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Abstract
Justified representation (JR) is a crucial fairness1

concept within the context of committee selection2

in the approval voting setting. When multiple com-3

mittees satisfy JR, an additional quality measure-4

ment is required to select a committee among all5

JR committees. Optimization problems over all JR6

committees are NP-hard in many cases. In this7

paper, we consider approximation algorithms for8

optimization problems subject to JR constraints.9

Specifically, we explore algorithms and complex-10

ity related to minimizing total committee mem-11

ber costs and maximizing social welfare over JR12

committees. Our cost-minimization algorithm also13

works in the EJR+ and BJR setting. Our approach14

employs techniques such as linear programming15

rounding and reduction of hypergraph problems to16

our context.17

1 Introduction18

Committee selection, or multiwinner voting, is a fundamental19

problem in computational social choice. The central objective20

is to select a subset of K candidates from a larger set of m21

alternatives, in a way that reflects the preferences of a popula-22

tion of n voters. A widely adopted model for capturing voter23

preferences is approval voting, where each voter submits a24

binary ballot indicating which candidates they approve.25

A central normative goal in this setting is proportional26

representation. Roughly speaking, if a large enough group27

of voters shares similar preferences, then these preferences28

should be reflected in the selected committee. This idea is29

formalized by Aziz et al. [Aziz et al., 2017], who introduce30

the notion of justified representation (JR). A committee satis-31

fies JR if every group of at least n/K voters who all approve32

a common candidate sees at least one of their approved can-33

didates included in the committee. Aziz et al. further propose34

extended justified representation (EJR), a strengthening of JR35

that guarantees more extensive representation for larger co-36

hesive groups.37

Subsequent work has refined and extended these propor-38

tionality guarantees. Brill and Peters [Brill and Peters, 2023]39

introduce EJR+, a tractable enhancement of EJR that pre-40

serves many of its proportionality properties while ensuring41

easier verification. Fish et al. [Fish et al., 2023] propose 42

balanced justified representation (BJR), which requires that 43

every candidate in the committee is backed by at least some 44

approving voters. These axioms are not only normatively ap- 45

pealing but also practically relevant. While verifying whether 46

a committee satisfies EJR is coNP-hard [Aziz et al., 2017], 47

JR and EJR+ can be efficiently checked. Verification of BJR 48

is also tractable under additional certificate conditions. These 49

considerations have led to a growing interest in voting rules 50

such as Proportional Approval Voting (PAV) [Thiele, 1895] 51

and the Method of Equal Shares (MES) [Peters and Skowron, 52

2020; Peters et al., 2021]. 53

Beyond satisfying proportionality axioms, many real- 54

world applications impose further constraints or optimization 55

goals. For example, in participatory budgeting, each candi- 56

date may have an associated cost, and the selected committee 57

must fit within a budget. In such contexts, it is natural to ask 58

whether we can find committees that satisfy fairness guaran- 59

tees such as JR, while also minimizing total cost or maximiz- 60

ing social welfare. 61

Our work addresses this question by studying optimization 62

problems under relaxed proportionality constraints. We build 63

on recent work by Elkind et al. [Elkind et al., 2023], who 64

investigate the task of finding minimum-size JR-satisfying 65

groups. We generalize their model to a cost-based setting, 66

where each candidate has a nonnegative cost, and the objec- 67

tive is to minimize the total cost of a committee that approx- 68

imately satisfies JR. Specifically, we aim to find a commit- 69

tee that satisfies a relaxed JR condition—requiring that each 70

group of size n/[(1−δ)K] be represented—while achieving a 71

cost that is within O(log n/δ) of the minimum cost required 72

to satisfy standard JR. Our approach matches known lower 73

bounds for JR-satisfying committee selection without relax- 74

ation. 75

To obtain this result, we formulate a linear programming 76

relaxation of the cost minimization problem, and design a 77

rounding algorithm that converts fractional solutions into 78

valid committees. A key technical challenge is encoding 79

JR-like constraints in the LP formulation, which we address 80

through a set of carefully constructed conditions. The frame- 81

work extends to the EJR+ setting for δ ≥ 0.5, and to the BJR 82

setting for any δ > 0, with appropriate modifications to the 83

LP. 84

We also study the complementary problem of welfare max- 85



imization. Here the objective is to select a committee with86

high total voter approval, subject to proportionality con-87

straints. Prior work [Elkind et al., 2022] shows that it is88

NP-hard to approximate the maximum social welfare of a89

JR-satisfying committee of size K within a factor better than90

O(K0.5−ϵ) for any ϵ > 0. We consider an alternative relax-91

ation: allowing a slightly larger committee of size (1 + δ)K,92

we show that a simple greedy algorithm guarantees welfare93

at least δ times the optimal value. Moreover, assuming the94

Unique Games Conjecture [Khot, 2002], we prove that this95

approximation guarantee is tight. The hardness reduction96

proceeds via intermediate problems on hypergraphs, includ-97

ing hypergraph independent set and hyperedge dominating98

set, under specific parameter regimes.99

1.1 Problem Setting and Results100

There is a set of voters N = [n] = {1, 2, . . . , n}, and a set101

of candidates C = [m]. Each voter v ∈ N submits a ballot102

Av ⊆ C. If c ∈ Av for some c ∈ C and v ∈ N , we say103

v approves c. For candidate c ∈ C, we define Bc = {v ∈104

N : c ∈ Av} denoting the set of voters who approve c. Each105

candidate c ∈ C is associated with a cost f(c). An instance106

of the problem can be written as I = (C,A, f), where A =107

(A1, A2, . . . , An) is the list of ballots from all voters.108

A committee is a subset of candidates, and the goal is to109

find a committee W ⊆ C. We measure the quality of a com-110

mittee in the following two ways.111

Definition 1 (committee cost). Given an instance I =112

(C,A, f) and a committee W ⊆ C. We define the cost of113

W as114

f(W ) =
∑
c∈W

f(c).

Definition 2 (social welfare). Given an instance I =115

(C,A, f) and a committee W ⊆ C. We define the social116

welfare of W as117

sw(W ) =
∑
i∈N

|Ai ∩W |.

Besides committee quality, we also care about fairness. We118

consider the following criteria.119

Definition 3 (JR [Aziz et al., 2017]). Given an instance120

I = (C,A, f) and positive integer K, we say committee W121

provides justified representation (JR), if there is no candidate122

c ∈ C \W , group of voters N ′ ⊂ N with |N ′| ≥ n/K such123

that124

c ∈
⋂

v∈N ′

Av and Av ∩W = ∅ for all v ∈ N ′.

A committee provides JR if, for any n/K voters who have125

a common approving candidate, at least one of them is repre-126

sented, where a voter is represented if at least one candidate127

in her approving set is in the committee.128

Let JRK(I) represent the set of all committees that pro-129

vide JR given I and K, which corresponds to the notion of130
n/K-justifying groups in [Bredereck et al., 2019]. We define131

JRK,s(I) as the subset of JRK(I) containing all committees132

of size at most s, where JRK,K(I) corresponds to the notion 133

of JR given K in [Aziz et al., 2017]. 134

We define 135

fJR(I,K) = min
W∈JRK(I)

f(W ). (1)

Computing fJR(I,K) is NP-hard. Elkind et al. showed the 136

following hardness result. 137

Theorem 1 (Theorem A.11 in [Elkind et al., 2023]). For ϵ > 138

0, the following problem is NP-hard. Given an instance I = 139

(C,A, f) and a positive integer K, find a committee W ∈ 140

JRK(I) such that f(W ) ≤
(
(1− ϵ) log(n)

)
fJR(I,K). 141

We propose an approximation algorithm with relaxation 142

both on committee cost and JR guarantee. 143

Theorem 2 (proof in Section 2.1). Given an instance I = 144

(C,A, f) and a positive integer K, for any constant δ ∈ 145

(0, 1), there is a polynomial-time algorithm that finds W ∈ 146

JR(1−δ)K(I), such that 147

f(W ) ≤ M(δ) · log(n) · fJR(I,K),

where M(δ) is a constant related to δ. 148

We also propose such an approximation algorithm for 149

EJR+, which is a more strict fairness guarantee than JR. We 150

first define EJR+. A committee provides EJR+ if for any 151

voter set N ′ ⊂ N who have a common approving candidate 152

c, either c is in the committee, or at least one voter in N ′ is 153

represented at least K|N ′|/n times, where a voter is repre- 154

sented ℓ times if ℓ candidates in her approving set are in the 155

committee. 156

Definition 4 (EJR+ [Brill and Peters, 2023]). Given an in- 157

stance I = (C,A, f) and a positive integer K, we say com- 158

mittee W provides EJR+, if there is no candidate c ∈ C \W , 159

positive integer ℓ, group of voters N ′ ⊆ N with |N ′| ≥ nℓ/K 160

such that 161

c ∈
⋂

v∈N ′

Av and |Av ∩W | < ℓ for all v ∈ N ′.

Let EJR+
K(I) represent the set of all committees that pro- 162

vide EJR+ given I and K. We define EJR+
K,s(I) as the subset 163

of EJR+
K(I) containing all committees of size at most s. We 164

define 165

fEJR+(I,K) = min
W∈EJR+

K(I)
f(W ).

Our approximation algorithm has the following guarantee. 166

Theorem 3 (proof in Section 2.2). Given an instance I = 167

(C,A, f) and a positive integer K, there is a polynomial- 168

time algorithm that finds W ∈ EJR+
K/2(I), such that 169

f(W ) ≤ M · log(nm) · fEJR+(I,K),

where M is a constant. 170

1This theorem shows the problem is NP-hard even if all the can-
didates have same cost, i.e., f(c) = 1 for every c ∈ C.



A recently introduced concept, BJR, extends to a more gen-171

eral setting where voters have cardinal utilities for candidates.172

The approval-based voting model we previously considered is173

a special case, where utilities take values of only 0 or 1.174

Instead of submitting a ballot Av ⊆ C, each voter v ∈ N175

submits a utility function uv : C → R, specifying her utility176

for each candidate. An instance of the BJR problem can thus177

be represented as I = (C,U , f), where U = (u1, u2, . . . , un)178

denotes the collection of utility vectors from all voters. Fur-179

thermore, in this case, a candidate may be selected multiple180

times, so actually w ∈ {0, 1, . . . }C . For convenience, we181

continue to use c ∈ W to enumerate all candidate copies in182

the committee.183

A committee satisfies BJR if there exists an assignment of184

voters to committee members such that each committee mem-185

ber is matched with (approximately) the same number of vot-186

ers, and for any sufficiently large group of voters who highly187

value a particular candidate, at least one voter in the group188

is matched to a candidate they also value highly. The formal189

definition of BJR is provided below.190

Definition 5 (BJR [Fish et al., 2023]2). Given an instance191

I = (C,U , f) and a positive integer K, we say committee192

W provides BJR, if there is a function ω : N → W , match-193

ing voters to candidates such that each candidate in W is194

matched to at most ⌈n/K⌉ voters, for which there is no coali-195

tion N ′ ⊆ N of size at least n/K, candidate c ∈ C, and196

threshold ϑ ∈ R, such that197

uv(c) ≥ ϑ for all v ∈ N ′ and uv(ω(v)) < ϑ for all v ∈ N ′.

Let BJRK(I) represent the set of all committees that pro-198

vide BJR given I and K. We define BJRK,s(I) as the subset199

of BJRK(I) containing all committees of size at most s. We200

define201

fBJR(I,K) = min
W∈BJRK(I)

f(W ).

We also propose an approximation algorithm for BJR,202

which has similar guarantee as JR.203

Theorem 4 (proof in Section 2.3). Given an instance I =204

(C,U , f) and a positive integer K, for any constant δ ∈205

(0, 1), there is a polynomial-time algorithm that finds W ∈206

BJR(1−δ)K(I), such that207

f(W ) ≤ M(δ) · log(nm) · fBJR(I,K),

where M(δ) is a constant related to δ.208

Besides the minimization problem on committee cost, we209

also consider the maximization problem on social welfare.210

We define211

swJR(I,K) = max
W∈JRK,K(I)

sw(W ).

Computing swJR(I,K) is NP-hard. Elkind et al. showed212

the following hardness result.213

Theorem 5 (Theorem 4.1 in [Elkind et al., 2022]). For ϵ > 0,214

the following problem is NP-hard. Given an instance I =215

(C,A, f) and a positive integer K, find a committee W ∈216

JRK,K(I) such that sw(W ) ≥ swJR(I,K)/K0.5−ϵ.217

2A modified version of the definition in [Fish et al., 2023], struc-
tured to simplify the development of approximation results.

To achieve better committee quality, we relax the constraint 218

on committee size. 219

Theorem 6 (proof in Section 3.1). Given an instance I = 220

(C,A, f), a positive integer K, and δ ∈ (0, 1] such that δK 221

is an integer, there is a polynomial-time algorithm that finds 222

W ∈ JRK,(1+δ)K(I), such that 223

sw(W ) ≥ δ · swJR(I,K).

While the proof of Theorem 6 is via a straight-forward 224

greedy algorithm, we also show the surprising (and non- 225

trivial) result that this simple algorithm is nearly optimal: 226

Theorem 7 (proof in Section 3.2). Assuming the Unique 227

Games Conjecture, for any δ ∈ (0, 1) and ϵ > 0, the fol- 228

lowing problem is NP-hard. Given an instance I = (C,A, f) 229

and a positive integer K, find W ∈ JRK,(1+δ)K(I) such that 230

sw(W ) ≥ (δ + ϵ) · swJR(I,K).

1.2 Additional Related Work 231

In addition to the concepts we have already described (JR, 232

EJR, and EJR+), several other variants of JR have been 233

studied, such as proportional justified representation (PJR) 234

[Sánchez-Fernández et al., 2017; Aziz et al., 2018], Strong 235

Justified Representation (SJR) [Aziz et al., 2017], aver- 236

age justified representation (AJR) [Sánchez-Fernández et al., 237

2017], full justified representation (FJR) [Peters et al., 2021], 238

etc. 239

As for the trade-off between fairness and committee qual- 240

ity, Lackner and Skowron [Lackner and Skowron, 2019; 241

Lackner and Skowron, 2020] consider the trade-off between 242

notions of social welfare and representation in the commit- 243

tee selection problem. They start with two voting rules, 1) 244

Approval Voting (AV) which selects the committee that max- 245

imizes social welfare, and this voting rule cares more about 246

committee quality. 2) Approval Chamberlin–Courant (CC) 247

[Thiele, 1895; Chamberlin and Courant, 1983] which selects 248

the committee that maximizes the number of voters that are 249

covered, and this voting rule cares more about fairness. They 250

evaluate other voting rules in these two perspectives, i.e., so- 251

cial welfare and the number of covered voters. Kocot et al. 252

[Kocot et al., 2019] consider ordinal elections and introduce 253

a framework where committees are evaluated not just on one 254

goal, but on a set of goals that may have varying degrees of 255

importance. They propose algorithms and analyze their ef- 256

fectiveness in finding committees that meet these multigoal 257

criteria. Fairstein et al. [Fairstein et al., 2022] study such 258

trade-offs in the broader context of participatory budgeting. 259

Maly et al. [Maly et al., 2022] introduce a new notion of 260

fairness in participatory budgeting, and consider the trade-off 261

between fairness and social welfare. 262

Another notion of fairness is core stability [Droop, 1881; 263

Fain et al., 2018; Lindahl, 1958; Scarf, 1967; Thiele, 1895]. 264

It is similar to EJR in our approval set setting, but its require- 265

ment is stronger. For EJR, a guarantee is required only for 266

coherent groups, whereas the core requires it for all groups, 267

making core stability a much harder property to satisfy. There 268

is no polynomial time algorithm known for computing a sin- 269

gle committee that is core stable for our setting of multi- 270

winner selection under approval voting, but for EJR, as we 271

mentioned before, voting rules PAV and MES satisfy EJR. 272



1.3 Roadmap273

In Section 2, we study the cost minimization problem under274

the constraints of JR, EJR+, and BJR, and design correspond-275

ing approximation algorithms. In Section 3, we address the276

problem of maximizing social welfare subject to the JR guar-277

antee, presenting a simple approximation algorithm and prov-278

ing its optimality in a certain sense.279

2 Minimizing Committee Cost280

In this section, we consider the problem of minimizing com-281

mittee cost, with JR guarantee (Section 2.1), EJR+ guarantee282

(Section 2.2) and BJR guarantee (Section 2.3). In both set-283

tings, our method consists of the following three steps.284

1. Formulate the optimization problem as a binary integer285

linear programming (BILP) problem.286

2. Consider the relaxation of the BILP problem, which is a287

linear programming (LP) problem.288

3. Solve the LP problem, and then round the obtained so-289

lution to get a solution for the original BILP problem.290

In Appendix C, we have more discussion on the LP round-291

ing method, which provides additional insight.292

2.1 Approximation Algorithm with JR Guarantee293

We propose an approximation algorithm with properties de-294

scribed in Theorem 2. Recall that given an instance I =295

(C,A, f) and a positive integer K, the problem is to find a296

committee W ∈ JRK(I) that minimizes the committee cost.297

We formulate the problem as a BILP problem.298

For each candidate c ∈ C, define a binary variable yc ∈299

{0, 1} as the indicator that c ∈ W , so the objective is to min-300

imize301

f(W ) =
∑
c∈C

f(c)yc.

For each voter v ∈ N , define a binary variable xv ∈ {0, 1}302

as the indicator that voter v is represented, so the relation303

between {xv}v∈N and {yc}c∈C can be written as304

xv ≤
∑
c∈Av

yc.

To ensure W ∈ JRK(I), a straight-forward LP formula-305

tion would mimic the JR definition by having a constraint306

for each set, that is, for any N ′ ⊂ N and c ∈ C where307

|N ′| ≥ n/K and c ∈
⋂

v∈N ′ Av , there is a constraint308 ∑
c′∈

⋃
v∈N′ Av

xc′ ≥ 1. Although there are exponentially309

many constraints, it is still tractable via a simple separation310

oracle. However, it would preclude using Chernoff bounds to311

get approximation guarantees after randomized rounding. As312

a result, we use an alternate formulation of these constraints,313

as given below.314

For candidate c ∈ C, at most
(⌈

n
K

⌉
− 1
)

voters in Bc is315

not represented, so we have constraint316 ∑
v∈Bc

xv ≥ |Bc| −
⌈
n

K

⌉
+ 1.

In summary, the problem of finding a committee W ∈ 317

JRK(I) that minimizes f(W ) can be formulated as the fol- 318

lowing BILP problem (left), and we consider its LP relaxation 319

(right). 320

minimize
∑
c∈C

f(c) · yc (2a)

s.t. xv ≤
∑
c∈Av

yc, ∀v ∈ N (2b)

∑
v∈Bc

xv ≥ |Bc| −
⌈
n

K

⌉
+ 1, ∀c ∈ C (2c)

xv ∈ {0, 1}, ∀v ∈ N (2d)
yc ∈ {0, 1}, ∀c ∈ C (2e)

minimize
∑
c∈C

f(c) · yc (3a)

s.t. xv ≤
∑
c∈Av

yc, ∀v ∈ N (3b)

∑
v∈Bc

xv ≥ |Bc| −
⌈
n

K

⌉
+ 1, ∀c ∈ C (3c)

0 ≤ xv ≤ 1, ∀v ∈ N (3d)
0 ≤ yc ≤ 1, ∀c ∈ C (3e)

Suppose x∗
v and y∗c is the optimal solution of the LP relax- 321

ation. Then our rounding method computes integer solution 322

x̂v and ŷc, such that the committee W induced by ŷc is in 323

JR(1−δ)K(I), in the following way. 324

• For c ∈ C, let ŷc = 1 with probability 325

min{1, 2 log(n)y∗c/δ}, otherwise ŷc = 0. This round- 326

ing procedure is independent for each c ∈ C. 327

• For v ∈ N , let x̂v = 1 if there exists c ∈ Av such that 328

ŷc = 1, otherwise x̂v = 0. 329

This integer solution satisfies the constraints 2b-2e in the 330

BILP, except the JR constraint 2c. We use Wŷ to denote the 331

committee induced by {ŷc}c∈C , meaning Wŷ contains candi- 332

date c ∈ C if ŷc = 1. Although it may be false that Wŷ ∈ 333

JRK(I), we show a weaker guarantee Wŷ ∈ JR(1−δ)K(I) for 334

any constant δ ∈ (0, 1). We start with the following lemma. 335

Lemma 1. For v ∈ N , if x∗
v ≥ δ, then Pr (x̂v = 0) ≤ 1

n2 . 336

Proof. We assume for any c ∈ Av , 2 log(n)y∗c/δ ≤ 1, other- 337

wise x̂v = 1 for sure. 338

Since xv ≥ δ, which implies
∑

c∈Av
y∗c ≥ δ, and we have 339

Pr (x̂v = 0) =
∏
c∈Av

Pr (ŷc = 0) =
∏
c∈Av

(
1− 2 log(n) · y∗c

δ

)

≤
(
1− 2 log(n)

|Av|

)|Av|

≤ e−2 log(n) =
1

n2
,

where the inequality connecting the first line and the second 340

line is based on the AM–GM inequality. 341

342



Applying the Union Bound over v ∈ N , we have343

• With probability at least 1− 1/n, for any xv ≥ δ, x̂v =344

1.345

For each c ∈ C, since |Bc| −
∑

v∈Bc
xv ≤ ⌈n/K⌉ − 1,346

there are at most (⌈n/K⌉ − 1)/(1 − δ) voters whose corre-347

sponding variable x∗
v is smaller than δ, so we have348

• With probability at least 1− 1/n, for any c ∈ C,349

|Bc| −
∑
v∈Bc

x̂v ≤
⌈

n
K

⌉
− 1

1− δ
<

⌈
n

(1− δ)K

⌉
. (4)

This fact concludes Wŷ ∈ JR(1−δ)K(I) with probability350

at least 1 − 1/n. As for the committee cost, we have the351

following observation.352

E
[
f(Wŷ)

]
= E

∑
c∈C

f(c)ŷc

 ≤2 log(n)

δ
·
∑
c∈C

f(c)y∗c

≤2 log(n)

δ
· fJR(I,K).

By Markov’s inequality, this observation implies353

Pr

(
f(Wŷ) >

3 log(n)

δ
· fJR(I,K)

)
<

2

3
.

Combining this inequality with Inequality 4, by the Union354

Bound, we have355

Corollary 1. With probability at least 0.3, we have Wŷ ∈356

JR(1−δ)K(I) and f(Wŷ) <
3 log(n)

δ · fJR(I,K).357

Our algorithm repeatedly round {y∗c}c∈C and {x∗
v}v∈N358

into {ŷc}c∈C and {x̂v}v∈N for O(log (n)) times, and pick359

the reduced committee Wŷ satisfies Wŷ ∈ JR(1−δ)K(I) with360

smallest f(Wŷ). Then with probability 1 − O(1/n), we361

are able to find Wŷ ∈ JR(1−δ)K(I) satisfying f(Wŷ) <362

3 log(n)
δ · fJR(I,K). These arguments complete the proof of363

Theorem 2.364

2.2 Approximation Algorithm with EJR+
365

Guarantee366

We propose an approximation algorithm with properties de-367

scribed in Theorem 3. Recall that given an instance I =368

(C,A, f) and a positive integer K, the problem is to find369

a committee W ∈ EJR+
K(I) that minimizes the committee370

cost.371

The algorithm and analysis follow a framework similar to372

that in Section 2.1, but the LP formulation is more elaborate373

and the analysis requires more details.374

We first formulate the problem as a BILP problem.375

For each candidate c ∈ C, define a binary variable yc ∈376

{0, 1} as the indicator that c ∈ W , so the objective is to min-377

imize378

f(W ) =
∑
c∈C

f(c)yc.

For each voter v ∈ N and positive integer ℓ ∈ [K], define a379

binary variable xv,ℓ ∈ {0, 1} as the indicator that voter |Av ∩380

W | ≥ ℓ, so the relation between {xv}v∈N and {yc}c∈C can 381

be written as 382

ℓ · xv,ℓ ≤
∑
c∈Av

yc.

To ensure W ∈ EJR+
K(I), for candidate c ∈ C and positive 383

integer ℓ ∈ [K], we need 384

yc = 1 OR
∣∣∣{v ∈ Bc : xv,ℓ = 0

}∣∣∣ ≤ ⌈nℓ
K

⌉
− 1,

and we can write it as the following constraint. 385∑
v∈Bc

xv,ℓ ≥

(
|Bc| −

⌈
nℓ

k

⌉
+ 1

)
(1− yc).

In summary, the problem of finding a committee W ∈ 386

EJR+
K(I) that minimizes f(W ) can be formulated as the fol- 387

lowing BILP problem. 388

minimize
∑
c∈C

f(c)yc (5)

s.t. ℓ · xv,ℓ ≤
∑
c∈Av

yc, ∀v ∈ N, ℓ ∈ [K] (6)

∑
v∈Bc

xv,ℓ ≥

(
|Bc| −

⌈
nℓ

K

⌉
+ 1

)
(1− yc), (7)

∀c ∈ C, ℓ ∈ [K] (8)
xv,ℓ ∈ {0, 1}, ∀v ∈ N, ℓ ∈ [K] (9)
yc ∈ {0, 1}, ∀c ∈ C (10)

If we directly replace xv,ℓ ∈ {0, 1} and yc ∈ {0, 1} by 389

0 ≤ xv,ℓ ≤ 1 and 0 ≤ yc ≤ 1 respectively, the rounding steps 390

may face some problems. However, a modified formulation 391

with constraints derived from a different perspective allows 392

for successful rounding. We defer the full details and proofs 393

to Appendix A. 394

2.3 Approximation Algorithm with BJR 395

Guarantee 396

We propose an approximation algorithm with properties de- 397

scribed in Theorem 4. Recall that given an instance I = 398

(C,U , f) and a positive integer K, the problem is to find 399

a committee W ∈ BJRK(I) that minimizes the committee 400

cost. 401

We formulate the problem as a BILP problem. 402

For each candidate c ∈ C, define a binary variable yc ∈ 403

{0, 1} as the indicator that c ∈ W , so the objective is to min- 404

imize 405

f(W ) =
∑
c∈C

f(c)yc.

Recall that the definition of BJR involves a matching. Let 406

zv,c denote the assignment of voter v to candidate c within 407

this matching, which must satisfy 408∑
c

zv,c ≤ 1, ∀v ∈ N,∑
v

zv,c ≤
n

K
yc, ∀c ∈ C.



For each voter v ∈ N and threshold ϑ, define a binary vari-409

able xv,ϑ ∈ {0, 1} as the indicator that voter v has utility less410

than ϑ in the matching. Note that the utilities take at most nm411

distinct values, so there are at most nm+ 1 essential choices412

for ϑ, and we use Θ to denote the set of ϑ’s. Then, the fol-413

lowing relations hold.414

xv,ϑ ≥ 1−
∑

c:uv(c)≥ϑ

zv,c, ∀v ∈ N,ϑ ∈ Θ.

To ensure W ∈ BJRK(I), we have constraint415 ∑
v:uv(c)≥ϑ

xv,ϑ ≤
⌈
n

K

⌉
− 1, ∀c ∈ C, ϑ ∈ Θ.

In summary, the problem of finding a committee W ∈416

BJRK(I) that minimizes f(W ) can be formulated as the fol-417

lowing BILP problem.418

minimize
∑
c∈C

f(c) · yc (11a)

s.t.
∑
c

zv,c ≤ 1, ∀v ∈ N (11b)∑
v

zv,c ≤
n

K
yc, ∀c ∈ C (11c)

xv,ϑ ≥ 1−
∑

c:uv(c)≥ϑ

zv,c, ∀v ∈ N,ϑ ∈ Θ (11d)

∑
v:uv(c)≥ϑ

xv,ϑ ≤ n

K
− 1, ∀c ∈ C, ϑ ∈ Θ (11e)

zv,c ∈ {0, 1}, ∀v ∈ N, c ∈ C (11f)
xv,ϑ ∈ {0, 1}, ∀v ∈ N,ϑ ∈ Θ (11g)
yc ∈ {0, 1, . . . }, ∀c ∈ C (11h)

We consider its LP relaxation.419

minimize
∑
c∈C

f(c) · yc (12a)

s.t.
∑
c

zv,c ≤ 1, ∀v ∈ N (12b)∑
v

zv,c ≤
n

K
yc, ∀c ∈ C (12c)

xv,ϑ ≥ 1−
∑

c:uv(c)≥ϑ

zv,c, ∀v ∈ N,ϑ ∈ Θ (12d)

∑
v:uv(c)≥ϑ

xv,ϑ ≤ n

K
− 1, ∀c ∈ C, ϑ ∈ Θ (12e)

zv,c ≥ 0, ∀v ∈ N, c ∈ C (12f)
xv,ϑ ≥ 0, ∀v ∈ N,ϑ ∈ Θ (12g)
yc ≥ 0, ∀c ∈ C (12h)

The main difference between this subsection and Section420

2.1 is the LP formulation, and the remaining proof of round-421

Algorithm 1
Input: An instance I = (C,A, f), a positive integer K, and
δ ∈ (0, 1) such that δK is an integer
Output: Committee W

1: Let W1 be an arbitrary committee in JRK,K(I). (Lemma
2)

2: Let W2 be the set of δK candidates in C\W1 with largest
social welfare (|Bc| for candidate c).

3: return W = W1 ∪W2

ing guarantee is very similar, we defer the proof to Appendix 422

B. 423

3 Maximization of Social Welfare 424

In this section, we consider the maximization problem of 425

social welfare, with JR guarantee. Our positive result is 426

a straight-forward approximation algorithm, which finds a 427

committee W in JRK,(1+δ)K(I), such that sw(W ) ≥ δ · 428

swJR(I,K). Our hardness result shows this straight-forward 429

algorithm is optimal in some sense, assuming Unique Game 430

Conjecture. 431

3.1 Algorithm 432

In this subsection, we propose an algorithm to prove Theorem 433

6. We start with the following lemma. 434

Lemma 2 ([Aziz et al., 2017]). Given an instance I = 435

(C,A, f) and a positive integer K, there is an algorithm that 436

finds a committee W ∈ JRK,K(I). 437

Next, we state our algorithm. 438

Next, we analyze this algorithm. Since W1 ∈ JRK,K(I) 439

and |W2| = δK, we have W ∈ JRK,(1+δ)K(I). As for 440

sw(W ), since W2 contains δK candidates in C \ W1 with 441

largest social welfare, W contains δK candidates in C with 442

largest social welfare, so we have sw(W ) ≥ δ · swJR(I,K). 443

These arguments complete the proof of Theorem 6. 444

The algorithm above also works for EJR and EJR+, be- 445

cause we can always select K candidates to satisfy EJR or 446

EJR+, and then select another δK candidates with the largest 447

social welfare. 448

3.2 Hardness 449

In this subsection, we prove Theorem 7. Assuming the 450

Unique Game Conjecture, we reduce the unique label cover 451

problem to our social welfare maximization problem through 452

the following route. 453

unique label cover → hypergraph independent set
→hyperedge dominating set → our problem

We first briefly introduce hypergraph. A hypergraph is a 454

generalization of a graph where an edge (usually referred to as 455

a hyperedge to distinguish it from an edge in a graph) can join 456

any number of vertices. A hypergraph H = (V,E) consists 457

of a vertex set V and a hyperedge set E, and a hyperedge 458

e ∈ E is a subset of the vertex set V , with e containing at 459

least 2 vertices. If v ∈ e, we say hyperedge e covers vertex v. 460

We also have the following definitions of hypergraph. 461



Definition 6 (r-uniform hypergraph). Hypergraph H =462

(V,E) is a r-uniform hypergraph, if the size of every hyper-463

edge is r, that is, for any e ∈ E, |e| = r. 3464

Definition 7 (independent set). Given a hypergraph H =465

(V,E), a set of vertices S ⊂ V forms an independent set466

if for every e ∈ E, e ⊈ S. We use α(H) to denote the size of467

the maximum independent set of H = (V,E).468

Definition 8 (hyperedge dominating set). Given a hyper-469

graph H = (V,E), we say hyperedges e1, e2 ∈ E are ad-470

jacent if e1 ∩ e2 ̸= ∅. A set of hyperedges T ⊂ E forms an471

edge dominating set if, for any e ∈ E, there exists e′ ∈ T472

that is adjacent to e. We use β(H) to denote the size of the473

minimum edge dominating set of H .474

Khot and Regev [Khot and Regev, 2008] reduce the unique475

label cover problem to the hypergraph independent set prob-476

lem, and show the hardness of the hypergraph independent477

set problem assuming the Unique Games Conjecture. We478

skip the introduction to the unique label cover problem and479

directly use their result.480

Lemma 3 ([Khot and Regev, 2008]). Assuming the Unique481

Games Conjecture, for any ϵ > 0 and positive integer r ≥ 2,482

the following problem is NP-hard. Given a r-uniform hyper-483

graph H = (V,E), distinguish between484

1. (YES) α(H) ≥ (1− 1
r − ϵ)|V |,485

2. (NO) α(H) ≤ ϵ|V |.486

Next, we show the minimum edge dominating set prob-487

lem is also hard, by reducing the hypergraph independent set488

problem to it.489

Lemma 4. Assuming the Unique Games Conjecture, for any490

ϵ > 0 and positive integer r ≥ 2, the following problem is491

NP-hard. Given a r-uniform hypergraph H = (V,E), distin-492

guish between493

1. (YES) β(H ′) ≤
(

1
r(r−1) + ϵ

)
|V ′|,494

2. (NO) β(H ′) ≥ 1−ϵ
r+3 |V

′|.495

We defer the proof to Appendix D.1496

Finally, we show our social welfare maximization problem497

is also hard, by reducing the hyperedge dominating set prob-498

lem to it.499

Lemma 5. Assuming the Unique Games Conjecture, for any500

ϵ > 0, positive integer r ≥ 2, and δ > 0, the following prob-501

lem is NP-hard. Given an instance I = (C,A, f), distinguish502

between503

1. (YES) swJR(I,K) ≥
(

r−2
r(r−1) − ϵ

)
t
√
t,504

2. (NO) maxW∈JRK,(1+δ)K(I) ≤
(

δ
r + ϵr+3

r2

)
t
√
t + (δ +505

3)t,506

where507

• recall that n is the number of voters and A =508

(A1, . . . , An),509

• K = n/r,510

3So a graph is a 2-uniform hypergraph.

• t is the positive real number satisfying t+
√
t = n. 511

We defer the proof to Appendix D.2. 512

Since r can be arbitrarily large and ϵ can be arbitrarily 513

small, we have 514

Corollary 2. Assuming the Unique Games Conjecture, for 515

any δ ∈ (0, 1) and ϵ > 0, the following problem is NP-hard. 516

Given an instance I = (C,A, f) and a positive integer K, 517

find W ∈ JRK,(1+δ)K(I) such that 518

sw(W ) ≥ (δ + ϵ) · swJR(I,K).

If this corollary does not apply, then the two cases in 519

Lemma 5 are distinguishable. This corollary is identical to 520

Theorem 7. 521
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A Omitted proof in Section 2.2 626

Recall that we have the following LP. 627

minimize
∑
c∈C

f(c)yc (13)

s.t. ℓ · xv,ℓ ≤
∑
c∈Av

yc, ∀v ∈ N, ℓ ∈ [K] (14)

∑
v∈Bc

xv,ℓ ≥

(
|Bc| −

⌈
nℓ

K

⌉
+ 1

)
(1− yc), (15)

∀c ∈ C, ℓ ∈ [K] (16)
xv,ℓ ∈ {0, 1}, ∀v ∈ N, ℓ ∈ [K] (17)
yc ∈ {0, 1}, ∀c ∈ C (18)

Next, we consider the relaxation of this BILP. If we directly 628

replace xv,ℓ ∈ {0, 1} and yc ∈ {0, 1} by 0 ≤ xv,ℓ ≤ 1 and 629

0 ≤ yc ≤ 1 respectively, the rounding steps may face some 630

problems. We consider the following example. 631

Example 1. Suppose t is a large even integer, we construct 632

instance I = (C,A, f) and K in the following way. 633

• n = t2, m = n+ 1 = t2 + 1, and K = n/2. 634

• Ai = {i,m} for i ∈ [n]. 635

• For c ∈ C, we have 636

f(c) =

{
1, c ≤ t(t− 1),

t3, otherwise.

For committee W ∈ EJR+
K(I), either m ∈ W or [m−1] ⊂ 637

W , implying W = {m} has minimum cost among commit- 638

tees in EJR+
K(I), so fEJR+(I,K) = t3. 639

However, if we run the straight-forward LP relaxation, one 640

feasible solution is 641

y∗c =


1, c ≤ t(t− 1),

0, t(t− 1) ≤ c ≤ t2,
1
t , c = m.

This solution provides objective function value 642∑
c∈C f(c)yc < 2t2, so the integrality gap goes to 643

infinity as t goes to infinity. 644

In the example above, A small positive value of f(m) de- 645

stroys the effect of constraint 16 when c = m and ℓ = 1. 646



To avoid this happening, we adopt stronger constraints, with-647

out excluding valid integer solutions. Roughly speaking, our648

method is to set tighter upper bounds for variables, in the fol-649

lowing ways.650

1. In Constraint 16, for specific c ∈ C and ℓ ∈ [K], if yc >651

0, we aim to also upper bound xv,ℓ by (1 − yc). If this652

is the case, the upper bounds for the variable xv,ℓ will653

vary depending on the specific c ∈ C. To address this654

issue, we split the variable xv,ℓ into m copies (becomes655

xv,c,ℓ), each with a different upper bound.656

2. For xv,c,ℓ, as Constraint 14, we have ℓ · xv,c,ℓ ≤657 ∑
c′∈Av

yc′ . We aim to also upper bound yc′ by (1−yc).658

Using a similar trick, we split yc′ into m copies (be-659

comes zc′,c), each with a different upper bound.660

Our improved BILP is661

minimize
∑
c∈C

f(c)yc (19a)

s.t. zc′,c ≤ yc′ , ∀c ∈ C, c′ ∈ C (19b)

zc′,c ≤ 1− yc, ∀c ∈ C, c′ ∈ C (19c)

ℓ · xv,c,ℓ ≤
∑

c′∈Av

zc′,c, ∀v ∈ N, c ∈ C, ℓ ∈ [K] (19d)

xv,c,ℓ ≤ 1− yc, ∀v ∈ N, c ∈ C, ℓ ∈ [K] (19e)∑
v∈Bc

xv,c,ℓ ≥

(
|Bc| −

⌈
nℓ

K

⌉
+ 1

)
(1− yc),

∀c ∈ C, ℓ ∈ [K] (19f)
xv,c,ℓ ∈ {0, 1}, ∀v ∈ N, c ∈ C, ℓ ∈ [K] (19g)
yc ∈ {0, 1}, ∀c ∈ C (19h)

And its relaxation is662

minimize
∑
c∈C

f(c)yc (20a)

s.t. zc′,c ≤ yc′ , ∀c ∈ C, c′ ∈ C (20b)

zc′,c ≤ 1− yc, ∀c ∈ C, c′ ∈ C (20c)

ℓ · xv,c,ℓ ≤
∑

c′∈Av

zc′,c, ∀v ∈ N, c ∈ C, ℓ ∈ [K] (20d)

xv,c,ℓ ≤ 1− yc, ∀v ∈ N, c ∈ C, ℓ ∈ [K] (20e)∑
v∈Bc

xv,c,ℓ ≥

(
|Bc| −

⌈
nℓ

K

⌉
+ 1

)
(1− yc),

∀c ∈ C, ℓ ∈ [K] (20f)
xv,c,ℓ ≥ 0, ∀v ∈ N, c ∈ C, ℓ ∈ [K] (20g)
0 ≤ yc ≤ 1, ∀c ∈ C (20h)

Suppose x∗
v,c,ℓ, y

∗
c and z∗c′,c is the optimal solution of the663

LP relaxation. Then our rounding method computes integer664

solution ŷc (we do not use integer solutions for x∗ and z∗665

throughout the entire proof) in the following way.666

• For c ∈ C, let ŷc = 1 with probability667

min{1, 12 log(nm)y∗c}, otherwise ŷc = 0. This round-668

ing procedure is independent for each c ∈ C.669

We use Wŷ to denote the committee induced by {ŷc}c∈C , 670

meaning Wŷ contains candidate c ∈ C if ŷc = 1. Although it 671

may be false that Wŷ ∈ EJR+
K(I), we show a weaker guaran- 672

tee Wŷ ∈ EJR+
K/2(I). 673

We start with the following lemma. 674

Lemma 6. For v ∈ N , c ∈ C, ℓ ∈ [k], if y∗c ≤ 0.5 and 675

x∗
v,c,ℓ ≥ 0.5(1− y∗c ), then 676

Pr

 ∑
c′∈Av

ŷc′ < 0.5ℓ

 ≤ 1

n2m2
.

Proof. If x∗
v,c,ℓ ≥ 0.5(1− y∗c ), then 677∑

c′∈Av

min{y∗c′ , 1− y∗c} ≥
∑

c′∈Av

z∗c′,c ≥ 0.5ℓ(1− y∗c ).

Define S = {c′ ∈ Av : 12 log(nm)y∗c′ ≥ 1}. Then 678∑
c′∈Av\S

y∗c′ ≥ (0.5ℓ− |S|)(1− y∗c ),

which implies 679

E

 ∑
c′∈Av\S

ŷc′

 ≥12 log(nm)(0.5ℓ− |S|)(1− y∗c )

≥6 log(nm)(0.5ℓ− |S|).

We assume |S| < 0.5ℓ, otherwise 680

Pr
(∑

c′∈Av
ŷc′ < 0.5ℓ

)
= 0, which finishes the proof. 681

Applying Chernoff Bound, we have 682

Pr

 ∑
c′∈Av

ŷc′ < 0.5ℓ


=Pr

 ∑
c′∈Av\S

ŷc′ < 0.5ℓ− |S|


≤ exp

−1

2

(
1− 1

6 log(nm)

)2

E

 ∑
c′∈Av\S

ŷc′


≤ 1

n2m2
.

683

Applying the Union Bound over v ∈ N , c ∈ C and ℓ ∈ 684

[K], we have 685

• With probability at least 1− 1/n, for any v ∈ V , c ∈ C, 686

ℓ ∈ [k], if y∗c ≤ 0.5 and x∗
v,c,ℓ ≥ 0.5(1 − y∗c ), then 687∑

c′∈Av
ŷc′ ≥ 0.5ℓ. 688

For each c ∈ C and ℓ ∈ [K], note that we have the follow- 689

ing two properties 690

1.
∑

v∈Bc
x∗
v,c,ℓ ≥

(
|Bc| −

⌈
nℓ
K

⌉
+ 1

)
(1− y∗c ), 691



2. x∗
v,c,ℓ ≤ (1− y∗c ) for any v ∈ N ,692

so there are at most 2 ·
(⌈

nℓ/K
⌉
− 1
)

voters whose cor-693

responding variable x∗
v,c,ℓ is smaller than 0.5(1 − y∗c ), by694

Lemma 6, we have695

• With probability at least 1− 1/n, for any c ∈ C, at least696

one of the following holds.697

1. y∗c > 0.5, implying ŷc = 1.698

2.
∣∣∣∣{v ∈ Bc :

∑
c′∈Av

ŷc′ < 0.5ℓ
}∣∣∣∣ ≤ 2 ·

(⌈
nℓ/K

⌉
− 1

)
.699

It implies Wŷ ∈ EJR+
K/2(I).700

This property concludes Wŷ ∈ EJR+
K/2(I) with probabil-701

ity at least 1 − 1/n. As for the committee cost, we have the702

following observation.703

E
[
f(Wŷ)

]
= E

∑
c∈C

f(c)ŷc

 ≤12 log(nm) ·
∑
c∈C

f(c)y∗c

≤12 log(nm) · fEJR+(I,K).

By Markov’s inequality, this observation implies704

Pr
(
f(Wŷ) > 13 log(nm) · fJR(I,K)

)
<

12

13
. (21)

Combining the properties above, by the Union Bound, we705

have706

Corollary 3. With probability at least 1/15, we have Wŷ ∈707

EJR+
K/2(I) and f(Wŷ) < 13 log(nm) · fJR(I,K).708

Our algorithm repeatedly round {y∗c}c∈C into {ŷc}c∈C for709

O(log (n)) times, and pick the reduced committee Wŷ satis-710

fies Wŷ ∈ EJR+
K/2(I) with smallest f(Wŷ). Then with prob-711

ability 1−O(1/n), we are able to find Wŷ ∈ EJR+
K/2(I) sat-712

isfying f(Wŷ) < 13 log(nm) · fJR(I,K). These arguments713

complete the proof of Theorem 3.714

B Omitted proof in Section 2.3715

Recall that we have the following LP.716

minimize
∑
c∈C

f(c) · yc (22a)

s.t.
∑
c

zv,c ≤ 1, ∀v ∈ N (22b)∑
v

zv,c ≤
n

K
yc, ∀c ∈ C (22c)

xv,ϑ ≥ 1−
∑

c:uv(c)≥ϑ

zv,c, ∀v ∈ N,ϑ ∈ Θ (22d)

∑
v:uv(c)≥ϑ

xv,ϑ ≤ n

K
− 1, ∀c ∈ C, ϑ ∈ Θ (22e)

zv,c ∈ {0, 1}, ∀v ∈ N, c ∈ C (22f)
xv,ϑ ∈ {0, 1}, ∀v ∈ N,ϑ ∈ Θ (22g)
yc ∈ {0, 1, . . . }, ∀c ∈ C (22h)

And its relaxation is 717

minimize
∑
c∈C

f(c) · yc (23a)

s.t.
∑
c

zv,c ≤ 1, ∀v ∈ N (23b)∑
v

zv,c ≤
n

K
yc, ∀c ∈ C (23c)

xv,ϑ ≥ 1−
∑

c:uv(c)≥ϑ

zv,c, ∀v ∈ N,ϑ ∈ Θ (23d)

∑
v:uv(c)≥ϑ

xv,ϑ ≤ n

K
− 1, ∀c ∈ C, ϑ ∈ Θ (23e)

zv,c ≥ 0, ∀v ∈ N, c ∈ C (23f)
xv,ϑ ≥ 0, ∀v ∈ N,ϑ ∈ Θ (23g)
yc ≥ 0, ∀c ∈ C (23h)

Define ŷc = 3 log(nm)
δ yc and round it to an integer such 718

that its expectation remains unchanged. 719

For each v, c, define z′v,c = ŷc

yc
zv,c, and let ẑv,c ∈ {0, 1} 720

such that E[ẑv,c] = min{1, z′v,c} and 721

Pr

(∑
v

ẑv,c ≤
n

K
ŷc

)
= 1.

Since ŷc variables are independent, {ẑv,c}c∈S are also in- 722

dependent for any v, and set S ⊆ C. 723

Lemma 7. For any v and S ⊆ C, 724

Pr

∧
c∈S

(ẑv,c = 0)

 < exp

−3 log(nm)

δ

∑
c∈S

zv,c

 .

Proof. We want to bound the probability that all of the vari- 725

ables ẑv,c are 0 for every c in a subset S. 726

Since each ẑv,c is independently zero with probability 1− 727
3 log(nm)

δ zv,c, the overall probability is the product of these 728

terms: 729

Pr

∧
c∈S

(ẑv,c = 0)

 =
∏
c∈S

(
1− 3 log(nm)

δ
zv,c

)
.

Now, by using the inequality that the geometric mean is 730

less than or equal to the arithmetic mean, we can write: 731

∏
c∈S

(
1− 3 log(nm)

δ
zv,c

)
≤

1− 3 log(nm)

δ
· 1

|S|
∑
c∈S

zv,c

|S|

.

Using the standard bound (1− x)a ≤ e−ax, we conclude: 7321 −
3 log(nm)

δ
·

1

|S|
∑
c∈S

zv,c

|S|

≤ exp

−
3 log(nm)

δ

∑
c∈S

zv,c

 .

733



Now define x̂v,ϑ ∈ {0, 1} such that it equals 0 if734 ∑
c:uv(c)>ϑ ẑv,c ≥ 1. If xv,ϑ < 1 − δ, then x̂v,ϑ = 0 with735

probability at least 1− 1/(n3m3).736

By a union bound, with probability at least 1 − 1/(nm2),737

xv,ϑ < 1− δ implies x̂v,ϑ = 0 for all v, ϑ, so the total unsat-738

isfied voters satisfies:739 ∑
v:uv(c)≥ϑ

x̂v,c′,ϑ ≤ n

(1− δ)K
.

Furthermore, by Markov’s Inequality,740

Pr

∑
c∈C

ŷc >
9 log(nm)

δ

∑
c∈C

yc

 < 1/3,

Pr

∑
c∈C

f(c)ŷc >
9 log(nm)

δ

∑
c∈C

f(c)yc

 < 1/3.

Combining these properties with Lemma 7, we have the741

following corollary.742

Corollary 4. With probability at least 1/3 − 1/(nm2), the743

algorithm outputs a committee W ∈ BJR(1−δ)K(I) achieves744

cost745

f(W ) ≤ 9 log(nm)

δ
· fBJR(I,K).

Our algorithm repeatedly rounds the fractional variables to746

integers and checks whether the resulting committee satisfies747

BJR. This verification is feasible because the rounded vari-748

ables include the matching. The algorithm terminates as soon749

as a committee satisfying BJR is found. Moreover, the al-750

gorithm runs in expected polynomial time. These arguments751

complete the proof of Theorem 4.752

C Discussion: Limitation of Our LP753

Rounding Methods754

In this section, we do not present formal theorems, but we755

delve deeper into the LP Rounding method. We explore why756

our method fails for exact JR guarantee, and discuss an alter-757

native LP formulation of the problem.758

We consider an instance I = (C,A, f) as follows, where759

our goal is to find a committee W in JRK(I) that minimizes760

f(W ).761

1. Let m = 3, meaning there are three candidates.762

2. Let n = 2d be a large even number.763

3. The list of ballots is764

Av =


{1}, v ≤ d,

{2}, d+ 1 ≤ v ≤ n− 1,

{3}, v = n.

4. The cost function is f(c) = 1 for any c ∈ C.765

5. Let K = 2.766

In this instance, to ensure JR, candidate 1 must be selected.767

Furthermore, committee W = {1} is in JRK(I), so it is the768

optimal committee, and the cost is f(W ) = 1.769

However, consider the LP in Section 2.1, which is restated 770

below. 771

minimize
∑
c∈C

f(c) · yc

s.t. xv ≤
∑
c∈Av

yc, ∀v ∈ N

∑
v∈Bc

xv ≥ |Bc| −
⌈
n

K

⌉
+ 1, ∀c ∈ C

0 ≤ xv ≤ 1, ∀v ∈ N

0 ≤ yc ≤ 1, ∀c ∈ C

The optimal solution is y∗1 = 1/d, x∗
v = 1/d for v ∈ [d], 772

and other variables has value 0. The corresponding objective 773

value is 1/d. As a result, the integrality gap of the LP is very 774

large. This implies that to develop an algorithm capable of 775

finding W ∈ JRK(I) such that f(W ) ≤ o(n) · fJR(I,K), 776

modifications to the LP formulation are necessary. 777

We consider the following LP. 778

minimize
∑
c∈C

f(c) · yc (24)

s.t.
∑

c∈
⋃

v∈N′ Av

yc ≥ 1, ∀N ′ ∈ N (25)

0 ≤ yc ≤ 1, ∀c ∈ C (26)

where 779

N =

N ′ ⊂ N : |N ′| = n

K
and

⋂
v∈N ′

Av ̸= ∅

 .

This LP is actually a more natural formulation, because 780

its constraints directly follow the definition of JR. However, 781

this LP has exponentially many constraints. A typical method 782

to deal with it is separation oracle [Grötschel et al., 2012]. 783

Given an LP, the separation oracle is able to decide whether a 784

given solution is feasible. Specifically, for the above LP, the 785

separation oracle reads the instance I = (C,A, f) and vector 786

{yc}c∈C , and decides if Constraints 25 are satisfied. One way 787

to construct the separation oracle is to solve the following 788

problem. 789

• Define function g(N ′) =
∑

c∈
⋃

v∈N′ Av
yc, so g(·) is a 790

submodular function. 791

• For each c ∈ C, check whether 792

minN ′⊆Bc:|N ′|=K g(N ′). 793

In general, for a submodular function h(·) : 2[n] → R≥0, 794

it is NP-hard to find S ⊆ [n] of size at least K such that 795

h(S) ≤ O(n0.5−ϵ)minS′⊆[n]:|S′|≥K h(S′), for any ϵ > 0 796

[Goemans et al., 2009; Svitkina and Fleischer, 2011]. So the 797

LP 24-26 may be hard to solve. 798

D Omitted Proofs in Section 3 799

D.1 Proof of Lemma 4 800

Proof. By using the same values of r and ϵ, we construct the 801

hypergraph H ′ = (V ′, E′) from the hypergraph H = (V,E) 802

in Lemma 3 as follows. 803



1. Let V ′ = V ∪ V ′′, where |V ′′| = 1
r−1

(
1
r + ϵ

)
|V |.4804

2. Let E′′ =
{
e ⊂ V ′ : |e| = r and e ∩ V ′′ ̸= ∅

}
.805

3. Let E′ = E ∪ E′′.806

Although |E′′| = |V ′′| ·
( |V |
r−1

)
, note that r is a constant, so807

this reduction runs in polynomial time.808

For the (YES) case, suppose α(H) ≥ (1 − 1/r − ϵ)|V |.809

Let S ⊂ V be an independent set of size (1− 1/r − ϵ)|V | in810

H . For each v ∈ V ′′, pick a hyperedge e ∈ E′′ that covers v811

and (r − 1) vertices in V \ S, ensuring that the chosen |V ′′|812

hyperedges collectively do not cover any vertex more than813

once, so they covered all the
(
1
r + ϵ

)
vertices in V \S as well814

as all vertices in V ′′, implying these |V ′′| hyperedges forms815

a hyperedge dominating set. Then we have816

β(H ′) ≤ |V ′′| = 1

r − 1

(
1

r
+ ϵ

)
|V | ≤

(
1

r(r − 1)
+ ϵ

)
|V ′|.

For the (NO) case, suppose α(H) ≤ ϵ|V |. If T is a hy-817

peredge dominating set in H ′, and let ST be the set of ver-818

tices that are covered by at least one hyperedge in T , where819

|ST | ≤ r|T |, then V ′ \ST is an independent set in H ′, which820

implies V \ ST is an independent set in H , so we have821

ϵ|V | ≥ α(H) ≥ |V \ ST | ≥ |V | − |ST | ≥|V | − r|T |
≥|V | − rβ(H ′),

which implies822

β(H ′) ≥ 1− ϵ

r
|V | ≥ 1− ϵ

r + 3
|V ′|.

823

D.2 Proof of Lemma 5824

Proof. By using the same values of r and ϵ, we construct the825

instance I = (C,A, f) from the hypergraph H ′ = (V ′, E′)826

in Lemma 4 as follows.827

1. Define t = |V ′|, and let voter set N = V ′ ∪ V ′′, where828

V ′′ is a set of additional voters of size
√
t, so n = |N | =829

t+
√
t. Furthermore, let K = n/r.830

2. Define candidate set C = E′ ∪E′′, where E′′ is a set of831

additional candidates of size (1 + δ)K.832

3. For v ∈ V ′, let Av = {e ∈ E′ : v ∈ e}, meaning voter833

v approves candidate e if e covers v in H ′.834

4. For v ∈ V ′′, let Av = E′′.835

5. For this problem, the cost function f(·) does not matter.836

For the (YES) case, suppose β(H ′) ≤
(

1
r(r−1) + ϵ

)
|V ′|.837

Let T be an hyperedge dominating set of size838 (
1

r(r−1) + ϵ
)
|V ′| in H ′. Consider a committee W839

4Note that |V ′′| may not be an integer. However, since we are
only interested in cases where the graph size is very large, rounding
these fractional values to the nearest integer does not impact the cor-
rectness of the proof. To maintain clarity, we ignore these details in
the proof.

consists of T and arbitrary
(
K − |T |

)
candidates in E′′. 840

Then we have W ∈ JRK,K(I), implying 841

swJR(I,K) ≥ sw(W ) ≥
√
t
(
K − |T |

)
=
√
t

(
n

r
−
(

1

r(r − 1)
+ ϵ

)
|V ′|

)

≥
(

r − 2

r(r − 1)
− ϵ

)
t
√
t.

For the (NO) case, suppose β(H ′) ≥ 1−ϵ
r+3 |V

′|. For every 842

W ∈ JRK(I),
(
W ∩ E′) is a hyperedge dominating set in 843

H ′, otherwise there is a hyperedge e ∈ E′ with vertices cov- 844

ered by e not covered by W , contradicting W ∈ JRK(I). As 845

a result, for every W ∈ JRK,(1+δ)K(I) ⊂ JRK(I), we have 846

sw(W ) ≤2

(
1− ϵ

r + 3
t

)
+
√
t

(
(1 + δ)K − 1− ϵ

r + 3
t

)
≤
(
δ

r
+

ϵr + 3

r2

)
t
√
t+ (δ + 3)t,

which implies 847

max
W∈JRK,(1+δ)K(I)

≤
(
δ

r
+

ϵr + 3

r2

)
t
√
t+ (δ + 3)t.

848


	Introduction
	Problem Setting and Results
	Additional Related Work
	Roadmap

	Minimizing Committee Cost
	Approximation Algorithm with JR Guarantee
	Approximation Algorithm with EJR+ Guarantee
	Approximation Algorithm with BJR Guarantee

	Maximization of Social Welfare
	Algorithm
	Hardness

	Omitted proof in Section 2.2
	Omitted proof in Section 2.3
	Discussion: Limitation of Our LP Rounding Methods
	Omitted Proofs in Section 3
	Proof of Lemma 4
	Proof of Lemma 5


