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Abstract

Extrinsic rewards can effectively guide reinforcement learning (RL) agents in specific tasks.
However, extrinsic rewards frequently fall short in complex environments due to the signifi-
cant human effort needed for their design and annotation. This limitation underscores the
necessity for intrinsic rewards, which offer auxiliary and dense signals and can enable agents
to learn in an unsupervised manner. Although various intrinsic reward formulations have
been proposed, their implementation and optimization details are insufficiently explored
and lack standardization, thereby hindering research progress. To address this gap, we in-
troduce RLeXplore, a unified, highly modularized, and plug-and-play framework offering
reliable implementations of eight state-of-the-art intrinsic reward algorithms. Furthermore,
we conduct an in-depth study that identifies critical implementation details and establishes
well-justified standard practices in intrinsically-motivated RL.

1 Introduction

Reinforcement learning (RL) provides a framework for training agents to solve tasks by learning from inter-
actions with an environment. At the core of RL is the optimization of a reward function, where agents aim to
maximize cumulative rewards over time (Sutton & Barto, 2018). However, in complex environments, defin-
ing extrinsic rewards that effectively guide an agent’s learning process can be impractical, often requiring
domain-specific expertise. In practice, poorly defined extrinsic rewards can lead to sparse-reward settings,
where RL agents struggle due to the lack of a meaningful learning signal (Burda et al., 2019a).
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Figure 1: Episode returns achieved by the intrinsic rewards in RLeXplore. (left) SuperMarioBros without access to
the task rewards. (right) MiniGrid-DoorKey-16×16 with sparse rewards.

As the RL community tackles increasingly complex problems, such as training generally capable RL agents,
there is a need for more autonomous agents capable of learning valuable behaviors without relying on dense
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supervision (Jiang et al., 2023). To address this challenge, the concept of intrinsic rewards has emerged as a
promising approach in the RL community (Burda et al., 2019b; Pathak et al., 2017; Raileanu & Rocktäschel,
2020; Badia et al., 2020; Henaff et al., 2022; Pathak et al., 2019). Intrinsic rewards provide agents with
additional learning signals, enabling them to explore and acquire skills across diverse environments beyond
what extrinsic rewards alone can offer. However, computing intrinsic rewards often requires learning auxiliary
models, heavy engineering, and performing expensive computations, making reproducibility challenging.

While several formulations of intrinsic rewards have been proposed (Pathak et al., 2017; Badia et al., 2020;
Laskin et al., 2021b), each with its potential benefits for improving agent learning, the field lacks a comprehen-
sive understanding of the comparative advantages and challenges posed by these formulations. Importantly,
existing literature reports varying performance when using the same intrinsic rewards, reinforcing the need
for a standardized framework and a deeper understanding of the optimization and implementation details.

In this paper, we introduce RLeXplore, an open-source library containing high-quality implementations of
state-of-the-art (SOTA) intrinsic rewards. RLeXplore offers a plug-and-play framework for researchers work-
ing on intrinsically-motivated RL, enabling them to seamlessly integrate intrinsic rewards into their projects.
Specifically, RLeXplore (1) facilitates fair comparisons across multiple baselines, (2) can be easily integrated
with various RL frameworks, and (3) streamlines the development of new intrinsic reward algorithms. In
Table 1, we compare the performance of the implementations in RLeXplore with the original results reported
in previous works. In Appendix D, we provide the full details on reproducibility with RLeXplore.

Table 1: Summary of comparative results from RLeXplore implementations and reported results in previous works.
We refer the reader to Appendix D for full details on reproducibility.

Environment Intrinsic Reward Original RLeXplore
SuperMarioBros RIDE 23% 50%
SuperMarioBros ICM 30% 30%
MiniGrid-DoorKey-16×16 ICM 0.00 0.60
MiniGrid-DoorKey-16×16 RND 0.00 0.60
MiniGrid-DoorKey-16×16 RIDE 0.25 0.12
MiniGrid-DoorKey-8×8 RE3 0.50 0.95
MiniGrid-DoorKey-8×8 RND 0.00 0.00
MiniGrid-DoorKey-8×8 ICM 0.20 0.83
Procgen - 200 Mazes E3B 3.00 4.10
Procgen - 200 Mazes ICM 2.50 5.90
Procgen - 200 Mazes RND 1.70 5.00

To support these capabilities, we have provided extensive documentation that includes detailed guides on
using RLeXplore, along with comprehensive code tutorials. These resources are designed to make it straight-
forward for users to get started with RLeXplore, regardless of their prior experience with intrinsic rewards in
RL. In Appendix D.6, we provide an overview of the main differences and advantages of RLeXplore compared
to existing RL libraries.

We aim for the community to adopt RLeXplore as a standard tool for evaluating intrinsic reward methods,
reducing implementation efforts, and mitigating inconsistencies in results and conclusions.

Our work presents a systematic study aimed at addressing gaps in understanding the critical implementation
and optimization details of intrinsic rewards. We investigate the design of different algorithms and (1)
highlight challenges in the reproducibility of prior work, and (2) share highly performant reimplementations
of many popular intrinsic reward methods. To guide our investigation, we formulate numerous questions,
aiming to uncover the intricacies of intrinsic rewards and their impact on RL agent performance. Our
results highlight the importance of thoughtful implementation design for intrinsic rewards, showing that
naive implementations can lead to suboptimal performance. Through carefully studied design decisions, we
demonstrate significant performance gains.
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2 Related Work

While some works have benchmarked intrinsic rewards in specific environments (Taiga et al., 2021; Wang
et al., 2022; Laskin et al., 2021b), their lack of detailed discussions on implementation and optimization leads
to reproducibility problems (Voelcker et al., 2024). In this work, we introduce RLeXplore, a comprehensive
framework that incorporates the most widely-used intrinsic rewards, which provides a standardized approach
to enhance reproducibility, accelerate research, and facilitate the comparison of baselines in intrinsically-
motivated RL. In the following, we overview existing formulations for intrinsic rewards of different natures
and introduce the methods included in RLeXplore.

2.1 Count-Based Exploration

Count-based exploration methods provide intrinsic rewards by measuring the novelty of states, defined to
be inversely proportional to the state visitation counts (Strehl & Littman, 2008; Tang et al., 2017; Machado
et al., 2020; Jo et al., 2022). In finite state spaces, count-based methods perform near optimally (Strehl &
Littman, 2008). For this reason, these methods have been established as appealing techniques for driving
structured exploration in RL. However, they do not scale well to high-dimensional state spaces (Bellemare
et al., 2016; Lobel et al., 2023). Pseudo-counts provide a framework to generalize count-based methods to
high-dimensional and partially observed environments (Bellemare et al., 2016; Ostrovski et al., 2017; Martin
et al., 2017). Burda et al. (2019b) proposed random network distillation (RND), which uses the prediction
error against a fixed network as a learning signal that is correlated to counts. Recently, Henaff et al. (2022)
proposed E3B and showed that the intrinsic objective provides a generalization of counts to high-dimensional
spaces. In RLeXplore, we include Pseudo-counts, RND, and E3B as representatives of the state-of-the-art
count-based methods.

2.2 Curiosity-Driven Exploration

Curiosity-based objectives train agents to interact with the environment seeking to experience outcomes that
are not aligned with the agents’ predictions (Aubret et al., 2023). Hence, curiosity-driven exploration usually
involves training an agent to increase its knowledge about the environment (e.g., environment dynamics)
(Stadie et al., 2015; Pathak et al., 2017; Yu et al., 2020). The intrinsic curiosity module (ICM) (Pathak
et al., 2017; Burda et al., 2019a) learns a joint embedding space with inverse and forward dynamics losses
and was the first curiosity-based method successfully applied to deep RL settings. Disagreement (Pathak
et al., 2019) further extended ICM by using the variance over an ensemble of forward-dynamics models to
compute curiosity. However, curiosity-driven methods are consistently found to be unsuccessful when the
environment has irreducible noise (Savinov et al., 2019). To address the problem, Raileanu & Rocktäschel
(2020) proposed RIDE, which uses the difference between two consecutive state embeddings as the intrinsic
reward and encourages the agent to choose actions that result in significant state changes. In general,
curiosity-based objectives remain amongst the most popular intrinsic rewards in deep RL applications to
this day. In RLeXplore, we include ICM, Disagreement, and RIDE as representatives of the state-of-the-art
curiosity-driven methods.

2.3 Global and Episodic Exploration

Towards more general and adaptive agents, recent works have studied decision-making problems in contextual
Markov decision processes (MDPs) (e.g., procedurally-generated environments) (Raileanu & Rocktäschel,
2020; Henaff et al., 2022; Matthews et al., 2024). Contextual MDPs require episodic-level exploration, where
novelty estimates are reset at the beginning of each episode. Henaff et al. (2023) showed that both global
and episodic exploration modalities have unique benefits and proposed combined objectives that achieve
remarkable performance across many MDPs of different structures. NGU (Badia et al., 2020) and RIDE
(Raileanu & Rocktäschel, 2020) also instantiate both global and episodic bonuses. Inspired by this recent
line of work, in this paper, we study novel combinations of objectives for exploration that achieve impressive
results in contextual MDPs.
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2.4 Unsupervised RL

Unsupervised Reinforcement Learning (URL) is a developing area of research focused on training decision-
making agents without relying on explicit supervision. This approach draws inspiration from human learning,
which often relies on intrinsic motivation. The goal of URL is to pre-train agents in a way that allows them
to quickly and effectively adapt to new tasks with minimal external guidance. A common approach in URL
involves skill-based methods, where the process is divided into two distinct phases: skill discovery and skill
learning (Liu & Abbeel, 2021; Yarats et al., 2021; Campos et al., 2020). In this framework, agents first learn
a variety of skills through exploration and then use these skills to maximize performance on a given task
with an external reward function (Eysenbach et al., 2018).

The URL benchmark (URLB) (Laskin et al., 2021b) provides implementations of eight different URL algo-
rithms and evaluates their performance using a modified version of the DeepMind Control Suite. However,
URLB has limitations: its implementations are not modular or easily integrated with other RL libraries,
which hinders its broader adoption in research. To address this issue, we introduce RLeXplore. Unlike URLB,
RLeXplore is designed to be highly modular and easily integrable with existing RL libraries. This modu-
larity allows researchers to seamlessly incorporate RLeXplore into their workflows. Additionally, RLeXplore
focuses on immediate intrinsic reward methods (i.e., non-skill-based approaches) that are straightforward to
combine with task rewards. These methods do not require explicit separation of the RL training into distinct
phases. The primary contribution of RLeXplore is not just its benchmark but its set of reliable, easy-to-use
implementations. This design facilitates research and experimentation by providing practical tools rather
than focusing solely on ranking algorithms across a specific set of tasks.

3 Background

We frame the RL problem considering a MDP (Bellman, 1957; Kaelbling et al., 1998) defined by a tuple
M = (S,A, E, P, d0, γ), where S is the state space, A is the action space, and E : S ×A → R is the extrinsic
reward function, P : S × A → ∆(S) is the transition function that defines a probability distribution over S,
d0 ∈ ∆(S) is the distribution of the initial observation s0, and γ ∈ [0, 1) is a discount factor. The goal of
RL is to learn a policy πθ(a|s) to maximize the expected discounted return:

Jπ(θ) = Eπ

[ ∞∑
t=0

γtEt

]
. (1)

Intrinsic rewards augment the learning objective to improve exploration. Letting I : S × A → R denote the
intrinsic reward function, the augmented optimization objective is:

Jπ(θ) = Eπ

[ ∞∑
t=0

γt(Et + βt · It)
]
, (2)

where βt = β0(1 − κ)t controls the degree of exploration, and κ is a decay rate.

In Appendix A, we present a detailed overview of the SOTA intrinsic reward methods that we implement in
RLeXplore.

4 RLeXplore

In this section, we present RLeXplore, a unified, highly-modularized and plug-and-play framework that
currently provides high-quality and reliable implementations of eight SOTA intrinsic reward algorithms1.
Comparing multiple intrinsic reward methods under fair conditions is challenging due to various confound-
ing factors, such as using distinct backbone RL algorithms (e.g., PPO (Schulman et al., 2017), DQN (Mnih
et al., 2013), IMPALA (Espeholt et al., 2018)), optimization (e.g., reward and observation normalization,

1RLeXplore complies with the MIT License.
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Figure 2: The workflow of RLeXplore. (a) RLeXplore provides a decoupled module for intrinsic rewards that
integrates seamlessly with the RL training loop. RLeXplore implements 8 SOTA intrinsic rewards and adapts to the
unmodified RL training loop. (b) RLeXplore monitors the agent-environment interactions and gathers data samples
using the .watch() function. After collecting experience rollouts, RLeXplore computes the corresponding intrinsic
rewards using the .compute() function and updates the auxiliary models via the .update() function. (c) RLeXplore
provides a Fabric class that allows developers to combine multiple intrinsic rewards in an elegant manner.

network architecture) and evaluation details (e.g., environment configuration, algorithm hyperparameters).
RLeXplore is designed to provide a unified framework with standardized procedures for implementing, com-
puting, and optimizing intrinsic rewards.

4.1 Architecture

The core design decision of RLeXplore involves decoupling the intrinsic reward modules from the RL opti-
mization algorithms, which enables our intrinsic reward implementations to be integrated with any desired
RL algorithm (or existing library, see Appendix C and the official integration examples). Figure 2 illustrates
the basic workflow of RLeXplore, which consists of two parts: data collection (i.e., policy rollout) and reward
computation.

Commonly, at each time step, the agent receives observations from the environment and predicts actions.
The environment then executes the actions and returns feedback to the agent, which consists of a next
observation, a reward, and a terminal signal. During the data collection process, the .watch() function
is used to monitor the agent-environment interactions. For instance, E3B (Henaff et al., 2022) updates
an estimate of an ellipsoid in an embedding space after observing every state. At the end of the data
collection rollouts, .compute() computes the corresponding intrinsic rewards. Note that .compute() is
only called once per rollout using batched operations, which makes RLeXplore a highly efficient framework.
Additionally, RLeXplore provides several utilities for reward and observation normalization. Finally, the
.update() function is called immediately after .compute() to update the reward module if necessary (e.g.,
train the forward dynamics models in Disagreement (Pathak et al., 2019) or the predictor network in RND
(Burda et al., 2019b)). Appendix C illustrates the usage of the aforementioned functions. All operations are
subject to the standard workflow of the Gymnasium API (Towers et al., 2023).

In particular, recent research (Henaff et al., 2023) has highlighted that mixed intrinsic rewards can signif-
icantly promote the agent’s exploration capability by providing comprehensive exploration incentives. In
RLeXplore, we provide a Fabric class that allows developers to combine multiple intrinsic rewards in an
elegant manner, as illustrated in Appendix C.2.

RLeXplore offers several benefits to the research community:

• For researchers seeking reliable tools for benchmarking and general applications: RLeXplore provides
high-quality implementations of popular intrinsic reward algorithms, useful in both research and
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(a) (b) (c) (d) (e)
Figure 3: Screenshots of the selected exploration games. (a) SuperMarioBros. (b) MiniGrid. (c) ALE-5. (d) Procgen-
Maze. (e) Ant-UMaze.

practical applications. It can be seamlessly integrated with existing RL libraries. We provide
specific examples of integrating RLeXplore with Stable Baselines3 (Raffin et al., 2021), CleanRL
(Huang et al., 2022b), and RLLTE (Yuan et al., 2023) in Appendix C.

• For developers experimenting with new intrinsic rewards: RLeXplore offers modular components,
such as various embedding networks, and a standardized workflow. This setup facilitates the creation,
modification, and testing of new ideas. Detailed examples are available in the code repository and
documentation.

• For promoting collaboration and accelerating progress: We have published a space using Weights &
Biases (W&B) to store reusable experiment results on recognized benchmarks. This initiative aims
to enhance collaboration within the research community and speed up progress by providing easy
access to established benchmark results.

4.2 Algorithmic Baselines

In RLeXplore, we implement eight widely-recognized intrinsic reward algorithms spanning the different
categories described in Section 2, namely ICM (Pathak et al., 2017), RND (Burda et al., 2019b), Disagreement
(Pathak et al., 2019), NGU (Badia et al., 2020), PseudoCounts (Badia et al., 2020), RIDE (Raileanu &
Rocktäschel, 2020), RE3 (Seo et al., 2021), and E3B (Henaff et al., 2022), respectively. We selected them
based on the following tenet:

• The algorithm represents a unique design philosophy;

• The algorithm achieved superior performance on well-recognized benchmarks;

• The algorithm can adapt to arbitrary tasks and can be combined with arbitrary RL algorithms.

For detailed descriptions of each method, we refer the reader to Appendix A.

5 Experiments

Our experiments aim to achieve two main objectives: (i) Highlight how intrinsic reward methods are sen-
sitive to implementation details, and (ii) what are the best algorithmic and design choices to ensure high
performance across various sparse-reward environments to demonstrate the generality and robustness of our
framework. First, we use SuperMarioBros (SMB) without access to the environment’s rewards to study the
low-level implementation details of intrinsic reward methods that drive robust exploration. We selected SMB
because effective exploration within this environment strongly correlates with task performance, making it
an excellent benchmark for measuring the efficacy of exploration techniques. This environment has been
widely used in previous studies on exploration in RL (Pathak et al., 2019; Raileanu & Rocktäschel, 2020;
Burda et al., 2019a). To further generalize our findings, we also use the MiniGrid-DoorKey-16×16 (MGD)
environment, which is challenging due to the sparse rewards, making it difficult to solve with classical RL

6



Under review as submission to TMLR

algorithms2. The effectiveness of intrinsic rewards in MiniGrid environments has also been highlighted in
prior works (Raileanu & Rocktäschel, 2020; Henaff et al., 2022; 2023). With these two environments we aim
to study the implementation details in both reward-free and sparse-reward tasks.

Secondly, to showcase the generalizability of RLeXplore, we evaluate our implementations in additional
sparse-reward environments, including Procgen, MiniGrid, Ant-UMaze, and the set of five hard-exploration
games in the arcade learning environment (ALE) suite. These experiments are designed to test how well our
methods balance the use of dense intrinsic rewards with sparse extrinsic rewards across a variety of tasks.
The complete set of learning curves for all the experiments is shown in Appendix E.

Lastly, we explore recent advancements in using combined intrinsic rewards (Henaff et al., 2023) to enhance
exploration in contextual MDPs. Specifically, we use the full set of levels in SMB to evaluate how well both
single and combined intrinsic rewards can explore various game versions and generalize their exploration
across different levels.

In the following sections, we present results from SMB and MiniGrid for objective (i) and from Procgen-Maze
for objective (ii). Additionally, in Appendix D, we show that using RLeXplore, we are able to reproduce
and improve the performance reported in previous works for many intrinsic rewards and across multiple
environments.

The design of these experiments is driven by our primary goal: to provide a general and reliable set of
intrinsic reward implementations within a user-friendly framework. Instead of attempting to benchmark
all algorithms across every possible domain, we focus on verifying the generality of each method within a
carefully selected subset of popular exploration tasks.

5.1 Low-level Implementation Details of Intrinsic Rewards

The performance of intrinsic rewards is affected by various factors that tend to vary with the
complexity of the task. For instance, the RL algorithm used for optimization, the architec-
ture of the networks, algorithm-specific hyperparameters, and the joint optimization of intrin-
sic and extrinsic rewards. As a result, implementing and reproducing intrinsic reward algo-
rithms is challenging. To tackle this problem, we first formulate five questions to investigate
how various low-level implementation details impact the training of intrinsically-motivated agents.

Table 2: Details of the baseline settings.

Hyperparameter Value
Observation norm. RMS
Reward norm. RMS
Weight init. Orthogonal
Update proportion 100%
with LSTM False

We first define an initial baseline configuration for optimizing the
intrinsic rewards, shown in Table 2. These baseline settings are
selected based on the most common configurations reported in the
literature. Next, we address each question by modifying only one
hyperparameter in the baseline configuration at a time. Finally,
we evaluate the performance of these intrinsic rewards with the
best parameters gathered in each question. All the experiments
are conducted using SMB and MGD to investigate the effects in
sparse-rewards and reward-free (i.e., without access to extrinsic
rewards) scenarios, respectively.

Importantly, as shown in Figure 2, we keep the PPO hyperparameters fixed and the overall RL training loop
unmodified throughout all the experiments in the paper in order to isolate the effect of the questions on the
intrinsic reward components. Previous work has shown that PPO has many implementation details that are
key to achieving great performance (Huang et al., 2022a; Engstrom et al., 2020). In the following, we study
implementation details for the intrinsic reward components. The fixed PPO hyperparameters are shown in
Table 4.

Q1: The impact of observation normalization.

Observation normalization is crucial in deep learning to avoid numerical instabilities during optimization.
Image observations, where each pixel value typically ranges from 0 to 255 per color channel, are commonly

2https://minigrid.farama.org/environments/minigrid/DoorKeyEnv
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Figure 4: Results for Q1, Q2, Q3, Q4, and Q5 in SMB (top) and MGD (bottom), which are normalized by maximum
score possibly achieved in the task. Here, Combined refers to the results of using the best hyperparameters gathered
in each question. Since RE3 only employs a fixed, randomly initialized neural network for encoding observations, there
are no values in Q3. All the results are aggregated over 10 seeds, and each run uses 10M environment interactions.

normalized to a range of 0 to 1 using Min-Max normalization by dividing each pixel value by 255. How-
ever, previous studies suggest that Min-Max normalization may not be ideal for all representation learning
algorithms (Burda et al., 2019b).

In Q1, we compare Min-Max normalization with using an exponential moving average (EMA) of the mean and
standard deviation for observation normalization (RMS) for the inputs to the intrinsic reward modules. RMS
normalizes observations by subtracting the running mean and dividing by the running standard deviation
of all observations collected by the agent thus far. Our results shown in Figures 4 and 5 indicate that
using RMS for observation normalization generally reduces the variance and achieves better asymptotic
performance across all the environments of study. Importantly, some intrinsic rewards, such as RND, NGU,
PseudoCounts, and RIDE, benefit significantly from RMS normalization. Critically, RND achieves 0 rewards
in SMB if observations are not normalized with RMS. These results indicate that RMS normalization is
important for intrinsic reward methods that use random networks since the lack of normalization can result
in the embeddings produced by the random networks carrying very little information about the inputs (Burda
et al., 2019b).

Q2: The impact of reward normalization.

Similarly to Q1, reward normalization can have a large impact when using deep neural networks to compute
the intrinsic rewards, since the scale of these rewards can be arbitrary and vary significantly over time. To
mitigate the non-stationarity of intrinsic rewards, in Q2, we compare three normalization approaches for
the reward outputs of the intrinsic reward modules: (1) Min-Max normalization, (2) using an RMS of the
standard deviation, and (3) no reward normalization.
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Figure 5: Aggregated performance of the eight intrinsic rewards with different low-level hyperparameters over 10
random seeds. The vertical dashed line represents the performance of the extrinsic agent, which only has access to
the task rewards. Here, U. P. is the update proportion, O. N. is the observation normalization, R. N. is the reward
normalization, IQM is the interquartile mean, OG is the optimality gap (lower is better), and Combined refers to
the results of using the best hyperparameters gathered in each question. All the computation is performed using the
Rliable (Agarwal et al., 2021) library.

Reward normalization smooths the optimization process, which can be beneficial for stability but can lead to
slower convergence (Burda et al., 2019b). Our findings show that almost all intrinsic rewards critically require
some form of reward normalization, as agents fail to explore without normalized rewards. Importantly, the
latter applies to all the environments that we experiment with. Additionally, while RMS is generally the
default strategy for reward normalization, our results in Figure 5 show that Min-Max normalization is a
more robust option in SMB, improving the performance and reducing the variance of the majority of the
methods. Interestingly, in MGD, Min-Max normalization seems to decrease the performance of Disagreement
and NGU, rendering this implementation detail worth tunning for specific environments.

Q3: The co-learning dynamics of policies and auxiliary tasks for intrinsic rewards.

Optimizing intrinsic rewards in deep RL often involves training additional networks for auxiliary tasks (e.g.,
predictor network in RND, inverse dynamics encoder in ICM, forward dynamics encoders in Disagreement).
However, managing the co-learning dynamics of the auxiliary networks and policies is challenging. In Q3,
we explore three update strategies for the auxiliary networks in the intrinsic reward modules: (1) updating
them at the same frequency as the policy, (2) updating them 50% of the time, (3) updating them 10% of
the time, and (4) updating them 1% of the time. This comparison sheds light on the trade-off between the
number of gradient updates in the auxiliary networks and the performance of the policy. Additionally, lower
update frequencies have the benefit of reducing computational overhead and training time by limiting the
number of gradient updates required.

Our findings indicate that the auxiliary networks generally perform robustly across the range of studied
update frequencies. Additionally, there is no clear configuration that seems generally better for all intrinsic
rewards across environments, rendering this implementation detail worth tunning for specific environments.

Q4: The impact of weight initialization.
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Weight initialization plays a crucial role in optimizing deep neural networks, enabling faster convergence.
In Q4, we compare two approaches for weight initialization in the auxiliary networks of the intrinsic reward
modules: (1) orthogonal weight initialization and (2) uniform weight initialization (PyTorch’s default). Note
that again, the policy and value networks remain unchanged.

Our results highlight the importance of weight initialization in intrinsically-motivated RL. Specifically, we
found that orthogonal weight initialization is beneficial for most intrinsic rewards, regardless of their specific
optimization tasks (e.g., inverse dynamics, forward dynamics), and even in random networks (e.g., RND
and RE3). This benefit is evidenced by reduced variance in episode returns and generally higher mean
returns. This observation aligns with previous research indicating that orthogonal weight initialization can
improve performance stability in deep RL agents (Huang et al., 2022a; Engstrom et al., 2020). Importantly,
RND is the intrinsic reward method that shows the highest variability for this implementation detail, where
orthogonal weight initialization works better in SMB but worse than uniform initialization in MGD.

Q5: Is memory required to optimize intrinsic rewards?

In Q5, we investigate whether the intrinsic rewards included in RLeXplore benefit from memory-enabled
architectures. We compare the optimization of intrinsic rewards using a vanilla policy network and one
equipped with a long-short term memory (LSTM) (Hochreiter & Schmidhuber, 1997) module while keeping
PPO as the RL backbone algorithm.

Some intrinsic reward methods exhibit significantly lower performance when using LSTM policies. This
observation aligns with the fact that LSTMs provide episodic context to policies, whereas most intrinsic
reward methods define exploration as a global problem.
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Figure 6: Performance of four selected intrinsic rewards in RLeXplore on the top eight most challenging tasks of
the MGD suite. The solid line and shaded regions represent the mean and standard deviation computed with five
random seeds, respectively.

Finally, we use the best-performing implementation details observed from Q1-5 to experiment in the set of
most challenging exploration tasks from MiniGrid. Our results in Figure 6 show that with our implementa-
tions of intrinsic rewards in RLeXplore, researchers can make progress in training RL agents in challenging
tasks where vanilla RL agents are unable to learn due to the sparsity of the task rewards. In summary, by
systematically addressing the implementation details, our work significantly enhances the reproducibility of
intrinsic reward methods. These thoughtful design choices not only improve performance but also ensure
that our implementations can be reliably reproduced and generalized across various environments.

5.2 Combination of Intrinsic and Extrinsic Rewards

Q6: Joint optimization of intrinsic and extrinsic rewards.
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Training agents to maximize two learning signals concurrently can be challenging. In sparse-reward envi-
ronments, the objective is for agents to explore the state space by optimizing intrinsic rewards until they
discover the task rewards, at which point they should focus solely on optimizing the task rewards. However,
many intrinsically-motivated RL applications naively optimize the sum of intrinsic and extrinsic rewards,
potentially leading to learning fuzzy value functions and suboptimal policies. In this section, we compare
this approach with learning two separate value functions, one for each stream of rewards. The advantages
of the latter include the ability to disentangle the effects of intrinsic and extrinsic rewards on the agent’s
behavior, leading to clearer learning dynamics and potentially more efficient exploration.

For this analysis, we used the Procgen-Maze task (Cobbe et al., 2020) as a sparse-reward benchmark. RL
agents often struggle to learn meaningful behaviors from the extrinsic reward alone in this task. We evaluate
different variants of the task (e.g., 1 maze vs. 200 mazes) to examine singleton versus contextual MDPs. We
note that in our framework, we do not provide different context information to the agents for singleton versus
contextual MDPs (e.g., the context ID). We refer to these frameworks to formalize the agent-environment
interaction when the environment remains static throughout training (i.e., singleton - 1 maze) versus when
it varies at each episode (i.e., contextual - a different maze at each episode).

Figure 7 demonstrates that learning two separate value functions (Huang et al., 2022b), which we refer as
the TwoHead architecture, outperforms the naive approach of simply adding the two rewards in the complex
sparse-reward environment of Procgen-Maze, both in singleton and contextual settings. Importantly, all
methods outperform the extrinsic agent, especially in the 1 Maze environment.
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Figure 7: (Left) During training, the extrinsic agent struggles to find the goal in the selected Maze, resulting in
a reward of 0. While some intrinsic reward methods yield occasional non-zero rewards, the algorithms perform
significantly better when intrinsic and extrinsic value estimation are decoupled using two distinct value heads in the
agent’s network. (Right) In the Procgen variant, where each maze represents a unique level, the baseline extrinsic
agent achieves the goal 50% of the time, and intrinsic rewards don’t outperform the baseline significantly. We note
that the presence of easier levels, where the goal may occasionally be near the agent’s starting point results in generally
less sparse rewards and an easier task to learn.

5.3 Unlocking the Potential of Intrinsic Rewards

Q1-6 extensively discuss the tuning of intrinsic rewards under both normal and reward-free scenarios, reveal-
ing significant insights into the optimization processes. However, we aim to delve deeper into the capabilities
of intrinsic rewards to address the evolving challenges in the RL community. Specifically, in Q7, we in-
vestigate recent developments in the exploration literature in RL, such as combined intrinsic rewards and
exploration in contextual MDPs. For our experiments, we use the SMB-RandomStages environment variant,
where agents play a different level in the game at each episode. Our results indicate that the recent de-
velopments in combined intrinsic rewards merit further research, as we demonstrate that such methods can
enable agents to learn exploratory behaviors of exceptional quality in both singleton and contextual MDPs.

Q7: The performance of mixed intrinsic rewards.

11



Under review as submission to TMLR

We run experiments using all the levels in the game of SMB, and we sample them uniformly during training.
As in Q1-5, we do not use the extrinsic reward for training the agents but use it as an evaluation metric to
show how much agents actively explore the environment.

Our results show that combined objectives enable emergent behaviors of much better quality than single
objectives. Interestingly, E3B and RIDE are the best performing single objectives, and E3B+RIDE also
achieves the highest performance among all the combinations. Similarly, RND and ICM, combined with
other intrinsic rewards, outperform their original performance. This indicates that different intrinsic rewards
can provide orthogonal gains that can be leveraged together.
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Figure 8: (Left) The performance ranking of single and mixed intrinsic rewards on the SuperMarioBrosRandomLevels.
As expected, episodic bonuses (such as E3B and RIDE) demonstrate superior performance, attributed to the environ-
ment’s non-singleton MDP nature. (Right) Overall performance comparisons between the single and mixed intrinsic
rewards. Here, G.E. denotes the six "global+episodic" combinations, and G.G. denotes the three "global+global"
combinations, as illustrated in Table 5.

6 Conclusion

Our work introduces RLeXplore, a comprehensive open-source repository that not only implements state-of-
the-art intrinsic rewards but also provides a systematic evaluation framework for understanding their impact
on agent performance. Our results show that with RLeXplore, RL agents can learn emergent behaviors
autonomously, solving multiple levels of SuperMarioBros without task rewards. Additionally, we show that
intrinsic rewards enable RL agents to obtain great performance on complex sparse-reward tasks like Procgen-
Maze, MiniGrid, the ALE-5 hard-exploration tasks and Ant-UMaze. Finally, RLeXplore facilitates further
research in mixed intrinsic rewards (Henaff et al., 2023), uncovering the potential of such methods.

Through our study, we emphasize the importance of thoughtful implementation design, demonstrating that
well-considered approaches lead to significant performance gains over naive implementations. Our contribu-
tions extend to establishing standardized practices for implementing and optimizing intrinsic rewards, laying
the groundwork for future advancements in intrinsically motivated RL.

Still, there are currently remaining limitations to this work. In RLeXplore, we selected eight widely-used
intrinsic reward methods that align with state-of-the-art exploration objectives. However, RLeXplore does
not encompass the entire spectrum of exploration algorithms, as there is a vast array of exploration objectives
with different characteristics that are not currently implemented in the framework. For instance, skill-based
algorithms, which typically involve separate phases for skill discovery and skill learning, are not included
in RLeXplore. These algorithms, such as DIAYN (Eysenbach et al., 2018), CIC (Laskin et al., 2021a),
and EDL (Campos et al., 2020), have a fundamentally different structure and application compared to
immediate intrinsic rewards, making them less suitable for integration into the current version of RLeXplore.
Additionally, RLeXplore was designed with accessibility in mind, ensuring that the implemented algorithms
can be run on standard computational resources by any researcher. To maintain this accessibility, we have
not included more complex and potentially powerful algorithms like BYOL-Explore (Guo et al., 2022) or
RECODE (Kapturowski et al.). These algorithms are not open-source and have been optimized exclusively
with non-open-source RL algorithms, which further limits their integration into RLeXplore.
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A Algorithmic Baselines

ICM (Pathak et al., 2017). ICM leverages an inverse-forward model to learn the dynamics of the environment
and uses the prediction error as the curiosity reward. Specifically, the inverse model inferences the current
action at based on the encoded states et and et+1, where e = ψ(s) and ψ(·) is an embedding network.
Meanwhile, the forward model f predicts the encoded next-state et based on (et,at). Finally, the intrinsic
reward is defined as

It = ∥f(et,at) − et+1∥2
2. (3)

RND (Burda et al., 2019b). RND produces intrinsic rewards via a self-supervised manner, in which a
predictor network f̂ is trained to approximate a fixed and randomly-initialized target network f̂ . As a
result, the agent is motivated to explore unseen parts of the state space. The intrinsic reward is defined as

It = ∥f̂(st+1) − f(st+1)∥2
2. (4)

Disagreement (Pathak et al., 2019). Disagreement is a variant of ICM that leverages an ensemble of
forward models and calculates the intrinsic reward as the variance among these models. Accordingly, the
intrinsic reward is defined as

It = Var{fi(et,at)}, i = 0, . . . , N. (5)

NGU (Badia et al., 2020). NGU is a mixed intrinsic reward approach that combines global and episodic
exploration and the first algorithm to achieve non-zero rewards in the game of Pitfall! without using
demonstrations or hand-crafted features. The intrinsic reward is defined as

It = min{max{αt}, C}/
√
Nep(st), (6)

where αt is a life-long curiosity factor computed following the RND method, C is a chosen maximum reward
scaling, and Nep is the episodic state visitation frequency computed by pseudo-counts.

PseudoCounts (Badia et al., 2020). Pseudo-counts has been widely used in count-based exploration ap-
proaches (Bellemare et al., 2016; Ostrovski et al., 2017) with diverse implementations like neural density
models. In this paper, we follow NGU (Badia et al., 2020) that computes pseudo-counts via k-nearest
neighbor estimation, which is highly efficient and can be applied to arbitrary tasks. Given the encoded
observations {e0, . . . , eT −1} visited in the an episode, we have√

Nep(st) ≈
√∑

ẽi

K(ẽi, et) + c, (7)

where ẽi is the first k nearest neighbors of e, K is a Dirac delta function, and c guarantees a minimum
amount of pseudo-counts. Finally, the intrinsic reward is defined as

It = 1/
√
Nep(st) (8)

RIDE (Raileanu & Rocktäschel, 2020). RIDE is designed based on ICM that learns the dynamics of the
environment and rewards significant state changes. Accordingly, the intrinsic reward is defined as

It = ∥et+1 − et∥2/
√
Nep(st+1), (9)

where Nep(st+1) is used to discount the intrinsic reward and prevent the agent from lingering in a sequence
of states with a large difference in their embeddings.

RE3 (Seo et al., 2021). RE3 is an information theory-based and computation-efficient exploration approach
that aims to maximize the Shannon entropy of the state visiting distribution. In particular, RE3 leverages
a random and fixed neural network to encode the state space and employs a k-nearest neighbor estimator
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to estimate the entropy efficiently. Then, the estimated entropy is transformed into particle-based intrinsic
rewards. Specifically, the intrinsic reward is defined as

It = 1
k

k∑
i=1

log(∥et − ẽi
t∥2 + 1). (10)

E3B (Henaff et al., 2022). E3B provides a generalization of count-based rewards to continuous spaces. E3B
learns a representation mapping from observations to a latent space (e.g., using inverse dynamics). At each
episode, the sequence of latent observations parameterizes an ellipsoid (Li et al., 2010; Auer, 2002; Dani
et al., 2008), which is used to measure the novelty of the subsequent observations. In tabular settings, the
E3B ellipsoid reduces to the table of inverse state-visitation frequencies (Henaff et al., 2022). Given a feature
encoding f , at each time step t of the episode the elliptical bonus It is defined as follows:

It = f(st)TCt−1f(st), (11)

Ct−1 =
t−1∑
i=1

f(si)f(si)T + λI, (12)

where f is the learned representation mapping, Ct−1 is the episodic ellipsoid (Henaff et al., 2022), λ is a
scalar coefficient, and I is the identity matrix.
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B Experimental Settings

B.1 Baselines

We designed the following settings for the baseline experiments, and all the subsequent questions were
adjusted based on the baselines. Moreover, all the experiments are performed using the proximal policy
optimization (PPO) (Schulman et al., 2017) implementation from RLLTE (Yuan et al., 2023).

Table 3: Details of baseline settings.
Hyperparameter Value
Observation normalization RMS
Reward normalization RMS
Weight initialization Orthogonal
Update proportion 1.0
with LSTM False

Table 4: PPO hyperparameters for SuperMarioBros, MiniGrid, and Procgen games. These remain fixed for all
experiments.

Hyperparameter SuperMarioBros MiniGrid Procgen
Observation downsampling (84, 84) (7, 7) (64, 64)
Observation normalization / 255. No / 255.
Reward normalization No No No
Weight initialization Orthogonal Orthogonal Orthogonal
LSTM No No No
Stacked frames No No No
Environment steps 10000000 10000000 25000000
Episode steps 128 32 256
Number of workers 1 1 1
Environments per worker 8 256 64
Optimizer Adam Adam Adam
Learning rate 2.5e-4 2.5e-4 5e-4
GAE coefficient 0.95 0.95 0.95
Action entropy coefficient 0.01 0.01 0.01
Value loss coefficient 0.5 0.5 0.5
Value clip range 0.1 0.1 0.2
Max gradient norm 0.5 0.5 0.5
Epochs per rollout 4 4 3
Batch size 256 1024 2048
Discount factor 0.99 0.99 0.999

B.2 Details of Questions

Table 5 illustrates the details of the candidates for all questions.
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Table 5: Details of candidates for all questions, where I is a batch of intrinsic rewards.
# Candidate Detail
Q1 Min-Max obs. = obs. / 255.0, only for image-based observations.

Vanilla obs. = obs.
RMS obs. = Clip

(
obs.−running mean

running std. ,−5.0, 5.0
)

Q2 Vanilla I = I
RMS I = I

running std
Min-Max I = I−min(I)

max(I)−min(I)

Q3 0.01 Use 1% of the samples to update the intrinsic reward module.
0.1 Use 10% of the samples to update the intrinsic reward module.
0.5 Use 50% of the samples to update the intrinsic reward module.
1.0 Use 100% of the samples to update the intrinsic reward module.

Q4 Vanilla Fill the input tensor with values drawn from the uniform distribution.
Orthogonal Fill the input tensor with a (semi) orthogonal matrix.

Q5 Vanilla Policy network with only convolutional and linear layers.
LSTM Policy network that includes an LSTM layer.

Q6 Vanilla R = E + I
Two-head Value network uses two separate branches for E and I.

Q7 Global+Episodic E3B+RND, E3B+ICM, E3B+RIDE,
RE3+RND, RE3+ICM, RE3+RIDE

Global+Global RND+ICM, RND+RIDE, ICM+RIDE

B.3 Best Configurations

Table 6: The best configurations for each intrinsic reward on SuperMarioBros.
Reward Obs. Norm. Reward Norm. Update Prop. Weight Init. Memory Required

ICM Min-Max Vanilla 1.0 Default ✗

RND RMS Vanilla 1.0 Orthogonal ✗

Disagreement RMS Vanilla 0.5 Default ✗

NGU RMS Min-Max 0.1 Default ✗

PseudoCounts RMS Min-Max 0.01 Default ✓

RIDE RMS Min-Max 0.01 Default ✗

RE3 Min-Max Min-Max N/A Default ✗

E3B Min-Max Min-Max 0.1 Orthogonal ✓

Table 7: The best configurations for each intrinsic reward on MiniGrid-DoorKey-16×16.
Reward Obs. Norm. Reward Norm. Update Prop. Weight Init. Memory Required

ICM RMS RMS 1.0 Orthogonal ✗

RND RMS Vanilla 0.5 Orthogonal ✗

Disagreement Vanilla Min-Max 0.5 Default ✗

NGU RMS RMS 0.01 Orthogonal ✗

PseudoCounts RMS Min-Max 1.0 Orthogonal ✗

RIDE RMS Min-Max 1.0 Orthogonal ✗

RE3 RMS Min-Max N/A Orthogonal ✗

E3B RMS RMS 1.0 Orthogonal ✗
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C Usage Examples

C.1 Workflow of RLeXplore

The following code provides an example when using RLeXplore with on-policy algorithms. At each time
step, the agent first observes the vectorized environments before taking actions. Then the environments
execute the actions and return the step information, which is processed by the .watch() function to extract
necessary data for the current intrinsic reward. Finally, the intrinsic rewards will be computed, and the
module will updated concurrently at the end of the episode.
# load the library
from rllte . xplore . reward import RE3
# create the reward module
irs = RE3 (...)
# reset the environment
obs , infos = envs. reset ()
# a rollout storage
rs = RolloutStorage (...)
# training loop
for episode in range (...) :

for step in range (...) :
# sample actions
actions = agent (obs)
# step the environment
next_obs , rwds , terms , truncs , infos = envs.step( actions )
# get data from the transitions
irs. watch (obs , actions , rwds , next_obs , terms , truncs , infos )
...

# prepare the samples
samples = dict( observations =rs.obs , actions =rs.actions ,

rewards =rs.rewards , terminateds =rs. terminateds ,
truncateds =rs. truncateds , next_observations =rs. next_obs

)
# compute the intrinsic rewards
## sync ( bool ): Whether to update the reward module after the
## `compute ` function , default is `True `.
intrinsic_rewards = irs. compute (samples , sync=True)

In contrast, the workflow is a bit different when using RLeXplore with off-policy algorithms. As shown in
the following example, the intrinsic reward will computed at each time step rather than at the end of each
episode. Moreover, the intrinsic reward module will be updated using the same samples for policy updates.
# load the library
from rllte . xplore . reward import RE3
# create the reward module
irs = RE3 (...)
# reset the environment
obs , infos = envs. reset ()
# training loop
while True:

# sample actions
actions = agent (obs)
# step the environment
next_obs , rwds , terms , truncs , infos = envs.step( actions )
# get data from the transitions
irs. watch (obs , actions , rwds , next_obs , terms , truncs , infos )
# compute the intrinsic rewards at each step
## sync ( bool ): Whether to update the reward module after the
## `compute ` function , default is `True `
intrinsic_rewards = irs. compute (

samples =dict( observations =obs , actions =actions ,
rewards =rwds , terminateds =terms ,
truncateds =terms , next_observations = next_obs ),

sync= False )
...
# update the reward module
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batch = replay_storage . sample ()
irs. update ( samples =dict( observations = batch .obs ,

actions = batch .actions ,
rewards = batch .rewards ,
terminateds = batch . terminateds ,
truncateds = batch . truncateds ,
next_observations = batch . next_obs )

)
...

C.2 Mixed Intrinsic Reward

The following code example shows how to create a mixed intrinsic reward using two independent intrinsic
rewards:
from rllte .env import make_atari_env
from rllte . xplore . reward import Fabric , RE3 , ICM

# define the mixed intrinsic reward
class TwoMixed ( Fabric ):

def __init__ (self , m1 , m2):
super (). __init__ (m1 , m2)

def compute (self , samples , sync):
rwd1 , rwd2 = super (). compute (samples , sync)

return rwd1 + rwd2

if __name__ == " __main__ ":
# env setup
device = "cuda:0"
envs = make_atari_env ( device = device )
# create two intrinsic reward functions
irs1 = ICM(envs , device )
irs2 = RE3(envs , device )
# create the mixed intrinsic reward function
irs = TwoMixed (irs1 , irs2)

C.3 RLeXplore with Stable-Baselines3

Stable-Baselines3 (SB3) (Raffin et al., 2021) is one of the most successful and popular RL frameworks that
provides a set of reliable implementations of RL algorithms in Python. SB3 provides a convenient callback
function that can be called at given stages of the training procedure, the following code example demonstrates
how to use RLeXplore in SB3 for on-policy RL algorithms:
class RLeXploreWithOnPolicyRL ( BaseCallback ):

"""
Combining RLeXplore and on - policy algorithms from SB3 .
"""
def __init__ (self , irs , verbose =0):

super ( RLeXploreWithOnPolicyRL , self). __init__ ( verbose )
self.irs = irs
self. buffer = None

def init_callback (self , model : BaseAlgorithm ) -> None:
super (). init_callback ( model )
self. buffer = self. model . rollout_buffer

def _on_step (self) -> bool :
"""
This method will be called by the model after each call to `env. step () `.

: return : ( bool ) If the callback returns False , training is aborted early .
"""
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observations = self. locals [" obs_tensor "]
device = observations . device
actions = th. as_tensor (self. locals [" actions "], device = device )
rewards = th. as_tensor (self. locals [" rewards "], device = device )
dones = th. as_tensor (self. locals [" dones "], device = device )
next_observations = th. as_tensor (self. locals [" new_obs "], device = device )

# get data from the transitions
self.irs. watch ( observations , actions , rewards , dones , dones , next_observations )

return True

def _on_rollout_end (self) -> None:
# prepare the data samples
obs = th. as_tensor (self. buffer . observations )
# get the new observations
new_obs = obs. clone ()
new_obs [:-1] = obs[1:]
new_obs [-1] = th. as_tensor (self. locals [" new_obs "])
actions = th. as_tensor (self. buffer . actions )
rewards = th. as_tensor (self. buffer . rewards )
dones = th. as_tensor (self. buffer . episode_starts )
print (obs.shape , actions .shape , rewards .shape , dones .shape , obs. shape )
# compute the intrinsic rewards
intrinsic_rewards = irs. compute (

samples =dict( observations =obs , actions =actions ,
rewards =rewards , terminateds =dones ,
truncateds =dones , next_observations = new_obs ),

More detailed code examples can be found in the attached supplementary materials.

C.4 RLeXplore with CleanRL

CleanRL (Huang et al., 2022b) is an open-source project focused on implementing RL algorithms with clean,
understandable, and reproducible code. It aims to make RL more accessible by providing implementations
that are simpler and more transparent than those typically found in research papers or larger libraries. The
following code example demonstrates how to use RLeXplore in CleanRL for on-policy RL algorithms:
# load the library
from rllte . xplore . reward import RE3
# create the reward module
irs = RE3(envs=envs , device = device )
...
# get data from the transitions
irs. watch ( observations =obs[step], actions = actions [step],

rewards = rewards [step], terminateds = dones [step],
truncateds = dones [step], next_observations = next_obs
)

...
next_obs = obs. clone ()
next_obs [:-1] = obs[1:]
next_obs [-1] = next_obs
# compute the intrinsic rewards
intrinsic_rewards = irs. compute (

samples =dict( observations =obs , actions =actions ,
rewards =rewards , terminateds =dones ,
truncateds =dones , next_observations = next_obs ),

sync=True)
# add the intrinsic rewards to the rewards
rewards += intrinsic_rewards

More detailed code examples can be found in the attached supplementary materials.
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D Comparative Analysis of Intrinsic Reward Implementations

This section provides a detailed comparative analysis of our intrinsic reward implementations in the RL-
eXplore framework against other publicly available implementations. The results are compiled in tables for
different environments to demonstrate the performance of each algorithm. We cite the works from which we
obtained the original results in each of the tables, and we provide our results by averaging the performance
of the last 100 training episodes over 3 seeds.

D.1 SuperMarioBros without Task Rewards

Table 8: Comparison of % of level completed in SuperMarioBros without task rewards.
Algorithm % of Level Completed (10M Steps) % of Level Completed (1M Steps)
(Original) RIDE - 23%
(Original) ICM 30% -
(RLeXplore) RIDE 100% 50%
(RLeXplore) ICM 30% 2%

The percentage of the level completed is computed by dividing the episode return by 3,000, which corresponds
to the maximum reward that can be obtained in SuperMarioBros-1-1 (if the agent solves the level without
wasting time). Note that in Figure 1, we divide this quantity by 100 and show a maximum reward of 30.

Note that our implementation of ICM reproduces the results reported in the original paper in Mario (Pathak
et al., 2017), and our implementation of RIDE further outperforms the original implementation.

D.2 MiniGrid-DoorKey-16×16 (Extrinsic + Intrinsic Rewards)

Table 9: Episode returns in MiniGrid-DoorKey-16×16 with extrinsic and intrinsic rewards.
Algorithm Episode Return (10M Steps)
(Original) RIDE (Zhang et al., 2020) 0.25
(Original) ICM (Zhang et al., 2020) 0.0
(Original) RND (Zhang et al., 2020) 0.0
(Original) IMPALA (Zhang et al., 2020) 0.0
(RLeXplore) PPO 0.37
(RLeXplore) ICM 0.6
(RLeXplore) RND 0.6
(RLeXplore) RIDE 0.12

Using the implementations in RLeXplore we obtain significantly better performance in the same tasks and
with the same algorithms.
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D.3 MiniGrid-DoorKey-8×8 (1M Environment Steps)

We also evaluate our implementations in MiniGrid-DoorKey-8×8 with a budget of 1M environment steps to
be able to compare to the original results reported in (Seo et al., 2021).

Table 10: Episode returns in MiniGrid-DoorKey-8×8 with 1M environment steps.
Algorithm Episode Return (1M Steps)
(Original) RE3 (Seo et al., 2021) 0.5
(Original) RND (Seo et al., 2021) 0.0
(Original) ICM (Seo et al., 2021) 0.2
(Original) A2C (Seo et al., 2021) 0.0
(RLeXplore) RE3 0.95
(RLeXplore) RND 0.0
(RLeXplore) ICM 0.83
(RLeXplore) PPO 0.22

Importantly, we reproduce the results reported in (Seo et al., 2021) very accurately, showing that RE3 can
provide more sample-efficient exploration in this domain, compared to RND and ICM. Still, our implemen-
tations of RE3 and ICM achieve even better performance than the original ones.
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Figure 9: Using RLeXplore in MiniGrid-DoorKey-8×8, we are able to not only reproduce the conclusions obtained in
previous work (Seo et al., 2021) regarding the capabilities of RE3 compared to ICM and RND, but we also generally
achieve better performance, hence providing stronger baselines to the RL community.

D.4 Procgen - 200 Mazes (25M Training Steps)

Table 11: Performance comparison in Procgen - 200 Mazes with 25M training steps.
Algorithm Procgen - 200 Mazes (25M Steps)
(Original) E3B (Castanyer et al., 2023) 3.0
(Original) ICM (Castanyer et al., 2023) 2.5
(Original) RND (Castanyer et al., 2023) 1.7
(RLeXplore) E3B 4.1
(RLeXplore) ICM 5.9
(RLeXplore) RND 5.0

D.5 ALE-5 (25M Training Steps)

In this section, we present the evaluation results of the intrinsic reward algorithms on a set of ALE games
known for their challenging exploration requirements. These "hard-exploration" games, including Gravitar,
Montezuma’s Revenge, Private Eye, Seaquest, and Venture, serve as a benchmark for testing the effectiveness
of intrinsic rewards in aiding exploration and improving agent performance.

We observe that while intrinsic rewards lead to a decline in performance in Gravitar, they generally provide
substantial benefits, particularly in environments where exploration is difficult. For example, in Seaquest,
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Table 12: Mean performance across different environments for each algorithm, averaged over 3 seeds after 25M
environment steps. Results are averaged over the last 100 episodes of training. In Gravitar, intrinsic rewards
appear to hinder the performance of the extrinsic agent, whereas, in other environments, they significantly enhance
performance. Notably, in Seaquest, the extrinsic agent ranks among the lowest, highlighting the benefit of intrinsic
rewards. All experiments were conducted using sticky actions with a repeat probability of 0.25.

Algorithm Gravitar MontezumaRevenge PrivateEye Seaquest Venture
Extrinsic 1060.19 42.83 88.37 942.37 391.73
Disagreement 689.12 0.00 33.23 6577.03 468.43
E3B 503.43 0.50 66.23 8690.65 0.80
ICM 194.71 31.14 -27.50 2626.13 0.54
PseudoCounts 295.49 0.00 1076.74 668.96 1.03
RE3 130.00 2.68 312.72 864.60 0.06
RIDE 452.53 0.00 -1.40 1024.39 404.81
RND 835.57 160.22 45.85 5989.06 544.73

the use of intrinsic rewards enables algorithms to significantly outperform the extrinsic agent, which ranks
among the lowest.

Note that we do not compare these results to other works because evaluation settings differ significantly
between papers. For instance, in our case, we used sticky actions with a probability of 0.25%, which makes
the exploration problem more difficult, and it is not always used. Also, we trained our agents for 25M steps
instead of the standard 200M due to computational constraints. Still, our results provide evidence that
intrinsic rewards are generally helpful in achieving better episode returns in hard-exploration environments.

D.6 Comparison with Other Projects

Table 13: Details on official implementations of the included intrinsic rewards. Decoupled: Did the code decouple
the intrinsic reward modules from the RL optimization algorithms, which can be directly reused in other projects?

Reward Official
Repository

ML
framework

Backbone
RL algorithm

Supported
Tasks Decoupled

ICM Repository Tensorflow A3C SuperMarioBros,
VizDoom ✗

RND Repository Tensorflow PPO ALE ✗

Disagreement Repository Tensorflow PPO SuperMarioBros,
ALE, Maze ✗

NGU N/A N/A N/A N/A N/A

PseudoCounts from NGU N/A N/A N/A N/A

RIDE Repository PyTorch IMPALA MiniGrid ✗

RE3 Repository PyTorch A2C, Dreamer, RAD DMControl,
MiniGrid ✗

E3B Repository PyTorch IMPALA MiniHack,
VizDoom ✗

Table 13 illustrates the details of official implementations of the included intrinsic rewards in RLeXplore.
It is natural to find that they are implemented (1) in different codebases with (2) different libraries (e.g.,
PyTorch vs Tensorflow), (3) using different RL algorithms (PPO, IMPALA, A3C, A2C), and (4) supporting
different environments (ALE, Mario, MiniGrid, DMC). These details further motivate the development of a
unified framework for training RL agents with intrinsic rewards under standardized conditions and reinforce
our motivation to develop RLeXplore.
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Furthermore, we provide a comparison of the advantages of other popular codebases for training RL agents
with intrinsic rewards in terms of the number of intrinsic reward algorithms implemented, their modularity
and ability to reuse components between RL libraries easily, their documentation, and the number of ex-
periments provided. As compared to other existing projects, RLeXplore offers a distinctive advantage by
providing a more unified and standardized approach to training RL agents with intrinsic rewards. It allows
users to easily swap intrinsic reward modules regardless of RL libraries, which promotes reproducibility and
consistency across different research works. Finally, RLeXplore is evaluated on a wide range of benchmarks
with over 1,000 experiments, ensuring its reliability and robustness across various scenarios.

Table 14: Comparison between RLeXplore and other reported libraries of intrinsic rewards. Note that we focus on
the intrinsic reward methods that are implemented. For instance, CleanRL has many implementations of different
RL algorithms, but RND is the only supported intrinsic reward.

Framework ML
Framework

Number of
Algorithms Plug & Play Documentation Benchmark

Results

CleanRL PyTorch 1 ✗ ✓
1 task,
1 experiments

DI-Engine PyTorch 3 ✗ ✓
5 tasks,
19 experiments

rllib TensorFlow 2 ✗ ✓ N/A

RLeXplore PyTorch 8 ✓ ✓
17 tasks,
over 2000 experiments
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E Learning Curves
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Figure 10: Learning curves of the baselines and Q1 on SuperMarioBros. The solid line and shaded regions represent
the mean and standard deviation computed with 10 random seeds, respectively.
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Figure 11: Learning curves of the baselines and Q1 on MiniGrid-DoorKey-16×16. The solid line and shaded regions
represent the mean and standard deviation computed with 10 random seeds, respectively.
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Figure 12: Learning curves of the Q2 on SuperMarioBros. The solid line and shaded regions represent the mean and
standard deviation computed with 10 random seeds, respectively.
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Figure 13: Learning curves of the Q2 on MiniGrid-DoorKey-16×16. The solid line and shaded regions represent the
mean and standard deviation computed with 10 random seeds, respectively.
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Figure 14: Learning curves of the Q3 on SuperMarioBros. The solid line and shaded regions represent the mean and
standard deviation computed with 10 random seeds, respectively.
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Figure 15: Learning curves of the Q3 on MiniGrid-DoorKey-16×16. The solid line and shaded regions represent the
mean and standard deviation computed with 10 random seeds, respectively.
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Figure 16: Learning curves of the Q4 on SuperMarioBros. The solid line and shaded regions represent the mean and
standard deviation computed with 10 random seeds, respectively.
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Figure 17: Learning curves of the Q4 on MiniGrid-DoorKey-16×16. The solid line and shaded regions represent the
mean and standard deviation computed with 10 random seeds, respectively.
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Figure 18: Learning curves of the Q5 on SuperMarioBros. The solid line and shaded regions represent the mean and
standard deviation computed with 10 random seeds, respectively.
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Figure 19: Learning curves of the Q5 on MiniGrid-DoorKey-16×16. The solid line and shaded regions represent the
mean and standard deviation computed with 10 random seeds, respectively.
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Figure 20: Learning curves of Q6 on Procgen-1MazeHard. The solid line and shaded regions represent the mean and
standard deviation computed with five random seeds, respectively.
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Figure 21: Learning curves of Q6 on Procgen-AllMazeHard. The solid line and shaded regions represent the mean
and standard deviation computed with five random seeds, respectively.
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Figure 22: Learning curves of Q8 (global+episodic exploration) on SuperMarioBros-1-1-v3 and
SuperMarioBrosRandomStages-v3. The solid line and shaded regions represent the mean and standard devia-
tion computed with five random seeds, respectively.
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Figure 23: Learning curves of Q8 (global+global exploration) on SuperMarioBros-1-1-v3 and
SuperMarioBrosRandomStages-v3. The solid line and shaded regions represent the mean and standard devia-
tion computed with five random seeds, respectively.
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E.8 Additional Experiments for MiniGrid
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Figure 24: Learning curves of four selected intrinsic rewards on eight extremely hard tasks. The solid line and shaded
regions represent the mean and standard deviation computed with five random seeds, respectively.
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Figure 25: Learning curves on MiniGrid-MultiRoom-N2-S4-v0. The solid line and shaded regions represent the mean
and standard deviation computed with five random seeds, respectively.
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Figure 26: Learning curves on MiniGrid-MultiRoom-N4-S5-v0. The solid line and shaded regions represent the mean
and standard deviation computed with five random seeds, respectively.
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Figure 27: Learning curves on MiniGrid-KeyCorridorS3R3-v0. The solid line and shaded regions represent the mean
and standard deviation computed with five random seeds, respectively.

37



Under review as submission to TMLR

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

20

40

60

80

100

Ep
iso

de
 R

ew
ar

d

ICM

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

20

40

60

80

100

Ep
iso

de
 R

ew
ar

d

RND

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

20

40

60

80

100

Ep
iso

de
 R

ew
ar

d

Disagreement

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

20

40

60

80

100

Ep
iso

de
 R

ew
ar

d

NGU

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

20

40

60

80

100

Ep
iso

de
 R

ew
ar

d

PseudoCounts

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

20

40

60

80

100

Ep
iso

de
 R

ew
ar

d

RIDE

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

20

40

60

80

100

Ep
iso

de
 R

ew
ar

d

RE3

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

20

40

60

80

100

Ep
iso

de
 R

ew
ar

d

E3B

Intrinsic Reward Extrinsic

Figure 28: Learning curves on MiniGrid-KeyCorridorS5R3-v0. The solid line and shaded regions represent the mean
and standard deviation computed with five random seeds, respectively.
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Figure 29: Learning curves on MiniGrid-KeyCorridorS6R3-v0. The solid line and shaded regions represent the mean
and standard deviation computed with five random seeds, respectively.
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F On-Policy RL Algorithms and Discrete Control Tasks

In this section, we demonstrate the combination of RLeXplore and on-policy RL algorithms and their ef-
fectiveness on discrete control tasks. Specifically, we couple the PPO algorithm and intrinsic rewards and
evaluate their performance on Montezuma Revenge, a hard exploration task from the ALE benchmark
(Bellemare et al., 2013). We use the PPO implementation of CleanRL (Huang et al., 2022b) to show the
adaptability of RLeXplore. Table 15 illustrates the training hyperparameters used for the experiments.

Table 15: Training hyperparameters for Montezuma Revenge.
Part Hyperparameter Value

Observation downsampling (84, 84)
Stacked frames 4
Environment steps 1e+8
Episode steps 128
Number of workers 1
Environments per worker 8
Optimizer Adam

PPO Learning rate 1e-4
GAE coefficient 0.95
Action entropy coefficient 0.01
Value loss coefficient 0.5
Value clip range 0.1
Max gradient norm 0.5
Epochs per rollout 4
Batch size 256
Discount factor 0.99
Observation normalization RMS
Reward normalization RMS

Intrinsic reward Weight initialization Orthogonal
Update proportion 0.25
with LSTM False
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Figure 30: Since only RND can achieve significant results in this task among the eight intrinsic rewards, we only
show the results of RND. The solid line and shaded regions represent the mean and standard deviation computed
with five random seeds, respectively.
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G Off-Policy RL Algorithms and Continuous Control Tasks

To showcase the generality of RLeXplore, we run additional experiments in settings different from the ones
in the main paper. Concretely, we couple intrinsic rewards with soft actor-critic (SAC) (Haarnoja et al.,
2018), an off-policy RL algorithm, and test their performance in Ant-UMaze, a continuous control task
with sparse rewards. Table 16 illustrates the training hyperparameters used for the experiments. We show
the performance of Disagreement, RND, ICM, and vanilla SAC in Figure 31. The results indicate that
intrinsically-motivated agents are able to navigate the maze more efficiently, finding the goals more often
than the vanilla agents that can only learn from the sparse task rewards.

We only use 3 intrinsic rewards with SAC because of the episodic nature of the other intrinsic reward
methods. For example, the episodic memory in RIDE, PseudoCounts, NGU; and the episodic ellipsoid in
E3B require the replay buffer to sample entire episodes instead of random rollouts. We aim to implement
this logic in our RLeXplore codebase in the future.

Table 16: Training hyperparameters for Ant-Umaze.
Part Parameter Value

Total timesteps 1 · 106

Buffer size 1 · 106

Discount (γ) 0.99
Target smoothing coefficient (τ) 0.005
Batch size 256
Learning starts 5000
Policy learning rate 3 · 10−4

Q function learning rate 1 · 10−3

Policy frequency 2
Target network frequency 1
Noise clip 0.5
Entropy coefficient (α) 0.2
Auto-tune entropy coefficient True
Observation normalization RMS
Reward normalization RMS

Intrinsic reward Weight initialization Orthogonal
Update proportion 0.25
with LSTM False
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Figure 31: Performance comparison between the three selected intrinsic rewards and the extrinsic reward.
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