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Abstract001

Text watermarks in large language mod-002
els (LLMs) are increasingly used to detect syn-003
thetic text, mitigating misuse cases like fake004
news and academic dishonesty. While existing005
watermarking detection techniques primarily006
focus on classifying entire documents as wa-007
termarked or not, they often neglect the com-008
mon scenario of identifying individual water-009
mark segments within longer, mixed-source010
documents. Drawing inspiration from plagia-011
rism detection systems, we propose two novel012
methods for partial watermark detection. First,013
we develop a geometry cover detection frame-014
work aimed at determining whether there is015
a watermark segment in long text. Second,016
we introduce an adaptive online learning al-017
gorithm to pinpoint the precise location of wa-018
termark segments within the text. Evaluated on019
three popular watermarking techniques (KGW-020
Watermark, Unigram-Watermark, and Gumbel-021
Watermark), our approach achieves high accu-022
racy, significantly outperforming baseline meth-023
ods. Moreover, our framework is adaptable to024
other watermarking techniques, offering new025
insights for precise watermark detection.026

1 Introduction027

Large Language Models (LLMs) have revolution-028

ized human activities, enabling applications rang-029

ing from chatbots (OpenAI, 2022) to medical di-030

agnostics (Google, 2024) and robotics (Ahn et al.,031

2024). Their ease of use, however, presents seri-032

ous societal challenges. In education (Intelligent,033

2024), students can effortlessly generate essays034

and homework answers, undermining academic in-035

tegrity. In journalism (Blum, 2024), distinguishing036

credible news from fabricated content erodes pub-037

lic trust. The potential for malicious uses, such038

as phishing (Violino, 2023), and the risk of model039

collapse due to synthetic data (Shumailov et al.,040

2024), further underscore the urgent need to detect041

LLM-generated text and promote the responsible 042

use of this powerful technology. 043

However, identifying AI-generated text is be- 044

coming increasingly difficult as LLMs reach 045

human-like proficiency in various tasks. One line 046

of research (OpenAI, 2023; Tian, 2023; Mitchell 047

et al., 2023) trains machine learning models as 048

AI detectors by collecting datasets consisting of 049

both human and LLM-generated texts. Unfortu- 050

nately, these approaches are often fragile (Shi et al., 051

2024) and error-prone (Liang et al., 2023), ulti- 052

mately leading OpenAI to terminate its deployed 053

detector (Kelly, 2023). Watermarking has emerged 054

as a promising solution to this challenge1. By em- 055

bedding identifiable patterns within the generated 056

text, watermarks can signal whether a piece of text 057

originates from an LLM (Dathathri et al., 2024). 058

Existing watermark detection methods (Aaron- 059

son, 2023; Kirchenbauer et al., 2023; Zhao et al., 060

2023; Kuditipudi et al., 2023; Christ et al., 2023; 061

Hu et al., 2024; Dathathri et al., 2024) are primar- 062

ily designed for text-level classification, labeling a 063

piece of text as either watermarked or not. How- 064

ever, these methods are insufficient for many real- 065

world scenarios where documents contain mixed- 066

source texts, and only specific sections are LLM- 067

generated. For instance, malicious actors might 068

use LLMs to manipulate certain sections of a news 069

article to spread misinformation. Detecting water- 070

marks within long, mixed-source texts presents a 071

significant challenge, especially when aiming for 072

subsequence-level detection with uncertainty quan- 073

tification, similar to plagiarism detection systems 074

like “Turnitin2”. This is because the watermarked 075

signal may be weakened throughout the increasing 076

text length and may not be easily identifiable using 077

conventional detection methods. 078

To bridge the gap, we propose partial watermark 079

1Watermark has been used in industry, e.g. Syn-
thID (Dathathri et al., 2024) for Google Gemini.

2https://www.turnitin.com
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detection methods that offer a reliable solution for080

identifying watermark segments in long texts. A081

straightforward approach, which involves examin-082

ing all possible segments of a text containing n083

tokens, yields an inefficiently high time complex-084

ity of O(n2). Instead, we employ the geometric085

cover trick (Daniely et al., 2015) to partition the086

long texts into subsequences of varying lengths and087

then perform watermark detection within each in-088

terval. This approach, termed the Geometric Cover089

Detector (GCD), enables efficient classification of090

whether a document contains any watermarked text091

in O(n log n) time. However, GCD does not as-092

sign a score to every token, providing only a rough093

localization of watermark segments.094

To refine this localization, we introduce the095

Adaptive Online Locator (AOL). AOL reformu-096

late the problem as an online denoising task, where097

each token score from the watermark detector098

serves as a noisy observation for the mean value of099

scores within watermark segments. By applying an100

adaptive online learning method, specifically the101

Alligator algorithm (Baby et al., 2021), we retain102

the O(n log n) time complexity while significantly103

improving the accuracy of detected segments.104

We validate GCD and AOL using the C4 (Raffel105

et al., 2020) and Arxiv (Cohan et al., 2018) datasets,106

employing Llama (Touvron et al., 2023) and Mis-107

tral (Jiang et al., 2023) models for evaluation. Our108

empirical results demonstrate strong performance109

across both classification and localization tasks.110

In the classification task, our method consistently111

achieves a higher true positive rate compared to112

the baseline at the same false positive rate. For113

localization, we achieve an average intersection114

over union (IoU) score of over 0.55, far exceeding115

baseline methods.116

In summary, our contributions are threefold:117

1. We introduce novel approaches to watermark de-118

tection, moving beyond simple text-level classi-119

fication to identification of watermark segments120

within long, mixed-source texts.121

2. We employ the geometric cover trick and the122

Alligator algorithm from online learning to re-123

liably detect and localize watermark segments124

efficiently and accurately.125

3. We conduct extensive experiments on state-of-126

the-art public LLMs and diverse datasets. Our127

empirical results show that our approach signifi-128

cantly outperforms baseline methods.129

2 Background and Related Work 130

2.1 LLM Watermark and Detection 131

Language Models and Watermarking. A lan- 132

guage modelM is a statistical model that gener- 133

ates natural language text based on a preceding 134

context. Given an input sequence x (prompt) and 135

previous output y<t = (y1, . . . , yt−1), an autore- 136

gressive language model computes the probability 137

distribution PM(·|x, y<t) of the next token yt in 138

the vocabulary V . The full response is generated by 139

iteratively sampling yt from this distribution until 140

a maximum length is reached or an end-token is 141

generated. Decoding-based watermarking (Aaron- 142

son, 2023; Kirchenbauer et al., 2023; Zhao et al., 143

2023; Kuditipudi et al., 2023; Christ et al., 2023; 144

Hu et al., 2024) modifies this text generation pro- 145

cess by using a secret key k to transform the origi- 146

nal next-token distribution PM(·|x, y<t) into a new 147

distribution. This new distribution is used to gen- 148

erate watermarked text containing an embedded 149

watermark signal. The watermark detection algo- 150

rithm then identifies this signal within a suspect 151

text using the same watermark key k. 152

Red-Green Watermark. Red-Green (statistical) 153

watermarking methods partition the vocabulary 154

into two sets, “green” and “red”, using a pseudo- 155

random function R(h, k, γ). This function takes as 156

input the length of the preceding token sequence 157

(h), a secret watermark key (k), and the target 158

proportion of green tokens (γ). During text gen- 159

eration, the logits of green tokens are subtly in- 160

creased by a small value δ, resulting in a higher 161

proportion of green tokens in the watermarked text 162

compared to non-watermarked text. Two promi- 163

nent Red-Green watermarking methods are KGW- 164

Watermark (Kirchenbauer et al., 2023, 2024) and 165

Unigram-Watermark (Zhao et al., 2023). KGW- 166

Watermark utilizes h ≥ 1, considering the prefix 167

for hashing. Unigram-Watermark employs fixed 168

green and red lists, disregarding previous tokens by 169

setting h = 0 to enhance robustness. Watermark 170

detection in both methods involves identifying each 171

token’s membership in the green or red list 172

Score(y) =

n∑
t=1

1(yt ∈ Green Tokens) (1) 173

and calculating the z-score of the entire 174

sequence:zy = Score(y)−γn√
nγ(1−γ)

. This z-score reflects 175

the deviation of the observed proportion of green 176
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tokens from the expected proportion γn, where n177

is the total number of tokens in the sequence. A178

significantly high z-score yields a small p-value,179

indicating the presence of the watermark.180

Gumbel Watermark. The watermarking181

techniques proposed by Aaronson (2023) and182

Kuditipudi et al. (2023) can be described using183

a sampling algorithm based on the Gumbel184

trick (Zhao et al., 2024). This algorithm hashes185

the preceding h tokens using the key k to obtain186

a score ri for each token i in the vocabulary V ,187

where each ri is uniformly distributed in [0, 1]. The188

next token is chosen deterministically as follows:189

argmaxyi∈V [logP (yi|x<t)− log(− log(ryi))].190

Thus, given a random vector r ∼191

(Uniform([0, 1]))|V|, − log(− log(ryi)) fol-192

lows a Gumbel(0,1) distribution. This results in a193

distortion-free deterministic sampling algorithm194

(for large h) for generating text. During detection,195

if the observed score196

Score(y) =

n∑
t=1

log (1/(1− ryt)) (2)197

is high, the p-value is low, indicating the presence198

of the watermark.199

2.2 Text Attribution and Plagiarism Detection200

Watermark text localization shares similarities with201

text attribution and plagiarism detection, particu-202

larly in the aspect of pinpointing specific text seg-203

ments. Commercial plagiarism detection systems204

like Turnitin, Chegg, and Grammarly rely on vast205

databases to identify copied content, highlighting206

similar segments. Research in plagiarism local-207

ization, such as the work by Grozea et al. (2009),208

focuses on precisely identifying copied passages209

within documents. Their approach utilizes a sim-210

ilarity matrix and sequence-matching techniques211

for accurate localization. Similarly, the “Greedy212

String Tiling” algorithm (Wise, 1996) has been suc-213

cessfully employed by Mozgovoy et al. (2010) for214

identifying overlapping text. However, these meth-215

ods require reference files in a database, whereas216

watermark text localization aims to localize the wa-217

termark text using a watermark key, eliminating the218

need for reference documents. Detecting partially219

watermarked text presents a unique challenge, akin220

to an online learning problem, where tokens in wa-221

termark segments exhibit special signals that can222

be captured by a strongly adaptive online learning223

algorithm like Aligator (Baby et al., 2021).224

2.3 Identifying Watermarked Portions in 225

Long Text 226

To detect watermarked portions in long texts, 227

Aaronson (2023) designs a “watermark plau- 228

sibility score” for each interval. Given 229

{st = log(1/(1− ryt))}t∈[n], the watermark plau- 230

sibility score is (
∑j

t=i st)
2

j−i − L, where L is a con- 231

stant. This method draws connections to change 232

point detection algorithms, aiming to maximize the 233

sum of plausibility scores to detect watermarked 234

portions. Aaronson (2023) manages to reduce the 235

time complexity from O(n2) to O(n3/2). Addi- 236

tionally, Christ et al. (2023) demonstrate how to 237

detect a watermarked contiguous substring of the 238

output with sufficiently high entropy, calling the 239

algorithm Substring Completeness. This algorithm 240

has a time complexity ofO(n2). A recent, indepen- 241

dent work of Kirchenbauer et al. (2024) introduces 242

the WinMax algorithm to detect watermarked sub- 243

regions in long texts. This algorithm searches for 244

the continuous span of tokens that produces the 245

highest z-score by iterating over all possible win- 246

dow sizes and traversing the entire text for each 247

size, with a time complexity of Õ(n2). Our Adap- 248

tive Online Locator (AOL) improves the efficiency 249

of detecting watermarked portions, reducing the 250

time complexity to O(n log n). 251

3 Method 252

Identifying watermark segments within a long text 253

sequence y presents two key challenges. First, we 254

need to design a classification ruleM(y)→ {0, 1} 255

that determines whether y contains a watermark 256

segment. To address this, we propose the Geomet- 257

ric Cover Detector (GCD), which enables multi- 258

scale watermark detection. Second, accurately lo- 259

cating the watermark segments ysi:ei within the full 260

sequence y requires finding the start and end token 261

indices, si and ei, for each watermark segment. 262

We introduce the Adaptive Online Locator (AOL) 263

with the Aligator algorithm to precisely identify 264

the position of the watermarked text span within 265

the longer sequence. 266

3.1 Watermark Segment Classification 267

A straightforward approach to detect whether an ar- 268

ticle contains watermarked text is to pass it through 269

the original watermark detector (as we discussed 270

in Section 2.1). If the detection score from the 271

original detector is larger than a threshold, the text 272
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Input Sequence
Artificial intelligence (AI) is progressing rapidly, 
and companies are shifting their focus to developing 
generalist AI systems that can autonomously act 
and pursue goals. Increases in capabilities and 
autonomy may soon massively amplify AI’s impact, 
with risks that include large-scale social harms, 
malicious uses, and an irreversible loss of human 
control over autonomous AI systems. Despite 
cautionary advice from experts regarding the severe 
dangers posed by AI, there is no agreement on how 
to effectively address these risks. While initial 
efforts are encouraging, humanity's reaction falls 
short of what is needed, given the potential for swift 
and profound advancements that many specialists 
anticipate. Research into AI safety is not keeping 
pace. Current oversight measures are inadequate, 
lacking the necessary frameworks and organizations 
to deter irresponsible use and hardly even 
considering self-directed AI systems. Drawing on 
lessons learned from other safety-critical 
technologies, we outline a comprehensive plan that 
combines technical research and development 
(R&D) with proactive, adaptive governance 
mechanisms for a more commensurate preparation.

Artificial intelligence (AI) is progressing rapidly, 
and companies are shifting their focus to developing 
generalist AI systems that can autonomously act 
and pursue goals. Increases in capabilities and 
autonomy may soon massively amplify AI’s impact, 
with risks that include large-scale social harms, 
malicious uses, and an irreversible loss of human 
control over autonomous AI systems. Despite 
cautionary advice from experts regarding the severe 
dangers posed by AI, there is no agreement on how 
to effectively address these risks. While initial 
efforts are encouraging, humanity's reaction falls 
short of what is needed, given the potential for swift 
and profound advancements that many specialists 
anticipate. Research into AI safety is not keeping 
pace. Current oversight measures are inadequate, 
lacking the necessary frameworks and organizations 
to deter irresponsible use and hardly even 
considering self-directed AI systems. Drawing on 
lessons learned from other safety-critical 
technologies, we outline a comprehensive plan that 
combines technical research and development 
(R&D) with proactive, adaptive governance 
mechanisms for a more commensurate preparation.
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Figure 1: Illustration of the watermark segment detection process. The input sequence could be a mixed-source of
watermarked text and unwatermarked text. We use geometric covers to partition the text and detect watermarks
in intervals. We also formulate localization as an online denoising problem to reduce computational complexity.
The example shown is drawn from the abstract of Bengio et al. (2024), with the watermarked part generated by a
watermarked Mistral-7B model.
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Figure 2: Example of precise watermark localization using AOL with Gumbel Watermark. Light green lines show
token scores, and dark green lines show predicted mean scores. The horizontal dashed line shows the score threshold
ζ = 1.3. The vertical dashed line marks the original watermark position. The top image demonstrates inaccurate
localization from a single pass of the Aligator algorithm, highlighting boundary artifacts. In contrast, the bottom
image shows precise localization achieved by AOL’s circular initialization strategy with m = 10 random starts.

contains a watermark; otherwise, no watermark is273

found. However, this approach is ineffective for274

long, mixed-source texts where only a small por-275

tion originates from the watermarked LLM. Since a276

large portion of the text lacks the watermark signal,277

the overall score for the entire document will be278

dominated by the unwatermarked portion, render-279

ing the detection unreliable.280

To overcome this limitation, we need a method281

that analyzes the text at different scales or chunks.282

If a chunk is flagged as watermarked, we can then283

classify the entire sequence as containing water-284

marked text. The question then becomes: how do285

we design these intervals or chunks effectively?286

We leverage the Geometric Cover (GC) technique287

introduced by Daniely et al. (2015) to construct an288

efficient collection of intervals for analysis.289

Geometric Cover (GC) is a collection of intervals290

belonging to the set N, defined as follows: 291

I =
⋃

k∈N∪0
I(k), where ∀k ∈ N ∪ 0, and 292

I(k) = {[i · 2k, (i+ 1) · 2k − 1] : i ∈ N}. (3) 293

Essentially, each I(k) represents a partition of 294

N into consecutive intervals of length 2k. For 295

example, I(4) contains all consecutive 16-token 296

intervals. Due to this structure, each token be- 297

longs to ⌊log n⌋ + 1 different intervals (as il- 298

lustrated in Figure 1), and there are a total of 299

n + n/2 + n/4 + n/8 + · · · = O(n) intervals 300

in the GC set. This allows us to establish a multi- 301

scale watermark detection framework. Moreover, 302

Lemma 5 from Daniely et al. (2015) ensures that 303

for any unknown watermarked interval, there is 304

a corresponding interval in the geometric cover 305

that is fully contained within it and is at least one- 306
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Algorithm 1 Geometry Cover WM Detection
Input: Text y of length n, target false positive rate
(FPR) τ , watermark detector score function Score,
FPR calibration function F

1: Divide y into Geometry Cover set I as defined
in Equation 3

2: for each interval It : (it, jt) in Geometry
Cover set do

3: Compute FPR α← F (yit:jt ,Score(yit:jt))
4: if α < τ then
5: return 1, i.e., “The sequence contains a

watermark”
6: return 0, i.e., “No watermark found”

fourth its length. This ensures the effectiveness307

of watermark detection using the geometric cover308

framework.309

Leveraging the GC construction, our multi-scale310

watermark detection framework divides the input311

text into segments based on the GC intervals. In312

real-world applications, we need to balance the313

granularity of the intervals. For instance, classi-314

fying a 4-token chunk as watermarked might not315

be convincing. Therefore, we start from higher-316

order intervals, such as I(5), which comprises all317

geometric cover intervals longer than 32 tokens.318

Algorithm 1 outlines our approach. For each319

segment It : yit:jt in the GC, we first compute a320

detection score using the appropriate watermark321

detector for the scheme employed (e.g., Equation 1322

for Red-Green Watermark or Equation 2 for Gum-323

bel Watermark). This score, along with the segment324

itself, is then passed to an FPR calibration function325

F . This function estimates the FPR associated with326

the segment. Further details on FPR calibration can327

be found in the Appendix B.328

If the estimated FPR, denoted as α, falls below329

a predefined target FPR (τ ), we classify the entire330

sequence as containing a watermark. It is impor-331

tant to note that τ is set at the segment level. Us-332

ing the union bound, consider a mixed-source text333

composed of n tokens. The geometric cover of334

the text is constructed from O(n) intervals. Let τ335

represent the false positive rate for each interval336

test (Type I error rate). In this case, the Family-337

Wise Error Rate (FWER), which is the probability338

of incorrectly classifying the entire document as339

watermarked, is bounded by nτ .340

3.2 Precise Watermark Position Localization341

While the previous section focused on detect-342

Algorithm 2 Watermark Position Localization
Input: Text y, threshold ζ, iterations m

1: Get watermark detection scores of each token
for y from watermark detector {st}t∈[n]

2: Initialize Aligator algorithm A with circular
starting strategy

3: for i = 1 to m do
4: Random starting position k ← random in-

dex in {1, . . . , n}
5: Predict the pointwise estimate of the ex-

pected detection score for each token in the
i-th round:
θ(i) := {θt}(i)t∈[n] ← A(sk, sk+1, . . . , sn, s1, . . . , sk−1)

6: end for
7: Average predicted scores across all rounds

θ ← 1
m

∑m
i=1 θ

(i)

8: Identify watermarked positions W ← {t |
θt > ζ}

9: returnW

ing the presence of watermarks, simply knowing 343

a watermark exists doesn’t reveal which specific 344

paragraphs warrant scrutiny. Here, we aim to local- 345

ize the exact location of watermarked text. 346

A naive approach would involve iterating 347

through all possible interval combinations within 348

the sequence, applying the watermark detection 349

rule to each segment yi:j for all i ∈ {1, . . . , n} 350

and j ∈ {i, . . . , n}. While this brute-force method 351

can identify watermark segments, its O(n2) time 352

complexity makes it computationally expensive for 353

long sequences. 354

Furthermore, relying solely on individual token 355

scores for localization is unreliable due to the inher- 356

ent noise in the watermarking process. To address 357

this issue, we propose to formulate it as a sequence 358

denoising problem (a.k.a., smoothing or nonpara- 359

metric regression) so we can provide a pointwise 360

estimate of the expected detection score for each 361

token. Specifically, the denoising algorithm takes a 362

sequence of noisy observations s1, ..., sn and out- 363

puts {θt}t∈[n] as an estimate to {E[st]}t∈[n]. 364

As an example, for the Green-Red Watermark, 365

the sequence of noisy observations 366

{st = 1(yt ∈ Green Tokens)}t∈[n] 367

consists of Bernoulli random variables. The ex- 368

pectation E[st] = γ if yt is not watermarked and 369

E[st] > γ otherwise. For the Gumbel Watermark, 370
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the noisy observations371

{st = log(1/(1− ryt))}t∈[n]372

consists of exponential random variables satisfy-373

ing E[st] = 1 if yt is unwatermarked and larger374

otherwise. The intuition is that, while individually375

they are too noisy, if we average them appropriately376

within a local neighborhood, we can substantially377

reduce the noise. If we can accurately estimate the378

sequence E[si], we can localize watermarked seg-379

ments by simply thresholding the estimated score380

pointwise.381

The challenge, again, is that we do not know the382

appropriate window size to use. In fact, the appro-383

priate size of the window should be larger if si is384

in the interior of a long segment of either water-385

marked or unwatermarked text. The sharp toggles386

among text from different sources add additional387

challenges to most smoothing algorithms.388

For these reasons, we employ the Aligator389

(Aggregation of onLIne averaGes using A ge-390

omeTric cOveR) algorithm (Baby et al., 2021).391

In short, Aligator is an online smoothing algorithm392

that optimally competes with an oracle that knows393

the segments of watermarked sequences ahead of394

time. The algorithm employs a Geometric Cover395

approach internally, where words positioned mid-396

paragraph are typically included in multiple inter-397

vals of varying lengths for updates. Notably, Aliga-398

tor provides the following estimation guarantee:399

1

n

∑
t

(θt−E[st])2 = Õ

(
min

{
n−1(1+ n∑

t=2

1E[st] ̸=E[st−1]

)
,400

n−1 ∨ n−2/3( n∑
t=2

∣∣E[st]− E[st−1]
∣∣)}).401

Moreover, for all segments with start/end indices
(i, j) ∈ [n]2, i.e.

1

j − i

j∑
t=i

(θt−
1

j − i

j∑
t′=i

E[st′ ])2 ≤ Õ(1/
√
j − i).

This ensures that for every segment, the estimated402

value is as accurate as statistically permitted. The403

time complexity for Aligator is O(n log n). For a404

detailed implementation of Aligator, please refer405

to the original paper (Baby et al., 2021). For the406

theoretical results, see (Baby and Wang, 2021).407

Circular Aligator. To mitigate the boundary ef-408

fects common in online learning, where prediction409

accuracy suffers at the beginning and end of se-410

quences, we introduce a circular starting strategy.411

Instead of processing the text linearly, we treat it as 412

a circular buffer. For each iteration, we randomly 413

choose a starting point and traverse the entire se- 414

quence, effectively mitigating edge effects. The 415

final prediction for each token is then obtained by 416

averaging the predictions across all iterations. 417

Finally, we apply a threshold to this denoised 418

average score function to delineate the boundaries 419

of watermark segments within the text (as illus- 420

trated in Figure 1). The high-level implementation 421

of this method is detailed in Algorithm 2. This ap- 422

proach enables us to precisely identify the location 423

of suspected plagiarism within large documents 424

with high confidence, facilitating further investiga- 425

tion and verification. 426

4 Experiment 427

4.1 Experiment Setting 428

We conduct experiments on three state-of-the- 429

art watermarking methods: Gumbel-Watermark 430

(Aaronson, 2023), KGW-Watermark (Kirchen- 431

bauer et al., 2023), and Unigram-Watermark (Zhao 432

et al., 2023) (with γ = 0.5, δ = 2.0, and temper- 433

ature = 1.0). We evaluate our methods on mixed- 434

source texts constructed from the C4 (news-like 435

subset) (Raffel et al., 2020) and Arxiv datasets (Co- 436

han et al., 2018). These texts contain both human- 437

written and LLM-generated (watermarked) seg- 438

ments. Watermarked segments are generated us- 439

ing LLaMA-7B (Touvron et al., 2023) and Mis- 440

tral (Jiang et al., 2023), and are embedded within 441

longer contexts (10% watermarked ratio to sim- 442

ulate realistic watermark integration), with their 443

positions randomized. For segment detection, we 444

compare our method (GCD) against each water- 445

marking method’s original detector (VANILLA). 446

For localization, we compare AOL with RoBERTa- 447

based classifiers, which are trained to label text seg- 448

ments as watermarked or not based on token water- 449

mark scores. We also included WinMax (Kirchen- 450

bauer et al., 2024) with window sizes of 1 and 451

100 (WinMax-1, WinMax-100) as a brute-force 452

baseline (Õ(n2)) for segment detection and local- 453

ization. We evaluate using True Positive Rate 454

(TPR) at calibrated False Positive Rates (FPRs, 455

both per-segment and document-level), Intersec- 456

tion over Union (IoU) for localization accuracy. 457

We also benchmark detection speed, reporting the 458

average runtime per sample. Further details, includ- 459

ing dataset specifics, baseline training, and FPR 460

calibration, are in the Appendix A. 461
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Method KGW-Watermark TPR Unigram-Watermark TPR Gumbel-Watermark TPR

C4 Dataset, Llama-7B
SEG-FPR 1e-5 5e-5 1e-4 1e-4 2e-4 0.001 1e-4 0.001 0.010
DOC-FPR 0.034 0.076 0.082 0.002 0.004 0.030 0.026 0.080 0.358
VANILLA 0.602 0.676 0.692 0.006 0.006 0.058 0.650 0.762 0.918
GCD 0.912 0.934 0.934 0.874 0.906 0.958 1.000 1.000 1.000

C4 Dataset, Mistral-7B
SEG-FPR 1e-5 1e-4 2e-4 0.001 0.010 0.020 1e-4 5e-4 0.001
DOC-FPR 0.037 0.087 0.153 0.001 0.012 0.040 0.024 0.046 0.054
VANILLA 0.697 0.830 0.877 0.000 0.012 0.030 0.690 0.760 0.780
GCD 0.960 0.983 0.990 0.722 0.974 1.000 0.970 0.980 0.990

Arxiv Dataset, Llama-7B
SEG-FPR 1e-5 5e-5 2e-4 1e-4 2e-4 0.001 1e-4 0.001 0.010
DOC-FPR 0.068 0.116 0.186 1e-4 2e-4 0.014 0.024 0.066 0.280
VANILLA 0.844 0.896 0.908 0.000 0.000 0.026 0.593 0.655 0.823
GCD 0.990 0.994 0.996 0.892 0.922 0.974 0.958 0.978 1.000

Arxiv Dataset, Mistral-7B
SEG-FPR 1e-5 1e-4 2e-4 0.001 0.020 0.020 1e-5 1e-4 2e-4
DOC-FPR 0.033 0.197 0.253 0.001 0.028 0.036 0.082 0.192 0.230
VANILLA 0.757 0.883 0.907 0.002 0.032 0.088 0.860 0.930 0.930
GCD 0.967 0.990 1.000 0.566 0.920 0.964 0.950 0.960 0.970

Table 1: True Positive Rate (TPR) at various False Pos-
itive Rate (FPR) levels for baseline VANILLA and our
method GCD. For each setting, we select three distinct
segment-level FPRs (SEG-FPR) and compare the perfor-
mance of VANILLA and GCD at equivalent document-
level FPRs (DOC-FPR). GCD consistently outperforms
VANILLA across different models and datasets.

4.2 Detection Results462

Watermark Segment Classification Results.463

As shown in Table 1, our proposed Geometric464

Cover Detector (GCD) consistently outperforms465

the baseline VANILLA method across all water-466

marking techniques and large language models on467

both the C4 and Arxiv datasets. The robustness468

of GCD across diverse conditions underscores its469

effectiveness in watermark segment classification,470

demonstrating clear superiority over VANILLA. Ad-471

ditionally, we observe that VANILLA exhibits near-472

zero detection rates when the target false positive473

rate is low. This suggests that VANILLA struggles474

to detect watermarked segments in longer contexts,475

as the watermark signal weakens, rendering the476

simpler detector ineffective.477

Precise Watermark Position Localization Re-478

sults. For the watermark position localization479

task, we evaluate our proposed method AOL480

against the baseline method ROBERTA (Table481

2). We calculate the average IoU score to quan-482

tify the precision of the watermark localization.483

Our method consistently outperforms the baseline484

across all test settings. For example, on the C4485

dataset using the Mistral-7B model, AOL achieves486

a substantially higher IoU score of 0.809 compared487

to 0.301 for ROBERTA. We also test AOL’s ability488

to detect multiple watermarks by inserting 3x300-489

token Gumbel watermarks (generated by Mistral-490

7B) into 6000-token texts. Across 200 samples,491

the average IoU for detecting the watermarks is492

0.802, demonstrating AOL’s effectiveness for mul-493

tiple watermark detection. Figure 2 provides a case494

Method KGW-WM IoU Unigram-WM IoU Gumbel-WM IoU

C4 Dataset, Llama-7B
ROBERTA 0.563 0.444 0.535
AOL 0.657 0.818 0.758

C4 Dataset, Mistral-7B
ROBERTA 0.238 0.019 0.301
AOL 0.620 0.790 0.809

Arxiv Dataset, Llama-7B
ROBERTA 0.321 0.519 0.579
AOL 0.718 0.862 0.635

Arxiv Dataset, Mistral-7B
ROBERTA 0.372 0.249 0.421
AOL 0.571 0.682 0.802

Table 2: Precise Watermark Position Localization Per-
formance: Intersection over Union (IoU) score for base-
line ROBERTA and our method AOL. AOL consis-
tently outperforms ROBERTA.

example illustrating the improved localization per- 495

formance of AOL on the Gumbel watermark with 496

the Mistral-7B model. The upper image shows 497

the boundary effects of using online learning. The 498

lower image demonstrates more precise localiza- 499

tion resulting from the circular starting strategy 500

with 10 random starting points. We explored other 501

values for m, and our experiments indicate that 502

m = 10 provides a robust balance between accu- 503

racy and computational efficiency for our tested 504

datasets and models. 505

4.3 Detection Efficiency 506

Method Time (s) TPR IoU

WinMax-1 3643.61 0.99 0.980
WinMax-100 33.90 0.99 0.791
GCD 1.24 0.99 0.387
AOL 2.18 0.99 0.718

Table 3: Runtime and performance comparison of dif-
ferent methods.

Efficiently identifying watermarked segments 507

is a critical goal of our approach. To assess the 508

efficiency of our method, we compare against the 509

brute-force WinMax algorithm (Kirchenbauer et al., 510

2024), a representative sliding window method, 511

with window sizes of 1 and 100 tokens (WinMax-1, 512

WinMax-100). Table 3 presents the results of our 513

comparative evaluation. 514

The results demonstrate that WinMax achieves 515

high true positive rate (TPR) and intersection over 516

union (IoU) but at a prohibitive computational cost. 517

WinMax-1 requires 3643.61 seconds per sample, 518

while WinMax-100 reduces this to 33.9 seconds. 519

In contrast, our approach (AOL) achieves compa- 520

rable TPR and a strong IoU (0.718) in just 2.18 521
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Length Method TPR

FPR-1 FPR-2 FPR-3

3000 VANILLA 0.000 0.012 0.038
GCD 0.722 0.974 1.000

6000 VANILLA 0.000 0.000 0.005
GCD 0.730 0.980 1.000

9000 VANILLA 0.000 0.000 0.000
GCD 0.730 0.980 1.000

18000 VANILLA 0.000 0.000 0.000
GCD 0.730 0.980 1.000

Table 4: VANILLA and GCD watermark segment clas-
sification results using the Unigram Watermark on
Mistral-7B for different segment-level false positive rate
targets, achieved by adjusting score thresholds.

seconds, offering a dramatic improvement in com-522

putational efficiency. Additionally, we analyze the523

role of GCD in this efficiency gain. While GCD524

alone detects watermark presence with an IoU of525

0.387, integrating it with AOL significantly en-526

hances localization precision (IoU = 0.718). This527

ablation study underscores the importance of AOL528

in refining detection beyond the rough localization529

provided by GCD.530

4.4 Detection Results with Different Lengths531
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Figure 3: Watermark localization results using different
watermarking methods and varying text lengths.

As mentioned previously, watermark detection532

can easily be disturbed by long natural paragraphs,533

and our approach aims to minimize the effect of534

length scale. We test our method on texts of varying535

total lengths, ranging from 3000 to 18000 tokens,536

while keeping the watermark segment length con-537

stant at 300 tokens. The same detection threshold538

and parameters used for 3000 total tokens are ap-539

plied across all lengths.540

We find that the Gumbel watermark segment541

classification performs well even as total length542

increases, as shown in Table 4. For repetitive water-543

marks like KGW and Unigram, longer texts in the544

Geometry Cover also cause a decrease in segment545

detection, as shown in Figure 3. However, com- 546

pared to directly detecting on the whole paragraph, 547

this decrease is more acceptable. Importantly, the 548

parameters used in these tests are identical to those 549

for 3000 tokens. In practice though, for texts of 550

different lengths, the number of starting points in 551

the circular buffer should be adjusted accordingly. 552

This way, similarly strong results can be achieved 553

as with 3000 tokens. 554

4.5 Detection Robustness Against Attacks 555

Method KGW-Watermark TPR and IoU Unigram-Watermark TPR and IoU Gumbel-Watermark TPR and IoU
FPR-1 FPR-2 FPR-3 AOL IoU FPR-1 FPR-2 FPR-3 AOL IoU FPR-1 FPR-2 FPR-3 AOL IoU

Random Swap
Baseline 0.190 0.340 0.460 – 0.000 0.005 0.025 – 0.110 0.150 0.160 –
Ours 0.175 0.325 0.380 0.095 0.740 0.990 1.000 0.472 0.390 0.550 0.560 0.325

Random Delete
Baseline 0.310 0.440 0.545 – 0.000 0.000 0.015 – 0.255 0.300 0.325 –
Ours 0.645 0.750 0.820 0.269 0.630 0.905 0.960 0.475 0.750 0.830 0.850 0.613

ChatGPT Paraphrase
Baseline 0.050 0.195 0.335 – 0.000 0.000 0.005 – 0.020 0.065 0.065 –
Ours 0.050 0.100 0.165 0.032 0.040 0.145 0.510 0.218 0.075 0.110 0.130 0.090

Table 5: Watermark segment classification and local-
ization performance with different attacks, evaluated at
three distinct FPR levels (FPR-1/2/3) and IoU scores.

We evaluate the robustness of our watermark 556

detection method against three types of attacks (Ta- 557

ble 5). First, we use GPT-3.5-turbo to rewrite the 558

text segments containing the watermark as the para- 559

phrasing attack. The other two attacks randomly 560

swap or delete words at a ratio of 0.2. As expected, 561

rewriting by ChatGPT is the most damaging at- 562

tack, leading to a decline in detection performance. 563

However, our detection method still significantly 564

outperforms the baseline direct detection across 565

most attack types in terms of TPR. For watermark 566

localization, measured by IoU, our method still 567

generates satisfactory results under these attacks. 568

Overall, the results demonstrate the robustness of 569

our watermark detection approach against various 570

perturbations to the watermarked text. 571

5 Conclusion 572

This paper introduces novel methods for partial 573

watermark detection in LLM-generated text, ad- 574

dressing the critical need for identifying watermark 575

segments within longer, mixed-source documents. 576

By leveraging the geometric cover trick and the 577

Alligator algorithm, our approach achieves high 578

accuracy in both classifying and localizing water- 579

marks, significantly outperforming baseline meth- 580

ods. These advancements pave the way for more 581

robust and reliable detection of synthetic text, pro- 582

moting responsible use and mitigating potential 583

misuse of LLMs in various domains. 584
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Limitations585

Our methods, GCD and AOL, can be applied to586

other watermarking schemes as long as they have587

token-wise detection scores for the sequence, such588

as Hu et al. (2024) and Zhao et al. (2024). The589

detection results are constrained by the strength of590

the original watermark generation and the quality591

of the prompt text. In some cases, low-quality text592

produced by the watermark generation method can-593

not be directly detected using the original detection594

method. Additionally, positive samples created595

by inserting the generated watermark paragraph596

into natural text may not be detectable with our597

approach. However, these limitations arise from598

the current limitations of watermark generation and599

detection methods themselves, which is outside the600

scope of detecting small watermarked segments601

within long text, the focus of this work. Therefore,602

we assume that our method needs only to detect603

reasonably high quality watermarked text segments604

embedded in long text.605
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A Detailed Experiment Settings765

A.1 Datasets and Mixed-source Texts766

We utilize two text datasets: C4 (Raffel et al., 2020)767

and Arxiv (Cohan et al., 2018). The “Colossal768

Clean Crawled Corpus” (C4) dataset is a large769

collection of English web text from the public770

Common Crawl, providing unwatermarked human-771

written content. We use random samples from its772

news-like subset. The Arxiv dataset, sourced from773

arXiv.org and PubMed.com, consists of scientific774

paper abstracts and articles. Both datasets pro-775

vide unwatermarked (negative) and partially wa-776

termarked (positive) samples. To transform un-777

watermarked samples into partially watermarked778

samples, we randomly select 3-5 sentences in a779

long text and set them as prompts. Then, we gener-780

ate watermarked text conditioned on the prompts781

using large language models. The generated re-782

sponses replace the original suffix sentences after783

the prompt. To simulate realistic watermark em-784

bedding within longer documents and ensure a de-785

tectable watermark length, we embed 300-token786

watermarks within 3000-token contexts (10% ra-787

tio). This ratio is designed to represent a plausible788

level of watermark integration in texts such as arti-789

cles or web pages, while simultaneously providing790

a sufficient length for reliable detection. The wa-791

termark was randomly positioned within the longer792

context, and these positions were recorded for sub-793

sequent localization evaluation. Our objective is to794

determine the presence of watermarked text within795

a document and accurately locate its segment. For796

testing, we utilized 500 samples per dataset.797

A.2 Language Models and Watermarking798

Methods799

We use the publicly available LLaMA-7B (Touvron800

et al., 2023) and Mistral (Jiang et al., 2023) mod-801

els. To verify the general applicability of the wa-802

termark detection methods, we select three water-803

marking techniques: Gumbel-Watermark (Aaron-804

son, 2023), KGW-Watermark (Kirchenbauer et al.,805

2023), and Unigram-Watermark (Zhao et al., 2023).806

These methods represent the state-of-the-art wa-807

termarking approaches for LLMs, offering high808

quality, detectability, and robustness against adver-809

sarial attacks. For all watermarking generations,810

we configure the temperature to 1.0 for multino-811

mial sampling. Additionally, for KGW-Watermark812

and Unigram-Watermark, we set the green token813

ratio γ to 0.5 and the perturbation δ to 2.0.814

A.3 Baselines 815

In watermark segment detection, we use the orig- 816

inal watermark detector in each watermarking 817

method as the VANILLA baseline to compare with 818

our approach GCD. In watermark segment local- 819

ization, we use RoBERTa (Liu et al., 2019) models 820

for comparing with our method AOL. We train 821

each RoBERTa (designed for different watermark- 822

ing methods) to predict whether a sequence is a 823

watermarked sequence or not, given the watermark 824

detection scores r for each token. We add an extra 825

fully connected layer after getting the representa- 826

tion of the [CLS] token. We construct 1000 training 827

samples with 60 token scores as input and the bi- 828

nary label of this segment as the label. We train the 829

RoBERTa model for 20 epochs and enable early 830

stopping if the loss converges. It can reach over 831

90% accuracy in the training set. During testing on 832

mixed-source text, we employ the sliding window 833

idea to test each chunk for watermarks and then 834

calculate the IoU score. We also conducted experi- 835

ments with the WinMax algorithm (Kirchenbauer 836

et al., 2024), a representative brute-force method 837

with time complexity of Õ(n2)). We tested two 838

window sizes: 1 token (WinMax-1) and 100 tokens 839

(WinMax-100). 840

A.4 Evaluation 841

For the watermarked text classification task, we re- 842

port the true positive rates (TPR) based on different 843

specified false positive rates (FPR). Maintaining a 844

low FPR is critical to ensure that human-written 845

text is rarely misclassified as LLM-generated text. 846

Since the FPR at the per-instance level differs 847

from the document-level FPR, we calibrate FPR to 848

three distinct levels in each scenario to enable fair 849

comparisons. Specifically, we manipulate the pre- 850

segment FPR (SEG-FPR) by adjusting the thresh- 851

old parameter τ as outlined in Algorithm 1. Then, 852

we can get the empirical document FPR (DOC- 853

FPR) by evaluating our method GCD based on 854

pure natural text. For VANILLA, we set the FPR ac- 855

cording to GCD’s empirical FPR and subsequently 856

test for its empirical TPR. For locating specific 857

watermark segments, we calculate the Intersection 858

over Union (IoU) score to measure the accuracy 859

of watermark segment localization. The IoU score 860

computes the ratio of the intersection and union 861

between the ground truth and inference, serving as 862

one of the main metrics for evaluating the accuracy 863
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of object detection algorithms:864

IoU =
Area of Intersection

Area of Union
865

=
|Detected Tokens ∩Watermarked Tokens|
|Detected Tokens ∪Watermarked Tokens|

866

Finally, to assess inference speed, we calculate867

the average time to detect a single sample on a868

server equipped with an AMD EPYC 9354 32-Core869

Processor and Nvidia A6000 GPUs.870

B FPR Calibration Function F871

As discussed in Section 3.1, the FPR Calibra-872

tion Function calculates the p-value / FPR for873

per-instance watermark detection, given the de-874

tection scores and the original text. We follow875

the methodologies outlined in Zhao et al. (2023)876

and Fernandez et al. (2023) for FPR calibration.877

This section presents three methods for detect-878

ing KGW-Watermark, Unigram-Watermark, and879

Gumbel-Watermark, each employing a unique scor-880

ing mechanism and statistical test to assess the false881

positive rate.882

B.1 KGW-Watermark883

For the KGW-Watermark scheme described in884

Kirchenbauer et al. (2023), we follow the approach885

in Fernandez et al. (2023). When detecting the wa-886

termark for a text segment, under the null hypothe-887

sisH0 (i.e., the text is not watermarked), the score888

Score(y) =
∑n

t=1 1(yt ∈ Green Tokens) follows889

a binomial distribution B(n, γ), where n is the to-890

tal number of tokens and γ is the probability of a891

token being part of the green list. The p-value for892

an observed score s is calculated as:893

p-value(s) = P(Score(y) > s | H0)894

= Iγ(s, n− s+ 1),895

where Ix(a, b) is the regularized incomplete Beta896

function.897

B.2 Unigram-Watermark898

For the Unigram-Watermark scheme, we adopt the899

methodologies from Zhao et al. (2023). To achieve900

a better FPR rate, the detection score differs from901

the KGW-Watermark approach. The score is de-902

fined as Score(y) =
∑m

t=1 1(ỹt ∈ Green Tokens),903

where ỹ = Unique(y) represents the sequence of904

unique tokens in text y, and m is the number of905

unique tokens.906

Under the null hypothesis H0 (i.e., the text is 907

not watermarked), each token has a probability γ 908

of being included. Using the variance formula for 909

sampling without replacement (N choose γN ), the 910

variance of this distribution is: 911

Var

[
m∑
t=1

1(ỹt ∈ Green Tokens) | y

]
912

= mγ(1− γ)(1− m− 1

n− 1
), 913

where n is the total number of tokens, and γ is the
probability of a token being in the green list. The
conditional variance of zUnique(y) is thus (1−m−1

n−1 ).
The false positive rate (FPR) is then given by:

FPR = 1− Φ

 zUnique(y)√
1− m−1

n−1

 ,

where Φ is the standard normal cumulative distri- 914

bution function. 915

B.3 Gumbel Watermark 916

For the Gumbel Watermark (Aaronson, 2023),
we adopt the approach presented in (Fernandez
et al., 2023), which utilizes a gamma test for
watermark detection. Under the null hypothesis
H0, Score(y) =

∑n
t=1 log (1/(1− ryt)) follows

a gamma distribution Γ(n, 1). The p-value for an
observed score s is calculated as:

p-value(s) = P(Score(y) > s | H0) =
Γ(n, s)

Γ(n)

where Γ(n, s) is the upper incomplete gamma func- 917

tion and n is the total number of tokens. 918

For all three methods, a lower p-value indicates 919

stronger evidence against the null hypothesis, sug- 920

gesting a higher likelihood that the text is water- 921

marked. These methods provide a comprehensive 922

framework for watermark detection, each offering 923

unique advantages depending on the specific char- 924

acteristics of the text and the desired sensitivity of 925

the detection process. 926
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