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Abstract
Temporal graph neural networks (TGNNs) have shown remarkable performance in
temporal graph modeling. However, real-world temporal graphs often possess rich
textual information, giving rise to temporal text-attributed graphs (TTAGs). Such
combination of dynamic text semantics and evolving graph structures introduces
heightened complexity. Existing TGNNs embed texts statically and rely heavily on
encoding mechanisms that biasedly prioritize structural information, overlooking
the temporal evolution of text semantics and the essential interplay between seman-
tics and structures for synergistic reinforcement. To tackle these issues, we present
CROSS, a flexible framework that seamlessly extends existing TGNNs for TTAG
modeling. CROSS is designed by decomposing the TTAG modeling process into
two phases: (i) temporal semantics extraction; and (ii) semantic-structural informa-
tion unification. The key idea is to advance the large language models (LLMs) to
dynamically extract the temporal semantics in text space and then generate cohesive
representations unifying both semantics and structures. Specifically, we propose a
Temporal Semantics Extractor in the CROSS framework, which empowers LLMs
to offer the dynamic semantic understanding of node’s evolving contexts of textual
neighborhoods, facilitating semantic dynamics. Subsequently, we introduce the
Semantic-structural Co-encoder, which collaborates with the above Extractor for
synthesizing illuminating representations by jointly considering both semantic and
structural information while encouraging their mutual reinforcement. Extensive ex-
periments show that CROSS achieves state-of-the-art results on four public datasets
and one industrial dataset, with 24.7% absolute MRR gain on average in temporal
link prediction and 3.7% AUC gain in node classification of industrial application.

1 Introduction
Temporal graphs are crucial for modeling dynamic interaction data, where objects are represented as
nodes and timestamped interactions are depicted as edges [1, 2]. Unlike static graphs, temporal graphs
continuously evolve over time [3]. To capture the temporal dependencies and realize representation
learning for such graphs, extensive research has developed temporal graph neural networks (TGNNs)
[4, 5, 6, 7, 8]. These works typically adopt structural encoding mechanisms [9, 10] to encapsulate the
dynamics of graph structures [11], thus enabling representations for downstream tasks.

Meanwhile, besides the dynamically evolving graph structures, real-world temporal graphs are also
often accompanied by rich text attributes, giving rise to temporal text-attributed graphs (TTAGs) [12].
As shown in Fig. 1(a), in e-commerce networks, nodes may encompass elaborate text descriptions
such as user profile or product introduction, while timestamped edges can attach transaction details
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A real-world e-commerce temporal text-attributed graph (TTAG)

(a) An illustrative example of semantic dynamics in TTAGs.
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(b) Comparison between existing TGNNs and our framework. 
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Figure 1: (a) An illustrative example of semantic dynamics in TTAGs. Temporal text-attributed graphs
(TTAGs) inherently exhibit semantic dynamics, where text semantics around nodes dynamically evolve across
temporal dimensions. (b) Comparison between existing TGNNs and our framework. Going beyond existing
TGNNs that biasedly focus on structural dynamics, our framework seamlessly unifies text semantics and graph
structures of TTAGs, promoting both dynamic semantic understanding and semantic-structural reinforcement.

including price, transaction type, review, etc. Representation learning in TTAGs presents unique
challenges due to the intricate combination of dynamic text semantics and evolving graph structures,
which remains largely under-explored in the community. Despite the success of existing TGNNs,
they still encounter two fundamental limitations that hinder their accommodation to TTAG modeling.
Limitation (i): Neglect of semantic dynamics. Text semantics arise from the textual attributes
of a node and its surrounding neighborhoods. These semantics exhibit changes across timestamps
due to the temporal evolution of neighborhood contexts within TTAGs. For example, as depicted in
Fig. 1(a), the term “apple” may take on different meanings according to user preferences (driven by
its neighborhoods), such as “smartphone” when focused on technology while “fruit” when turning
to daily life. Such characteristics necessitate a temporal-aware design for extracting text semantics
over time. However, existing TGNNs always use pre-trained language models, e.g., MiniLM [13], to
statically embed texts as pre-processed features, failing to adapt to such dynamic semantic shifts and
leading to suboptimal representations for effectively capturing the semantic dynamics.
Limitation (ii): Ineffective encoding for semantic-structural reinforcement. Another limitation of
existing TGNNs is the rigid reliance on their structural encoding mechanisms, which predominantly
focus on topological information without adequately incorporating semantic considerations. We
argue that the semantics and structures of TTAGs can mutually reinforce each other, making a biased
encoding mechanism that solely emphasizes structures untenable. This hypothesis is reasonable due
to the inherent complementarity between textual content and structural connectivity [14, 15] (also
empirically validated in Sec. A). For instance, product recommendations are shaped not only by goods’
descriptions but also by users’ historical behaviors [16]. Existing TGNN encoding mechanisms do
not account for such nuanced semantic-structural reinforcement in TTAGs, resulting in insufficient
representations that are overly reliant on simplistic (or sometimes noisy) structural information.
On the other hand, recent surveys [17, 18] reveal that large language models (LLMs), e.g., DeepSeek-
v2/3 [19], exhibit notable capabilities in semantic understanding and generation, which have been suc-
cessfully leveraged in graph modeling through text augmentation [20, 21]. However, LLMs employed
in these methods are typically limited by static corpora input for reasoning, making them ill-suited to
capture the fine-grained dynamics of TTAGs. This limitation inspires us to ask: Can we advance LLMs
for TTAG modeling as a promising solution to the aforementioned limitations of existing TGNNs?

Key innovation. Beyond existing TGNNs that solely prioritize structural dynamics, in this paper, we
tackle above issues by decoupling the TTAG modeling process into two phases: (i) temporal semantics
extraction; and (ii) semantic-structural information unification. By extracting both dynamic semantics
and evolving structures of TTAGs, we cohesively unify them to harness their dual-strengths for more
informative representations. Consequently, as shown in Fig. 1(b), the key idea of this work is to elevate
LLMs with dynamic reasoning capability to extract semantic dynamics, which subsequently allows for
a unified, integrated, and non-biased encoding mechanism obeying semantic-structural reinforcement.
Present work. We extend existing TGNNs for TTAG modeling and introduce CROSS (Cohesive
Representations Of Semantics and Structures), a novel framework that seamlessly unifies text
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Figure 2: Technical difference comparison from the perspective of LLM utilization and modality fusion.

semantics and graph structures coupled with LLMs. CROSS can significantly boost existing TGNNs,
and it comprises two main components: (i) Temporal Semantics Extractor, and (ii) Semantic-
structural Co-encoder. To capture the semantic dynamics for nodes within TTAGs, we propose a
Temporal Semantics Extractor, which empowers the LLMs with the dynamic semantic summarization
reasoning capability for TTAG modeling. It automatically detects semantic dynamics by constructing
a temporal reasoning chain to dynamically prompt the LLMs to summarize the textualized, evolving
neighborhoods of nodes, thus revealing the linguistic nuances across temporal dimensions. Besides the
Extractor, to effectively achieve semantic-structural reinforcement, we further propose the Semantic-
structural Co-encoder that simultaneously exploits both semantic and structural information through
an iterative, multi-layer design. Each layer in the proposed Co-encoder bidirectionally transfers the
cross-modal information between semantics and structures, allowing both modalities to blend deeply
and fully illuminate each other. By performing such a unification, we can generate modal-cohesive
representations that are both semantic-enriched and structural-informed.
The main contributions of this paper are summarized as follows:

• We address an under-explored problem of temporal text-attributed graph (TTAG) modeling
and propose CROSS. To the best of our knowledge, CROSS is the first framework designed
to unify text semantics and graph structures with LLMs for TTAG modeling.

• We design a temporal-aware LLM prompting paradigm for TTAG modeling and develop
Temporal Semantics Extractor. It enhances LLMs with dynamic reasoning capability to offer
the evolving semantics of nodes’ neighborhoods, effectively detecting semantic dynamics.

• We introduce a modal-cohesive co-encoding architecture for TTAG modeling and pro-
pose Semantic-structural Co-encoder, which jointly propagates semantic and structural
information, facilitating mutual reinforcement between both modalities.

• We conduct extensive experiments on four public datasets and one practical e-commerce in-
dustrial dataset. CROSS outperforms baselines with 24.7% absolute MRR gain on average in
temporal link prediction and 3.7% AUC gain in node classification of industrial application.

2 Preliminaries and Related Work
2.1 Preliminaries
Definition 1. Temporal Text-attributed Graph. Given a set of nodes V , node text attributes D, and
edge text attributes R, a temporal text-attributed graph (TTAG) can be represented as a sequence of
interactions G = {(u, v, t)}, where u, v ∈ V and t ≥ 0. Each node u ∈ V is associated with a node
text attribute du ∈ D and each interaction (u, v, t) ∈ G attaches an edge text attribute ru,v,t ∈ R.
We use Hu(t) = {(u, v, τ) |τ < t} ∪ {(v, u, τ) |τ < t} to denote the set of historical interactions
involving node u before time t.
Definition 2. Temporal Text-attributed Graph Modeling. Given node u, time t, and all available
historical interactions before t, {(u′, v′, τ)|τ < t}, temporal text-attributed graph modeling aims to
learn a mapping function f : (u, t) 7→ zu(t), where zu(t) ∈ Rd denotes the representation of node u
at time t, and d is the vector dimension.
Definition 3. Language Model vs. Large Language Model. We clearly distinguish between pre-
trained language models (LMs) and large language models (LLMs). LMs, e.g., MiniLM, are relatively
smaller models designed to embed texts from the text space into the feature space; and LLMs refer to
significantly larger models far surpassing the linguistic capabilities of LMs, like DeepSeek-v2/3.

2.2 Related Works
We provide two groups of related works: TGNNs and LLM-for-Graph-Text-Augmentation
(LLM4GTAug) methods. As illustrated in Fig. 2, we summarize these methods from the perspective
of LLM utilization and modality fusion. A discussion of related works is detailed in Sec. E.

TGNNs. LLM utilization within TGNNs remains limited. Existing TGNNs [12] typically pre-embed
the raw texts as input features and rely on their structural encoders [9] to capture the dynamics of
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Figure 3: Architecture of the proposed framework, CROSS. Our Temporal Semantics Extractor constructs
the temporal reasoning chain to empower the LLMs with dynamic reasoning capability to dynamically provide
the semantic understanding of nodes’ neighborhoods, thereby extracting semantic dynamics in text space.
Subsequently, the Semantic-structural Co-encoder iteratively mixes and consolidates both semantic and structural
information, ensuring their mutual reinforcement for effectively generating modal-cohesive representations.

graph structures. These methods overlook the temporal evolution of text semantics within TTAGs.
Besides, they integrate semantic and structural information only at the input stage, resulting in shallow
modality fusion that occurs before encoding.

LLM4GTAug methods. Existing LLM4GTAug methods [20, 21] are designed for static graphs
and employ LLMs through static, one-off reasoning for each node. This makes them ill-suited
for capturing the temporal dynamics of TTAGs. In addition, they mix structural and semantic
representations only at the output stage, leading to shallow fusion after encoding.

Table 1: Summary of related works.
LLM4GTAug TGNNs CROSS

Structural Dynamics ✗ ✓ ✓
Semantic Dynamics ✗ ✗ ✓

LLM Utilization static no LLM dynamic

Modality Fusion shallow at output
(after encoding)

shallow at input
(before encoding)

hierarchical
(during encoding)

As summarized in Tab. 1, in this pa-
per, our CROSS aims to (i) enhance
LLMs with dynamic reasoning capa-
bilities to capture semantic dynamics;
and (ii) facilitate hierarchical modality
fusion throughout the entire encoding
process. Our proposed method funda-
mentally opens new avenues for future
research in TTAG modeling.

3 Methodology
As mentioned before, unifying text semantics and graph structures for TTAG modeling requires
considering both semantic dynamics and semantic-structural reinforcement. To this end, as depicted in
Fig. 3, the proposed CROSS framework comprises two stages, i.e., the Temporal Semantics Extractor
first detects the dynamic text semantics for nodes’ evolving neighborhoods; then the Semantic-
structural Co-encoder jointly unifies both semantic and structural information to ensure cross-modal
reinforcement. We will introduce these two stages in the following subsections.

3.1 Temporal Semantics Extractor

In this section, we propose the temporal reasoning chain to advance the LLMs with dynamic reasoning
capability to extract semantic dynamics for TTAG modeling. It will be described below.
Temporal Reasoning Chain. Existing LLM utilization paradigm within LLM4GTAug methods
are ill-suited for semantic extraction in TTAGs, as it fails to effectively capture the dynamics of
node’s semantic contexts. To address this challenge, we design a novel temporal reasoning chain that
empowers the LLMs with the dynamic semantic summarization reasoning capability across temporal
dimensions, discerning the evolving linguistic nuances along timestamps. However, performing LLM
reasoning at every timestamp remains computationally impractical. To ensure scalability and stability,
for each node among TTAGs, we strategically sample reasoning timestamps at equal interaction
intervals. This strategy enables CROSS to constrain the number of LLM calls and guarantee that
each LLM reasoning step accesses a balanced set of interactions, striking a delicate balance between
temporal granularity and cost efficiency.
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Formally, for node u, we first derive the set of its interaction timestamps Tu = {t1, t2, ..., tn}, where
t1 ≤ t2 · · · ≤ tn and n is the node degree. Then we sample the reasoning timestamps at intervals of
⌈ n
m⌉ among Tu with a predefined maximum reasoning count m as follows:

T̂u =

{
t̂i

∣∣∣∣ t̂i = {
ti·⌈ n

m ⌉, i = 1, . . . ,m− 1,

tn, i = m
∈ Tu

}
. (1)

Here, T̂u ⊆ Tu depicts the LLM reasoning timestamps to summarize text semantics around node u,
and we will also analyze the dataset-specific hyper-parameter m in Sec. I of the Appendix.

Summarization. To align with the dynamics of semantic contexts within TTAGs, we facilitate the
LLMs to dynamically summarize nodes’ neighborhoods across different timestamps. Specifically,
we perform multi-turn calling with the LLMs along the previously sampled reasoning timestamps.
For node u at reasoning time t̂ ∈ T̂u, we first obtain its neighborhood by retrieving u’s historical
interactions Hu(t̂) =

{
(u, v, τ) |τ < t̂

}
∪
{
(v, u, τ) |τ < t̂

}
, and then we prompt the LLMs to

generate neighborhood summaries and semantic details for that time. This can be represented by:

d̂u(t̂) = LLM
(
du, t̂, {r∗}∗∈Hu(t̂)

; PROMPT
)
. (2)

LLM(·; PROMPT) denotes the LLM calling with the prompt, which comprises a fixed template along-
side variable pieces, including node u’s raw text du, time t̂, and the neighborhood {r∗}∗∈Hu(t̂)

. d̂u(t̂)
is the LLM-generated text, denoting the semantic summary for u’s contexts at time t̂. We present a
simplified example of PROMPT for clarity, and the complete version is given in Sec. F of the Appendix.

A simplified example of PROMPT

Goal: [Request to summarize the current neighborhoods and emphasize the response format.]
Descriptions: [Provide the text attribute of node du.]
Current time: [Specify the reasoning timestamp t̂.]
Historical interactions: [List textualized neighborhoods using recent interactions {r∗}∗∈Hu(t̂).]

After performing all reasoning, we can obtain a set of LLM-generated textual summaries for each
node u. We represent them as D̂u = {d̂u(t̂) | t̂ ∈ T̂u}. Notably, to incorporate the raw texts in
TTAGs, we set d̂u(0) = du. These summaries encapsulate the evolving semantics around nodes
derived from the dynamically-enhanced LLMs, promoting semantic dynamics for TTAG modeling.

3.2 Semantic-structural Co-encoder
As mentioned in the Introduction, existing TGNNs solely account for structural dynamics, overlooking
the necessary consideration of semantic dynamics and the reinforcement between these two modalities.
To address this issue, our Semantic-structural Co-encoder performs iterative integration of semantics
and structures at the layer level. Each layer of the proposed Co-encoder comprises three types of
encoding components: (i) the semantic layer that encodes the text semantics from LLM-generated
summaries to produce semantic representations; (ii) the structural layer that encodes the graph
structures from neighborhood information to capture structural representations; and (iii) the cross-
modal mixer that facilitates transformation between these two unimodal representations to cheer their
mutual reinforcement. We will discuss them in detail below.
Semantic Layer. To better incorporate the semantic modality, we implement our semantic layer
using a Transformer encoder [22] due to its widespread usage in textual modeling. From the ablation
results in Tab. 3, such a design effectively harnesses the full potential of text semantics for TTAG
modeling, demonstrating clear advantages over purely structural encoding mechanisms.

We first prepare the inputs for the semantic layer. For node u at time t, the inputs of the semantic
layer are the corresponding LLM-generated summaries before t from our Extractor. We represent
them as D̂u(t) = {d̂u(tk) | tk < t}, where t1 ≤ · · · ≤ tk. We then use a pre-trained LM, such as
MiniLM [13], to embed the texts into the d-dimensional semantic features, which is depicted as
ŝu(tk) = LM

(
d̂u(tk)

)
∈ Rd. To capture the temporal differences, we subsequently concatenate time

information into these semantic features as follows:

xu(tk) = ŝu(tk) ∥ Φ (t− tk) ∈ R2d. (3)

5



Here, Φ(·) is the time encoding function introduced by [23], which is widely used in recent TGNNs [9].
These enriched features then feed into the L-layer Transformer encoder blocks to derive the semantic
representations for node u at time t. We have:

ẽ(l)u (t1), . . . , ẽ
(l)
u (tk) = TRM(l)

(
e(l−1)
u (t1), . . . , e

(l−1)
u (tk)

)
, (4)

where ẽ
(l)
u (t) ∈ R2d corresponds to the pre-mixed semantic representation at the l-th layer and

e
(0)
u (t1), . . . , e

(0)
u (tk) = xu(t1), . . . ,xu(tk). As we will mention below, the latest semantic repre-

sentation of node u, e(l−1)
u (tk), has integrated information from its structural representation in the

previous layer. This allows the l-th semantic layer to receive the information from graph structures,
achieving deep fusion and promoting their synergistic reinforcement.
Structural Layer. Meanwhile, we conduct our structural layer to encode the graph structures around
node u at time t, Gu(t), using the structural encoding block in TGNNs. Such a design renders our
framework inherently TGNN-agnostic and flexibly integrable with any TGNN backbone.

Formally, the l-th structural layer aggregates the neighborhood information of node u from current
layer H(l)

u (t) and its structural representation from the previous layer h(l−1)
u (t) with a 2-layer Multi-

Layer Perceptron (MLP). This can be expressed as:

h̃(l)
u (t) = MLP(l)

(
h(l−1)
u (t) ∥ AGG

(
H(l)

u (t)
))

. (5)

Here, h̃(l)
u (t) is the pre-mixed structural representation at the l-th layer and ∥ denotes concatenation.

AGG(·) is a pooling function to aggregate the neighborhood information matrix into a d-dimensional
vector, with specific implementations (e.g., mean, sum) varying across various TGNNs [4, 5, 7].

The neighborhood information H
(l)
u (t) is derived using a temporal attention mechanism [4] via

message passing from the l-th layer neighborhood. This process assigns attention weights to scale
the contribution and importance of neighbors Nu(t) for node u as follows:

H(l)
u (t) = Softmax

(
a(l)u (t)

)
·V(l)

u (t), (6)

where a
(l)
u (t) = [a

(l)
uv(t)]v∈Nu(t) represents the attention weight vector, and the matrix V

(l)
u (t) =

[v
(l)
v (t)]v∈Nu(t) condenses the messages from u’s l-th layer neighborhood. Each element a(l)uv(t) in

a
(l)
u (t) is the attention weight for node u to its neighbor v ∈ Nu(t), and each row v

(l)
v (t) from V

(l)
u (t)

is the message carried from u’s neighboring node v. These can be computed by:

a(l)uv(t) =
fq

(
h
(l−1)
u (t)

)
fk

(
h
(l−1)
v (t)

)T

√
d(k)

, (7) v(l)
v (t) = fv(h

(l−1)
v (t)). (8)

In Eqs. 7 & 8, f∗(·)(∗ ∈ {q, k, v}) denote the encoding functions for queries, keys, and values,
respectively [22]. These functions may be implemented differently across various TGNNs [4, 5, 7, 9],
and we do not discuss their details as they are beyond the scope of our work.

As we explain in the next paragraph, the structural representations from the previous layer, h(l−1)
u (t),

have integrated with the semantic representations. Consequently, the message-passing aggregation in
Eq. 5 enables the propagation between both types of information, effectively facilitating semantic-
structural reinforcement during encoding.
Cross-modal Mixer. Finally, to enable the deep unification between the semantic and structural
modalities for TTAG modeling, we introduce a novel and interesting cross-modal mixer that automat-
ically transfers and integrates the bimodal information at a layer-wise granularity.

For node u at the l-th layer, the inputs of our cross-modal mixer are the most recent pre-mixed
semantic representation ẽ

(l)
u (tk) and the corresponding pre-mixed structural representation h̃

(l)
u (t).

This means that the remaining historical semantic representations, i.e., ẽ(l)u (t1), . . . ẽ
(l)
u (tk−1), will

be not involved in the mixture process. Such a design is driven by: (i) efficiency consideration; (ii)
temporal-awareness consideration that the latest semantic representation carries the most contextually
relevant information; and (iii) empirical consideration that mixing all semantic representations does
not necessarily lead to better performance (See Sec. 4.5). Therefore, we concatenate ẽ

(l)
u (tk) with

6



h̃
(l)
u (t), then pass through our cross-modal mixer, and finally split the fused representation to derive

the post-mixed semantic and structural representations. These processes can be formulated as follows:

e(l)u (tk); h
(l)
u (t) = Mixer(l)

(
ẽ(l)u (tk) ∥ h̃(l)

u (t)
)
. (9)

We implement Mixer(l)(·) using a 2-layer MLP, and it can be alternatively conducted in other fusion
components. By iteratively performing such a mixture operation, we can deeply unify both text
semantics and graph structures, enabling cohesive representations for TTAG modeling.

3.3 Training CROSS

Cohesive Representations. For node u at time t, its representation is derived from: (i) semantic
outputs from the L-th semantic layer with mean pooling, zsem

u (t) = Mean
(
ẽ
(L)
u (t1), . . . , ẽ

(L)
u (tk)

)
;

(ii) structural outputs from the L-th structural layer, zstr
u (t) = h̃

(L)
u (t); and (iii) the unified outputs

from the cross-modal mixer, zmix
u (t) = e

(L)
u (tk) ∥ h

(L)
u (t). This can be denoted as:

zu(t) = MLPout
(
zsem
u (t) ∥ zstr

u (t) ∥ zmix
u (t)

)
, (10)

where zu(t) ∈ Rd and MLPout(·) is a 2-layer MLP that maps the dimension of the input vector to d.
Loss Function. We adopt the temporal link prediction task [7] as training signals for TTAG modeling.
For link (u, v, t), we compute its occurrence probability p̂uv(t) by feeding the concatenated represen-
tations of nodes u and v, zu(t) ∥ zv(t), into a 2-layer MLP. Cross-entropy loss is then applied:

L = −
∑

(u,v,t)∈G

[log p̂uv(t) + log (1− p̂uv′(t))] . (11)

The v′ denotes the randomly sampled negative destination node. Additionally, we will also present
the theoretical analysis to prove the effectiveness of CROSS in Sec. B.

4 Experiments
4.1 Experimental Settings
Datasets. We implement experiments with five datasets, including four public datasets and one
industrial dataset from real-world e-commerce systems. The four public datasets - Enron, GDELT,
ICEWS1819, and Googlemap_CT - are recently collected and released by [12]. Besides, the industrial
dataset is constructed with three months of transaction data sampled from a private e-commerce
trading network in WeChat2 Mobile Payment.3 Details of these datasets are summarized in Sec. D.1
due to page limitations. All datasets are chronologically split by 60%, 20%, and 20% for training,
validation, and testing, respectively.
Baselines. We select eleven existing methods as our baselines, including JODIE [24], DyRep
[25], TGAT [4], TGN [5], CAWN [26], PINT [27], TCL [28], GraphMixer [29], DyGFormer [7],
LKD4DyTAG [30], and FreeDyG [10]. We also select powerful DeepSeek-v2 [19] and evaluate its
zero-shot and one-shot performance as LLM baselines, denoted as LLMzero/one. Detailed descriptions
of all baselines are provided in Sec. D.2. Moreover, we choose three representative TGNN models,
i.e., TGAT, TGN, and DyGFormer, as the backbones of CROSS due to their superiority. For simplicity,
we employ the well-established MiniLM [13] to embed texts into feature space. Additionally, we
adopt DeepSeek-v2 as the default LLM. We also report the results with other LLM backbones in
Sec. 4.5. We evaluate the learned representations using two downstream tasks, i.e., temporal link
prediction and node classification in an industrial application of financial risk management.

4.2 Temporal Link Prediction
We begin our experimental evaluation by comparing the temporal link prediction performance of our
model with baselines. We conduct this under two settings: (i) transductive setting, which predicts
links between nodes that have appeared during training; and (ii) inductive setting, where predictions
are performed with unseen nodes. Implementation details can be found in Sec. D.3 of the Appendix.

The results are presented in Tab. 2. Clearly, our CROSS framework significantly improves the
performance of all three TGNN backbones across all datasets in both transductive and inductive

2https://pay.weixin.qq.com
3The dataset is sampled solely for experimental purposes and does not imply any commercial affiliation. All

personally identifiable information (PII) has been removed.
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Table 2: MRR results (%) for temporal link prediction in transductive and inductive settings. The results
for LLMzero/one represent the zero-/one-shot performance of the LLM DeepSeek-v2 [19]. Results highlighted
with a blue background indicate the performance and corresponding improvements of our CROSS framework
using various TGNN backbones. The best results are highlighted in bold.

Transductive setting Inductive setting
Enron GDELT ICEWS1819 Googlemap_CT Industrial Enron GDELT ICEWS1819 Googlemap_CT Industrial

JODIE 66.69 ± 2.0 48.81 ± 1.1 71.47 ± 4.0 56.72 ± 0.7 49.75 ± 1.2 53.41 ± 2.5 37.90 ± 2.4 57.75 ± 7.1 55.21 ± 1.0 30.38 ± 0.3
DyRep 58.85 ± 7.9 45.61 ± 2.8 63.13 ± 3.6 49.04 ± 2.2 36.49 ± 0.9 42.95 ± 8.3 42.23 ± 3.1 50.42 ± 2.8 47.44 ± 2.5 25.47 ± 1.8
TCL 71.16 ± 0.7 59.49 ± 0.5 87.58 ± 0.3 68.98 ± 0.4 50.87 ± 0.5 55.28 ± 1.5 47.13 ± 1.0 77.06 ± 0.2 66.26 ± 0.2 33.42 ± 0.5

CAWN 74.56 ± 0.6 57.00 ± 0.2 82.93 ± 0.1 65.34 ± 0.2 63.58 ± 0.8 61.58 ± 2.0 43.56 ± 0.6 70.65 ± 0.1 62.11 ± 0.2 53.42 ± 0.5
PINT 74.82 ± 2.8 52.71 ± 2.5 83.81 ± 0.9 72.94 ± 0.7 53.51 ± 0.6 56.38 ± 3.9 31.82 ± 4.1 63.16 ± 2.8 70.02 ± 0.6 39.72 ± 0.6

GraphMixer 62.68 ± 1.3 53.33 ± 0.4 80.69 ± 0.3 53.11 ± 0.2 50.50 ± 0.5 43.75 ± 1.5 41.18 ± 0.3 67.09 ± 0.5 51.36 ± 0.2 34.06 ± 0.7
FreeDyG 81.52 ± 1.8 68.27 ± 0.7 86.31 ± 0.6 78.82 ± 1.2 75.91 ± 0.7 70.38 ± 0.1 52.71 ± 0.3 74.16 ± 0.4 66.01 ± 2.8 56.48 ± 0.6

LKD4DyTAG 73.18 ± 0.3 57.28 ± 1.9 80.62 ± 4.2 77.11 ± 0.5 77.73 ± 0.7 67.45 ± 1.9 45.75 ± 2.0 73.81 ± 0.3 60.73 ± 1.0 57.91 ± 1.0

LLMzero 24.18 7.99 33.68 30.30 11.27 17.73 10.08 32.26 38.21 2.62
LLMone 46.27 28.91 50.82 48.79 30.29 48.14 28.91 44.69 43.83 20.28

TGAT 66.06 ± 0.1 56.73 ± .04 85.81 ± 0.2 63.13 ± 0.5 46.74 ± 3.9 47.80 ± 0.8 42.01 ± 0.5 74.10 ± 0.2 60.96 ± 0.2 30.04 ± 3.0
TGAT+ 95.58 ± 0.7 81.63 ± 1.7 93.05 ± 1.6 99.91 ± 0.0 86.97 ± 2.8 81.52 ± 2.0 64.56 ± 1.8 82.25 ± 2.0 91.59 ± 0.0 62.22 ± 2.1

Avg. ↑ 26.59 ↑ 29.52 ↑ 24.90 ↑ 7.24 ↑ 36.78 ↑ 40.23 ↑ 33.72 ↑ 22.55 ↑ 8.15 ↑ 30.63 ↑ 32.18

TGN 73.05 ± 1.7 54.28 ± 1.6 84.79 ± 0.6 71.35 ± 0.5 54.46 ± 3.0 54.98 ± 2.3 37.48 ± 2.8 69.69 ± 0.8 67.88 ± 0.2 38.28 ± 4.1
TGN+ 95.84 ± 0.4 77.95 ± 2.8 94.74 ± 5.7 99.92 ± 0.0 94.26 ± 0.8 82.38 ± 1.2 56.65 ± 3.8 84.01 ± 9.2 92.68 ± 0.1 83.23 ± 2.6

Avg. ↑ 25.45 ↑ 22.79 ↑ 23.67 ↑ 9.95 ↑ 28.57 ↑ 39.80 ↑ 27.40 ↑ 19.17 ↑ 14.32 ↑ 24.80 ↑ 44.02

DyGFormer 79.93 ± 0.1 61.35 ± 0.3 87.51 ± 0.3 54.82 ± 2.7 74.45 ± 0.7 66.86 ± 0.1 50.61 ± 0.2 78.14 ± 0.3 52.98 ± 2.5 54.20 ± 0.4
DyGFormer+ 95.31 ± 2.8 81.28 ± 4.4 95.77 ± 0.3 99.82 ± 0.0 94.78 ± 1.4 86.01 ± 4.9 66.37 ± 4.4 87.80 ± 0.6 91.74 ± 0.1 82.30 ± 1.2

Avg. ↑ 22.03 ↑ 15.38 ↑ 19.93 ↑ 8.26 ↑ 44.99 ↑ 20.33 ↑ 19.15 ↑ 15.76 ↑ 9.66 ↑ 38.76 ↑ 28.10

settings. Meanwhile, CROSS achieves SOTA performance with a substantial margin over the best
baseline. This observation proves the effectiveness of unifying text semantics and graph structures in
TTAG modeling. Although LLM’s zero/one-shot performance is suboptimal, CROSS still performs
well. This suggests that LLMs may struggle to directly comprehend the dynamics of graph structures
in TTAG modeling, but our proposed CROSS framework helps them to resolve this issue effectively.
Moreover, our framework tends to result in closer performance across different TGNN backbones.
We infer that this is due to the robustness of text semantics, which successfully reduces model reliance
on simplistic structural information. Inspired by this, we detail a robustness study in Sec. 4.4.

4.3 Industrial Application

JODIE DyRep TCL CAWN PINT GraphMixer TGAT TGN DyGFormerFreeDyG Ours
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Figure 4: AUC results (%) for node classification
of a real-world industrial application in financial
risk management, which predicts whether nodes are
involved in fraudulent activities on Industrial.

We conduct another downstream task using node
classification in a real-world industrial appli-
cation of financial risk management on Indus-
trial, where we predict whether nodes are in-
volved in fraudulent activities. DyGFormer [7]
is used as the backbone, and details can be seen
in Sec. D.3 of the Appendix. CROSS achieves
the best performance as shown in Fig. 4, indi-
cating that the learned representations of CROSS
are also effective for node-level tasks. CROSS’s
success on Industrial demonstrates its scalability
for large industrial-scale TTAGs. We will also
provide scalability clarification in Sec. G.

4.4 Robustness Study
Robustness for noise. To empirically validate the assumption of noisy structural information
mentioned in Sec. 1, we strategically introduce noise into graph structures with perturbation rates of
p ∈ {10%, 20%, 30%, 40%, 50%}. Implementation details are put in Sec. J due to page limitations.
To further investigate the impact of noise during encoding, we randomly select a subset of nodes and
visualize the attention weights of their perturbed neighbors using box plots under p = 50%.
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Table 3: Ablation study for the raw texts and LLM-generated texts. Semantic/Structural Encoding refer
to the encoding mechanisms that independently perform semantic/structural layers in Sec. 3.2; imprv. indicates
the performance improvements of LLM-generated texts TextLLM over the raw texts Textraw. Our proposed
co-encoding mechanism unlocks the full potential of LLM-generated texts and achieves the best performance.

Datasets Methods Semantic Encoding Structural Encoding Semantic-structural Co-encoding
Textraw TextLLM imprv. Textraw TextLLM imprv. Textraw TextLLM (ours) imprv.

Tr
an

sd
uc

tiv
e

Enron
TGAT 49.73 ± 0.8 63.07 ± 0.5 ↑ 13.34 66.06 ± 0.1 63.65 ± 1.7 ↓ 2.41 70.27 ± 0.2 95.58 ± 0.7 ↑ 25.31
TGN 49.73 ± 0.8 63.07 ± 0.5 ↑ 13.34 73.05 ± 1.7 72.36 ± 4.0 ↓ 0.69 74.28 ± 0.9 95.84 ± 0.4 ↑ 21.56

DyGFormer 49.73 ± 0.8 63.07 ± 0.5 ↑ 13.34 79.93 ± 0.1 80.46 ± 0.5 ↑ 0.53 80.91 ± 0.1 95.31 ± 2.8 ↑ 14.40

ICEWS1819
TGAT 77.45 ± 0.5 85.04 ± 1.5 ↑ 7.59 85.81 ± 0.2 86.12 ± 0.1 ↑ 0.31 87.33 ± 1.0 93.05 ± 1.6 ↑ 5.72
TGN 77.45 ± 0.5 85.04 ± 1.5 ↑ 7.59 84.79 ± 0.6 85.69 ± 0.4 ↑ 0.90 85.96 ± 0.8 94.74 ± 5.7 ↑ 8.78

DyGFormer 77.45 ± 0.5 85.04 ± 1.5 ↑ 7.59 87.51 ± 0.3 88.11 ± 0.5 ↑ 0.60 86.72 ± 0.4 95.77 ± 0.3 ↑ 9.05

In
du

ct
iv

e Enron
TGAT 31.94 ± 0.7 45.24 ± 1.1 ↑ 13.30 47.80 ± 0.8 45.01 ± 1.3 ↓ 2.79 53.26 ± 1.0 81.52 ± 2.0 ↑ 28.26
TGN 31.94 ± 0.7 45.24 ± 1.1 ↑ 13.30 54.98 ± 2.3 53.93 ± 4.0 ↓ 1.05 58.92 ± 1.4 82.38 ± 1.2 ↑ 23.46

DyGFormer 31.94 ± 0.7 45.24 ± 1.1 ↑ 13.30 66.86 ± 0.1 67.64 ± 1.4 ↑ 0.78 68.27 ± 0.1 86.01 ± 4.9 ↑ 17.74

ICEWS1819
TGAT 60.63 ± 0.8 71.45 ± 0.6 ↑ 10.82 74.10 ± 0.2 74.12 ± 0.2 ↑ 0.02 75.19 ± 0.2 82.25 ± 2.0 ↑ 7.06
TGN 60.63 ± 0.8 71.45 ± 0.6 ↑ 10.82 69.69 ± 0.8 70.39 ± 1.2 ↑ 0.70 70.01 ± 0.6 84.01 ± 9.2 ↑ 13.99

DyGFormer 60.63 ± 0.8 71.45 ± 0.6 ↑ 10.82 78.14 ± 0.3 77.70 ± 0.8 ↓ 0.44 79.79 ± 0.4 87.80 ± 0.6 ↑ 8.01
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Figure 6: Attention weights from randomly selected
nodes to their perturbed neighbors on GDELT with
the perturbation rate of 50%.

We report the results in Figs. 5 and 6. Our
CROSS framework consistently performs best
and exhibits remarkable robustness even under
high perturbation rates. This may be due to
CROSS’s ability to effectively harness the valu-
able temporal semantic information, which aids
in mitigating the adverse impact of structural
noise attacks. Furthermore, the results of atten-
tion weights reveal that the CROSS framework
can effectively down-weight the noisy neighbors
during encoding. This may be the key reason why CROSS could achieve superior performance and
exceptional robustness. Building on this observation, we conduct a case study to visualize the
attention weights and the learned representations during encoding in Sec. A.

Robustness for encoding layers. Next, we study the model robustness to the number of encoding
layers. Specifically, we conduct a series of experiments with varying numbers of encoding layers
L = {1, 2, 3, 4, 5}. A larger number of encoding layers facilitates a deeper integration of the
cross-modal information. Other details are provided in Sec. J of the Appendix.
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Figure 7: Robustness study for encoding layers on Enron.

The results are depicted in Fig. 7. Our
CROSS framework also reveals outstanding
robustness to the encoding layers, where
the performance improvements over their
respective backbones become more pro-
nounced as the number of layers increases.
Such robustness likely stems from the in-
valuable semantic information and the suf-
ficient fusion between semantics and struc-
tures, whereas graph structures alone may carry high-order irrelevant or spurious information. We
also find that the CROSS framework always achieves peak performance with a larger L. This can be
attributed to the deeper information exchange of our cross-modal mixer, which fully amplifies the
mutual reinforcement between semantics and structures.

4.5 Ablation Study
We conduct three groups of ablation experiments, including model components, textual inputs and
their encoding strategies, as well as the choice of LLMs.
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Figure 8: Ablation study for model components using
TGN model as the backbone.

Ablation for model components. We start the
ablation study by evaluating the contributions of
the key components of our model. Detailed in-
formation for each variant is provided in Sec. K
of Appendix. The results are detailed in Fig. 8.
We can see that incorporating all components re-
sults in the best performance, while the removal
of any single component leads to a performance
drop. This highlights the effectiveness of each
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component in CROSS. Notably, mixing all semantic representations does not improve model perfor-
mance. This may be attributed to the unexpected inclusion of overly outdated semantic information
when passing through our cross-modal mixer, thus hindering the quality of final representations.

Ablation for raw texts and LLM-generated texts. We then conduct an ablation study to compare
the raw texts (i.e., the original text attributes in TTAGs) with the LLM-generated texts (i.e.,
neighborhood summaries produced by the LLMs) using various encoding mechanisms. We present
the results in Tab. 3 and other details can be seen in Sec. K. Firstly, our framework outperforms
all other variants, reaffirming its effectiveness. Besides, the results under semantic encoding prove
the validity and expressiveness of the pure LLM-generated texts. Interestingly, the performance of
LLM-generated texts yields only marginal improvements or even slight degradation when performing
structural encoding. We infer that this occurs because the structural encoding introduces excessively
irrelevant information from high-order relations, whereas the other two encodings directly capitalize
on the node’s own LLM-generated texts, thus integrating more focused and relevant information.
This strongly demonstrates the necessity and superiority of the design of our co-encoding mechanism.
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Figure 9: Ablation study for different LLMs on GDELT.

Ablation for different LLMs. We extend
our ablation study with various LLMs, in-
cluding DeepSeek-v2 [19] (default), GPT-
4o [31], Llama3-8b [32], Vicuna-7b [33],
and Mistral-7b [34]. Details and results are
put in Sec. K and Fig. 9, respectively. We
find that DeepSeek-v2 performs best and
all variants outperform their corresponding
TGNN backbones, reaffirming the effec-
tiveness of the proposed CROSS framework.

5 Conclusion and Future Work

In this paper, we focus on the under-explored problem of TTAG modeling and propose CROSS, which
extends existing TGNNs to effectively unify text semantics and graph structures with LLMs. By
introducing the Temporal Semantics Extractor, we can enhance the LLMs to dynamically extract the
text semantics within nodes’ neighborhoods. The Semantic-structural Co-encoder then integrates
semantic and structural information, enabling bidirectional reinforcement between both modalities.
As for future work, we will consider more complex designs of our cross-modal mixer for achieving
better representation fusion, such as using the time decay mechanism.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly mentioned our contributions and scope in both the Abstract and
Introduction sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have outlined the potential limitations of the proposed CROSS in Sec. L.5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We have provided a theoretical analysis in Sec. B to prove the effectiveness of
the proposed CROSS framework with full set of assumptions and a complete proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided the descriptions of the datasets in Sec. D.1, model architec-
ture in Sec. 3, training procedures in Alg. 1, and the implementation details in Sec. D.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided the codes and data in the supplemental material, as well as
at https://anonymous.4open.science/r/CROSS4review.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided the detailed information of data splits in Sec. 4.1, and both
hyper-parameters and type of optimizer in Sec. D.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: As mentioned in Sec. D.3, we repeat the experiments for 3 runs with seeds
ranging from 0 to 2 to ensure evaluation reliability and report the averaged performance
with the corresponding standard deviations.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As mentioned in Sec. D.3, all training is performed on a single server with 72
cores, 128GB memory, and four Nvidia Tesla V100 GPUs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work conforms to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We focus on the problem of TTAG modeling, which has no societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not pose a risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the original paper that produced the code package or dataset
used in our paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new assets such as the code introduced in the paper are well documented,
and will be provided after the publication.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

21

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Our work enhances LLMs with dynamic reasoning capability to extract
semantic dynamics for TTAG modeling. We have described the usage of LLMs in several
parts, including the introduced prompting paradigm in Sec. 3.1, prompt template in Sec. F,
implementation details of LLM calls in Sec. D.3, scalability clarifications of LLM usage in
Sec. G, as well as the experimental results with different LLMs in Sec. 4.5.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Ryan 

Blanck

Frank Pepe 

Pizzeria 

Napoletana
I love Frank Pepe's. Best Pizza Place in 

the Area. The Original Tomato Pie 

from New Haven Style is Awesome. My 

family love this place. Definitely 

Coming Back Very Soon in the future.

Sonic 

Drive-In

Stafford 

Thrift  Shop

Sonic Drive-In of 

Manchester was 

Very Good. Really 

liked it very much. 

Burgers  was  Very 

Good. The place was 

very cool. Definitely 

coming back soon. 

Fast Food 

Restaurant in the 

area.

Not bad....It's all 

right store....Large 

Book Section is 

Pretty Good. Went 

there 2 times in 

May and July 2013. 

It's OK for the s tore 

with clothes and 

housewares.

Name: Sonic Drive-In. 

AddressSonic Drive-In, 90 

Buckland St, Manchester, 

CT 06042. Category: Fast 

food restaurant, Chicken 

restaurant, Hamburger 

restaurant, Ice cream shop, 

Restaurant, . Description: 

Fast-food burger & fries 

joint with an old-school feel, 

including retro drive-in 

service.

Name: Stafford Thrift Shop. 

Address: Stafford Thrift Shop, 2 

River Rd # 101, Stafford Springs, 

CT 06076. Category: Thrift store. 

Description: A charming thrift 

store offering a wide variety of 

gently used clothing, household 

items, and unique treasures. 

Perfect for bargain hunters and 

those looking to find one-of-a-

kind items, all while supporting 

the local  community.

Name: Savers. AddressSavers, 432 Buckland Hills Dr, 

Manchester, CT 06042. Category: Thrift store, Costume 

store, Donations center, Used book store, Vintage clothing 

store, . Description: Thrift store chain offering secondhand 

clothing, footwear, furniture, books & household items.

Ryan 

Blanck

Frank Pepe 

Pizzeria 

Napoletana

Sonic 

Drive-In

Stafford 

Thrift  Shop

Savers

kristen 

candella

Definitely much better than The 

"junk" Salvation Army store. Best and 

Very Good store in the area. Savers is 

an very popular thrift store chain with 

books, clothes, and houseware items. 

Definitely Going Back Very Soon but 

once a while

Savers is hands down the best 

thrift store in the area! The 

selection is  always fantastic, with 

a great mix of books, clothes, and 

houseware items. The store is 

well-organized and the s taff is 

super friendly and helpful. I 

always find something unique 

and interesting every time I visit. 

Definitely going back very soon, 

even if i t's  just once in a while. 

I recently discovered Stafford 

Thrift Shop and it has quickly 

become my go-to spot for thrifting. 

The selection is impress ive, with a 

mix of clothing, home goods, and 

unique items that you won't find 

anywhere else. The prices are very 

reasonable, and the staff is always 

welcoming and helpful. I t's  a great 

place to find hidden gems and 

support the local community. I'l l 

definitely be returning often to see 

what new treasures I  can find!

Ryan 

Blanck

Frank Pepe 

Pizzeria 

Napoletana

Sonic 

Drive-In

Stafford 

Thrift  Shop

Savers

kristen 

candella

Ryan 

Blanck

Frank Pepe 

Pizzeria 

Napoletana

Name: Frank Pepe Pizzeria 

Napoletana. AddressFrank Pepe 

Pizzeria Napoletana, 221 Buckland 

Hills Dr, Manchester, CT 06042. 

Category: Pizza restaurant, Italian 

restaurant, Restaurant, . Description: 

Casual local  pizzeria chain serving a 

menu of coal-fired pies, beer & wine 

since 1925.

Stop and Shop is  always an very good 

grocery store in Vernon. This  grocery 

store have tons of things there for home 

including fruits, vegetables, pizza, 

grinders, drinks and other groceries. Me 

and my family have visited this Rockville 

store many times. Very Convenience and 

an Perfect Place for me and my family. 

Also, Staff is always a very nice, helpful, 

responsible, and hard working. I would 

love to come back to Stop and Shop 

again very soon.

Stop and 

Shop

Michael 

Lester

Name: Stop & Shop. 

AddressStop & Shop, 

2020 Norwich-New 

London Turnpike, 

Uncasville, CT 06382. 

Category: Grocery 

store, . Description: 

Supermarket chain 

with house-brand 

groceries, organics & 

more. Many have 

pharmacies .

I was quite disappointed with my visit 

to Savers. The selection was limited, 

and many of the items seemed 

overpriced for their condition. The 

store felt cluttered, making it difficult 

to browse comfortably. Additionally, 

the staff seemed dis interested and not 

very helpful when I  had questions. I 

had high hopes based on some reviews, 

but unfortunately, it didn't live up to 

my expectations. I doubt I' ll be 

returning anytime soon.

Eric 

Graham

Savers has its pros and cons. On 

the positive side, the store offers 

a decent variety of items, from 

clothing to home goods , and you 

can occasionally find some 

unique pieces. The prices are 

generally fair, though they can 

vary. However, the store layout 

could use some improvement, as 

it can feel a bit cramped and 

disorganized at times. The staff 

is polite, but not particularly 

engaging or helpful. 

time

Summary: User Ryan Blanck has expressed highly positive sentiment towards 

Frank Pepe Pizzeria Napoletana, highlighting the "Original Tomato Pie" as 

exceptional and referring to the establishment as the best pizza place in the area. 

The review emphasizes the family-friendly appeal of the restaurant and 

includes a strong intent to return, showcasing loyalty and satisfaction with the 

dining experience.

Summary: User Ryan Blanck has a strong preference for dining at restaurants and 

occasionally visits shops. He highly praised Frank Pepe Pizzeria Napoletana for its 

"Original Tomato Pie" and family-friendly atmosphere, describing it as the best 

pizza place in the area and expressing eagerness to return soon. Similarly, he 

enjoyed Sonic Drive-In for its very good burgers and retro ambiance, committing 

to revisit. For shopping, he provided a moderate review of Stafford Thrift Shop, 

appreciating its large book section but finding the store overall to be average. This 

pattern indicates a preference for restaurant experiences alongside occasional trips 

to stores.

Summary: User Ryan Blanck's preferences have shifted significantly from dining 

to shopping, with a growing emphasis on thrift stores. While he previously praised 

restaurants like Frank Pepe Pizzeria Napoletana and Sonic Drive-In for their food 

quality and atmosphere, his recent reviews highlight a stronger enthusiasm for 

shopping. He described Savers as the "best and very good store in the area," 

appreciating its wide selection of books, clothes, and housewares, and expressed a 

clear intention to revisit. In comparison, Stafford Thrift Shop was rated as "all 

right," with particular mention of its large book section. This transition underscores 

Ryan's increasing interest in thrift shopping, which now appears to be his primary 

focus and source of enjoyment.

Summary: User Ryan Blanck has developed a strong passion for shopping, with a 

clear preference for stores offering variety, quality, and convenience. He highly 

praised Savers for its wide selection of books, clothes, and housewares, calling it 

the "best and very good store in the area." Stafford Thrift Shop was noted for its 

large book section but rated as average. He also expressed enthusiasm for Stop & 

Shop, appreciating its extensive product range and family-friendly atmosphere, as 

well as the helpful and hardworking staff. Ryan's shopping preferences emphasize 

variety, family convenience, and excellent service, showcasing his growing 

fascination with retail experiences.
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Figure 10: Case study for text semantics and graph structures. Thicker edges denote higher attention
weights during encoding. CROSS exhibits exceptional prediction performance and robustness by successfully
unifying text semantics and graph structures within TTAGs, which enables the model to adaptively adjust the
attention weights to concentrate on more relevant neighbors, thereby achieving improved prediction performance.

A Case Study
In this section, we conduct a case study to qualitatively investigate the effectiveness of CROSS.
Case study for text semantics and graph structures. As illustrated in Fig. 10, we select a
representative node from Googlemap_CT and visualize its raw texts, the LLM-generated texts from
Temporal Semantics Extractor, the attention weights assigned among neighborhoods by both the
TGAT backbone and CROSS during encoding, as well as the prediction probability. The value of
prediction probability refers to the predicted probability for the corresponding positive edges as
defined in Eq. 11, where higher values indicate better performance. We find that CROSS demonstrates
a remarkable capability to unify semantics and structures, which allows the model to adaptively adjust
attention weights to concentrate on more relevant neighbors during encoding, thereby achieving
improved prediction performance. For instance, CROSS effectively detects the semantic shift in
preferences for the target node “Ryan Blanck” across temporal dimensions, which is from “restaurant”
to “shopping” (t2 → t3). Subsequently, it automatically reduces the attention weights of neighbors
assigned to restaurant nodes (e.g., “Frank Pepe Pizzeria Napoletana”) while increasing the weight
for store-related neighbors (e.g., “Stafford Thrift Shop”). This highlights the complementarity of
semantics and structures, enabling CROSS to prioritize preferred neighbors with semantic contexts.
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Figure 11: Case study for the learned representations.
CROSS effectively synthesizes more cohesive, unified rep-
resentations between semantics and structures.

Case study for the learned representations.
We further conduct a case study for the learned
representations directly. Specifically, we ex-
tract semantic and structural representations
of a selected node among GDELT, visualize
their distributions using Kernel Density Esti-
mation (KDE), and compare the differences
between CROSS and the backbone. As shown
in Tab. 11, CROSS redistributes the feature
space and produces more cohesive representa-
tions between semantics and structures. This
can be attributed to our co-encoding architecture, which facilitates synergistic reinforcement between
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modalities. Additionally, we find that semantic and structural representations from backbones have
different distributions. This directly proves the complementarity of the two modalities, as each cap-
tures distinct information that contributes to the final representations. As a result, CROSS effectively
integrates them and leads to unified representations that incorporate the most salient features of both.

B Theoretical Analysis
CROSS is designed from the extraction and unification of semantics and structures within TTAGs.
In this section, we present a theoretical analysis for this idea to prove the effectiveness of CROSS,
showing that unifying text semantics and graph structures yields more expressive information than
existing TGNNs that rely solely on graph structures. This holds under two key conditions:
• Integrity: Text semantics can accurately reflect the graph structures among the neighborhoods of

the target node, as they are derived from the LLM-generated texts enriched by the dynamically-
informed LLMs’ parameterized knowledge.

• Complementarity: Text semantics complement the graph structures among the neighborhoods of
the target node, providing additional contextual cues that help distinguish subtle relationships.

Theorem 1. Consider the conditions as follows:

1) Integrity: ZT serves as a reliable proxy for ZG, thus we have

H (ZG|ZT ) = ϵ, ϵ > 0. (12)

2) Complementarity: ZT encapsulates orthogonal information that is not captured by ZG, and that is

H (y|ZG, ZT ) = H (y|ZG)− ϵ′, ϵ′ > ϵ. (13)

Under these conditions, it follows that:

H (y|ZG, ZT ) < H (y|ZG) , (14)

where ZG denotes the information derived from graph structures, ZT represents the information
captured from text semantics, y is the target for prediction, and H (·|·) depicts the condition entropy.

We also provide an alternative theoretical analysis to prove the model effectiveness, showing that
unifying text semantics and graph structures instead of solely considering graph structures is bounded.

Theorem 2. Given the target y, there exists a constant β ∈ (0, 1] such that:

I(ZG, ZT ; y) ≥ I(ZG; y) + βmin {H(y|ZG), H(ZT |ZG)} , (15)

where ZG denotes the information derived from graph structures, ZT represents the information
captured from text semantics, I(·|·) denotes mutual information, and H(·|·) depicts the condition
entropy.

Proof of Theorem 1. We aim to prove that the conditional entropy of y unifying both graph structures
ZG and text semantics ZT , i.e., H (y|ZG, ZT ), is strictly less than the conditional entropy of y solely
based on ZG, i.e., H (y|ZG).

We begin with:
H(y|ZG, ZT ). (16)

Next, we decompose this using the properties of entropy into two phases:

H(y|ZG, ZT ) = H(y|ZG, ZM , ZT ) + I(y;ZM |ZG, ZT ), (17)

where ZM denotes the information arising from the mixed representations of text semantics and
graph structures.

We then apply the following upper bound on conditional mutual information as follows:

I(y;ZM |ZG, ZT ) = H(ZM |ZG, ZT )−H(ZM |y, ZG, ZT )

≤ H(ZM |ZG, ZT ).
(18)

Here, the first equality follows from the definition of mutual information, and the inequality holds
due to the nonnegativity of conditional entropy.
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By substituting Eq. 18 into Eq. 17, we obtain:

H(y|ZG, ZT ) ≤ H(y|ZG, ZM , ZT ) +H(ZM |ZG, ZT ). (19)

Since conditional entropy increases when conditioning on fewer variables, it follows that:

H(y|ZG, ZM , ZT ) +H(ZM |ZG, ZT ) ≤ H(y|ZG, ZT ) +H(ZG|ZT ). (20)

By applying the “Integrity” and “Complementarity” conditions, we arrive at:

H(y|ZG, ZM ) +H(ZM |ZT ) ≤ H(y|ZG)− ϵ′ + ϵ. (21)

Finally, since ϵ′ > ϵ, we conclude:

H(y|ZG)− ϵ′ + ϵ < H(y|ZG). (22)

Consequently, we have proven that:

H(y|ZG, ZT ) < H(y|ZG). (23)

This completes the proof.

Proof of Theorem 2. We aim to prove that the mutual information of y unifying both graph structures
ZG and text semantics ZT , i.e., I(ZG, ZT ; y), is lower bounded by the mutual information of y solely
based on ZG, i.e., I(ZG; y).

We begin with:
I(ZG, ZT ; y). (24)

Using the chain rule of mutual information, I(ZG, ZT ; y) can be decomposed as:

I(ZG, ZT ; y) = I(ZG; y) + I(ZT ; y | ZG), (25)

where I(ZG; y) quantifies the contribution of graph structures ZG about y, and I(ZT ; y | ZG) reflects
the additional information provided by text semantics ZT conditioned on ZG.

Then, we compute the lower bound for the term I(ZT ; y | ZG). Based on the fundamental properties
of entropy, we can obtain:

I(ZT ; y | ZG) = H(y | ZG)−H(y | ZT , ZG)

= H(ZT | ZG)−H(ZT | y, ZG).
(26)

Here, the conditional mutual information I(ZT ; y | ZG) could be as high as the minimum of the
conditional entropies H(y | ZG) and H(ZT | ZG). Considering any unavoidable loss in information
during the unification process, there exists a constant β ∈ (0, 1], such that:

I(ZT ; y | ZG) ≥ βmin{H(y | ZG), H(ZT | ZG)}. (27)

Substituting the lower bound from Eq. 27 into Eq. 25, we obtain the final bound:

I(Z; y) = I(ZG; y) + I(ZT ; y | ZG)

≥ I(ZG; y) + βmin {H(y|ZG), H(ZT |ZG)} .
(28)

This completes the proof.

C Notations and Algorithms

We provide the important notations used in this paper and their corresponding descriptions as shown
in Tab. 4. Additionally, for clarity, we present the pseudo-codes of CROSS in Algorithm 1.

D Details of Experimental Setting

D.1 Datasets

In this paper, we select four public datasets [12] from different domains and one real-world industrial
dataset. We present their detailed descriptions below, and their statistics are summarized in Tab. 5.
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Algorithm 1: Training CROSS (one epoch).
Input: A node set V; A TTAG G = {(u, v, t)} with node text attributes D and edge text

attributes R; The maximum reasoning count m; The number of encoding layer L.
1 Initialize all model parameters and prepare the LLMs;
// Temporal Semantics Extractor

2 foreach u ∈ V do
3 Derive reasoning timestamps T̂u with m by Eq. 1;
4 Summarize u’s textualized neighborhood at t̂ ∈ T̂u with LLM by Eq. 2;
5 end
// Semantic-structural Co-encoder

6 foreach batch (u, v, t) ⊆ G do
7 foreach l = 1, 2, ..., L do
8 Retrieve text semantics from generated summaries and graph structures from

neighborhoods for nodes u/v;
9 Compute pre-mixed semantic representations ẽ(l)u/v(tk) with semantic layer by Eqs. 3-4;

10 Compute pre-mixed structural representations h̃(l)
u/v(t) with structural layer by Eqs. 5-8;

11 Mix and propagate cross-modal representations by Eq. 9;
12 end
13 Derive the final representations zu/v(t) by Eq. 10;
14 Compute loss L by Eq. 11 and backward;
15 end

Table 4: Important notations and descriptions.

Notations Descriptions

du Raw text attribute of node u
ru,v,t Raw text attribute of edge (u, v, t)

d̂u(t̂) LLM-generated text summary for u’s neighborhood at reasoning time t̂

ẽ
(l)
u (t) Pre-mixed semantic representation for node u at time t in the l-th layer

e
(l)
u (t) Post-mixed semantic representation for node u at time t in the l-th layer

h̃
(l)
u (t) Pre-mixed structural representation for node u at time t in the l-th layer

h
(l)
u (t) Post-mixed structural representation for node u at time t in the l-th layer
zu(t) Final representation for node u at time t

• Enron4 originates from a collection of email exchanges among employees of the ENRON
energy corporation spanning three years (1999–2002). In this dataset, nodes represent
employees, and edges correspond to emails exchanged between them. Each node has text
attributes that are derived from the employee’s department and role if such information is
available. Each edge attaches text attributes consisting of the raw content of the emails.
Edges are sequentially ordered based on the e-mail sending timestamps.

• GDELT5 originates from the Global Database of Events, Language, and Tone, a project
aimed at cataloging political behaviors across nations worldwide. In this dataset, nodes
represent political entities, such as “Egypt” or “Kim Jong Un”. The textual attributes of
nodes are directly taken from the names of these entities. Edges capture the relationships
between entities (e.g., “Make Empathetic Comment” or “Provide Aid”), with the textual
attributes of edges being derived from the descriptions of these relationships. Edges are
sequentially ordered based on the event-occurring timestamps.

• ICEWS18196 is sourced from the Integrated Crisis Early Warning System project, which
serves as a larger temporal knowledge graph for tracking political events compared to Enron.

4https://www.cs.cmu.edu/~enron
5https://www.gdeltproject.org
6https://dataverse.harvard.edu/dataverse/icews
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This dataset is built using events occurring between January 1, 2018, and December 31,
2019. The textual attributes of nodes include the name, sector, and nationality of each
political entity, while the textual attributes of edges represent descriptions of the political
relationships. All edges are sequentially ordered based on the event-occurring timestamps.

• Googlemap_CT7 is sourced from the Google Local Data project, which compiles review
data from Google Maps along with user and business information in the United States up to
September 2021. This dataset specifically focuses on business entities located in Connecticut.
Nodes represent users and businesses, while edges correspond to user reviews of businesses.
Textual attributes are assigned exclusively to business nodes, encompassing the business
name, address, category, and self-introduction. All edges are sequentially ordered based on
the review timestamps.

• Industrial is sourced from real-world e-commerce transaction records sampled from a
mobile payment company, spanning March to June 2024. Nodes in this dataset represent
users or merchants while edges denote their transaction records. Each node is enriched with
text attributes, such as the user/merchant name and affiliation. Text attributes of each edge
include textual details such as price, transaction type, and user review. Besides, all edges are
sequentially ordered based on the transaction timestamps, and each node is assigned a label
indicating whether it is fraudulent.

Table 5: Detailed statistics of datasets.
Datasets # Nodes # Links # Times Duration Domains Time Granularity

Enron 42,711 797,907 1,006 3 years E-mail one day
GDELT 6,786 1,339,245 2,591 2 years knowledge graph 15 minutes

ICEWS1819 31,769 1,100,071 730 2 years knowledge graph 24 hours
Googlemap_CT 111,168 1,380,623 55,521 – Recommendation Unix Time

Industrial 1,112,094 3,196,008 90 3 months E-commerce one day

D.2 Baselines

We evaluate the performance and discuss the capabilities of eleven existing TGNN methods. The
details of these methods are as follows:

• JODIE [24] is designed to manage temporal graphs in bipartite user-item settings. It employs
two Recurrent Neural Networks (RNNs), one for updating the user states and another for
the item states. To prevent the issue of outdated node representations, a projection layer is
added to track the evolution of the embeddings over time.

• DyRep [25] incorporates neighborhood information by utilizing a temporal attention-based
aggregation mechanism. This approach helps capture the evolving structural features of
nodes’ local environments in the temporal graph, allowing for more accurate dynamic
representations.

• TGAT [4] leverages a temporal attention model to aggregate data from temporal-topological
neighbors, facilitating the creation of temporal node embeddings. It also introduces a
trainable time encoding function that ensures each temporal step is distinctly represented, a
concept widely adopted in later TGN architectures.

• TGN [5] builds upon earlier methodologies by introducing a memory system that stores
a state vector for each node. This memory is refreshed whenever a node participates
in an interaction. The model also features modules for processing messages, updating
memory states, and embedding temporal features, which collectively enable the generation
of dynamic node representations.

• CAWN [26] creates node embeddings using temporal walks. It generates multiple anony-
mous random walks starting from a target node and encodes them using a Recurrent Neural
Network. These encoded walks are then combined to form the final temporal representation,
which is particularly effective for predicting temporal links.

7https://datarepo.eng.ucsd.edu/mcauley_group/gdrive/googlelocal
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• TCL [28] uses a breadth-first search to form temporal dependency sub-graphs, extract-
ing sequences of interactions for analysis. A Transformer encoder is applied to integrate
temporal and structural information, enabling central node representation learning. Addi-
tionally, TCL incorporates a cross-attention mechanism within the Transformer to capture
interdependencies between interacting node pairs.

• PINT [27] applies injective message passing with a temporal focus and incorporates relative
positional encoding to improve the model’s capability in capturing dynamic patterns within
neighborhoods.

• GraphMixer [29] employs a link encoder inspired by the MLP-Mixer framework to create
temporal embeddings for nodes. Its design includes a fixed time encoding scheme, which
demonstrates superior performance compared to traditional learnable approaches. The
model also utilizes a node encoder with mean-pooling to aggregate link-based information.

• DyGFormer [7] relies on information from 1-hop neighbors to learn temporal graph
representations. A Transformer encoder with a patching method is used to capture long-
range dependencies across nodes. To preserve correlations between source and target nodes,
DyGFormer integrates a Neighbor Co-occurrence Feature.

• LKD4DyTAG [30] conducts a preliminary exploration of dynamic text-attributed graphs. It
leverages LLMs as text embedders and introduces an auxiliary knowledge distillation loss
to enhance model performance.

• FreeDyG [10] delves the temporal graph modeling into the frequency domain and proposes
a node interaction frequency encoding module that both effectively models the proportion of
the re-occurred neighbors and the frequency of corresponding interactions of the node pair.

In addition to the above existing deep learning-based TGNNs, we also explore the performance of the
LLMs for TTAG modeling. We employ the widely adopted and well-performing LLM, DeepSeek-v28

[19], an open-source project released by DeepSeek, Inc.9. DeepSeek-v2 is a strong, economical,
and efficient mixture-of-experts language model. For comparison, we test its zero-shot and one-shot
performance for temporal link prediction, which is denoted as LLMzero and LLMone, respectively.
Similar to our temporal reasoning chain in Sec. 3.1, we design a task-specific prompt to call with
LLMs. Specifically, given the historical interactions of two nodes, we prompt DeepSeek-v2 to directly
predict whether these two nodes will interact at a specific future timestamp.

D.3 Implementation Details

Tasks and Metrics. We follow [6] and conduct temporal link prediction under two settings: (i)
transductive setting, which predicts links between nodes that have appeared during training; and (ii)
inductive setting, where predictions are performed with unseen nodes. During training, we sample an
equal number of negative destination nodes as described in Eq. 11. Inspired by [8], we employ Mean
Reciprocal Rank (MRR) as the evaluation metric with 100 negative links per positive link during
evaluation. We also report the AP and AUC results in Tabs. 7 & 8. Additionally, we further conduct
the node classification task in a practical industrial application for financial risk management using
the Industrial dataset from the e-commerce domain. The objective of this task is to predict whether a
node is involved in fraudulent activity. Specifically, we follow [6] and pass the learned representations
through a two-layer MLP to get the probabilities of fraudulent activity for each node. We adopt the
Area Under the Receiver Operating Characteristic Curve (AUC) as the evaluation metric for this task.

Model Configurations. For the training and evaluation, we follow [12] and train all models for
50 epochs and adopt the early stopping strategy under the patience of 5 with an evaluation interval
of 5. The learning rate and the batch size across all models and datasets are set to 0.0001 and
256, respectively. We repeat the experiments for 3 runs with seeds ranging from 0 to 2 to ensure
evaluation reliability and report the averaged performance with the corresponding standard deviations.
All training is performed on a single server with 72 cores, 128GB memory, and four Nvidia Tesla
V100 GPUs. As for the hyper-parameters, the representation dimensions across all models and
datasets are consistently set to 384, and the introduced hyper-parameter, maximum reasoning count
m, is set to 8 for all datasets by default. Other hyper-parameters among baselines follow the critical

8https://github.com/deepseek-ai/DeepSeek-V2
9https://deepseek.com
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Figure 12: Robustness study for noise on GDELT and Googlemap_CT with different perturbation rates.
(Supplementary results for Fig. 5.)

Table 6: Ablation study for the raw texts and LLM-generated texts. Semantic/Structural Encoding refer
to the encoding mechanisms that independently perform semantic/structural layers in Sec. 3.2; imprv. indicates
the performance improvements of LLM-generated texts TextLLM over the raw texts Textraw. (Supplementary
results for Tab. 3.)

Datasets Methods Semantic Encoding Structural Encoding Structural-Structural Co-encoding
Textraw TextLLM imprv. Textraw TextLLM imprv. Textraw TextLLM(ours) imprv.

Tr
an

sd
uc

tiv
e

GDELT
TGAT 49.64 ± 0.9 52.02 ± 8.8 ↑ 2.38 56.73 ± .04 57.01 ± 0.3 ↑ 0.28 58.29 ± 0.2 81.63 ± 1.7 ↑ 23.34
TGN 49.64 ± 0.9 52.02 ± 8.8 ↑ 2.38 54.28 ± 1.6 55.58 ± 1.0 ↑ 1.30 56.27 ± 1.2 77.95 ± 2.8 ↑ 21.68

DyGFormer 49.64 ± 0.9 52.02 ± 8.8 ↑ 2.38 61.35 ± 0.3 62.54 ± 0.1 ↑ 1.19 62.73 ± 0.5 81.28 ± 4.4 ↑ 18.55

Googlemap_CT
TGAT 47.03 ± 0.2 98.38 ± 0.4 ↑ 51.35 63.13 ± 0.5 68.69 ± 0.1 ↑ 5.56 65.46 ± 0.2 99.92 ± 0.0 ↑ 34.46
TGN 47.03 ± 0.2 98.38 ± 0.4 ↑ 51.35 71.35 ± 0.5 81.60 ± 1.0 ↑ 10.25 72.64 ± 0.8 99.92 ± 0.0 ↑ 27.28

DyGFormer 47.03 ± 0.2 98.38 ± 0.4 ↑ 51.35 54.82 ± 2.7 61.76 ± 0.1 ↑ 6.94 57.02 ± 0.4 99.82 ± 0.0 ↑ 42.80

Industrial
TGAT 24.47 ± 0.5 73.15 ± 1.8 ↑ 48.68 46.74 ± 3.9 53.33 ± 2.7 ↑ 6.59 47.62 ± 2.0 86.97 ± 2.8 ↑ 39.35
TGN 24.47 ± 0.5 73.15 ± 1.8 ↑ 48.68 54.46 ± 3.0 53.20 ± 1.0 ↓ 1.26 55.45 ± 0.5 94.26 ± 0.8 ↑ 38.81

DyGFormer 24.47 ± 0.5 73.15 ± 1.8 ↑ 48.68 74.45 ± 0.7 74.05 ± 0.4 ↓ 0.40 75.23 ± 0.1 94.78 ± 1.4 ↑ 19.55

In
du

ct
iv

e

GDELT
TGAT 27.98 ± 0.7 37.72 ± 9.5 ↑ 9.74 42.01 ± 0.5 45.79 ± 0.4 ↑ 3.78 41.02 ± 0.3 64.56 ± 1.8 ↑ 23.54
TGN 27.98 ± 0.7 37.72 ± 9.5 ↑ 9.74 37.48 ± 2.8 34.61 ± 3.1 ↓ 2.87 38.81 ± 1.0 56.65 ± 3.8 ↑ 17.84

DyGFormer 27.98 ± 0.7 37.72 ± 9.5 ↑ 9.74 50.61 ± 0.2 52.33 ± .04 ↑ 1.72 52.19 ± 0.3 66.37 ± 4.4 ↑ 14.18

Googlemap_CT
TGAT 44.43 ± 0.2 89.53 ± 0.7 ↑ 45.10 60.96 ± 0.2 66.98 ± 0.2 ↑ 6.02 62.17 ± 0.2 91.59 ± 0.0 ↑ 29.42
TGN 44.43 ± 0.2 89.53 ± 0.7 ↑ 45.10 67.88 ± 0.2 78.08 ± 1.0 ↑ 10.20 68.17 ± 0.2 92.68 ± 0.1 ↑ 24.51

DyGFormer 44.43 ± 0.2 89.53 ± 0.7 ↑ 45.10 52.98 ± 2.5 59.67 ± 0.1 ↑ 6.69 53.81 ± 0.6 91.74 ± 0.1 ↑ 37.93

Industrial
TGAT 20.71 ± 0.5 46.34 ± 2.3 ↑ 25.63 30.04 ± 3.0 33.86 ± 1.2 ↑ 3.82 34.19 ± 1.2 62.22 ± 2.1 ↑ 28.03
TGN 20.71 ± 0.5 46.34 ± 2.3 ↑ 25.63 38.28 ± 4.1 34.41 ± 1.4 ↓ 3.87 40.17 ± 2.0 83.23 ± 2.6 ↑ 43.06

DyGFormer 20.71 ± 0.5 46.34 ± 2.3 ↑ 25.63 54.20 ± 0.4 54.18 ± 0.2 ↓ 0.02 55.37 ± 2.7 82.30 ± 1.2 ↑ 26.93

hyper-parameters in the widely-used library DyGLib 10 [7], which has performed an exhaustive grid
search to identify the optimal hyper-parameters across different models. For the details of LLM
calls, in addition to the ablation study on different LLMs of Sec. 4.5, we adopt DeepSeek-v2 as
the default LLM. All LLM calls on DeepSeek-v2 are performed in a Language Model as a Service
(LMaaS)-compatible manner via its official Application Programming Interface (API)11.

E Related Work
Temporal Graph Neural Networks (TGNNs). Temporal graph neural networks (TGNNs) [35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46] are designed to generate node representations in temporal graphs,
where they typically develop various structural encoding mechanisms to summarize the dynamic
graph structures among neighborhoods of the target node [47, 48, 49, 50, 51, 52, 53, 54, 55, 56].
Based on how these mechanisms operate, existing TGNNs can be broadly categorized into two
types: message-encoding TGNNs (ME-TGNNs) and walk-encoding TGNNs (WE-TGNNs). ME-
TGNNs [57, 58, 59, 60, 61, 62, 63, 64] capture changing graph structures via message passing
mechanisms, where node representation is refined by aggregating messages from neighbors through
various aggregation functions [9]. In contrast, WE-TGNNs [26, 27] incorporate temporal structural
information into node representations in a different way. They typically sample multiple temporal
walks originating from the target node and encode these walks based on node occurrence information.
Despite their success, above existing TGNNs focus solely on biased encoding mechanisms that
prioritize topological dynamics, neglecting the rich text semantics present in temporal text-attributed
graphs (TTAGs) [12].
For completeness, we note the existence of a very recent work [30] that conducts a preliminary
exploration of TTAG modeling, where LLMs are used to embed texts into features, and a distillation

10https://github.com/yule-BUAA/DyGLib
11https://api-docs.deepseek.com
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Table 7: AP results (%) for temporal link prediction in transductive and inductive settings. Results
highlighted with a blue background indicate the performance and corresponding improvements of our CROSS

framework using various TGNN backbones. The best results are highlighted in bold.
Transductive setting Inductive setting

Enron GDELT ICEWS1819 Googlemap_CT Industrial Enron GDELT ICEWS1819 Googlemap_CT Industrial

JODIE 97.26 ± 0.2 94.87 ± 0.2 97.62 ± 0.6 84.28 ± 0.1 93.70 ± 0.2 93.91 ± 0.4 91.47 ± 0.2 94.40 ± 1.7 82.33 ± 0.2 82.57 ± 0.5
DyRep 95.99 ± 1.3 93.76 ± 0.5 96.04 ± 0.4 77.21 ± 1.2 87.64 ± 0.2 90.99 ± 2.7 91.00 ± 0.7 91.76 ± 0.5 74.44 ± 1.6 77.23 ± 0.4
TCL 97.43 ± 0.1 96.16 ± 0.0 99.23 ± 0.0 89.80 ± 0.2 94.33 ± 0.2 93.49 ± 0.4 92.80 ± 0.1 98.17 ± 0.0 88.09 ± 0.0 82.98 ± 0.3

CAWN 97.74 ± 0.0 95.50 ± 0.1 98.90 ± 0.0 88.41 ± 0.1 96.37 ± 0.1 94.48 ± 0.2 91.19 ± 0.2 97.31 ± 0.0 86.29 ± 0.0 89.14 ± 0.1
PINT 98.28 ± 0.1 96.26 ± 0.2 97.33 ± 0.1 90.20 ± 0.2 96.00 ± 0.2 95.82 ± 0.4 92.28 ± 0.4 98.11 ± 0.1 87.25 ± 0.1 90.91 ± 0.2

GraphMixer 96.27 ± 0.2 94.96 ± 0.1 98.60 ± 0.0 80.12 ± 0.3 94.18 ± 0.1 90.40 ± 0.6 90.79 ± 0.1 96.60 ± 0.1 77.43 ± 0.1 82.66 ± 0.2
FreeDyG 97.26 ± 0.1 95.02 ± 0.1 99.08 ± 0.1 84.20 ± 0.4 96.22 ± 0.3 92.46 ± 0.8 91.87 ± 0.2 97.29 ± 0.3 79.22 ± 0.1 84.44 ± 0.3

LKD4DyTAG 98.42 ± 0.1 96.26 ± 0.3 99.17 ± 0.2 84.88 ± 0.1 97.20 ± 0.1 93.02 ± 0.2 91.19 ± 0.4 98.21 ± 0.0 80.63 ± 0.2 85.88 ± 0.5

TGAT 96.94 ± 0.1 95.70 ± 0.1 99.10 ± 0.0 87.11 ± 0.3 93.60 ± 0.6 91.98 ± 0.2 91.57 ± 0.1 97.81 ± 0.0 85.40 ± 0.2 81.25 ± 0.9
TGAT+ 99.67 ± 0.1 98.11 ± 0.2 99.64 ± 0.1 99.97 ± 0.0 97.51 ± 0.2 97.44 ± 0.2 94.38 ± 0.3 98.63 ± 0.2 97.23 ± 0.1 93.41 ± 0.5

Avg. ↑ 5.55 ↑ 2.73 ↑ 2.41 ↑ 0.54 ↑ 12.86 ↑ 3.91 ↑ 5.46 ↑ 2.81 ↑ 0.82 ↑ 11.83 ↑ 12.16

TGN 97.98 ± 0.2 95.35 ± 0.3 99.05 ± 0.1 91.52 ± 0.1 95.00 ± 0.6 94.58 ± 0.5 90.23 ± 0.7 97.48 ± 0.1 90.00 ± 0.0 85.48 ± 1.5
TGN+ 99.71 ± 0.1 98.07 ± 0.3 99.73 ± 0.3 99.98 ± 0.0 97.90 ± 0.3 97.60 ± 0.3 93.36 ± 0.7 98.74 ± 0.7 97.45 ± 0.1 94.69 ± 0.1

Avg. ↑ 4.06 ↑ 1.73 ↑ 2.72 ↑ 0.68 ↑ 8.46 ↑ 2.90 ↑ 3.02 ↑ 3.13 ↑ 1.26 ↑ 7.45 ↑ 9.21

DyGFormer 97.90 ± 0.2 96.43 ± 0.0 99.17 ± 0.0 81.16 ± 2.1 97.56 ± 0.1 94.99 ± 0.3 93.45 ± 0.1 98.13 ± 0.0 78.74 ± 2.4 89.81 ± 0.1
DyGFormer+ 99.63 ± 0.3 98.50 ± 0.3 99.78 ± 0.0 99.97 ± 0.0 98.79 ± 0.1 98.25 ± 0.6 95.83 ± 0.5 99.09 ± 0.0 97.25 ± 0.1 95.90 ± 0.1
Avg. ↑ 5.57 ↑ 1.73 ↑ 2.07 ↑ 0.61 ↑ 18.81 ↑ 1.23 ↑ 3.26 ↑ 2.38 ↑ 0.96 ↑ 18.51 ↑ 6.09

Table 8: AUC results (%) for temporal link prediction in transductive and inductive settings. Results
highlighted with a blue background indicate the performance and corresponding improvements of our CROSS

framework using various TGNN backbones. The best results are highlighted in bold.
Transductive setting Inductive setting

Enron GDELT ICEWS1819 Googlemap_CT Industrial Enron GDELT ICEWS1819 Googlemap_CT Industrial

JODIE 97.50 ± 0.2 95.55 ± 0.2 97.56 ± 0.6 85.25 ± 0.3 94.34 ± 0.2 93.93 ± 0.3 91.41 ± 0.2 93.68 ± 2.0 82.83 ± 0.4 80.55 ± 0.7
DyRep 96.56 ± 0.9 94.63 ± 0.2 95.83 ± 0.3 78.02 ± 0.5 87.97 ± 0.3 91.60 ± 2.1 90.71 ± 0.4 90.60 ± 0.5 74.60 ± 1.0 74.25 ± 0.7
TCL 97.52 ± 0.2 96.32 ± 0.0 99.18 ± 0.01 89.75 ± 0.2 94.97 ± 0.2 93.20 ± 0.4 92.69 ± 0.1 98.04 ± 0.02 87.95 ± 0.0 80.58 ± 0.5

CAWN 97.76 ± 0.0 95.62 ± 0.0 98.86 ± 0.01 88.51 ± 0.1 96.57 ± 0.1 94.07 ± 0.1 90.92 ± 0.1 97.15 ± 0.04 86.39 ± 0.1 87.17 ± 0.1
PINT 98.00 ± 0.4 96.27 ± 0.2 99.01 ± 0.1 89.36 ± 0.1 98.11 ± 0.3 95.35 ± 0.7 92.52 ± 0.1 98.27 ± 0.5 88.24 ± 0.2 87.25 ± 0.3

GraphMixer 96.42 ± 0.2 95.26 ± 0.0 97.27 ± 0.1 80.08 ± 0.3 94.81 ± 0.1 89.99 ± 0.7 90.69 ± 0.1 95.27 ± 0.1 76.57 ± 0.2 80.01 ± 0.4
FreeDyG 97.72 ± 0.1 96.32 ± 0.2 99.08 ± 0.01 84.37 ± 0.2 95.29 ± 0.1 95.27 ± 0.9 92.23 ± 0.1 97.92 ± 0.1 80.58 ± 0.1 84.29 ± 0.2

LKD4DyTAG 97.01 ± 0.1 97.22 ± 0.1 98.00 ± 0.1 83.29 ± 0.1 96.44 ± 0.0 92.82 ± 0.4 93.73 ± 0.1 96.62 ± 0.1 78.76 ± 0.2 82.98 ± 0.1

TGAT 97.17 ± 0.1 95.93 ± 0.1 99.05 ± 0.0 87.17 ± 0.4 94.43 ± 0.4 92.09 ± 0.3 91.74 ± 0.1 97.67 ± 0.1 85.33 ± 0.2 78.88 ± 0.6
TGAT+ 99.69 ± 0.04 98.17 ± 0.2 99.62 ± 0.1 99.97 ± 0.0 97.04 ± 0.2 97.53 ± 0.1 94.28 ± 0.3 98.54 ± 0.3 97.20 ± 0.1 92.15 ± 0.4

Avg. ↑ 5.47 ↑ 2.52 ↑ 2.24 ↑ 0.57 ↑ 12.80 ↑ 2.61 ↑ 5.44 ↑ 2.54 ↑ 0.87 ↑ 11.87 ↑ 13.27

TGN 98.15 ± 0.2 95.67 ± 0.3 99.02 ± 0.1 91.96 ± 0.1 95.49 ± 0.4 94.86 ± 0.5 90.53 ± 0.5 97.47 ± 0.0 90.50 ± 0.0 83.51 ± 1.6
TGN+ 99.70 ± 0.1 98.14 ± 0.3 99.73 ± 0.3 99.97 ± 0.0 97.69 ± 0.7 97.48 ± 0.4 93.69 ± 0.7 98.72 ± 0.7 97.42 ± 0.0 93.17 ± 0.2

Avg. ↑ 3.86 ↑ 1.55 ↑ 2.47 ↑ 0.71 ↑ 8.01 ↑ 2.20 ↑ 2.62 ↑ 3.16 ↑ 1.25 ↑ 6.92 ↑ 9.66

DyGFormer 97.78 ± 0.4 96.52 ± 0.0 99.08 ± 0.02 80.96 ± 2.2 97.61 ± 0.1 94.24 ± 0.6 93.12 ± 0.1 97.93 ± 0.0 77.99 ± 2.7 87.89 ± 0.2
DyGFormer+ 99.60 ± 0.3 98.53 ± 0.3 99.75 ± 0.03 99.97 ± 0.0 98.24 ± 0.1 98.03 ± 0.7 95.57 ± 0.5 98.99 ± 0.1 97.24 ± 0.1 94.70 ± 0.1
Avg. ↑ 5.75 ↑ 1.82 ↑ 2.01 ↑ 0.67 ↑ 19.01 ↑ 0.63 ↑ 3.79 ↑ 2.45 ↑ 1.06 ↑ 19.25 ↑ 6.81

loss is applied to transfer knowledge from LLMs to a TGNN model. However, this method still suffers
from the limitations of neglecting both semantic dynamics and semantic-structural reinforcement, as it
continues to rely on the TGNN encoding mechanism during inference (empirically validated in Tab. 2).
Instead, our proposed CROSS tackles these issues by unifying text semantics and graph structures,
which effectively generates cohesive representations that are both context- and structure-aware.

Text-attributed Graphs (TAGs). Text-attributed graphs (TAGs) have been widely adopted in
numerous real-world applications [16, 65]. To enable representation learning in such graphs, existing
methods often combine graph learning approaches with language modeling techniques. Early works
focus on integrating pre-trained language models (LMs) with graph neural networks (GNNs). Some of
them [66, 67] conduct cascaded architecture. They first use LMs to independently embed texts as node
features, which are then fed into GNNs for representations. Unlike these pipelines, other methods
[68, 69, 70, 71, 72, 73] adopt a hybrid GNN-LM architecture to jointly detect both semantic and
structural information. Unfortunately, all these methods overlook the potential temporal information
inherent in graphs, limiting their applicability to TTAG modeling. Moreover, they cannot be directly
applied to TTAGs, as TTAGs and TAGs differ technically. For instance, TTAGs involve a sequence of
timestamped interactions with both node and edge attributes, while TAGs typically rely on adjacency
matrices with only node attributes.
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Large Language Models (LLMs) for Graph Text Augmentation (LLM4GTAug). In recent years,
the rising prominence of large language models (LLMs) [18, 74, 75], such as DeepSeek-v2/3 [19], has
underscored their exceptional potential to revolutionize graph modeling [76, 77, 78]. They typically
harness the prompt response of LLMs as the external knowledge to fortify overall model performance,
either for text augmentation [20, 79, 80] or for structure refinement [21, 81]. However, all the above
methods focus on static text-attributed graphs. LLMs used in these methods are typically limited
by static corpora input for reasoning, making them ill-suited to capture the temporal dynamics of
TTAGs. In this paper, we propose to enhance LLMs with dynamic semantic summarization reasoning
capability, effectively detecting semantic dynamics for TTAG modeling.

F Prompt Template
In Sec. 3.1, we provide a simplified example of the prompts used to construct the temporal reasoning
chain within our Temporal Semantics Extractor. Here, we present a complete example of the prompts
applied to the Googlemap_CT dataset as depicted in Fig. 13. Only minor keyword adjustments are
required for the prompts when applied to other datasets. Specifically, for the Enron dataset, the terms
“item” and “review” are replaced with “user” and “email”. Similarly, for the GDELT and ICEWS1819
datasets, these terms are substituted with “entity” and “relation”. For the industrial datasets, “item”
and “review” are replaced with “user” and “transaction”.

# Goal #: Summarize the historical reviews of user 'Maureen Sobel' at the current timestamp and provide your semantic understanding for them. 

# Descriptions #: xxx

# Current timestamp #: 27639

# Recent reviews of user 'Maureen Sobel' #:
0. timestamp: 27630 | item: 'Name: xxx. Description: xxx' | review: 'Had my hair cut and permed by a very experienced and…'

1. timestamp: 27246 | item: 'Name: xxx. Description: xxx' | review: 'Always clean and monitored. Have a good selection of machines …'

2. timestamp: 26880 | item: 'Name: xxx. Description: xxx' | review: 'Basic auto parts store with lackadaisical stereotype staff who …'

3. …

…

Provide the summary STRICTLY in this form: Summary: xxx.

Figure 13: An example of the prompt used to query the LLMs on Googlemap_CT.

G Scalability Clarification of LLM Usage
In this section, we provide a scalability clarification of LLM usage within the CROSS framework,
including presenting cost statistics and outlining the strategies employed to improve efficiency.

Cost statistics of LLM usage. DeepSeek-v2 [19] is renowned for its exceptional performance and
cost-efficiency, which provides an excellent balance between quality and affordability. Therefore,
we select DeepSeek-v2 as the default LLM in our CROSS framework. Here, we present the cost
statistics for calling DeepSeek-v2 API across the five datasets in Tab. 9 for reference. Additionally,
we want to emphasize that the DeepSeek-v2 API imposes no theoretical rate limits. During practical
implementation, we leverage multithreading techniques to conduct multiple network requests simul-
taneously under 80 concurrent processes, enhancing program parallelism and optimizing response
time consumption. As for the money cost, DeepSeek-v2 prices at $0.00027 per 1,000 input tokens
and $0.0011 per 1,000 output tokens at the time of our experiments.

Table 9: Cost statistics of LLM usage.
Datasets # Input Tokens # Output Tokens # Time Consumption (s) # Money Cost ($)

Enron 20,640,423 4,471,765 4,528 10.49
GDELT 4,194,490 1,049,842 4,145 2.29

ICEWS1819 21,844,799 5,410,145 6,517 11.85
Googlemap_CT 144,712,376 21,214,481 21,581 62.41

Industrial 296,273,271 30,294,172 41,729 113.3

Strategies to improve the efficiency of LLM usage. It is important to highlight that we have
implemented several strategies to enhance the efficiency of LLM usage as follows: (i) The frequency
of LLM calls for each node is carefully constrained. We introduce a maximum reasoning count m to
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constrain the number of reasoning steps for each node as described in Eq. 1. This design reduces
the computational complexity of LLM calls from O(|E|) to O(|V|), where |E| and |V| represent
the total number of edges and nodes respectively. (ii) Smaller LLMs can serve as cost-effective
alternatives. Smaller LLMs within the CROSS framework still demonstrate notable performance
as shown in Sec. 4.5, providing a more cost-effective alternative to larger LLMs like DeepSeek-v2
or GPT-4o. (iii) The LLM-generated texts are consistently reused to avoid repeated querying. Our
method requires only a single query to the LLMs, with the summaries being stored for subsequent
use. These LLM-generated texts can be reused for other tasks or integrated into other methods. We
will make the LLM-generated texts publicly available if this paper can be accepted.

Based on the clarifications above, we argue that the proposed CROSS framework is applicable
and effective for large industrial-scale TTAGs. This is because CROSS’s success on our Industrial
dataset from real-world e-commerce systems has demonstrated its practical scalability, and the scale
of this dataset surpasses that of many common domains [82]. We will also provide the complexity
analysis for CROSS’s components in Sec. L.4.

H Efficiency Study

In this section, we conduct an efficiency study by comparing model performance and training time
per epoch. The results are presented in Fig. 14, where the top-left indicates better performance with
higher efficiency. From the results, we observe that CROSS strikes a better trade-off between effec-
tiveness and efficiency, achieving the best performance while maintaining a moderate, acceptable
computational cost. These results further highlight the scalability and practicality of our proposed
framework, making it well-suited for large-scale and industrial applications.
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Figure 14: Comparison between model performance and training time per epoch. CROSS exhibits a better
trade-off between effectiveness and efficiency, achieving the best performance while maintaining a moderate,
acceptable computational cost.
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Figure 15: Parameter study with different maximum rea-
soning count m on GDELT. Results of w/o TSE are also pre-
sented for reference.

To balance granularity and efficiency, we
set a maximum reasoning count (m in
Eq. 1) to constrain the number of LLM
reasoning steps. Now we study how this
hyper-parameter impacts performance and
plot the results with varying m in Fig. 15.
Reasoning too infrequently (small m) may
make the LLMs cannot effectively com-
prehend the semantic dynamics around
nodes and thus result in degraded per-
formance, while reasoning too frequently
(large m) may cause the LLMs to fail to capture long-term semantic shifts. It is also worth noting
that different models exhibit varying sensitivities, and m = 8 seems to be a generally sweet choice.

J Details for Robustness Study

Robustness study for noise. As stated in Sec. 1, the learned representations from existing TGNNs
may rely solely on noisy structural information. To empirically validate this assumption, we strate-
gically introduce noise into graph structures surrounding a target node by replacing its neighbors
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with randomly sampled nodes at perturbation rates of p ∈ {10%, 20%, 30%, 40%, 50%}. To further
investigate the impact of noise and assess the model ability to handle such conditions, we randomly
select a subset of nodes and visualize the attention weights of their perturbed neighbors during
encoding using box plots under p = 50%.

Robustness study for encoding layers. Next, we study the model robustness to the number of
encoding layers. Specifically, we conduct a series of experiments with varying numbers of encoding
layers L = {1, 2, 3, 4, 5}. A larger number of encoding layers facilitates a deeper integration of the
cross-modal information. We employ TGAT and TGN as the backbones. Unlike previous experiments,
we set the neighbor sampling size in each layer to 5 in this group of experiments due to computational
constraints. Other hyper-parameters remain set to their default values detailed in Sec. D.3.
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Figure 16: Attention weights from randomly se-
lected nodes to their perturbed neighbors on Enron
with the perturbation rate of 50%. (Supplementary
results for Fig. 6.)

1 2 3 4 5
Layer

82

85

87

90

Tr
an

sd
uc

tiv
e 

M
R

R
 (%

)

TGAT
TGAT+

0

2

5

7

Perform
ance Im

provem
ent (%

)

1 2 3 4 5
Layer

72

76

80

In
du

ct
iv

e 
M

R
R

 (%
)

TGAT
TGAT+

5

7

10

12

15 Perform
ance Im

provem
ent (%

)

(a) TGAT as backbone.
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(b) TGN as backbone.
Figure 17: Robustness study for encoding lay-
ers on ICEWS1819. (Supplementary results for
Fig. 7.)

GDELT
50

60

70

80

Tr
an

sd
uc

tiv
e 

M
R

R
 (%

)

GDELT
30

40

50

60

70

In
du

ct
iv

e 
M

R
R

 (%
)

ICEWS1819

84

88

92

96

Tr
an

sd
uc

tiv
e 

M
R

R
 (%

)

ICEWS1819
70

75

80

85

In
du

ct
iv

e 
M

R
R

 (%
)

      TGAT
(Backbone) w/o TSE w/o SC w/o TRC w/o CM w/ CMall TGAT+

Figure 18: Ablation study for model compo-
nents using TGAT model as the backbone. Results
of the backbone are also included for reference.
(Supplementary results for Fig. 8.)
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(b) TGN as backbone.
Figure 19: Parameter study with different max-
imum reasoning count m on Enron. Results of
w/o TSE are shown for reference. (Supplementary
results for Fig. 15.)

K Details for Ablation Study

Ablation study for model components. We start the ablation study by evaluating the contributions
of the key components of our model, including the Temporal Semantics Extractor (TSE) in Sec. 3.1,
the Semantic-structural Co-encoder (SC) in Sec. 3.2, and the Cross-modal Mixer (CM) in Eq. 9.
We remove each component individually, resulting in three variants: w/o TSE, w/o SC, and w/o
CM. Moreover, we disrupt the Temporal Reasoning Chain constructed by the TSE component via
scrambling the chronological order in T̂u among Eq. 1, which results in a variant named w/o TRC.
Additionally, to validate the rationale behind the design of our Cross-modal Mixer, we present results
where all semantic representations are indiscriminately mixed. This variant is referred to as w/ CMall.

Ablation study for raw texts and LLM-generated texts. We then conduct an ablation study to com-
pare the raw texts in TTAGs (i.e., the original node or edge text attributes) with the LLM-generated
texts (i.e., neighborhood summaries produced by LLM-based Temporal Semantics Extractor). Ex-
periments are performed using three encoding mechanisms, including the semantic encoding that
performs semantic layers for semantic representations described in Sec. 3.2, the structural encoding
that conducts semantic layers for structural representations described in Sec. 3.2, and the semantic-
structural co-encoding that is used to generate final representations in CROSS. These combinations
lead to six variants.

Ablation study for different LLMs. We further extend our ablation study with different LLMs. In
addition to the default LLM DeepSeek-v2 within the CROSS framework, we conduct experiments
using various LLMs with the GDELT dataset, including GPT-4o [31], Llama3-8b [32], Vicuna-7b
[33], and Mistral-7b [34]. Specifically, GPT-4o is a proprietary large language model developed
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by OpenAI12, built upon the GPT-4 architecture and optimized for multimodal comprehension and
generation. We also invoke it via its official API13. Llama3-8b is an open-source auto-regressive
language model with an improved transformer structure. Its tuned versions use supervised fine-tuning
(SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for
helpfulness and safety. Vicuna-7b is built on Llama 2 and fine-tuned using supervised instruction. Its
training data comes from user-shared conversations found online. Mistral-7b uses grouped-query
attention (GQA) for faster processing and sliding window attention (SWA) to handle long sequences
more efficiently, reducing the cost of inference.

From the results in Fig. 9, we can find that DeepSeek-v2 performs best, demonstrating its effectiveness.
Additionally, it is worth noting that all variants significantly outperform their corresponding backbones
and the performance differences across variants are relatively minimal. This demonstrates the
robustness of the CROSS framework.

L Discussions

L.1 Empirical Analysis for Semantic Dynamics

In this subsection, we provide an empirical analysis for the semantic dynamics in TTAGs. To achieve
this, we conduct an empirical experiments with three additional variants, including:

• w/ FTI (Fixed Time Interval): Instead of the timestamp sampling using fixed interaction intervals
in Eq. 1, for each node, we compute its interaction time span and uniformly sample timestamps to
enable the LLM to summarize at fixed time intervals.

• w/ RN (Recent Neighbors): For each node at each timestamp, we directly instruct the LLM to
summarize the most recent 20 neighbors.

• w/o TE (Time Encoding): We directly remove the time encoding mentioned in Eq. 3.

The results are presented in Tab. 10. From the results, we find that the w/o TE exhibits only a
marginal performance drop. This indicates that time encoding alone captures limited temporal
dynamics. Instead, our prompting paradigm guides LLMs to capture the semantic evolution over time,
effectively facilitating text-driven dynamics for TTAG modeling. Furthermore, either summarizing
at fixed time intervals or recent interactions yields suboptimal results. This strongly validates the
importance of semantic dynamics.

Table 10: MRR results (%) for temporal link prediction on Enron with TGAT and TGN backbones.

Transductive Inductive
TGAT TGN TGAT TGN

w/ FTI 82.47 85.20 70.21 71.77
w/ RN 78.46 83.38 65.60 68.87
w/o TE 92.87 93.62 81.40 80.33
CROSS 95.58 95.84 81.52 82.38

L.2 Extension to Edge Classification

CROSS can be easily extended to edge classification. For completeness, we evaluate two edge
classification settings: (i) Supervised setting where models are trained directly using edge labels, and
(ii) zero-shot setting where models are first trained on temporal link prediction, and a 2-layer MLP is
subsequently fine-tuned on top of the frozen encoder for edge classification. Both implementation
and model configurations follow DTGB [12], with DyGFormer adopted as the backbone. From the
results, we find that CROSS still achieves the best performance in both supervised and zero-shot
edge classification, proving its strong generalization and transferability across tasks. Additionally, all
models exhibit a performance drop in the zero-shot setting. This highlights the presence of a transfer
learning challenge in TTAG modeling, which warrants future research.

12https://openai.com
13https://openai.com/api
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Table 11: Precision, Recall, and F1 (%) results for supervised and zero-shot edge classification on
Enron. We omit some baselines, as they have shown inferior performance [12].

Supervised Edge Classification Zero-shot Edge Classification
JODIE DyRep GraphMixer DyGFormer CROSS JODIE DyRep GraphMixer DyGFormer CROSS

Precision 65.68 66.25 63.13 66.01 78.62 47.52 50.28 44.28 52.82 65.28
Recall 64.72 63.90 57.35 58.06 72.74 40.25 46.91 42.82 47.36 60.22

F1 64.78 64.32 55.07 56.04 70.91 42.88 44.58 43.66 45.20 58.29

L.3 When Handling Conflicting Modalities

CROSS is developed from the unification of text semantics and graph structures with the assumption
of complementarity between both information, which is discussed in Sec. 1 and validated in Sec. A.
While building upon this, we argue that CROSS remains effective even in the presence of potential
cross-modal conflicts. This claim is supported by:

Quantitative results. Noise can reduce alignment and amplify conflicts between semantics and
structures. Our robustness study for noise in Sec. 4.4 simulates these inconsistencies, and the results
show that CROSS consistently performs best and exhibits strong robustness. This validates CROSS’s
ability to effectively handle such cross-modal conflicts.
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Figure 20: Case study for the learned representa-
tions when handling conflicting modalities.

Qualitative results. Similar to our case study in
Sec. A, we also visualize the learned represen-
tations of a representative node on GDELT as
shown in Fig.20. The completely disjoint repre-
sentations from backbones confirm the presence
of cross-modal conflicts, and CROSS effectively
narrows the feature space to produce relatively
more unified representations. Such capabilities
to handle conflicts can be attributed to our co-
encoding mechanism, which adaptively facili-
tates synergistic alignment between modalities.

L.4 Complexity Analysis

Now, we provide a theoretical complexity analysis of the two main components of CROSS. Let |V|
represent the number of nodes, D denote the average degree of the node, L indicate the number of
encoding layers, and m depict the maximum reasoning count. To simplify the calculations, we assume
that the input, hidden, and output dimensions are uniformly set to d. In the Temporal Semantics
Extractor, we construct a temporal reasoning chain with a maximum reasoning count of m for each
node, resulting in a computational complexity of O(m|V|). For the Semantic-structural Co-encoder,
we utilize various existing TGNN encoding blocks as the structural layers. Therefore, our complexity
analysis focuses on the additional cost introduced by the semantic layers. As mentioned in Sec. 3.2,
these layers employ a series of standard Transformer layers for each node, thus leading to a total
complexity of O

(
L|V|D2d+ L|V|d

)
.

L.5 Limitation

One potential limitation of CROSS is that we only focus on 1-hop historical interactions of a specific
node as input to the LLMs within our Temporal Semantics Extractor. While effective in many cases,
this approach may be suboptimal for scenarios where high-order temporal semantics are critical.
However, directly incorporating multi-hop textual neighborhoods into LLM could substantially
escalate computational costs and dilute the model ability to capture relevant semantic information.
Future work could explore innovative methods to efficiently and effectively capture nodes’ high-order
semantics, unlocking further potential for improved TTAG modeling.

Another issue could be that LLM-generated texts do not always perform optimally under different
encoding mechanisms. Although LLMs are renowned for their powerful text generation and under-
standing capabilities, it is crucial to explore effective encoding mechanisms that can fully maximize
the potential of LLM-generated texts, such as the proposed Semantic-structural Co-encoder.
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