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Abstract

Large Language Models (LLMs) and Large001
Multimodal Models (LMMs) have demon-002
strated notable capabilities across a wide range003
of tasks and domains, showcasing advanced004
problem-solving skills that encompass every-005
thing from natural language understanding and006
generation to complex decision-making pro-007
cesses. However, the extent of their proficiency008
in tackling mathematical physics problems re-009
mains relatively underexplored. In this pa-010
per, we propose PhOPile, a high-quality, mul-011
timodal, physics-specific, and Olympic-level012
physics dataset. We detail the meticulous pro-013
cess of data collection, cleaning, and structur-014
ing to ensure the dataset’s integrity and util-015
ity. Furthermore, we conduct a high-granularity016
evaluation of the performance of currently pop-017
ular LLMs and LMMs on our dataset and pro-018
vide a benchmark of their physics problem-019
solving capability and enrich assessment op-020
tions for models’ competencies in natural sub-021
jects. We also introduce an evaluation method022
that enables a more detailed measurement of023
the model’s reasoning capabilities. Our re-024
search represents the first attempt to reveal the025
potential and current limitations in interpret-026
ing and solving complex physics challenges,027
setting a foundational baseline for subsequent028
advancements in this field.029

1 Introduction030

Large language models (LLMs) and large multi-031

modal models (LMMs) such as GPT-3 (Brown032

et al., 2020), GPT-4 (OpenAI, 2023), and Gem-033

ini (Deepmind, 2023) have shown exceptional per-034

formance in tasks beyond Natural Language Pro-035

cessing (NLP). Not surprisingly, there is an in-036

creasing research interest in exploring scientific037

domains, especially in mathematics. Significant038

progress has been shown such as MathPrompter039

(Imani et al., 2023) using prompt template, Fun-040

Search (Romera-Paredes et al., 2024) utilizing self-041

iteration, Improving LLM Fine-Tuning method042

Figure 1: Source of PhOPile

(Liu et al., 2023), DeepSeekMath (Shao et al., 043

2024) leveraging improved reinforcement learn- 044

ing, Llemma (Azerbayev et al., 2023) and Goat 045

(Liu and Low, 2023). Typically, these models need 046

training to specifically address mathematical prob- 047

lems, which often necessitates a substantial quan- 048

tity of high-quality datasets or corpus like MiniF2F 049

(Zheng et al., 2021), MATH (Hendrycks et al., 050

2021), GSM8K (Cobbe et al., 2021), MLFMF 051

(Bauer et al., 2023), Mathpile (Wang et al., 2023b) 052

and Proof-Pile-2 (Azerbayev et al., 2023). 053

However, research focusing on LLMs and 054

LMMs of physic reasoning remains notably sparse. 055

There is no physics specified model at present. 056

Related studies mainly focus on natural science 057

datasets and corpora used for LLMs and LMMs 058

training, including a portion of low-difficulty 059

physics data such as SciQ (Johannes Welbl, 2017), 060

ScienceQA (Lu et al., 2022) and TheoremQA 061

(Chen et al., 2023). Nevertheless, physics, as an 062

exceedingly important discipline within the natu- 063

ral sciences, plays a pivotal role in various fields 064

such as construction, aerospace, and electronic en- 065

gineering. It is still insufficient to evaluate the 066

physical inferencing abilities of LLMs with the 067
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Figure 2: PhOPile collection and processing process. We collect it from physics competitions around the world. It
has gone through a series of preprocessing, including: regular character collection, mathematical formula conversion,
image extraction, question number modification, etc. Detailed steps are clearly stated in Section 3.

current datasets while they are relatively small, not068

difficult enough, and not covering a complete range069

of physical knowledge.070

By recognizing the lack, in this paper, we in-071

troduce PhOPile, a multimodal dataset featur-072

ing Olympiad-difficulty-level physics problems.073

Specifically designed for fine-tuning and evalu-074

ating LLMs’ and LMM’s capabilities in solving075

advanced physics problems, PhOPile marks a pi-076

oneering step in bridging the gap between artifi-077

cial intelligence and high-level physics problem-078

solving. In contrast to the rigorous logic demanded079

in mathematical problem-solving datasets, physics080

problems call for a distinct form of reasoning that081

often involves the integration of a broad spectrum082

of conceptual understanding (Hung and Jonassen,083

2006) along with mathematical analysis. Acknowl-084

edging this difference, we utilize PhOPile, which085

comprises physics competition problems, to assess086

the efficacy of LLMs and LMMs. Our goal is to087

share our findings with the community, thereby fos-088

tering further advancements in this field by fellow089

scholars.090

In summary, our contributions are summarized091

as follows:092

• We introduce a carefully processed, extremely093

high-quality, and first of the kind physics prob-094

lems dataset of physics problems with solu-095

tion steps and their relevant images.096

• We provide a new metric of physics problems097

for evaluating LLMs.098

• We evaluate this dataset among the current 099

mainstream LLMs and LMMs and propose a 100

benchmark, which not only clarifies their abili- 101

ties in physics but also identifies opportunities 102

for enhancement. 103

• We discuss the potential future developments 104

of LLMs in the field of natural sciences and 105

their implications for related domains. 106

2 Data Collection 107

We collect of Physics Olympiad questions from var- 108

ious regions around the globe as shown in Fig. 1, 109

including: International Physics Olympiad (IPhO, 110

1967-2023), Asian Physics Olympiad (APhO, 111

2000-2021), European Physics Olympiad (Eu- 112

PhO, 2017-2021), Nordic-Baltic Physics Olympiad 113

(NBPhO, 2003-2021), Romanian Master of Physics 114

(RMPhO, 2012-2021), United States Physics 115

Olympiad (AAPT, 2007-2019), and British Physics 116

Olympiad (BPhO, 2001-2022). 117

Physics problems often involve mathematical 118

formulas, we use LaTeX to formulate the solutions 119

with all the detailed information in plain text. A rep- 120

resentative sample question (from USAPhO 2017) 121

from our dataset is shown in Fig. 2. To enhance 122

our work efficiency and ensure the uniformity and 123

appropriateness of our dataset in LaTeX format, we 124

utilize MathPix, an OCR recognition software, to 125

convert the content of images into LaTeX code. For 126

finalized dataset samples stored in JSON format, 127

please refer to the Appendix A.1. The following 128
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section will introduce the steps we took in data129

processing.130

3 Data Processing131

A physics question problem has multiple parts: text,132

numbers, and images. Fig. 2 illustrates how we133

process the each part of a physics question. The134

following section will introduce detailed steps we135

take in data processing.136

Sub-questions Unlike the most mathematical137

datasets, a considerable number of physics compe-138

tition questions consist of multiple sub-questions139

that are interconnected. We collect and specify140

these questions by using Arabic number as their141

index. An completed example is shown in Fig. A.1.142

Hint Information & Solution Format Require-143

ments Physics competition problems sometimes144

provide additional information, which, in the145

sources we compile, are referred to as: ‘Hint’,146

‘Data’, or ‘For information only’. Such information147

usually contains the premises necessary to solve148

the problem. Therefore, depending the position149

appears, we place this type of information after the150

corresponding question text to ensure a more tar-151

geted and effective use, enhancing the specificity152

and relevance of the information provided in rela-153

tion to that specific part of the problem.154

For questions that specify formatting require-155

ments for the candidate responses, for example,156

‘please round to two decimal places’, the position-157

ing of such instructional text is aligned with the158

previously mentioned approach for hint informa-159

tion.160

Images in the Question A significant portion of161

the questions and answers in our dataset include162

one or more images. For such questions, we have163

stored the related images in a folder and introduced164

‘imgQ’ and ‘imgA’ in our dataset, which stores165

the local URLs for the images associated with the166

questions and the solutions, respectively.167

At the same time, in order to record the168

position where the image appears in the ques-169

tion text, we replaced words like ‘figure’ with170

a mark: ###img_N###, where ‘N’ denotes171

the order of the image. An example can be172

observed in Fig. 7b. The ‘###img_1###’173

in ‘Question’ and ‘Solution’ stands for174

the image of ‘./pic/question/34.png’175

and ‘./pic/answer/65.png’ respectively in176

repository.177

Regarding the captions of these images, we ob- 178

serve two primary types. The first type consists 179

merely of image labels, such as ‘Fig. 05’ or ‘figure 180

1’. For these cases, we choose to omit the captions 181

from our dataset, as they provide minimal informa- 182

tional value. The second type of captions such as 183

‘Figure 1: Isosceles glass prism with an apex angle 184

of 90◦’, containing crucial content of the problem 185

are added in question text. Similar method has 186

been proven to improve the accuracy of language 187

model outputs by MathVista (Lu et al., 2024), as 188

they input with both the captions of images and 189

text from enhanced Optical Character Recognition 190

(OCR). 191

Data cleaning and filtering We delete extrane- 192

ous elements from the questions, including his- 193

torical background introductions, scoring criteria, 194

and regulations or policies related to competitions. 195

We filtered out certain LaTeX commands solely 196

involved in adjusting the format, as they contribute 197

nothing to the essence of the question. This serves 198

the dual purpose of noise reduction and data com- 199

pactness. Additionally, this approach aims to meet 200

the text length requirements specified for the win- 201

dow length of LLMs. 202

Multiple Solutions For certain questions, the 203

source files provide multiple solutions. They of- 204

ten appear as ‘Solution 2’, ‘Another way to solve 205

this problem’. To adhere to the specificity of train- 206

ing and ensure the constraints of text length within 207

the window parameters, we establish a new key 208

called ‘solution2’ or ‘solution3’ (if there 209

are more alternative solutions) to store them. 210

4 Data Analysis 211

Summary We collect 4,496 high-quality, and 212

Olympic-level physics competition questions from 213

1967 to 2021 in various fields. The specific amount 214

of each source is shown in Fig. 3 and more detailed 215

token statistics from different sources are shown in 216

Table 1. 217

At the present stage, the advancement in research 218

pertaining to LMMs addressing problems involving 219

images remains suboptimal. Notably, some images 220

can be considered meaningless, as shown in Fig. 221

5 (b), images for this type of topic do not contain 222

any useful information, whereas images Fig. 5 (a) 223

contain necessary information for solving the ques- 224

tion. Therefore, questions containing images like 225

Fig. 5 (b) can be regarded as a complete question 226
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Source # Questions # Tokens Max (#Tokens) Min (#Tokens) Ave (#Tokens) Years

APhO 589 279,802 3,208 18 475 2000-2021
EuPhO 23 20,738 3,951 20 902 2017-2021
IPhO 947 446,170 4,487 21 471 1967-2021

NBPhO 429 137,406 1,638 17 320 2003-2021
RMPh 195 81,364 1,861 49 420 2012-2021

USAPhO 723 136,179 2,030 11 188 2007-2019
WohO 146 66,038 1,737 19 452 2011-2013

Total 4496 1,275,406 - - - -

Table 1: The token statistics of each components of PhOPile.

Figure 3: Comparison of Number of Questions from Dif-
ferent Sources with and without Images. The percentage
represents the proportion of questions with images.

even without images. Models can still obtain all227

information about the question without images in228

the prompt.229

The Token Count Distribution of Answers and230

Solutions The token count statistics are illustrated231

in Fig. 4. Due to the excessive length of certain232

individual questions (for example, some questions233

spend huge spaces to explain a complex and com-234

prehensive physical environment\premises or some235

solutions are subjective, and they often use a lot of236

tokens to explain a physical phenomenon clearly).237

We can see that the number of tokens in most ques-238

tions and solutions is within 500. For the current239

popular LLMs and LMMs, the window for text240

length allows for a complete round of training with- 241

out the need to prune the prompt. 242

Ambiguous Statistical Values Explanation 243

The lowest number of token is 1, typically repre- 244

senting sub-questions that serve as a completion 245

of their preceding counterparts. For example, 246

the question ‘Please determine the 247

average speed of the period (i) T 248

and (ii) 2T.’ has two sub-questions: The 249

one is ‘Please determine the average 250

speed of the period T’ with the token 251

count is 9 and the other one is ‘2T.’ with the 252

token count is 1. The lowest number of solution 253

tokens could be 0, because some questions require 254

candidates to sketch a graph, so there is no literal 255

solutions. 256

Images in Solutions In our dataset, a great part 257

of solutions incorporate images. Some of these 258

images are curve graphs, designed to illustrate the 259

relationship between two variables as specified by 260

the question, while others are structural diagrams 261

for force analysis, among other types. However, 262

current LMMs are incapable of generating images 263

in accordance to the specific requirements posed 264

by the questions. Nevertheless, we have included 265

these instances in PhoPile, aiming to facilitate fu- 266

ture research contributions by scholars. 267

4.1 Data Contamination 268

We conducted data contamination detection on 269

PhoPile. Due to the limited current research on 270

physical sciences by both LLMs and LMMs, we 271

were unable to find a perfectly corresponding 272

benchmark dataset. However, we discovered some 273

natural science datasets that include physics prob- 274

lems: SciQ (Johannes Welbl, 2017), ScienceQA 275

(Lu et al., 2022) and TheoremQA (Chen et al., 276

2023). We performed n-grams data contamination 277
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Figure 4: Token Count Distributions in Problems and Solutions: The images displays the token distribution statistics
of PhoPile, while blue line and yellow line stand for the token distribution statistics of the problem text and solution
text respectively. Please note that this picture only shows the distribution of tokens between 0 and 1400, since few
questions with exceptionally long tokens (over 4000) were excluded from the statistical image to avoid compression
that would render the image unclear

monitoring on them, setting n to 3. The results were278

as follows: SciQ: 4.2977%, ScienceQA: 0.7759%,279

and TheoremQA: 10.0088%. Above results, even280

when setting n as low as 3, indicate remarkably low281

contamination rates. These figures suggest that the282

quality of our dataset is exceptionally high, which283

is positive for our research integrity and the validity284

of the data we utilize. However, it’s important to285

acknowledge the limitations in guaranteeing the286

absence of contamination in our dataset in relation287

to the training sets of closed-source models. Since288

the datasets used for training these models are not289

publicly available, we cannot definitively ensure290

that our data is free from overlap with these their291

training data.292

5 Experiments293

In this section, we use the test set and perform294

evaluations on it using LLMs and LMMs.295

5.1 Test Dataset296

Due to the window context length limit of Llama2297

(Touvron et al., 2023) is 4096 and the average so-298

lution token length in PhoPile being around 400,299

we initially filtered out questions whose total num-300

ber of tokens exceeded 3500 in our test set. By301

doing so, we can ensure that the prompts input302

into the model are within the window text length303

range of the model. Then, we extracted two sets304

of questions for testing, employing random selec-305

tion to ensure equal distribution across sources and306

by year. Finally, we constructed Test-PhoPile and 307

Test-PhoPile-V, consisting of 50 main questions 308

with 82 sub-questions in pure text, and 20 main 309

questions with 73 sub-questions including image 310

queries, respectively. 311

5.2 Evaluation 312

To enable models to provide highly targeted re- 313

sponds to each sub-question of problems contain- 314

ing multiple sub-questions, we do not simply con- 315

catenate the text of all sub-questions and input them 316

into models. Instead, our prompts strategy is: We 317

input the sub-question texts in the order and obtain 318

the corresponding response text. So the message 319

history is a sub-question text sent by the user, and 320

then a respond from the assistant arranged in se- 321

quence. An prompt example of the format of input 322

for a text-based question is demonstrated in Fig. 323

19. 324

Physics questions like the International 325

Olympiad often require candidates to answer 326

questions with long logical chains of reasoning. 327

Hence, the scoring criteria should not solely assess 328

the provision of the final answer. Whether solving 329

it partially correctly or entirely incorrectly from 330

the outset, neither leads to the correct final answer. 331

However, we posit that the LLMs that achieves 332

partial correctness demonstrates a superior ability 333

in handling physics questions. Consequently, we 334

have opted for a step-by-step scoring strategy. 335

In the original examination marking scheme, 336

each question was assigned varying points, a sys- 337
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Figure 5: Examples of Questions with Meaningless and Meaningful Images in PhoPile: Part (a) is the question
with its image providing necessary condition. Image of question demonstrated in Part (b) does not show any useful
information in problem solving.

Model Input FCR (%) FIR (%) PCR (%) APC (%) ALL (%)

Llama2-13B T 1.20 71.08 27.71 28.70 9.16
ChatGPT-3.5 T 14.63 15.85 69.51 40.18 42.56
Gemini-Pro T 15.85 18.29 65.85 41.48 43.17
ChatGPT-4 T 35.37 3.66 60.98 59.00 71.34

Zero-Shot Chain of Thought

CoT Llama2-13B T 1.22 71.95 26.83 29.55 9.15
CoT ChatGPT-3.5 T 12.20 13.41 74.39 12.50 45.49
CoT Gemini-Pro T 9.76 17.07 73.17 35.67 35.85
CoT ChatGPT-4 T 40.24 6.10 53.66 56.36 70.49

Large Multimodal Models (on Test-PhoPile-V)

Gemini-Pro-Vision T, I 4.11 23.29 72.60 35.28 29.73
ChatGPT-4-Vision T, I 17.81 6.85 75.34 48.55 54.38

Table 2: The evaluation results of currently popular large language models under different input methods on
PhOPile. Input: Text: Question text only. Text, Image: Question text and images. To further increase consistency,
the score for each question is the mode of the scores among 10 times.

tem that proved challenging and inconsistent for338

grading purposes. Consequently, we adopted a new339

approach, each initial order question is uniformly340

valued at ten points. A full score is awarded when341

candidate LLM generates the correct answer. In342

cases where the LLM’s response is incomplete or343

partially correct, the score is assigned based on344

the extent of correctness (the furthest correct el-345

ement in the reasoning process) provided by the346

LLM. This modification aims to standardize scor-347

ing while accommodating the varying completion348

levels of solutions generated by the LLM. We lever-349

age ChatGPT-4 to grade every question by letting350

it compare the standard solution and the solution351

output by candidate LLM. Then, we compute the352

arithmetic mean of the scores obtained for all ques- 353

tions answered by candidate LLMs and LMMs. 354

For examples of prompting ChatGPT-4 to mark a 355

solution, please refer to the Appendix 20. 356

5.3 Validation of GPT-4 Scoring Accuracy 357

We develop a new marking method which can 358

improve the accuracy of evaluation for reasoning 359

chain solutions without human intervention by in- 360

putting the standard solution and the solution gen- 361

erated by model. To ensure consistency, we con- 362

ducted a series of experiments before using GPT-4 363

to score LLMs’ and LMMs’ results. These experi- 364

ments include, but are not limited to, combinations 365

of the following situations: 366
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• Provide a generated fully correct solution.367

(GPT-4 gives 10)368

• Provide half of the generated fully correct so-369

lution. (GPT-4 gives 1 to 9)370

• Provide a completely wrong solution that need371

to be scored. (GPT-4 gives 0)372

• Slightly change the final answer but the error373

is within the reasonable range required by the374

question. (GPT-4 gives 10)375

• Provide answers in normal format, Latex for-376

mat, and answers without units but the num-377

bers are the same. (GPT-4 gives 10)378

• Provide a generated fully correct solution with379

changing the final answer to a totally wrong380

one. (GPT-4 gives 9)381

• Provide a fully incorrect solution but with the382

correct final answer. (GPT-4 gives 0)383

All of the above are situations where GPT-4 can384

correctly respond to a candidate’s answers. How-385

ever, for some answers, GPT-4 may also give scores386

that do not meet the scoring criteria.387

• Slightly modify the numerical value of the388

final answer, but do not enter a reasonable389

range. For example, the assessed answer is390

3.8, whereas the standard answer is 4. (GPT-4391

gives 9; Should 0)392

• Cut a generated fully correct solution to a half393

and add the correct final answer. (GPT-4 gives394

10; Should 1 to 9)395

• Randomly delete some scoring points from a396

generated fully correct, but the final answer is397

correct. (GPT-4 gives 10)398

Detailed sample questions, answers, and399

prompts of this experiment are shown in Appendix400

A.2.401

Above three situations do not align with the402

marking criteria. But the first one can be easily403

avoid via prompt. For the second and the third,404

according to the scoring rules, an answer that is405

missing some scoring points should not receive406

full marks, which is different from the results pro-407

vided by GPT-4. However, such cases are very rare.408

LLMs sometimes do exhibit leaps in logic that re-409

sult in missing scoring points. But what we are410

measuring here is the reasoning capability of these411

models. Even in cases where there are leaps in412

logic, this does not negate their ability to reason, as413

they are capable of producing the final result. The 414

results of these experiments show that our method 415

can give correct judgments when facing various 416

levels and types of answers to be scored. 417

Evaluation metrics: 418

• Full Correctness Rate (FCR): The percentage 419

of the number for completely correct ques- 420

tions to the total number of questions. 421

• Full Incorrectness Rate (FIR): The percent- 422

age of the number for completely incorrect 423

questions to the total number of questions. 424

• Partial Correctness Rate (PCR): The percent- 425

age of the number for partially correct ques- 426

tions to the total number of questions. Please 427

note that FCR+FIR+PCR=100%. 428

• Average score of Partially Correct questions 429

(APC): The arithmetic mean of all answers 430

that are partially correct. 431

• ALL: Overall correctness rate, the arithmetic 432

mean of all questions scores. 433

5.4 Results 434

The evaluation results can be seen in Table 2. Over- 435

all, ChatGPT-4 consistently achieved the best per- 436

formance under all conditions, followed by Gemini 437

Pro and ChatGPT-3.5, with the untrained open- 438

source model Llama2-13B at last. Specifically, in 439

the context of Zero-Shot CoT reasoning, ChatGPT- 440

4 exhibited a 5% increase in FCR. However, it is 441

noteworthy that empirical observations revealed 442

a varying degree of performance degradation for 443

Gemini Pro and ChatGPT-4 in the context of Zero- 444

Shot CoT reasoning, with Gemini experiencing a 445

decline of 7.32 percentage points. 446

For LMMs results, the comprehensive perfor- 447

mance of ChatGPT-4 surpasses that of Gemini by 448

nearly double. However, according to the results 449

from MathVista (Lu et al., 2024), in the domain of 450

mathematical imagery, the capability of ChatGPT- 451

4-V is remarkably similar to Bard (AI, 2023) which 452

is the precursor to Gemini. The primary reasons 453

for this significant discrepancy are attributed to the 454

inherent differences in the disciplines, the nature 455

of the problem images, and, secondarily, the differ- 456

ences in the evaluation methodologies. An analysis 457

of Gemini’s outputs reveals that, often, Gemini 458

struggles to comprehend the inputted physical im- 459

ages, with examples of Gemini’s outputs available 460

in the Appendix A.5. 461
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6 Related Work462

Study of LLMs in Natural Science Subjects. In463

recent years, LLMs have developed very rapidly,464

providing great convenience for people’s needs465

in all aspects of life. These models, like GPT-466

3 (Brown et al., 2020), GPT-4 (OpenAI, 2023)467

and Gemini (Deepmind, 2023) have already shown468

great performance in terms of accuracy, inter-469

pretability, and multimodality, similarly as general470

LLMs, they show outstandingly high performance471

of natural science Q\A and mathematical reasoning.472

Meanwhile, a range of excellent open source mod-473

els, including T5 (Raffel et al., 2020), ChatGPT-2474

(Radford et al., 2019) and Llama2 (Touvron et al.,475

2023), is available for researchers to enhance fur-476

ther, by training them on a specialized dataset to477

attain superior capabilities compared to generalized478

models. Consequently, a series of outstanding open479

source models that are specifically trained and fine-480

tuned on math have emerged, such as DeepSeek-481

Math (Shao et al., 2024), Llema (Azerbayev et al.,482

2023) and Goat (Liu and Low, 2023). Additionally,483

there are also a few models focusing on formal484

proof such as LeanDojo (Yang et al., 2023) and485

LEGO-Prover (Wang et al., 2023a); these are mod-486

els trained on math-specialized corpus or datasets.487

However, in the expansive domain of mathematics,488

the multitude of sub-disciplines presents a signifi-489

cant challenge for models with constrained param-490

eters to adequately address comprehensive math-491

ematical problems. Studies like Boosting LLM492

Reasoning (Huang et al., 2023a) and LeanDojo493

(Yang et al., 2023) use a retrieval-augmented ap-494

proach to improve the accuracy of mathematical495

problem-solving. It is noteworthy that research at496

the intersection of linguistics and natural sciences497

remains relatively scarce. Scholars have placed a498

greater emphasis on mathematical reasoning.499

Natural Science datasets for LLMs. Mod-500

els which demonstrate excellent performance on501

mathematical ability are inseparable from high-502

quality datasets and corpus such as Mathpile503

(Wang et al., 2023b), proof-pile-2 (Azerbayev504

et al., 2023), MiniF2F (Zheng et al., 2021), MATH505

(Hendrycks et al., 2021), GSM8K (Cobbe et al.,506

2021), MLFMF (Bauer et al., 2023)) and the cor-507

pus proposed by DeepSeekMath (Shao et al., 2024).508

The aforementioned datasets consist solely of tex-509

tual data; however, it is commonly understood510

that the interpretation of mathematical problems511

often requires the analysis of images. Conse-512

quently, MathVista (Lu et al., 2024) introduced 513

a specialized image-based mathematical dataset 514

and conducted evaluations of models such as 515

GPT-4 (OpenAI, 2023), ChatGPT (OpenAI, 2022), 516

Claude-2 (Anthropic, 2023), and mPLUG-Owl- 517

LLaMA (Ye et al., 2023) from various perspec- 518

tives: purely textual input, text with captions and 519

image OCR (Augmented-LLMs), and multimodal 520

analysis. However, there is a noticeable paucity 521

of specialized research linking LLMs with the dis- 522

cipline of physics. The relevant work in this area 523

is confined to a minimal subset of physics-related 524

data within certain natural science datasets, such as 525

SciQ Dataset (Johannes Welbl, 2017), ScienceQA 526

(Lu et al., 2022), C-eval (Huang et al., 2023b), E- 527

EVAL (Hou et al., 2024), and TheoremQA (Chen 528

et al., 2023). 529

7 Conclusion 530

In this work, we introduce PhOPile, a benchmark 531

constructed to comprehensively test LLMs’ abili- 532

ties in physics reasoning under both pure text ques- 533

tions and image-based questions. We evaluated 534

four mainstream models, among which ChatGPT-4 535

showed the best performance. Furthermore, we 536

proposed a new marking method tailored for prob- 537

lems that contain multiple sub-questions and in- 538

volve reasoning steps. This method allows for a 539

more sophisticated evaluation of language models’ 540

reasoning capabilities, providing deeper insights 541

into their ability to process and solve complex tasks 542

that require step-by-step logical deduction. 543

8 Limitations 544

Due to the intrinsic characteristics of physics 545

problems, which often comprise numerous sub- 546

questions and exceptionally lengthy prompts, cer- 547

tain measures must be adopted by language mod- 548

els constrained by a shorter window text length to 549

facilitate comprehensive problem fine-tuning and 550

evaluation. In this work, to ensure the progress and 551

to control variables of the evaluation, only those 552

problems with a total token count of less than 3500 553

were selected for testing. In addition, we cannot 554

detect data pollution for the closed-source models 555

of OpenAI and Deepmind. Finally, for questions 556

that require drawings in the answer, all existing 557

models cannot provide effective answers. 558
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A Appendix 718

A.1 Question Examples in PhOPile 719

To fully record the details of the questions, we create ‘question_number’, ‘sub_question_number’, 720

and ‘sub_sub_question_number’ which stand for question number, first order sub-question number 721

and second order sub-question number in our dataset to facilitate distinction. Furthermore, within 722

the text of the questions, we replace the original question index, which typically consist of Arabic 723

numerals, English letters, Roman numerals, etc, with Arabic number in ‘sub_question_number’ or 724

‘sub_sub_question_number’. Fig. 7 shows an example of how we process a question with second 725

order questions.

Figure 6: Raw Question in BPhO

726

Question: A steel ball is thrown down with a speed of $3.0 \mathrm{~m} \mathrm{~s
}^{-1}$ on to a hard surface from a height of $2.0 \mathrm{~m}$. It retains $70
\%$ of its energy on each bounce. Calculate the speed at which it hits the
ground for the first time

solution: $\begin{aligned} & v^2=u^2+2 a s \\ = & 3^2+2 \times 9.81 \times 2 \\ = &
6.946=7.0 \mathrm{~ms}^{-1}\end{aligned}$

question number: 1
sub question number: 1
Question image path: null
Answer image path: null

Question: the ma×imum height it reaches after the 4th bounce.
Solution: $\begin{gathered}g h_1=\frac{1}{2} v^2 \eta=\frac{1}{2} \times 6.95^2 \

times 0.7 \rightarrow h_1=1.72 \mathrm{~m} \\ h_n=h_1 \times \eta^{n-1}=0.59 \
mathrm{~m}\end{gathered}$

question_number: 2
Question image path: null
Answer image path: null

(a) Demonstration of Question Numbers Processing: We replace sub-question number ‘(i)’ and ‘(ii) to Arabic numeral ‘1’ and
‘2’. As there is no image provided in the question, we set ‘null’ in image key.

Question: Consider a plane-parallel transparent plate, where the refractive inde×,
$n$, varies with distance, $z$, from the lower surface (see ###img_1###). Show
that $n_A \sin \alpha=n_B \sin \beta$. The notation is that of the figure.

Solution: From the ###img_1### we get $n_A \sin \alpha=n_1 \sin \alpha_1=n_2 \sin \
alpha_2=\ldots=n_B \sin \beta$

Question image path: ./pic/question/34.png,
Answer image path: ./pic/answer/65.png

(b) Demonstration of Image Processing: We replace ‘figure 1’ in text to special marks to record the position of where image
appears. At the same time, we input the image path to ‘image’ key.

Figure 7: Examples from the dataset.
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A.2 Prompts and Results for Validation of GPT-4 Scoring Accuracy Experiment727

Figure 8: Prompt Example of Providing Complete Problem-Solving Steps That Need to Be Scored and Standard
Answers. (Proof Question)
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Figure 9: Prompt Example of Providing Complete Problem-Solving Steps That Need to Be Scored and Standard
Answers. (Calculate Question)
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Figure 10: Prompt Example of Providing Half of the Problem-Solving Steps That Need to Be Scored and Standard
Answers.
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Figure 11: Prompt example of Providing Completely Wrong Problem-Solving Steps that Need to Be Scored and
Standard Answers. (1)
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Figure 12: Prompt example of Providing Completely Wrong Problem-Solving Steps that Need to Be Scored and
Standard Answers. (2)
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Figure 13: Prompt Example of Slightly Change the Final Answer but the Error Is Within the Reasonable Range
Required by the Question.
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Figure 14: Prompt Example of Providing Answers in Normal Format, Latex Format, and Answers Without Units
but the Numbers Are the Same and Standard Answers.
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Figure 15: Prompt example of Providing Complete Problem-Solving Steps that Need to Be Scored with Changing
the Final Answer to a Totally Wrong One and Standard Answers.
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Figure 16: Prompt example of Cutting a Candidate’s Zero Marks Solution to a Half but With the Correct Final
Answer.
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Figure 17: Prompt example of Cutting a Candidate’s Full Marks Solution to a Half and Add the Correct Final
Answer.
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Figure 18: Prompt Example of Randomly Deleting Some Scoring Points from a Candidate’s Full Marks Solution,
but the Final Answer Is Correct.
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A.3 Modification of Identifiers 728

We have identify and amend a series of identifiers, which include but are not limited to the following:

1 2 3 4 5 6 7 8 9

a b c d e f g h i

a) b) c) d) e) f) g) h) i)

A. B. C. D. E. F. G. H. I.

A.1 A.2 A.3 A.4 A.5 A.6 A.7 A.8 A.9

I II III IV V VI VII VIII IX

i ii iii iv v vi vii viii ix

Table 3: Modified identifiers

729
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A.4 Prompt Examples730

In this section, we display the prompt examples of how we prompt LLMs to inference physical questions,731

mark solutions.732

Figure 19: Prompt example of pure text inference
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Figure 20: Marking Examples
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A.5 Gemini Output Examples733

Questions: In a simple model, an atomic nucleus can be thought of as a ball consisting of closely packed734

nucleons [see Fig. 1(a)], where the nucleons are hard balls of radius rN = 0.85fm
(
1fm = 10−15 m

)
.735

The nuclear force is present only for two nucleons in contact. The volume of the nucleus V is larger than736

the volume of all nucleons AVN , where VN = 4
3r

3
Nπ. The ratio f = AVN/V is called the packing factor737

and gives the percentage of space filled by the nuclear matter. Calculate what would be the packing factor738

f if nucleons were arranged in a "simple cubic" (SC) crystal system, where each nucleon is centered on a739

lattice point of an infinite cubic lattice [see Fig. 1(b)]. (0.3 points)740

Standard Answer: In the SC-system, in each of 8 corners of a given cube there is one unit (atom,741

nucleon, etc.), but it is shared by 8 neighboring cubes - this gives a total of one nucleon per cube. If742

nucleons are touching, as we assume in our simplified model, then a = 2rN is the cube edge length743

a. The volume of one nucleon is then VN = 4
3r

3
Nπ = 4

3

(
a
2

)3
π = 4a3

3·8 π = π
6a

3 from which we obtain744

f = VN
a3

= π
6 ≈ 0.52745

ChatGPT-4-Vision Output:(Score: 10) In the "simple cubic" (SC) crystal system, each nucleon is746

centered on a lattice point, and because we’re assuming the nucleons to be hard spheres, the sides of747

the cubic lattice cell must be twice the radius of a nucleon to accommodate one nucleon inside without748

overlapping with others. Given that the radius of a nucleon rN is 0.85 fm (fermi), which is 0.85× 10−15749

meters, the side length a of the cubic cell will be:a = 2× rN The volume VN of a single nucleon (since750

it’s a sphere) is:VN = 4
3πr

3
N Now, the volume VSC of the cubic cell which contains one nucleon would751

be: VSC = a3 = (2rN )3 = 8r3N The packing factor f will be the ratio of the nucleon’s volume to752

the volume of the cubic cell: f = AVN
V = VN

VSC
Since each cell volume VSC contains one nucleon for753

the simple cubic packing, we don’t need to multiply VN by A, because A will cancel when we take754

the ratio for one cubic cell. Plugging in the expressions for VN and VSC gives: f =
4
3
πr3N
8r3N

alculating755

this gives:f = π
6 Numerically, this evaluates to approximately:f ≈ 3.14159

6 ≈ 0.5236Or, in percentage756

terms:f ≈ 52.36%his means the packing factor or the percentage of space filled by the nuclear matter in757

a simple cubic arrangement is approximately 52.36%.758

Gemini-Pro-Vision Output:(Score: 2) I see the image you sent and can use it to understand the setup759

of the Kelvin water dropper. The absolute value of the charge, Q0, of each droplet as they separate from760

the tubes and at the instant the capacitor’s charge is q can be expressed as: Q0 = Cq/ (2rmax) where: C761

is the capacitance. q is the charge on the capacitor. rmax is the maximum radius of the droplet as it breaks762

free from the nozzle This expression is derived based on the following: 1. Charge Quantization: Each763

droplet acquires a quantized charge, meaning its charge is a multiple of the fundamental electron charge764

(e). As the first droplet falls, it acquires a small charge imbalance, which is then shared equally between765

the two electrodes due to the capacitor. 4. Maximum Radius: The maximum radius, rmax, relates to the766

amount of charge a droplet can hold due to its surface tension. A larger droplet can hold more charge.767

Therefore, the absolute value of the charge on each droplet depends on the capacitance, the capacitor’s768

charge, and the maximum radius the droplet can achieve before breaking free. It’s important to note that769

this expression neglects the effect mentioned in Part A-iii, where the charge on the droplet can induce a770

charge on the metal nozzle. This additional effect can slightly modify the charge acquired by the droplet.771

I hope this helps! Let me know if you have any other questions.772

26



(a) An Original Question with Second Order Questions in PhoPile

Question: Consider a sphere filled with liquid inside rolling back and forth at
the bottom of a spherical bowl. ... please study the movement of the sphere
for the following three cases: $\mathbf{W}$ behaves as in ideal solid state,
meanwhile $\mathbf{W}$ contacts the inner wall of the spherical shell so

closely that they can be taken as solid sphere as a whole of radius $r$ with
an abrupt density change across the interface between the inside wall of

the shell and $\mathbf{W}$.
Calculate the rotational inertia $I$ of the sphere with respect to the a×is

passing through its center $C$. (You are asked to show detailed steps.)
Question number: 1
Sub-question number: 1
Sub-sub question number: 1
Solution: ...
Question image path: ./pic/question/34.png
Answer image path: ....

Question: Calculate the period $T_1$ of the sphere rolling back and forth with a
small amplitude without slipping at the bottom of the spherical bowl.

Question number: 1
Sub-question number: 1
Sub-sub question number: 2
Solution: ...
Question image path:...
Answer image path: ....

Question: $\mathbf{W}$ behaves as an ideal liquid with no friction between $\
mathbf{W}$ and the spherical shell. Calculate the period $T_2$ of the sphere
rolling back and forth with a small amplitude without slipping at the

bottom of the spherical bowl.
Question number: 1
Sub-question number: 2
Sub-sub-question number: null
Solution: ...
Question image path:...
Answer image path: ....

(b) The Corresponding Question in PhoPile: We delete ‘1.’, ‘(1)’, and ‘(2) in text. At the same time, we input the Arabic number
to ‘Question number’, ‘Sub-question number’, and ‘Sub-sub-question number’ key.

Figure 21: Demonstration of Question Index Processing
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