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Abstract
Latent space geometry provides a rigorous and
empirically valuable framework for interacting
with the latent variables of deep generative mod-
els. This approach reinterprets Euclidean latent
spaces as Riemannian through a pull-back met-
ric, allowing for a standard differential geomet-
ric analysis of the latent space. Unfortunately,
data manifolds are generally compact and eas-
ily disconnected or filled with holes, suggesting
a topological mismatch to the Euclidean latent
space. The most established solution to this mis-
match is to let uncertainty be a proxy for topology,
but in neural network models, this is often real-
ized through crude heuristics that lack principle
and generally do not scale to high-dimensional
representations. We propose using ensembles of
decoders to capture model uncertainty and show
how to easily compute geodesics on the associated
expected manifold. Empirically, we find this sim-
ple and reliable, thereby coming one step closer
to easy-to-use latent geometries.

1. Introduction
Generative models provide state-of-the-art density estima-
tors for high-dimensional data (Lipman et al., 2022; Sohl-
Dickstein et al., 2015; Ho et al., 2020; Rombach et al.,
2022). In the case of deep latent variable models, such
as the variational autoencoder (VAE) (Kingma & Welling,
2014; Rezende et al., 2014), we assume that data is dis-
tributed near a low-dimensional manifold in the spirit of
the manifold hypothesis (Bengio et al., 2013). Specifically,
we assume that data x ∈ X lies near a low-dimensional
manifoldM ⊂ X , which is parametrized through a low-
dimensional latent representation z ∈ Z . Given finite noisy
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data, we can recover a stochastic estimate ofM.

Formally, the VAE is defined through a (usually unit-
Gaussian) prior p(z) over the latent variables and a con-
ditional likelihood p(x|z), which is parametrized by the
output of a neural network, fθ : Z → X , known as the
decoder. These then define the data density

p(x) =

∫
p(x|z)p(z)dz. (1)

Here the latent space Z is generally Euclidean Rd with a
significantly lower dimension than the observation space X .

We focus on the latent space Z , which generally lacks phys-
ical units even when the data may possess such. Following
Arvanitidis et al. (2018), we consider infinitesimal latent
distances measured along the data manifold in observation
space. If we let z denote some latent variable and let ∆z1
and ∆z2 be infinitesimals, then we can compute the squared
distance using Taylor’s Theorem,

∥f(z+∆z1)− f(z+∆z2)∥2 (2)
= (∆z1 −∆z2)

⊺ (J⊺
zJz) (∆z1 −∆z2),

where Jz = ∂f
∂z

∣∣
z=z

is the Jacobian of the decoder f . This
implies that the natural distance function in Z changes lo-
cally through the Riemannian metric Gz = J⊺

zJz, which
gives the latent space a rich geometric structure.

The geometry of the manifold has been shown to carry
great value when systematically interacting with the latent
representations, as it provides meaningful distances that are
independent of how the latent space is parametrized (Tosi
et al., 2014; Arvanitidis et al., 2018; Hauberg, 2018). For
example, this geometry has allowed VAEs to discover latent
evolutionary signals in proteins (Detlefsen et al., 2022),
provide efficient robot controls (Scannell et al., 2021; Chen
et al., 2018; Beik-Mohammadi et al., 2021), improve latent
clustering abilities (Yang et al., 2018; Arvanitidis et al.,
2018) and more.

The fundamental issue with these geometric approaches
is that by assuming the latent space to have an Euclidean
topology, we impose the same topology on the manifold
M in observation space. In practice, we have little a priori
information about the topology of the true manifold and
must rely on the observed data to estimate a reasonable
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topology. As data is finite, we should expect such an esti-
mate to be compact, and empirically it is often observed that
manifolds arising from real-world data are disconnected and
often have holes. All of which mismatches the Euclidean
latent topology.

Hauberg (2018) argues that the uncertainty of the decoder
offers a topological hint, i.e. when model uncertainty is
high we are most likely outside the support of the driving
manifold. When the decoder follows a Gaussian process
(GP), there is a well-established notion of model uncertainty,
and its impact on the latent geometry is reasonably well-
understood (Tosi et al., 2014; Pouplin et al., 2023). However,
when the decoder is a neural network (the ever-present case),
a set of heuristics is commonly applied to mimic the behav-
ior of the GP models (Arvanitidis et al., 2018; 2019; 2021;
2022; Detlefsen et al., 2019; 2022; Beik-Mohammadi et al.,
2021). Besides lacking principle, these heuristics also tend
to break down when the latent dimension exceeds a handful.

In this paper, we propose to use an ensemble (Lakshmi-
narayanan et al., 2017; Hansen & Salamon, 1990) of de-
coders in the VAE to capture model uncertainty and provide
simple training techniques for the associated model. We
then show how to easily incorporate the ensemble into the
computation of geodesics on the modeled stochastic man-
ifold. The result is a simple, yet reliable, approach for
leveraging uncertainty in learned geometric representations.

2. Background and related work
2.1. Variational autoencoders

We briefly review the variational autoencoder (VAE) as our
empirical results are realized with this generative model.
Many of our findings, however, extend beyond this model.

The VAE (Kingma & Welling, 2014; Rezende et al., 2014)
is a deep latent variable model that generalizes probabilistic
principal component analysis (Tipping & Bishop, 1999).
Commonly the latent variable is assumed a priori to follow
a unit-Gaussian, p(z) = N (z|0, I), though more elabo-
rate priors have been studied (Tomczak & Welling, 2018;
Kalatzis et al., 2020; Rombach et al., 2022). The conditional
likelihood p(x|z) is then parametrized by a neural network
fθ(z) known as the decoder. For example, for a Gaussian
VAE, we let fθ(z) = (µθ(z);σθ(z)) and

p(x|z) = N (x|µ(z), σ2(z)I), (3)

where we omitted the θ subscript for brevity. The data
likelihood (1) arise by the marginalization of z, but, alas,
the associated integral is generally intractable and we resort
to a lower bound, known as the ELBO, (Kingma & Welling,
2014; Rezende et al., 2014)

Lθ,ψ = Eqψ(z|x) [log pθ(x|z)]−KL(qψ(z|x)∥p(z)), (4)

where qψ(z|x) = N (z|µψ(x), σ2
ψ(x)) is a variational ap-

proximation to the latent posterior p(z|x). Details can be
found in the original papers.

Despite mentioning priors and posteriors, the VAE is in-
herently non-Bayesian as it relies on maximum likelihood
to arrive at a point estimate of the decoder parameters θ.
Daxberger & Hernández-Lobato (2019) gives the model a
Bayesian treatment and relies on stochastic gradient Markov
chain Monte Carlo for inference.

We focus on the common case where the latent space is as-
sumed to have an Euclidean structure, i.e. Z = Rd. This is,
however, not a strict requirement and other latent structures
have been investigated (Davidson et al., 2018; Mathieu et al.,
2019).

2.2. Latent representation geometries

The latent variables of the VAE are enticing as they pro-
vide low-dimensional ‘distillations’ of high-dimensional
data. This form of representation learning (Bengio et al.,
2013) can give us a glimpse into the model’s inner workings,
but also potentially in the mechanisms of the true physical
system that generated the data.

Unfortunately, the latent space can be almost arbitrarily
deformed without changing the associated model density
(Hauberg, 2018). To see this, consider a smooth invertible
function h : Z ← Z , such that its inverse is also smooth
(i.e. a diffeomorphism). If the Jacobian of h further has unit
determinant, we see that the latent representations ẑ = h(z)
yields an unchanged density when combined with the de-
coder f̂ = f ◦ h−1. This implies that whichever latent rep-
resentations we may recover from optimizing Eq. 4, are not
unique. This lack of uniqueness hinders any form of inter-
pretability of the latent representations, such that the afore-
mentioned ‘glimpse’ becomes difficult to trust. Hauberg
(2023) discuss this issue at greater length, while Detlefsen
et al. (2022) show the empirical significance of the problem
in a model of proteins.

Fortunately, differential geometry provides an elegant solu-
tion (Arvanitidis et al., 2018; Shao et al., 2018). The basic
idea is to define distances in the latent space by measuring
infinitesimally along the spanned manifold in observation
space. Specifically, consider a latent curve γ : [0, 1] → Z
and its decoded counterpart f ◦ γ : [0, 1] → X . We may
then define the length of γ by integrating f ◦ γ, i.e.

Length[γ] =

∫ 1

0

∥∥∥∥ d

dt
f(γt)

∥∥∥∥dt, (5)

where γt = γ(t). Applying the chain rule quickly reveals
that the integrand can be written as∥∥∥∥ d

dt
f(γt)

∥∥∥∥ =
√
γ̇⊺
t J

⊺
γtJγt γ̇t, (6)

2



Decoder ensembling for learned latent geometries

where γ̇t = dγ/dt|t=t denotes the curve derivative. The
matrix J⊺

γtJγt , thus, defines a local inner product, which is
known as a Riemannian metric. From this notion of curve
length, we can define the associated distance that measures
the length of the shortest path, also known as the geodesic,

dist(z0, z1) = Length[γ∗], where (7)

γ∗ = argmin
γ

Length[γ]

s.t. γ0 = z0 and γ1 = z1.
(8)

This distance measure does not change if we reparametrize
the latent space by some diffeomorphism h : Z → Z .
This construction can be expanded upon to allow for
reparametrization invariant measurements of volumes, an-
gles, and more (see Hauberg (2023) for details).

2.3. Topology estimation and the role of uncertainty

Training data is inherently finite, suggesting that we should
only expect to be able to learn a compact manifold. Further,
it is not unreasonable to expect that the underlying manifold
near which the data are distributed can have holes. These
considerations lead to a mismatch between the topology of
the manifold we seek to estimate and the Euclidean topology
of the latent space.

In rare cases, we may have prior topological information
about the underlying manifold and we can adapt the
latent space accordingly (Davidson et al., 2018; Mathieu
et al., 2019). Generally, we, however, must estimate
the underlying manifold’s topology if we are to reliably
estimate its geometry.

One approach to topology estimation is to cover the mani-
fold using multiple charts and learn diffeomorphisms that
connect these (Kalatzis et al., 2021; Schonsheck et al., 2019).
This, however, notably complicates model estimation, and
the approach is rarely followed in practice.

Hauberg (2018) argues that model uncertainty offers a topo-
logical hint. The intuition is that the decoder should have
high uncertainty in regions of the latent space with little
support from training data (i.e. outside the manifold). One
approach to incorporating model uncertainty into the geom-
etry is to consider the expected Riemannian metric (Tosi
et al., 2014),

E[Gz] = E[J⊺
zJz] = E[Jz]

⊺E[Jz] + cov(Jz) (9)

such that distances are larger in regions of high uncertainty
(Hauberg, 2018). The property ensures that geodesics stay
close to the training data (Fig. 1). The expected metric has
been analyzed in great detail when the decoder follows a
posterior Gaussian process (Pouplin et al., 2023).

To the best of our knowledge, the expected metric has only
been explored for decoders following Gaussian processes

Figure 1. Shortest paths (geodesics) under the expected metric of
a decoder following a Gaussian process. The topological hint of
uncertainty is, thus, propagated to the metric. Figure is courtesy of
Hauberg (2018).

and not for neural network decoders. To shape the metric
to take large values outside the data support, Arvanitidis
et al. (2018) suggests taking the variance of the conditional
likelihood p(x|z) into account. Specifically, for a Gaussian
conditional likelihood, Arvanitidis et al. suggests the metric

G = J⊺
µJµ + J⊺

σJσ. (10)

Assuming σ2(z) grows with the distance to training data,
then this metric will give rise to geodesics that approach
the data. Unfortunately, the neural network σ : Z → X
does not exhibit such growth on its own, and Arvanitidis
et al. (2018) heuristically proposed to model σ−2 with a
radial basis function neural network (Que & Belkin, 2016),
which provides such growth. Variants of this heuristic are
commonly applied when using learned latent geometries
(Arvanitidis et al., 2022; Detlefsen et al., 2022; 2019; Beik-
Mohammadi et al., 2021).

2.4. Computing geodesics

There are several ways to compute the geodesic that con-
nects two points. The classic approach amounts to solving
the geodesic differential equation as a two-point boundary
value problem (Hauberg et al., 2012; Arvanitidis et al., 2019;
Miller et al., 2006). This works well for low-curvature man-
ifolds, such as spheres and tori, but is generally unstable on
learned manifolds. On low-dimensional manifolds, we can
alternatively discretize the manifold into a graph and apply
classic algorithms for computing shortest paths on graphs
(Beik-Mohammadi et al., 2021). The size of such a graph,
however, grows exponentially with the manifold dimension,
and the approach is impractical beyond three dimensions.

A more practical approach is to note that minimizers of
curve length coincides with those of curve energy (Carmo,
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1992),

E [γ] =
∫ 1

0

∥∥∥∥ d

dt
f(γt)

∥∥∥∥2 dt, (11)

which follows from the Cauchy-Schwarz inequality. Min-
imizing curve energy has the benefit of yielding solution
curves with constant speed (Carmo, 1992). This energy can
easily be discretized as

E [γ] ≈
T−1∑
t=0

∥f(γ(t+ 1/T))− f(γ(t/T))∥2 dt. (12)

A simple algorithm for computing geodesics then amounts
to parametrizing the curve γ and minimizing the discretized
energy (12) with respect to the curve parameters. Shao et al.
(2018) propose parametrizing the curve as a discrete set
of points, Yang et al. (2018) use a second-order polyno-
mial, while Detlefsen et al. (2021) use cubic splines. In our
implementation, we opt for the latter.

3. Ensemble of decoders
To capture the model uncertainty of a VAE, we need to
access the posterior distribution over the model parameters
θ. Since the encoder is not part of the model, but rather an
amortization mechanism for the variational inference, we
are only interested in the posterior of the decoder weights,
p(θ|D), where D denotes the training data.

In practice, current Bayesian deep learning techniques often
struggle to approximate the posterior over the weights. We,
therefore, propose to approximate posterior samples with
a deep ensemble (Lakshminarayanan et al., 2017), which
can, heuristically, be seen as a Bayesian approximation
(Gustafsson et al., 2020).

This can trivially be implemented by instantiating S ran-
domly initialized decoders {fθs}Ss=1. For each mini-batch
of data, we randomly sample a decoder fθs and take a gradi-
ent step to optimize the ELBO Lθs,ψ. At convergence, we
have access to one encoder and S decoders.

Figure 2 shows an example of the uncertainty of an ensemble
of decoders. For ease of visualization, we consider a VAE
with a two-dimensional latent space trained on three classes
of MNIST. We show the uncertainty in the latent space,
which we have calculated as the mean over n pixel standard
deviations

uncertainty(z′) =
1

n

n∑
i=1

σi(z
′) (13)

with

σ(z′) =

√√√√ 1

S

S∑
j=1

(fθj (z
′)− µ(z′))2

µ(z′) =
1

S

S∑
j=1

fθj (z
′)

We see that uncertainty generally grows with the distance
to the latent representations as one would naturally expect.
This gives hope that this uncertainty can be used to shape
the Riemannian metric to better respect topology.

Figure 2. Using an ensemble of decoders ensures that regions of
the latent space with limited data support have high uncertainty.

4. Ensemble geodesics
To obtain a practical latent geometry from the decoder en-
semble, we think of this as samples from an approximate
posterior fθ ∼ q(θ). We may, thus, construct an expected
metric as G = Eq(θ)[J⊺

fθ
Jfθ ]. Under this metric, we see

that the energy of a curve γ becomes

E [γ] =
∫ 1

0

Eq(θ)
[
γ̇⊺
t J

⊺
fθ
Jfθ γ̇t

]
dt, (14)

and following the discretization of Eq. 12 we get

E [γ] ≈
T−1∑
t=0

Eq(θ)
[
∥fθ(γ(t+ 1/T))− fθ(γ(t/T))∥2

]
.

Empirically, we have found that geodesics that minimize
this discretized energy do not follow the data as closely as
one could hope for. We hypothesize that the decoder en-
semble underestimate model uncertainty since all ensemble
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Figure 3. Upper row: Three examples of the latent space for ensembles of VAE decoders on a reduced version of MNIST data with three
classes. Blue curves indicate the geodesic interpolants between two random latent coordinates. Lower row: Three examples of the latent
space for a VAE with RBF-generated uncertainties on MNIST data with three classes.

members are trained always on the same data points. Similar
issues have been previously observed with other classical
ensemble-based models, i.e. bootstrap methods (Efron &
Gong, 1983). To counter this, we will modify the energy
to amplify the impact of model uncertainty by disregarding
correlations.

Particularly, the discretized energy sums expected squared
distances E[∥f(z2) − f(z1)∥2]. To analyze this, we intro-
duce the short-hand notation xi = fθ(zi) and write the
moments of a pair (x1,x2) as

Eq(θ)
[(

x1

x2

)]
=

(
µ1

µ2

)
, (15)

cov

[(
x1

x2

)]
=

(
Σ11 Σ12

Σ12 Σ22

)
. (16)

The difference vector ∆ = x2−x1 will thus have moments

E[∆] = E[x2]− E[x1], (17)
cov[∆] = Σ11 +Σ22 − 2Σ12, (18)

and the individual summands of the discretized energy are
then of the following form

E
[
∥∆∥2

]
= ∥E[∆]∥2 + tr[Σ11 +Σ22]− 2tr[Σ12]. (19)

We explicate these expressions to emphasize that cross-
covariances between points along γ decrease the curve en-
ergy. Neural network ensembles are known to provide better

performance under de-correlated predictions, which is de
facto a way to promote higher degrees of ensemble diversity
(Lakshminarayanan et al., 2017; Lee et al., 2016).

Additionally, the correlation terms in posterior cross-
covariances in other probabilistic models like Gaussian pro-
cesses (Williams & Rasmussen, 2006), also collapse to zero
values as the size of difference vector ∆ augments (see Fig-
ure 4). This primarily indicates that the discretized energy
can be also negatively affected by spurious cross-covariance
terms whenever the difference is not sufficiently small given
the high flexibility of the ensemble neural networks.

In practice, all of this suggests that cross-covariance terms
like Σ12 in Eq. 19 are not beneficial for the minimization
of the discretized energy with ensembles and we drop them,
i.e.

E
[
∥∆∥2

]
≈ ∥E[∆]∥2 + tr[Σ11 +Σ22]. (20)

This can be practically implemented by evaluating the en-
ergy directly as

E [γ]≈
T−1∑
t=0

Eθ,θ′∼q(θ)q(θ)
[
∥fθ(γ(t+ 1/T))−fθ′(γ(t/T))∥2

]
When minimizing this energy, we use a simple one-sample
Monte Carlo estimate.
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Figure 4. The correction term of posterior covariances in a GP
tends to be zero as ∆z ≫ 0, even in areas of Z where is a high-
density of training data.

5. Experiments
We compare our method to the current state-of-the-art ap-
proach to model uncertainty when learning latent geometries
Arvanitidis et al. (2018), which relies on RBF networks to
model data uncertainty. In particular, we show that geodesic
distances stemming from our ensemble of decoders method
are more stable under retraining when compared to distances
learned using the RBF neural network. The implementation
of our method and code producing the expreimental results
is available at https://github.com/mustass/ensertainty.

For both approaches, we choose a VAE architecture with
dense layers whereas for the RBF neural network part we
use a mixture of 10 Gaussians in the latent space. We train
the models on the MNIST and FMNIST datasets with two-
dimensional latent spaces. We further extend the MNIST
analysis to 50-dimensional latents.

We retrain the VAEs using 30 different seeds on both datasets.
We subsequently calculate the geodesic distances between
the latent representations of 100 pairs of randomly chosen
data points from the test set. These points are fixed across
all trials. The outcome is 30 measurements per point pair for
both methods. This allows us to calculate the coefficient of
variation (CV) for each method to compare their variability
and, thus, robustness,

CV =
σ

µ
, (21)

where µ and σ are the mean and standard deviations of the
distances calculated for the same point pair by 30 different
estimations of a model. Note that CV is a unitless measure
of relative variability, where a lower value indicates less
variability and, thus, allows us to compare the variability of
values on different scales.

Table 1 shows results for the one-sided paired Student’s

t-test with the null hypothesis of ensemble geodesics having
a lower coefficient of variation than by using the RBF-based
model. The results show that the ensemble of decoders
is consistently more reliable than the RBF-based approach,
which is currently the most popular approach. Figure 5
visualizes the findings using a histogram of coefficients of
variation for different point pairs.

6. Conclusion
Learned latent geometries crucially rely on uncertainty es-
timation in order to shape the metric according to the un-
derlying manifold’s topology (Hauberg, 2018). In Gaussian
process models (Tosi et al., 2014; Pouplin et al., 2023) this
construction naturally comes in place, but models based
on neural networks have required a series of heuristics to
behave desirable (Arvanitidis et al., 2018). Unfortunately,
these heuristics work poorly beyond a few latent dimen-
sions.

We have proposed to use neural network ensembles to cap-
ture model uncertainty. We have shown that this leads to
empirical improvements compared to current heuristics. In
practice, training ensembles of decoders requires only small
code modifications and our proposed approach is generally
easy to implement.
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Dataset Number of classes d Null-hypothesis Alternative t-statistic p-value

MNIST-3 3 2 Ensemble geodesics have lower CV greater -16.834 1.000
MNIST 10 2 Ensemble geodesics have lower CV greater -16.290 1.000

FMNIST 10 2 Ensemble geodesics have lower CV greater -15.339 1.000
MNIST 10 50 Ensemble geodesics have lower CV greater -6.472 0.999

Table 1. Statistical metrics (p-value and t-statistic) for MNIST and FMNIST with ensembles and RBF uncertainties.
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Figure 5. Histogram of coefficients of variation for MNIST and FMNIST data with d = 2 in the latent space Z .
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