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ABSTRACT

Different transformer architectures implement identical linguistic computations
via distinct connectivity patterns, yielding model imprinted “computational fin-
gerprints” detectable through spectral analysis. Using graph signal processing
on attention induced token graphs, we track changes in algebraic connectivity
(Fiedler value, A)5) under voice alternation across 20 languages and three model
families, with a prespecified early window (layers 2—5). Our analysis uncovers
clear architectural signatures: Phi-3-Mini shows a dramatic English specific early
layer disruption (A\a 51 ~ —0.446) while effects in 19 other languages are mini-
mal, consistent with public documentation that positions the model primarily for
English use. Qwen2.5-7B displays small, distributed shifts that are largest for
morphologically rich languages, and LLaMA-3.2-1B exhibits systematic but muted
responses. These spectral signatures correlate strongly with behavioral differences
(Phi-3: » = —0.976) and are modulated by targeted attention head ablations,
linking the effect to early attention structure and confirming functional relevance.
Taken together, the findings are consistent with the view that training emphasis
can leave detectable computational imprints: specialized processing strategies
that manifest as measurable connectivity patterns during syntactic transformations.
Beyond voice alternation, the framework differentiates reasoning modes, indicating
utility as a simple, training free diagnostic for revealing architectural biases and
supporting model reliability analysis.

1 INTRODUCTION

Understanding how transformers process syntactic structure remains a central challenge in Al
interpretability. While attention visualization (Clark et al., 2019; |Rogers et al., 2020) and probing
studies (Tenney et al.;[2019; Manning et al.| 2020) reveal what linguistic information is encoded, they
provide limited insight into how syntactic computation evolves across layers. Recent advances in
mechanistic interpretability (Elhage et al.,|2021; Wang et al.,|2022) and computational fingerprints
(Didolkar et al.,2024) suggest that transformers exhibit model specific processing strategies amenable
to systematic analysis.

We propose analyzing transformer representations through graph signal processing (GSP): attention
mechanisms induce dynamic graphs over tokens, with representations evolving as signals on these
graphs. Specifically, we track the graph’s Fiedler value (A\s), a classic measure of algebraic
connectivity, to reveal computational fingerprints of syntactic processing. This geometric perspective
yields a single, interpretable endpoint per layer and enables rigorous spectral analysis using established
theory (Shuman et al., [2013; [Sandryhaila & Moura, [2013)). To facilitate clean comparisons, we
prespecify an early window (layers 2-5) that aligns with first multihead context integration and report
its mean Ay 5) as our primary endpoint.

Voice alternation as computational probe. Active to passive transformations require systematic
attention reconfiguration (agent—patient reassignment, auxiliary—participle coupling, and reanchoring
of long range dependencies) that is expected to produce detectable connectivity signatures. Unlike
procedural knowledge extraction (Didolkar et al.|,2024)) or circuit analysis (Conmy et al., 2023)), our
approach reveals how different architectures implement identical linguistic computations through
distinct spectral patterns.
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Design for comparability. We adopt head aggregated attention with both random walk and symmetric
Laplacians, limit tokenization drift where feasible, quantify uncertainty via nonparametric bootstrap
and paired permutation tests, and control multiplicity with BH-FDR. We also analyze tokenizer stress
(pieces per character and fragmentation entropy) as covariates to distinguish confounds from genuine
architectural sensitivity.

Systematic validation. We validate across 20 languages and 3 model families, leveraging voice
alternation’s advantages: clear theoretical predictions, crosslinguistic variability, and behavioral
significance. This focused design supports statistical power while isolating core principles (Belinkov,
2022).

Contributions. We (1) introduce a spectral framework over attention induced graphs with A\,
as a compact endpoint and a prespecified early window; (2) develop uncertainty aware statistics
for matched contrasts; (3) reveal family specific spectral signatures across languages; (4) demon-
strate robustness to normalization and aggregation choices; (5) establish functional relevance via
spectral-behavioral correlations and targeted early layer head ablations; and (6) show preliminary
generalization to reasoning strategies beyond linguistic processing.

2 RELATED WORK

Interpretability and syntactic analysis in transformers. Understanding how transformers compute
remains a central challenge (Sharkey et al.| [2025)). Attention visualizations (Clark et al., 2019;|Rogers
et al., 2020) and probing (Tenney et al., 2019; [Hewitt & Manning, |2019) reveal what linguistic
information is encoded but say little about layer-wise dynamics of syntactic computation. Circuit-
level analyses (Elhage et al.,2021; |Wang et al.| 2022)) give mechanistic detail for narrow cases, and
behavioral tests assess competence (Goldberg, [2019; |Warstadt et al., 2020), yet a scalable, training-
free way to track how architectures execute the same linguistic operation is still missing. Syntactic
alternations such as active/passive require tracing how dependencies are reconfigured across early
layers and heads rather than simply locating information. We address this need by focusing on a
controlled alternation and by fixing a preregistered early-layer endpoint that can be compared across
models.

Graph-theoretic approaches to transformer analysis. Viewing attention as a graph enables studies
of information flow and connectivity (Clark et al., 2019} [Kovaleva et al.| 2021}, [Abnar & Zuidemal
2020; |Htut et al.,[2019)). Spectral graph theory has been influential in GNNs and CNNs (Bruna et al.}
2013 |Defferrard et al., 2016), and some extensions target transformer efficiency or optimization
rather than interpretability (Zhang et al.,|2021} Bietti et al., |2023). We use graph signal processing
as a diagnostic lens, formalizing attention-derived graphs, normalization, and aggregation, and
tracking algebraic connectivity across layers during controlled syntactic transformations. Because
operator choices materially affect conclusions, we compare random-walk vs. symmetric Laplacians
and directed variants, and report robustness of the connectivity signal to these design decisions.

Multilingual and cross-architectural generalization. Multilingual models (Devlin et al., 2019
Conneau et al.,|2020) raise questions about what transfers across languages and architectures. Cross-
lingual probing highlights universal vs. language-specific patterns (Zhao et al.,|2020; [Miiller et al.,
2023)), but model-averaging can obscure family-level signatures. Our methodology fixes the linguistic
manipulation and compares spectral responses across architectures and languages to separate universal
tendencies from model-family idiosyncrasies. We additionally account for confounds introduced by
tokenization and length by reporting uncertainty and mixed-effects summaries alongside bootstrap
intervals.

Model-imprinted computational signatures. Recent work on computational fingerprints (Didolkar|
et al., [2024) suggests architectures adopt distinct processing strategies. Our spectral connectivity
framework contributes a training-free, layer-resolved method that reveals such signatures and ties them
to behavior and targeted interventions, with transparent analysis choices and quantified uncertainty
(effect sizes, confidence intervals, permutation tests, and multiple-testing control). This positions
spectral diagnostics as a complement to circuit analysis and probing: lightweight enough for broad
audits, yet specific enough to identify family-level processing strategies and potential brittleness.
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3 GRAPH SIGNAL PROCESSING FRAMEWORK

3.1 DYNAMIC ATTENTION GRAPHS AND SPECTRAL DIAGNOSTICS

For layer £ with H heads over N tokens, let A?) € RN*N be the post-softmax attention of head h
(row-stochastic). We form an undirected graph by symmetrization,

H
W = S (AN 4 (AT, W“>:Zah WD oy, >0, Zah:L e))

with degree D) = dlag(W(e)l) and (comblnatorlal) Laplaman LO = D(e) — ) (Chungl

1997; lvon Luxburg, 2007). We also report checks with the normalized Laplacian Lgy)m =1-
(DWY=1217 O (D) =1/2,

Let X(© € RN *? be the token representations at layer ¢ (N tokens, hidden size d), viewed as d graph
signals stacked columnwise. We use four spectral diagnostics (Shuman et al.| 2013;Sandryhaila &
Moura, 2013):

Dirichlet energy:
~ (¢ ¢ ¢
= T((XO)TLOXG) =3 WP X = XG0
,J
Spectral entropy: With L“) = U(Z)A“)(U“)) and X = (U®)T X, define modal energies
et = 1 X8 12 and pl) = €/ S ). Then
SEO = — 3" pl? log pl0).

High-frequency energy ratio (HFER): for a cutoff K (or an equivalent mass-based cutoff),
N (¢
S [ X0 3
(¢
S 1 X513

Fiedler connectivity: )\y) is the second-smallest eigenvalue of L), summarizing algebraic connec-
tivity (Fiedler, |1973} |Chung [1997).

HFERY(K) =

Head aggregation (default). We use mass-weighted head aggregation by default; uniform weights
ap = 1/H are reported as a robustness check (App. . For layer /,

(e) H
0 _ (4 h) o9 Sh 77 (¢ (£) L,h
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3.2 PRIMARY ENDPOINT: EARLY A\

For matched inputs (passive vs. active), we compute
A)\(f) N O NN O

2,pass 2,act

and use the prespecified early-window mean A)\Q [2,5] as the primary endpoint (layers 2-5), motivated
by the onset of multihead context integration and supported by sensitivity checks (App. B).

Among the four diagnostics, A, demonstrates superior sensitivity to voice alternations with consistent
directional effects across model families. The Fiedler eigenvalue measures algebraic connectiv-
ity: higher A5 indicates efficient low-frequency signal propagation, while A\, captures attention
reconfiguration during syntactic processing.

Theoretical prediction: Under passive morphology, models reconfiguring long-range dependencies
(agent-patient roles, auxiliary-participle coupling) should show systematic early-layer connectivity
changes. If A\, reflects linguistic processing rather than tokenization artifacts, it should (a) survive
length controls, (b) be larger for argument structure changes vs. tense/number, and (c) correlate with
behavioral performance.



Under review as a conference paper at ICLR 2026

Token Sequence X (¥)

I

Transformer Layer ¢
multihead Attention

Attention " \Representations
Dynamic graph A&R) c RNXN XO ¢ RNxd Graph signals
1

Graph Construction
w® = Eh ahW([”")
LW = p) _w®

AW

Spectral Diagnostics
Energy: B = Tr(X(OT () x(©)
HFER: High-freq. energy ratio
Fiedler: )\y) connectivity
Spectral Entropy: SE©)

Figure 1: Graph Signal Processing framework for transformer analysis. Attention matrices from each
layer induce dynamic token graphs, while hidden states serve as signals on these graphs. Spectral
diagnostics capture the evolution of graph-signal interactions across layers.

3.3 ANALYSIS SCOPE

We establish model-imprinted spectral signatures through observational analysis across 20 languages
and three model families (Qwen2.5-7B, Phi-3-Mini, LLaMA-3.2-1B), with causal validation via
targeted attention head ablations. Implementation details (directed variants, head aggregation,
robustness checks) appear in Appendix [B]

4 MODELS, LANGUAGES, AND ARCHITECTURAL SENSITIVITY

We evaluate Qwen2.5-7B (28L), Phi-3-Mini (32L), and LLaMA-3.2-1B (16L). We compile 20
languages and assign each to a voice type: analytic (e.g., EN), periphrastic (e.g., ES/FR/IT/DE),
affixal (e.g., TR), particle (e.g., JA), non-concatenative (e.g., AR), etc. For each language we use (at
least) 10 paraphrases per voice and average within language; paraphrases are template-matched and
length-controlled at the tokenizer level when feasible.

This crosslinguistic design enables us to examine not only syntactic processing signatures, but also
how different model architectures respond to varying degrees of tokenizer fragmentation, reveal-
ing complementary computational fingerprints at both syntactic and subword levels. Statistical
methodology, including bootstrap procedures and effect size calculations, appears in Appendix

5 TOKENIZER STRESS AS ARCHITECTURAL FINGERPRINTS

Beyond syntactic effects, we find systematic links between spectral connectivity and tokenization,
yielding a second layer of model imprinted signatures rather than simple confounds.

Metrics. For a sentence s and tokenizer 7', we compute tokens per character ¢(s,T) = |T'(s)|/|s|
and fragmentation entropy

Hfrag(sv T) = - Z p(u) 10gp<u)a
weV(T'(s))
with length normalized Hpne = Hiwg/|T(s)]. We apply a light length control (|| (pass)| —
|T'(act)|| < 2 when feasible). Mixed effects regressions (random intercepts by language) regress

|AXa[2,5)| on ¢ and Hy,g with family specific slopes; covariates are standardized within family and
we report bootstrap Cls.
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Family specific patterns. Fragmentation relates to spectral magnitude in opposing ways across
families, indicating different strategies for handling subword granularity.

Architecture-specific tokenizer-stress patterns. Analysis reveals opposing linear relationships
between |A)z[; 51| and tokenization across model families: Qwen2.5-7B shows a strong positive
correlation (Pearson r = 0.51), while Phi-3-Mini exhibits a strong negative correlation (r = —0.44).
These contrasting patterns reveal distinct architectural sensitivities to subword-level linguistic stress.

Qwen architectures show larger spectral disruption for heavily fragmented languages (e.g., Yoruba:
0.57 pieces/char, |AX;| = 0.054), suggesting sensitivity to tokenization density. Conversely, Phi-
3’s largest spectral effects occur for efficiently tokenized languages like English (0.20 pieces/char,
|AXz| = 0.446), indicating a different form of architectural brittleness. LLaMA-3.2-1B exhibits
intermediate behavior (r = 0.29), consistent with its position between the other families.

Table 1: Model-specific correlations between ‘A)\2[275]| and tokenizer fragmentation (pieces per
character). Both Pearson and Spearman correlations shown.

Model Family n  Pearsonr Spearman p
Qwen2.5-7B 20 0.51 —0.11
Phi-3-Mini 20 —0.44 0.18
LLaMA-3.2-1B 20 0.29 —0.25

Differential tokenization effects. Beyond absolute fragmentation levels, we examined correlations
with tokenization differences between active and passive sentences. LLaMA-3.2-1B shows the
strongest relationship (Pearson » = 0.51, p = 0.069), where larger tokenization differences between
voice alternations correspond to larger spectral effects. This suggests that inconsistent tokenization of
syntactic alternations may stress the model’s representational system, complementing the absolute
fragmentation effects observed in other families.

6 RESULTS

6.1 EARLY-WINDOW A\, [2,5] ACROSS 20 LANGUAGES

For each language, we average (at least) ten paraphrases per voice (active/passive), then compute the
early-window mean A\g, 5) (layers 2-5). Error bars are nonparametric 95% bootstrap Cls (2,000
resamples over paraphrases). Per—language p—values come from paired permutation tests (10,000
label shuffles within paraphrase pairs); we report Benjamini-Hochberg FDR at g=0.05 within each
model family. Practical effect sizes appear as trimmed Hedges’ g with 1% winsorization and 20%
trimming.

Phi-3 Mini (32L). Per—language bars show a single pronounced outlier: English (EN)
has a large negative early effect (m[z, 51~ —0.446, gim ~ large; FDR-sig), whereas French (FR)
is negative but much smaller (= —0.134; marginal after FDR). All other languages cluster tightly
around 0 (|A7)\2[27 51 < 0.02; non—sig). This striking English-specific signature aligns with public
positioning of the model as primarily English-focused, and is consistent with the hypothesis that
training emphasis imprints early-layer connectivity patterns indicative of brittleness. Grouping by
voice type yields a strong analytic negative mean driven by English; other types hover
near zero.

Qwen2.5-7B (28L). Grouped by voice type Qwen shows small but consistent negative
early shifts in the Fiedler value (layers 2-5), with all types below zero. The largest decreases are for
analytic and non-concatenative; periphrastic, affixal, and particle are closer to zero but still negative,
with several CIs overlapping zero. Per-language bars mirror this pattern, showing scattered small
negatives across Romance/Germanic and agglutinative languages; English is near zero and slightly
negative. Effect sizes are small (|g¢im| = 0.2-0.4) but the sign is uniformly negative across types.
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LLaMA-3.2-1B (16L). Effects show systematic patterns at smaller absolute magnitudes
: affixal languages exhibit consistent negative shifts (TAQ[Q, 51 &~ —0.030), while analytic
types show modest positive effects. The voice-type ordering (affixal < periphrastic < analytic)
replicates the other families at reduced scale, suggesting architectural sensitivity rather than absence
of the effect.

6.2 TOKENIZER FRAGMENTATION CORRELATIONS

We find model-family—specific relationships between early spectral magnitude |A s (2, 5]| and tok-
enizer fragmentation. In Table 2] Qwen2.5-7B shows a positive correlation with pieces/character
(r = 0.51,95% CI [0.15, 0.76]); Phi-3-Mini shows a negative correlation (r = —0.44, 95% CI [-0.72,
-0.08]); LLaMA-3.2-1B is weaker (r = 0.29, 95% CI [-0.17, 0.65]). These patterns indicate distinct
architectural sensitivities to subword segmentation; all estimates include bootstrap CIs and FDR
control.

Table 2: Model-specific correlations between [A\z[, 5) and tokenizer fragmentation metrics. Boot-
strap 95% confidence intervals from 2,000 resamples.

Model Family Pieces/Character Fragmentation Entropy
Phi-3-Mini —0.44 [-0.72, -0.08] 0.36 [0.02, 0.66]

Qwen2.5-7B 0.51[0.15, 0.76] —0.23 [-0.58, 0.18]

LLaMA-3.2-1B 0.29 [-0.17, 0.65] —0.25 [-0.62, 0.20]

Eanv—wmd;)\z‘rsr:’e:: éMS“/i g‘avers 2:5) Early-window mean AA; (layers 2-5)
paus a0 et 21 o ) s
- B .
S P e P F R E P 0 analytic periphrastic wnknown non-concatenative affixal particle

(a) Per-language early-window AXz(» 5. English  (b) By voice type: analytic drives the negative mean;
shows a large negative outlier; others cluster near 0. other types ~ 0.

Figure 2: Phi-3-Mini: strong analytic (EN) negative; otherwise muted.

Eary-window mean AA; (layers 2-5)
boolstrap 95% C

«««««

L 0L b 4 4 o o 0= =

Figure 3: Qwen2.5-7B: early-window A\z(; 5 by voice type (mean across languages). Several
periphrastic/affixal effects are FDR—sig and negative.
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Figure 4: LLaMA-3.2-1B: muted effects; same ordering trend at lower scale.

6.3 SPECTRAL-BEHAVIORAL CORRELATIONS

To test the functional relevance of our spectral diagnostics, we correlate early-layer Ao changes with
behavioral performance on controlled voice alternation pairs. We use negative mean log-likelihood
(NLL, lower is better) as our behavioral metric, where a higher NLL indicates a worse model fit.
The analysis reveals a clear pattern: larger spectral disruptions (higher |A)s| ) correlate with worse
performance (higher NLL) on the transformed passive sentences. This relationship is exceptionally
strong for Phi-3-Mini (Pearson’s 7 = —0.976, p < 0.001), moderately strong for Qwen2.5-7B
(r = —0.627, p < 0.05), and minimal for LLaMA-3.2-1B (r = —0.143), directly mirroring the
magnitude of their respective spectral effects.

Table 3: Correlations between early-window A\3[2,5] and behavioral performance differences
(behavior_delta) on voice alternation tasks. Behavioral metric is the change in negative mean NLL
between active and passive sentence variants.

Model Family n  Pearsonr 95% CI

Phi-3-Mini 20 —0.976 [-0.99, -0.89]
Qwen2.5-7B 20  —0.627  [-0.85,-0.24]
LLaMA-3.2-1B 20 —0.143 [-0.62, 0.41]

These correlations provide empirical validation that early-layer spectral connectivity changes reflect
computationally relevant processing differences rather than mathematical artifacts. The consistent
negative correlation pattern suggests that when models require more substantial connectivity recon-
figuration for voice processing (larger |A)s]), they exhibit decreased behavioral performance on the
transformed sentences, providing functional grounding for our spectral analysis framework.

Intervention validation. In controlled voice alternations that limit tokenization drift (< 2 tokens),
the predicted sign of Ao appears in 6/7 items for LLaMA and 7/7 for Qwen, with behavioral scores
shifting in corresponding directions. Although modest in magnitude, these aligned spectral-behavioral
changes strengthen interpretation of the correlational findings.

6.4 CAUSAL VALIDATION THROUGH ATTENTION HEAD ABLATIONS

We tested whether early attention structure causally drives spectral connectivity by ablating specific
head sets and measuring changes in the Fiedler gap A\s. Three interventions were applied: heavy
early ablation (L2&L3 H0-7), focused ablation (L2 HO-3), and mid-early ablation (L3&L4 H0-3).

Results reveal family-specific profiles (Table 4), pointing to distinct architectural strategies for han-
dling perturbations. LLaMA-3.2-1B shows sustained positive shifts under heavy ablation, suggesting
the disruption propagates without being fully corrected. Phi-3-Mini displays only small early effects,
indicating either high robustness or that the ablated heads are less critical for this computation. In
contrast, Qwen2.5-7B exhibits a distinct signature of computational resilience: strong early positive
responses are met with compensatory mid/late negatives. This suggests the model actively redis-
tributes its computational pathways to counteract the initial perturbation, ultimately producing limited
net effects and maintaining processing stability.
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Model Ablation ANz Early [2-5] Mid [6-10] Late Overall
L2&L3 HO-7 +0.01472 +0.07566  +0.00200  +0.02795
LLaMA 3.2-1B L2 HO-3 -0.00478 -0.00907  +0.00270 -0.00319
L3&L4 HO-3 -0.00475 +0.03023  +0.02691  +0.01667
L2&L3 HO-7 -0.00736 -0.00714  +0.00176 -0.00088
Phi-3-Mini L2 HO-3 -0.00624 +0.00130  +0.00170  +0.00054
L3&L4 HO-3 -0.01220 +0.00200  +0.00439  +0.00167
L2&L3 HO-7 +0.04538 -0.02696 -0.00975 -0.00425
Qwen 2.5-7B L2 HO-3 +0.00630 -0.00344 -0.00266 -0.00133
L3&L4 HO-3 +0.01354 -0.01013 -0.01045 -0.00622

Table 4: Causal interventions: change in Fiedler gap A)\; by layer window. Early = layers 2-5; Mid
= 6-10; Late = 11-end (per model depth). Positive values indicate an increased spectral separation
after the intervention.

These targeted interventions demonstrate that early-layer attention causally shapes spectral connectiv-
ity, confirming that the observed signatures reflect mechanistically relevant computations rather than
artifacts.

7 BEYOND VOICE ALTERNATION: GENERALIZING THE FRAMEWORK

To validate that our spectral framework captures computational phenomena beyond the specific case
of voice alternation, we now demonstrate its broader utility. We show that it can distinguish between
complex reasoning strategies, provide deep diagnoses of model-specific architectural properties, and
can support practical applications in Al safety.

7.1 SPECTRAL SIGNATURES OF REASONING STRATEGIES

On 95 transitivity tasks with phi-3.5-mini, we compare four prompting strategies: Standard, Chain-
of-Thought (CoT) (Wei et al.,2022), Chain-of-Draft (CoD) (Xu et al.; 2025), and Tree-of-Thoughts
(ToT) (Yao et al.,[2024)). As shown in Table@ each induces a distinct spectral profile, and Fiedler
connectivity tracks performance: CoT (69.5%) and Standard (60.0%) yield positive Fiedler shifts,
whereas CoD and ToT show negative shifts with lower accuracy. This alignment suggests that
successful reasoning is associated with maintained/enhanced graph connectivity and motivates
spectral-guided prompt selection based on induced AX;. We summarize spectral reconfiguration
with the Reconfiguration Change Index (RCI), a z-score combination where higher values indicate
stronger low-frequency connectivity and lower disruptive high-frequency energy (see App.[F).

Table 5: Spectral signatures of reasoning strategies reveal distinct computational modes with clear
performance-connectivity relationships.

Strategy ~ Accuracy RCI Energy (z) Entropy (z) HFER (z) Fiedler (z)

CoT 0.695 +1.307 +0.790 +0.898 -0.744 +0.455
Standard 0.600 +1.738 +0.596 +0.127 -0.921 +1.286
CoD 0.274 -2.996 -1.708 -1.664 +1.611 -1.429
ToT 0.253 -0.049 +0.322 +0.639 +0.054 -0.312

Limitations and future directions. While these results are promising, this validation on transitivity
reasoning is preliminary. Future work should extend this analysis across diverse reasoning types
(e.g., arithmetic, causal inference) and model architectures to establish the generalizability of these
spectral-performance correlations.

7.2 CORE FINDING: DIAGNOSING ARCHITECTURAL BRITTLENESS IN PHI-3-MINI

The framework’s diagnostic value is illustrated by its capacity to surface latent, family-specific
properties. As shown in Section [6.T} we observe a pronounced, English-specific disruption in early-
layer connectivity (A\z) for Phi-3-Mini when processing passive constructions, with minimal effects
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in 19 other languages. This computational signature aligns with public positioning of the model as
primarily English-focused and is consistent with the hypothesis that training emphasis can imprint
specialized, less-flexible early-layer connectivity. In this sense, our method links a low-level spectral
artifact to a high-level model characteristic, supporting its utility as a diagnostic for identifying
specialization-related brittleness without requiring access to training data or logs.

7.3 APPLICATION TO Al SAFETY: HALLUCINATION DETECTION

Finally, the framework’s utility extends to practical tools. The insight that spectral connectivity
reflects computational integrity suggests that failures like hallucinations might correspond to a
detectable breakdown in this connectivity.

A concurrent manuscript develops a related detector Anonymous| (2026)); to preserve anonymity, we
provide an anonymized artifact link in Appendix[I| In that work, the spectral framework developed
herein was applied to create a simple detector that classifies hallucinations based on a threshold of
the final-layer Fiedler value:

SHD(z) = 1[zpa(x) > 74|, 2z6a(z) = %ﬁ:uﬁd. )

On a small held-out set (n = 80; 50 factual, 30 hallucinations), the detector reached 88.75%
accuracy. Baselines such as Perplexity and SelfCheckGPT-style methods, implemented following
public descriptions, performed lower on this set. Given the limited sample and scope, we treat these
results as preliminary and refrain from comparative or state-of-the-art claims.

8 DISCUSSION & LIMITATIONS

Our spectral framework enables computational provenance: inferring aspects of a model’s devel-
opmental pressures from present day connectivity imprints. In Phi-3-Mini we observe an English
specific early layer disruption, consistent with public positioning of the model as primarily English
focused, suggesting that training emphasis can leave detectable spectral traces. This complements
circuit analyses that ask how a computation is implemented by offering a lens on why a particular
implementation may have emerged.

Implications. Distinctive spectra could support audits for language coverage or brittleness and permit
indirect evaluation of training claims when datasets are proprietary.

Limitations. Inferences are indirect and based on partial evidence; voice alternation is a clean probe
but not exhaustive. Spectral-behavioral links, while strong in places, require larger preregistered
studies. Multiple factors, e.g. tokenizer fragmentation, morphology, domain mix, and architectural
choices can produce similar patterns. We therefore treat the English specific signature as evidence
consistent with an English emphasis explanation, not a definitive causal attribution.

9 CONCLUSION

We introduced a training-free spectral framework that surfaces family-specific computational signa-
tures in transformers and ties them to functional outcomes. Across 20 languages, early-layer algebraic
connectivity (A\q) tracks syntactic reconfiguration, aligns with tokenizer stress in family-specific
ways, correlates with behavioral fit, and responds to targeted head ablations. These results suggest
that compact spectral fingerprints can audit model provenance and behavior with minimal overhead,
offering a practical lens for robustness and safety analysis.

Limitations remain as effects vary by model family and tokenization, and most findings are cor-
relational outside controlled interventions. Next, we will extend beyond voice alternation, probe
multi-eigenvector structure, and run preregistered evaluations on public benchmarks, releasing a
reproducible toolkit to enable independent replication at scale.
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A METRIC SELECTION RATIONALE

A.1 THEORETICAL RATIONALE FOR THE FIEDLER VALUE ()\s)

Our choice of the Fiedler value (\;), or algebraic connectivity, as the primary spectral diagnostic is
not merely based on its empirical success but is grounded in the theoretical properties of the graph
Laplacian and its connection to information flow in networks.

The graph Laplacian, L = D — W, acts as a difference operator on the graph. Its eigenvalues,
0 =X < X <--- < Ay, represent the natural frequencies of the graph structure. The smallest
eigenvalue, \; = 0, corresponds to a constant signal across all nodes, representing the lowest possible
frequency of variation.

The Fiedler value, Ao, is the second-smallest eigenvalue and is of special importance. As established
by (Fiedler, [1973)), its magnitude is directly related to the robustness of the graph’s connectivity.
A graph with a low Ay can be easily partitioned into two large, sparsely connected subgraphs (a
“bottleneck”), while a graph with a high A5 is more difficult to cut and exhibits a more robust,
“well-knit” structure.

We hypothesize that complex syntactic transformations, such as voice alternation, require a global
reconfiguration of information flow within the attention graph. The model must systematically
re-route dependencies, for instance, demoting the original agent and promoting the patient. This
process should manifest as a measurable change in the graph’s overall connectivity structure.

A model that implements this transformation efficiently might do so with minimal disruption, or even
by strengthening key connections, resulting in a small or positive AX,. Conversely, a model that
struggles with the transformation, perhaps due to training data imbalances or architectural brittleness
(as seen in Phi-3-Mini for English), may exhibit a breakdown in its connectivity patterns. Attention
might become more diffuse or fragmented, leading to a ’bottleneck™ in the graph and thus a significant
drop in \s.

Therefore, monitoring A\ is not an arbitrary choice. It provides a theoretically-grounded, quanti-
tative measure of how the global connectivity and information-routing topology of the attention
mechanism adapts during a demanding linguistic computation. This makes it a principled choice for
detecting the “computational fingerprints” that are the focus of our work.

A.2 EMPIRICAL RATIONALE FOR THE FIEDLER VALUE (\3)

Figure [5|compares all four spectral diagnostics [Saacross multiple syntactic contrasts including active
vs. passive voice alternations. While energy and spectral entropy show modest differences, and HFER
exhibits inconsistent patterns across models, the Fiedler value [5b|consistently separates syntactic
conditions with large, systematic differences across all three model families.

Crucially, voice alternations (active/passive) produced the most dramatic and reliable Ao differences
compared to other syntactic manipulations, making them an optimal test case for this preliminary
investigation of spectral signatures in transformer attention. This superior discriminative power for
voice processing, combined with Ay’s theoretical grounding as a connectivity measure, motivated our
focus on A\, for the current analysis.

B NORMALIZATION, DIRECTIONALITY, AND AGGREGATION

This appendix expands the sensitivity analyses for Laplacian normalization, directed formulations
of attention graphs, and head aggregation. Unless stated otherwise, the primary endpoint is the
early-window mean A\y 5 5) (passive—active), computed per prompt then averaged within language.

B.1 RANDOM-WALK VS. SYMMETRIC NORMALIZATION

Let WO = S 7, WED with oy, > 0, 32, i = 1, and DO = diag(W1)(W1). We
compare

LO =1 (DN'WO  and LY, = 1 (DO VAW (D02,

sym
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Fiedler Value Comparison Across Conditions
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(a) French active vs. passive: four-diagnostic trajecto-  (b) French active vs. passive: Fiedler trajectories
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Figure 5: Comparison of spectral diagnostics across syntactic conditions. The Fiedler value A, shows
the most consistent and pronounced differences between layer 2-5.

Eigenpairs are related by a similarity transform when the graph is undirected; A, is therefore

comparable up to scaling. Empirically, signs and peak-layer locations of A)\(QE) coincide across Ly
and Lgyr,, while magnitudes shift slightly within the bootstrap bands reported in the main text.

Result. Across models and languages, the correlation between AXa (5 51(Lyvw) and AXajg 51 (Lsym)
is high, with median absolute deviation of the difference well below the per-language CI half-width.

B.2 DIRECTED ATTENTION GRAPHS

Attention is intrinsically directed. To check that symmetrization is not driving the result, we repeat
the analysis with directed Laplacians.

Left random-walk on directed graphs. Let A() = 3", a;, A"’ be the head-aggregated row-
stochastic attention. Define out-degree fo}t = diag(W1)(A®1) and
)\ —1
L = 1— (D) A0,
We use the real part of the spectrum and compute A, on the Hermitian symmetrization of the quadratic
form induced by L)

Magnetic (Hermitian) Laplacian. To preserve directionality while retaining a Hermitian operator,
we also use a magnetic Laplacian with phase 6 € (0, 7|:

ooy = [TAAR D, iz
mag ) ;j —%(Agf)eie—i—A;? 6—19)7 i

with degree-normalized variants defined analogously. We set § = 0.2 for stability; results are
insensitive to 6 € [0.1, 0.5].

Result. For both L_, and nggg, the sign and layer of first peak of A)\y) match the undirected
defaults in the early window; magnitudes differ slightly but remain within 15% of the symmetrized
values.

B.3 HEAD AGGREGATION SCHEMES

We compare (i) uniform averaging, a, = 1/ H; (ii) attention-mass weighting, «, o ZZ j Agf’h); and
(iii) a convex, layer-specific combination a() learned by minimizing cross-condition mean squared
error on a held-out subset.

! Concretely, we evaluate the Rayleigh quotient on real signals z via % (:pT (L<_e,) + L(_{)T)x), which recovers
the undirected case when A is symmetric.
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Figure 6: Qwen-2.5-7b AEnergy under default settings (row-norm, attention-weighted). Energy
moves on a much larger absolute scale but does not induce reversals in the early-window A\, sign,
supporting our focus on connectivity rather than raw smoothness.

Result. Uniform and mass-weighted aggregations agree on signs and peak layers. Learned ()
yields smoother per-layer trajectories but identical early-window conclusions. We therefore use
mass-weighted aggregation by default.

B.4 HFER CUTOFF SWEEP AND EARLY-WINDOW STABILITY

We vary the high-frequency cutoff K by retaining the top (1—c)% of spectral mass, ¢ €
{10, 15, 20, 25, 30, 40}, and recompute endpoints. We also shift the early window to 1-4 and 3-6.

Result. Directional conclusions are unchanged across cutoffs; early-window averages shift by
less than 15% relative to ¢c=20%. Adjacent windows preserve sign and peak location across model
families. We therefore report c=20% and layers 2-5 by default.

B.5 NUMERICAL DETAILS

We compute the smallest eigenpairs with ARPACK (eigs, tol 10~%, maxit 10%). For directed
variants we evaluate Hermitian forms as above. Bootstrap CIs use 2,000 resamples; permutation tests
use 10,000 label shuffles within paraphrase pairs; Benjamini—-Hochberg controls the FDR at g=0.05
within family.

In addition to the default A\, panel (Fig. [3), we report AEnergy under the same default and under
a symmetric+uniform variant (Figs. [(H7); the normalization/aggregation change shifts absolute
magnitudes but preserves early-window ordering, and does not induce sign reversals in A Ay observed
under the default.

C EXTENDED STATISTICAL VALIDATION WITH EXPANDED SAMPLE SIZE

To address potential concerns about statistical power with our original n=10 paraphrases per condition,
we conducted expanded experiments with n up to 50 paraphrases for a subset of key languages across
all three model families. This section presents the validation results that confirm the robustness of
our main findings.
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Figure 7: Qwen-2.5-7b AEnergy with symmetric normalization and uniform head aggregation.
Compared to Fig. 6] magnitudes shift but the early-window ordering across regions is preserved.
Together with Fig.[6] this shows that large-scale energy trends are stable to normalization/aggregation,
and they do not contradict the A\s conclusions.

Table 6: Early-window Ay 5 under normalization and aggregation variants. Values are means
across languages within family; + gives bootstrap SE. Default (L,,, + mass-weighted) in bold.

Variant Qwen2.5-7B Phi-3-Mini LLaMA-3.2-1B
L,y + mass-weighted ~ +0.019 £ 0.006 -0.112 +0.031 -0.012 £ 0.005
Lgym + mass-weighted  +0.018 £0.006 -0.105 +0.029  -0.013 £ 0.005
L,y + uniform +0.017 £0.006 -0.109 + 0.030  -0.011 £ 0.005
L_, (directed) +0.017 £0.007 -0.101 £ 0.033  -0.010 % 0.006
Linag (0=0.2) +0.018 £0.006 -0.107 £0.031 -0.011 £ 0.005

C.1

EXPANDED DATASET

We selected five languages representing different voice realization types: English (EN, analytic),
German (DE, periphrastic), Spanish (ES, periphrastic), French (FR, periphrastic), Arabic (AR,
non-concatenative), and Turkish (TR, affixal). For each language, we generated 50 paraphrases
per voice condition (active/passive) and computed early-window A\;[2, 5] following our standard
methodology.

C.2 MODEL-FAMILY VALIDATION RESULTS
C.2.1 PHI-3-MINI: CONFIRMATION OF ENGLISH-SPECIFIC DISRUPTION

Figure 8 shows the expanded results for Phi-3-Mini across voice realization types, while Figure[9]
presents per-language results. The English effect remains highly significant with AX;[2, 5] = —0.444

(p = 0.008, bootstrap 95% CI), essentially replicating our original findings. Other languages cluster
near zero, confirming the English-specific nature of this computational signature.
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Figure 8: Phi-3-Mini expanded results (n=50) by voice realization type. The analytic type (driven by

English) shows the characteristic large negative early-layer effect.
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Figure 9: Phi-3-Mini expanded results (n=50) by individual language. English maintains the dramatic

negative A\ [2, 5] effect observed in our original analysis.

C.2.2 QWEN2.5-7B: VALIDATION OF DISTRIBUTED SMALL EFFECTS

Figures[T0]and [TT] confirm Qwen’s characteristic pattern of small, distributed effects across language
types. Early-window means range from -0.067 to +0.016, consistent with our interpretation of more

stable connectivity reconfiguration under voice alternation.
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Figure 10: Qwen2.5-7B expanded results (n=50) by voice realization type, showing small distributed
effects across all categories.
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Figure 11: Qwen2.5-7B expanded results (n=50) by individual language, confirming the absence of
dramatic language-specific effects.

C.2.3 LLAMA-3.2-1B: SYSTEMATIC MODERATE EFFECTS

Figures [I2]and [T3] validate LLaMA’s intermediate behavior with systematic negative effects (range:
-0.044 to -0.007) that are larger than Qwen’s but more distributed than Phi-3’s English-specific
signature.
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Figure 12: LLaMA-3.2-1B expanded results (n=50) by voice realization type, showing consistent
moderate negative effects across categories.
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Figure 13: LLaMA-3.2-1B expanded results (n=50) by individual language, demonstrating systematic
but moderate spectral effects.

C.3 STATISTICAL ROBUSTNESS

The expanded dataset confirms the statistical reliability of our family-specific signatures. Phi-
3’s English effect (-0.444) remains the most dramatic, while Qwen and LLaMA maintain their
characteristic patterns with tighter confidence intervals. These results validate our interpretation of
model-imprinted computational fingerprints rather than statistical artifacts from small sample sizes.
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The consistency between n=3 and n=10 results across all model families provides strong evidence for
the reproducibility and robustness of early-layer spectral connectivity signatures in voice processing.

D ABLATIONS AND ROBUSTNESS

Cutoffs. Varying the high-frequency edge removal (HFER) cutoff from 10-30% leaves the direction
of all reported effects unchanged. Effect magnitudes vary by at most 15% across this range, with the
strongest stability between 15-25%. Unless stated otherwise, we report results at 20%.

Normalization. Results are consistent under both the symmetric Laplacian Lgyn, = I —
D~1/2AD~1/2 and the random-walk Laplacian L., = I — D! A. The sign and layer-wise timing
of the effects coincide across normalizations; absolute magnitudes differ slightly but remain within
the reported confidence bands.

Winsorization and trimming. Because a few contrasts exhibit near-zero denominators, unrobust
ratios can show spuriously large percentage changes. Applying winsorization at the v and 1 — o
quantiles (we use o =0.02) followed by trimming of the top/bottom 2% removes these artifacts and
stabilizes effect sizes without altering their sign or significance.

Multiple seeds. Re-running each prompt with three independent seeds yields overlapping 95%
bootstrap ClIs (1,000 resamples, BCa). Paired permutation tests across prompts confirm significance
after Benjamini—-Hochberg correction at ¢ =0.05. Seed-to-seed variance is an order of magnitude
smaller than prompt-level variance and does not change our conclusions.

Scope of causal claims. Our ablation experiments establish causal relationships between early
attention structure and spectral patterns. However, we do not infer training data composition or make
claims about learning mechanisms.

Scope of inference. Given three paraphrases per voice per language, we center inference on
language-type (analytic/periphrastic/...) and model-family aggregates. Per-language results are
reported with 95% bootstrap Cls and paired permutation p-values (BH-FDR at ¢g=0.05) but should
be read as exploratory.

Early window choice. Layers 2—-5 were prespecified as the “early” window based on pilot sweeps
and architectural considerations (first multihead context integration beyond embeddings). Adjacent
windows (14, 3-6) preserve signs and peak locations across families.

Robustness. Primary signs and peak layers are stable under (i) symmetric vs. random-walk Lapla-
cians, (ii) uniform vs. attention-mass head aggregation, and (iii) paraphrase averaging. Sanity controls
for tense/number and length/token-count matching do not reproduce the voice signatures.

Limitations. Effects are correlational and small-to-moderate for many languages; causal attribution
requires interventions (e.g., head ablations/patching) and larger item sets. Tokenizer covariates may
confound with morphology and sentence length; we therefore report mixed-effects analyses with
basic length control and treat remaining associations as hypotheses for future work.

Behavioral validation limitations. The spectral-behavioral correlation analysis uses n=20 pairs;
estimates are therefore imprecise and sensitive to item and language idiosyncrasies. We report effect
sizes with confidence intervals, include permutation p-values, and replicate trends across model
families to mitigate over-interpretation. Larger controlled datasets are needed for definitive validation
of the spectral-behavioral relationship.

Notes: Bars show mean early-window A5 51 with 95% bootstrap Cls; values above bars report
Gerim- Stars indicate BH-FDR at ¢=0.05 (paired permutation test on paraphrase means).
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E METRIC AND ROBUSTNESS

For each layer ¢, L) = D) — W) with W the symmetrized, head-aggregated attention. We com-

pute )\g) via ARPACK. Primary endpoint: A)s, 5. We report bootstrap 95% Cls (2k resamples)
and trimmed Hedges’ g (winsor 1%, trim 20%). Sensitivity: symmetric vs. row-norm random-walk
Laplacians; attention-weighted vs. uniform head aggregation. Signs and peak layers are stable.

Default normalization. We use the random-walk Laplacian L., = I — D~'W for primary results;
Appendix B reports Ly, and directed variants.

E.1 SAMPLE SIZE AND POWER

Our multilingual voice set uses 10 paraphrases per voice per language. This is sufficient for estimating
the early-window mean A\z[5 5 with bootstrap Cls, but it limits per-language hypothesis testing
power.

Power analysis and inference strategy. We estimate detectable standardized effects via nonpara-
metric bootstrap over paraphrases and paired permutation tests (10k shuffles) on early-window means.
Our design achieves adequate power for detecting medium-to-large effects (d > 0.6) at individual
language levels, with enhanced power for language-type and model-family aggregates through meta-
analytic combination. We therefore structure inference hierarchically: primary conclusions derive
from language-type (analytic/periphrastic/etc.) and model-family comparisons where statistical power
is strongest, while per-language results provide exploratory insights into crosslinguistic variability
patterns.

Significance testing and multiplicity. For each language we compute the early-window mean
A2 5 by averaging over paraphrases. We assess the null of no voice effect via a paired permutation
test (10,000 label shuffles of active/passive within paraphrase pairs), yielding a p-value per language.
We then apply Benjamini—-Hochberg FDR at ¢=0.05 within each model family. For language-type
(analytic, periphrastic, efc.) and cross-family summaries we test the mean effect across languages
with the same permutation scheme (randomly flipping signs of language-level contrasts) and report
both FDR-corrected p-values and 95% bootstrap CIs (2,000 resamples). We provide g-values in
figure captions and tables.

E.2 EFFECT SIZE SCALES AND PRACTICAL THRESHOLDS

We report two complementary effect sizes on the early window: (i) trimmed Hedges’ g, computed
on paraphrase means with 1% winsorization and 20% trimming; and (ii) a bounded, scale-aware
percentage change,

)\2,pass - )\Q,act

ATE = 200 T
max(/\Q,pass + )\Q,actv 5)

(2,5]

, & = 5th percentile floor.

We adopt conventional benchmarks for g (small ~ 0.2, medium ~ 0.5, large > 0.8) and provide

practical thresholds for ATQY_’;] relative to within-language variability:

Category Small Medium  Large

|gtrim| ~ 0.2 ~ 0.5 Z 0.8

[AGRl >25%  >50% > 100%

While g is directly comparable across settings, AEY Ig} aids interpretation as a bounded percentage

shift in early-layer connectivity. We emphasize practical relevance by reporting both and by showing
language-type aggregates with CIs and FDR-adjusted g-value.

E.3 BEHAVIORAL VALIDATION METHODOLOGY

Behavioral score. 'We measure sentence fit using negative mean NLL under multilingual language
models (Qwen-2.2-7b, Phi-3-mini and Llama-3.2-1b), which yields stable, comparable differences
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across prompts and avoids the exponential scaling of perplexity. Scores are computed without
generation; lower values indicate better model fit to the input sentence.

Voice alternation pairs. For behavioral validation, we constructed controlled active/passive sen-
tence pairs with tokenization drift limited to < 2 tokens when feasible. Each pair preserves semantic
content while alternating voice, enabling direct comparison of spectral reconfiguration and behavioral
performance differences.

F RCI METRIC DEFINITION

To summarize multi-faceted spectral changes in a single score, we use the Reconfiguration Change
Index (RCI), a signed combination of z-scored diagnostics:

RCI = (ZEnlropy + ZFiedler) - (ZEnergy + zHFER)~
Here, ZEnwopy» ZFiedler> ZEnergy» and zprer denote per-condition z-scores (computed within the analysis
cohort) of spectral entropy, Fiedler connectivity Ao, Dirichlet energy, and the high-frequency energy
ratio (HFER), respectively. Higher RCI reflects stronger low-frequency connectivity and higher
modal dispersion (entropy), penalizing large smoothness energy and high high-frequency mass.

G STATEMENT ON LLM USAGE

We gratefully acknowledge the use of large language model assistants during the preparation of this
manuscript. These tools were used for tasks including improving the grammar and clarity of the text,
refining code snippets, and as a conversational partner for brainstorming and challenging research
ideas. The core conceptual framework, experimental design, analysis, and all final conclusions
presented in this work are ours.

ETHICS STATEMENT

Scope and intended use. This work proposes a training-free spectral analysis of attention graphs to
characterize model-imprinted computational signatures. The intended use is scientific understanding
and governance auditing (e.g., detecting specialization or brittleness across languages). It is not a
tool for reconstructing proprietary datasets nor for asserting definitive training-data provenance.

Data, privacy, and human subjects. We do not collect or process personal data or human-subject
information. All experiments use publicly available pretrained models and templated sentences; no
sensitive attributes are inferred or analyzed.

Attribution and risk of misinterpretation. Our findings are correlational unless backed by explicit
interventions (head ablations). We caution that strong spectral effects (e.g., English-specific signa-
tures) are evidence consistent with training emphasis rather than definitive proof of data composition.
We explicitly discourage using this method to make legal or policy claims about proprietary training
sets without additional evidence.

Bias, fairness, and linguistic coverage. Cross-lingual analyses can surface unequal performance
or brittleness (e.g., between analytic vs. affixal systems). While this may enable auditing for
underserved languages, it also risks stigmatizing specific model families or languages. We therefore
report uncertainty, preregister an early-layer endpoint, and release code for independent replication
across broader language sets.

Dual-use considerations. Auditing tools can be used beneficially (e.g., safety monitoring) or
adversarially (e.g., fingerprinting for model de-anonymization). We mitigate by reporting aggregated
statistics, avoiding model watermarks or unique forensic identifiers, and by documenting limits of
attribution.

Reproducibility and transparency. We release code, prompts, and analysis scripts; we provide
seeds, bootstrap/permutation settings, and figure regeneration commands.
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Release plan. We will release the code under a permissive license with a model-card-style readme
describing: (i) intended and out-of-scope uses, (ii) limitations of spectral attribution, and (iii) guidance
for responsible auditing.

H REPRODUCIBILITY AND CODE RELEASE

To facilitate reproducibility, we provide the implementation and data processing scripts. An
anonymized repository is available at: |Github repository The repository includes a README
with installation instructions, smoke tests, and scripts to reproduce all figures. Due to GitHub’s repos-
itory size limit, only one representative language is included in the repo; one dataset (6 languages, 10
paraphrases, 6 GB) is available for reviewers at the following anonymized link: Google Drive folder.
This dataset will be permanently and publicly archived upon publication. Upon acceptance, we will
release a public canonical version.

I SUPPLEMENTARY MATERIAL (ANONYMIZED PAPER ONLY)

Artifact link. An anonymized PDF of the concurrent manuscript is available at Google Drive file.
All file metadata and sharing settings have been scrubbed to preserve anonymity.
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