets in a multi-label dataset, rather than one. As a preliminary experiment, we ran an experiment
on the OASIS brain dataset, and found it effective at learning a protocol as shown in Figure 19. We
are planning to explore this more in future work.

E Training Infrastructure

Our model was trained using 45G of memory on a single node of an NVIDIA DGX A100 machine
using two cores. We use a batch size of 1 and the AdamW optimizer with a learning rate of 0.0001.
We use PReLU activations and convolution layers with 32 features, kernel size 3 and stride 1.

F Data

F.1 Megamedical

We train our main experiment on Megamedical [16, 96, 123]. The images are 2D and resized to
128× 128. Complete tables of the datasets, split by data subgroup (Training, Development, Held-out)
are shown in Tables 4, 5, and 6. Megamedical covers a wide range of modalities (MRI, ultra-sound,
XRay) and anatomies (organs, bones, substructures and fine structures like vessels).
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Figure 16: Pancakes is both consistent and accurate compared to baselines. We evaluate Pancakes
and the baselines on Development datasets: ACDC, PanDental and SpineWeb. When evaluated solely
on accuracy (S = 1), Pancakes is comparable to SAM and outperforms the other baselines. As S
increases, Pancakes is the only model whose performance is not degraded.
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Figure 17: Per-dataset Set Dice performance under various set sizes for the Development datasets.
We evaluate Pancakes and baselines on development datasets (ACDC, PanDental and SpineWeb)
with various set sizes: 1, 2, 3 and 5. If a dataset has fewer subjects than the set size, we exclude it.
For Pancakes, we use M = 8 and K = 20.

F.2 Anatomix

Building on [13, 16, 43] and specifically on Anatomix [27], we use synthetic data to complement
Megamedical and limit overfitting. To generate Anatomix label maps, we sample a random set of 3D
labels from the TotalSegmentator dataset [118]. We sample between 20 and 40 labels and generate a
128× 128× 128 label map. Once this 3D label map is generated, we randomly sample an axis and
then a slice between slice ID 25 and 100. With probability 50%, we will split labels. In that case,
labels are reassigned so that a given label can only be composed of contiguous pixels. We also assign
to background (label ID 0) any label whose size is smaller than 20 pixels. This gives us the label
map template for a given set, from which we are going to generate the images and label maps for
each element in the set. We generate the images by randomly assigning an intensity value to each
label. We then apply a series of augmentations that are independent for each element in the set. These
augmentations include: Gaussian blur, Gaussian noise, Perlin noise, elastic and affine transforms,
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Figure 18: Influence of varying M and K in various set sizes for the Development datasets. On
development datasets, we evaluate Pancakes with various set sizes, number of protocols (M ) and
number of labels in each protocol (K).

Pancakes predictionsAvailable Protocols

Figure 19: Learning a full protocol. Training on OASIS, we learn accurately a complete protocol
with our loss modification.
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Figure 20: Anatomix Examples. Label maps and images within a set are very similar to one another,
sharing similar relative locations for each structure. The main difference lies in the augmentations
applied, to the images individually (Gaussian noise for example), but also to both the images and
label maps (elastic deformation for example).

and contrast variations. To sample a binary ground truth label at training, we sample a label that is
present in each image of the set. Example sets generated are shown in Figure 20.

F.3 Data Augmentation

At training, we apply a series of augmentations to our set to improve generalization capabilities. We
distinguish between two types of augmentations, within-set augmentation — applied independently
to each element in the set — and across-set augmentation — applied consistently to each element
in the set. For each augmentation sampled, the corresponding parameters are sampled uniformly
from a pre-defined range. Table 3 shows the list of all augmentations applied, the probability of each
augmentation per iteration and the parameter ranges we sample from.
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Table 3: Augmentations used to train We apply augmentations either independently within a set
(Top) or to all the elements of a set (Bottom). We sample each parameter from the uniform distribution
(U) within the ranges defined in the Parameters column.

(a) Within-Set Augmentation

Augmentations p Parameters
degrees ∼ U(−25, 25)
translate∼ U(0, 0.1)Random Affine 0.25
scale∼ U(0.9, 1.1)

brightness∼ U(−0.1, 0.1),Brightness Contrast 0.5 contrast ∼ U(0.5, 1.5)
α ∼ U(1, 2.5)Elastic Transform 0.8
σ ∼ U(7, 9)

Sharpness 0.25 sharpness= 3
Flip Intensities 0.5 None

σ ∼ U(0.1, 1)Gaussian Blur 0.25 k=5
µ ∼ U(0, 0.05)Gaussian Noise 0.25
σ ∼ U(0, 0.05)

(b) Across-Set Augmentation

Augmentations p Parameters
degrees ∼ U(0, 360)
translate∼ U(0, 0.2)Random Affine 0.5
scale∼ U(0.8, 1.1)

brightness∼ U(−0.1, 0.1),Brightness Contrast 0.5 contrast∼ U(0.8, 1.2)
σ ∼ U(0.1, 1.1)Gaussian Blur 0.5

k = 5
µ ∼ U(0, 0.05)Gaussian Noise 0.5
σ ∼ U(0, 0.05)
α ∼ U(1, 2)Elastic Transform 0.5
σ ∼ U(6, 8)

Sharpness 0.5 sharpness= 5
Horizontal Flip 0.5 None
Vertical Flip 0.5 None

34



Table 4: Collection of datasets in Megamedical used for training. The entry # of scans is the
number of unique (subject, modality) pairs for each dataset.

Dataset Name Description # of
Scans

Image Modalities

AMOS [49] Abdominal organ segmentation 240 CT, MRI
BBBC003 [72] Mouse embryos 15 Microscopy
BBBC038 [17] Nuclei images 670 Microscopy
BrainDev. [33, 34, 63,
104]

Adult and Neonatal Brain Atlases 53 multi-modal MRI

BRATS [6, 7, 84] Brain tumors 6,096 multi-modal MRI
BTCV [65] Abdominal Organs 30 CT
BUS [128] Breast tumor 163 Ultrasound
CAMUS [66] Four-chamber and Apical two-

chamber heart
500 Ultrasound

CDemris [51] Human Left Atrial Wall 60 CMR
CHAOS [53, 55] Abdominal organs (liver, kidneys,

spleen)
40 CT, T2-weighted

MRI
CheXplanation [101] Chest X-Ray observations 170 X-Ray
CT-ORG[98] Abdominal organ segmentation (over-

lap with LiTS)
140 CT

DRIVE [110] Blood vessels in retinal images 20 Optical camera
EOphtha [25] Eye Microaneurysms and Diabetic

Retinopathy
102 Optical camera

FeTA [89] Fetal brain structures 80 Fetal MRI
FetoPlac [9] Placenta vessel 6 Fetoscopic optical

camera
HMC-QU [26, 57] 4-chamber (A4C) and apical 2-

chamber (A2C) left wall
292 Ultrasound

I2CVB [67] Prostate (peripheral zone, central
gland)

19 T2-weighted MRI

IDRID [93] Diabetic Retinopathy 54 Optical camera
ISLES [42] Ischemic stroke lesion 180 multi-modal MRI
KiTS [41] Kidney and kidney tumor 210 CT
LGGFlair [15, 82] TCIA lower-grade glioma brain tumor 110 MRI
LiTS [12] Liver Tumor 131 CT
LUNA [105] Lungs 888 CT
MCIC [32] Multi-site Brain regions of

Schizophrenic patients
390 T1-weighted MRI

MSD [106] Collection of 10 Medical Segmenta-
tion Datasets

3,225 CT, multi-modal
MRI

NCI-ISBI [14] Prostate 30 T2-weighted MRI
OASIS [45, 80] Brain anatomy 414 T1-weighted MRI
OCTA500 [69] Retinal vascular 500 OCT/OCTA
PAXRay [103] Thoracic organs 880 X-Ray
PROMISE12 [71] Prostate 37 T2-weighted MRI
PPMI [81] Brain regions of Parkinson patients 1,130 T1-weighted MRI
QUBIQ [83] Brain, kidney, pancreas 209 MRI T1, Mul-

timodal MRI,
CT

ROSE [78] Retinal vessel 117 OCT/OCTA
SegTHOR [64] Thoracic organs (heart, trachea, esoph-

agus)
40 CT

ToothSeg [47] Individual teeth 598 X-Ray
WMH [62] White matter hyper-intensities 60 multi-modal MRI
WORD [75] Organ segmentation 120 CT
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Table 5: Development datasets. Datasets used to evaluate the generalization capabilities of our
model and model development.

Dataset Name Description # of
Scans

Image Modalities

ACDC [11] Left and right ventricular endocardium 99 cine-MRI
PanDental [2] Mandible and Teeth 215 X-Ray
SpineWeb [132] Vertebrae 15 T2-weighted MRI

Table 6: Held-out datasets. Datasets that remained unseen until the final evaluation phase.

Dataset Name Description # of
Scans

Image Modalities

BUID [3] Breast tumors 647 Ultrasound
DDTI [91] Thyroid 472 Ultrasound
HipXRay [37] Ilium and femur 140 X-Ray
QUBIQ [83] Prostate 209 MRI T1, Mul-

timodal MRI,
CT

SCD [94] Sunnybrook Cardiac Multi-Dataset
Collection

100 cine-MRI

LIDC-IDRI [5] Lung Nodules 1,018 CT
STARE [46] Blood vessels in retinal images 20 Optical camera
WBC [133] White blood cell and nucleus 400 Microscopy
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