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ABSTRACT

Auto-regressive (AR) models, initially successful in language generation, have
recently shown promise in visual generation tasks due to their superior sampling
efficiency. Unlike image generation, video generation requires a substantially larger
number of tokens to produce coherent temporal frames, resulting in significant
overhead during decoding. We first make specific key observations: (i) MLP
modules in the decode phase dominate the inference latency, and (ii) there exists
high temporal redundancy in MLP outputs of adjacent frames. With the insights,
we propose FastCar to accelerate the decode phase for the AR video generation
by exploring the temporal redundancy. The Temporal Attention Score (TAS) is
proposed to determine whether to apply the replay strategy (i.e., reusing cached
MLP outputs from the previous frame to reduce redundant computations) with
detailed theoretical analysis and justification. Furthermore, we develop a hardware
accelerator on FPGA with Dynamic Resource Scheduling based on TAS to enable
better resource utilization and faster inference. Experimental results demonstrate
the effectiveness of our method, which outperforms traditional sparse attention
approaches with more than 2.1 x decoding speedup and higher energy efficiency
on the edge. Furthermore, by combining FastCar and sparse attention, FastCar can
boost the performance of sparse attention with alleviated drifting, demonstrating
our unique advantages for high-resolution and long-duration video generation.

1 INTRODUCTION

Recently, there has been growing interest in extending the Auto-Regressive (AR) framework of Large
Language Models (LLMs) (Radford et al., [2019; Touvron et al., [2023; |Grattafiori et al., 2024) to
visual generation tasks (Sun et al.,[2024a; |Wang et al., 20244} Han et al., 2024 Tian et al., |[2024;
Weng et al. 2023} [Deng et al., 2024; Jiao et al., [2025; Xie et al., 2024} |Sun et al.||2024b; [Luo et al.,
2024; Kondratyuk et al.,|2023; /Wang et al.,[2024b). The works (Sun et al., 2024a; Tian et al., [2024;
Sun et al., 2024b; Han et al., [2024; Wang et al., 2024b)) convert images into tokens, and apply AR
models to generate image tokens with next-token prediction. The generation quality is surprisingly
strong, often rivaling or surpassing diffusion-based methods (Tian et al.,|2024; |Sun et al., 2024b; Han
et al.| 2024) in perceptual fidelity and semantic coherence.

As video becomes a dominant medium across entertainment, communication, efc., synthesizing
coherent high-quality videos from minimal inputs presents a compelling research challenge (Xiong
et al.,|2024; Xing et al.,|2024; |Li et al., 20244} |Melnik et al., 2024)). Prior works (Lin et al., [2024a;
Zheng et al.,2024; Peng et al.| |2025; |[Hong et al.l |2022; |Yang et al.,2024; Kong et al.| |2024) leverage
Diffusion Transformers (DiT) (Peebles & Xiel2022) to develop video generation models with superior
generation performance, at the cost of substantial computations and massive memory demands (He
et al., [2025; Jin et al., 2024;  Xu et al.| |2025; Xi et al.| [2025; [He et al.| [2024)). These characteristics
limit their applications and deployments for resource-constrained environments (Liu et al., 2025} |Zhu
et al.| 2023; Kim et al.| [2025; Shen et al., |2025a)) such as mobile devices or Field-Programmable Gate
Array (FPGA) with tight constraints for energy efficiency, memory, etc.

Motivated by the scalability and fast decoding capabilities of AR transformer-based frameworks in
generative tasks, an increasing number of works (Wu et al., 2024; Deng et al., 2024; Weng et al.,
2023} [Xie et al.| 2024} [Kondratyuk et al.,2023) have adopted AR frameworks for video generation
tasks. To further improve its efficiency, model compression strategies (such as model pruning and
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Figure 1: Left: FastCar framework. We replay the cache from the previous frame to skip the
computations for MLP in decoding. Replay is triggered when the average TAS exceeds a predefined
threshold 7. Right Top: Latency cost of both prefill and decode phases for different sequence lengths.
Right Bottom: Detailed latency cost of the decode phase for different sequence lengths.

quantization (Lin et al.| 2024b; |[Ma et al., 2023} |Shen et al., |[2024; 2025b; |Xiao et al., 2023al)) and
spatial redundancy optimizations (such as sparse attention (Xiao et al., |2023bj Rehg| [2024; Hooper|
et al.| [2024; [Liu et al., 2024} Ge et al.|[2024; L1 et al.,|2024b)) and efficient sampling methods (Spector
& Rel 20235 | Yang et al.| [2023; Miao et al. 2023} Ning et al., 2024; |Teng et al., 2024; |He et al., |2025))
are investigated. However, the inherent temporal redundancy specifically introduced by videos with
multiple sequential frames remains largely unexplored in AR video generation.

Specific Deep Insights. To explore the redundancy for superior efficiency, we first perform a detailed
latency profiling and a similarity analysis between different frames. As shown in the right of Figure/[T}
we identify that the MLP modules (rather than the attention modules) in the decode phase dominate
the inference latency. Meanwhile, according to Figure[2] the outputs of adjacent frames for the same
MLP module exhibit relatively high resemblance/similarity, indicating high temporal redundancy.

Framework with Theoretical Justification. Based on the deep insights specific for AR video
generation, we propose FastCar for efficiency optimization. The Temporal Attention Score (TAS) is
proposed to determine whether to skip the computations of the MLP modules (Figure|[T). If skipped,
the cached outputs from the previous frame are directly reused as current outputs (similar to video
replay) due to their high similarity. Skipping computation-intensive MLP modules leads to substantial
accelerations. We further provide a detailed theoretical analysis to formally characterize how our
TAS controls the output differences across adjacent frames, thereby justifying the design of FastCar.

Hardware Accelerator. A flexible and efficiency-oriented hardware accelerator is further developped
to support kernel fusion and custom instruction programmability, thus allowing direct reuse of cached
outputs and enabling conditional execution of MLP modules. Specifically, to handle varying workload
sparsity, we propose Dynamic Resource Scheduling (DRS), which leverages attentivity to dynamically
allocate computational resources. DRS, integrated into lightweight control logic, helps alleviate
bandwidth pressure and improves overall resource efficiency, thereby enabling faster inference.

Comprehensive Experiments. Experimental results show that FastCar not only surpasses sparse
attention (SA) methods with better generation quality, but also achieves faster decoding with improved
energy efficiency on FPGA. Additionally, FastCar complements SA approaches by mitigating their
drifting issues. By combining FastCar and SA, FastCar significantly boosts the generation quality of
SA with faster inference and better long-range temporal coherence.

Our contributions are summarized as follows,

1. We perform the latency profiling and similarity analysis between different frames to explore the
temporal redundancy in MLP modules. We then propose FastCar framework to accelerate AR video
generation by replaying MLP modules using cached outputs from the previous frame.

2. Our theoretical analysis demonstrates that the similarity of MLP outputs across adjacent frames
correlates with the attentivity, and this correlation is consistent across various model depths, thus
justifying the design of FastCar with TAS (i.e., the attentivity) to guide replay decisions.
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3. We develop an efficiency-oriented hardware accelerator with DRS, enabling dynamic allocation
of computational resources to enhance resource utilization and accelerate inference on FPGA.

4. Experimental results show that FastCar outperforms SA methods in generation quality by
alleviating drifting issues of SA, and achieves more than 2.1 x speedup, thereby enhancing scalability
and efficiency for high-resolution and long-duration AR video generation.

2 RELATED WORK

Auto-Regressive Visual Generation. Prior works (Sun et al., [ 2024aj;[Wang et al., [2024a}; |[Han et al.,
2024; [Than et al.| |2024; J1ao et al., 2025} Xie et al., [2024; Sun et al.,|2024b; [Luo et al., 2024)) apply
the AR framework for image generation, demonstrating its potential to outperform diffusion-based
models. In particular, VAR (Tian et al.} 2024) introduces next-scale prediction to progressively
generate token sequences across multiple resolutions, demonstrating the effectiveness of AR methods
with enhanced image quality. Inspired by this, several works (Wu et al., 2024; Deng et al., [2024;
Weng et al.| 2023} |[Kondratyuk et al., 2023) adopt the AR framework to develop video generation
models. However, NOVA (Deng et al., [2024) and ART-V (Weng et al [2023) still incorporate
diffusion modules in their pipelines to boost generation quality, at the cost of substantially slower
inference. Moreover, both models operate at the frame level rather than the token level, differing
from the fine-grained, token-wise AR paradigm commonly used in LLMs. Unlike the above works,
VILA-U (Wu et al., [2024) adopts the same AR framework as LLMs, making it one of the most
promising approaches in video generation.

Efficient Techniques for Auto-Regressive Visual Generation. AR image generation models (Sun
et al.,[2024a; Wang et al.,[20244)), typically require n? sequential forward passes to generate an image
represented by n X n tokens, resulting in significant inefficiency, which is further exacerbated when
extending to video generation (Wu et al.,|2024) with multiple image frames. Some works (He et al.|
2024} Teng et al.,|2024) accelerate the sampling process at decode phase, utilizing contextual cues
from neighboring tokens to reduce redundant computations. The work (Wang et al.||2024b) trains the
model from scratch to enable parallel generation of adjacent token subsets for acceleration. However,
this approach compromises global attention modeling, which limits the generation quality. The
work (He et al.| 2025)) retains a short token sequence by incorporating neighboring tokens to enable
efficient generation, thus reducing spatial redundancy. However, these works mainly investigate
spatial redundancy, leaving the temporal redundancy of video generation largely unexplored.

3 DEEP INSIGHTS FOR AUTO-REGRESSIVE VIDEO GENERATION

To effectively accelerate AR video generation, we first perform detailed profiling for the inference
latency and computations of VILA-U (Wu et al.,2024)). We then provide the following specific deep
insights: (i) The decode phase takes significantly longer than the prefill phase. (ii) The MLP modules
dominate the latency of the decode phase. (iii) The outputs of an MLP module exhibit great similarity
to those of its previous frame. Next we demonstrate our detailed observations and analysis.

Prefill Phase v.s. Decode Phase. We compare the latency of the prefill phase and decode phase
under different input sequence lengths from 2k to 8k, during AR video generation. As shown in the
right top of Figure|l} the decode phase takes significantly longer than the prefill phase under various
input lengths, as it needs to generate a large number of visual tokens for videos with multiple frames.

Attention Modules v.s. MLP Modules. We further explore detailed latency profiling for different
decoding modules. The bottom right of Figure [l|shows that under varying input sequence lengths,
MLP modules consistently dominate the overall latency. This observation underscores the distinct
computational characteristics of AR generation compared with diffusion-based methods. Specifically,
in diffusion transformers, all visual tokens are processed simultaneously through iterative denoising,
with attention modules as the primary computational bottleneck. In contrast, AR models generate
tokens sequentially, where attention modules only contribute marginally to the overall latency. As a
result, efficiency-oriented techniques designed for attention modules are less effective in AR.

Spatial Redundancy v.s. Temporal Redundancy. Spatial Redundancy is commonly explored in
image generation with SA mechanisms (to reduce computations) or efficient sampling (to generate
fewer tokens). In contrast, temporal redundancy in video generation remains largely overlooked, as
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Figure 2: Cosine similarity for MLP outputs between neighboring frames for all 32 MLP modules.

prior works focus on image generation. To explore temporal redundancy, we present cosine similarity
between outputs of an MLP module and those of its neighboring frames in Figure 2] The MLP
outputs exhibit high similarity with their most recent frame, demonstrating high temporal redundancy.

Motivation. Based on the observation that MLP modules dominate the overall latency, we mainly
optimize the computations of MLP modules for acceleration. Temporal redundancy with high similar-
ities between the MLP outputs of neighboring frames further motivate us to cache the corresponding
hidden states from the current time step for reuse in its next time step, thus avoiding its computations.

4 FASTCAR FRAMEWORK DESIGN

We demonstrate our FastCar framework in this section. In general, when the proposed Temporal
Attention Score (TAS) indicates high similarity, we then directly reuse the cached outputs from its
previous frame as the outputs of the current frame, thus skipping the MLP computations.

We first provide specific definitions for AR video generation. Then we demonstrate FastCar in great
details. Theoretical analysis are further provided for the rationality and justification of FastCar.

4.1 AUTO-REGRESSIVE VIDEO GENERATION

We model a video V as a temporal sequence of T" frames with N visual tokens in each frame. With

Vyis denoting a finite vocabulary of visual tokens, it can be formulated as follows,
V:{Zf,z|t:1,,T,Z:1,,N}, Zt,iGVvim (1)

Flattening the temporal—spatial grid yields a sequence of length n = T"- N. We denote the flattened

token index as j = (¢,4) := (t—1)N + 4, where ¢ denotes the frame index and ¢ denotes the index of
the spatial position. Since frames are consecutively ordered, it satisfies: (t—1,7) = (¢,4) — N.

For transformer layers, we define the hidden states: X € R™*4 where d denotes the hidden size.
We use a batch size of B = 1 for simplicity, with all results readily extendable to B > 1 through
broadcasting. The objective of AR video generation is to model the joint distribution:

PY) =TT Pl | 2<s). @

j=1
4.2 KEY MODULES
We now formalize the key modules in AR video generation and our FastCar framework. The model
has multiple blocks, with an attention module and an MLP module for each block, as defined below.
Definition 4.1 (Attention Module). Given hidden states X € R"™*4, attention output is computed as:
QK"
Vd
where Wo, Wi, Wy € R4 gre the query, key, and value projection matrices.
Definition 4.2 (MLP Module). Given input hidden states X € R™*%, the MLP module is defined as:
MLP(X) = (act(XWg) o (XWy)) Wp € R™*?, )

Attn(X) = Softmax ( ) V eR™ withQ = XWeq, K = XWk, V = XWy, 3)

where act(-) is a non-linear activation function (e.g., SiLU), o denotes element-wise multiplication,
and Wea, Wy € Rxdee W, € R¥*4 gre learned parameters with the intermediate size of dg.
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Next we define TAS to measure the token similarity of adjacent frames and guide replay decisions.

Definition 4.3 (Temporal Attention Score). The temporal attention score at spatial position i and
t-th frame is defined as the scaled dot-product between the query vector q; of token j = (t,1) and the

key vector k- of its aligned token j~ = (t—1,14):
<Qj7 kj‘)
St = —F7— R 5
t, Nz &)

In our FastCar framework, due to causal decoding, TAS is obtained directly from the attention module
preceding the MLP, incurring no additional computational cost.

4.3 CACHE ATTENTIVE REPLAY FOR FAST GENERATION (FASTCAR)

In FastCar, with TAS, we enable attentive replay in MLP modules by manually setting a threshold 7
to filter tokens of adjacent frames with higher attentivity. When TAS is larger than 7, which indicates
significant temporal similarity, we skip MLP computations by reusing the outputs of its previous
frame at the same spatial location, as illustrated in the left of Figure E}

Specifically, for each transformer block, at frame ¢ — 1, for each spatial token index i, we cache the
MLP output as follows:

Yi-1,:),: = MLP (Attn(X) +X)(t—1,i),: . ©)
At frame t, we evaluate the set of TAS {SET) 1 _| between token (¢, i) and its aligned token (t—1, 1)
across all A attention heads (Definition @ and compute the mean score:

h
o1 (m)
Sui= g m§:1sm : 0

When the mean score exceeds a predefined threshold 7, i.e., 5;; > 7, we then skip the following
MLP computations of this specific token (¢, ) and reuse the cached output for the replay in the block:

v . = JYe-105 if5,, > 7 ©
(497 MLP (Attn(X) + X)(4,i),:» Otherwise -

Otherwise, we still perform the normal MLP computations. In the AR model, there are multiple
transformer blocks with the same architecture following the same computation pattern. We apply
FastCar for each block. This selective replay mechanism reduces MLP computations by leveraging
temporal consistency across adjacent frames.

4.4 THEORETICAL SIMILARITY ANALYSIS

We now formally characterize how TAS controls the output differences across adjacent frames,
thereby justifying temporal replay based on TAS.

We first relate temporal attention similarity to the difference in attention outputs.

Theorem 4.4 (Attention Score Controls Attention Output Difference). Let X € R™"*? be the hidden
states, where each row x; € R? represents the hidden state of token j. Let Attn(X) denote the
attention output defined in Definition[d.1| For tokens j = (t,i) and j= = (t—1,4) aligned at the
same spatial position, define the temporal attention score s; ; as in Deﬁnition Assume that:

* (1) The hidden states are bounded: ||x;|2 < M for all j;
* (2) The projection matrices satisfy |[Wgo |2, |[Wk|2 < A;
* (3) The query and key vectors are normalized: | q;||2 = ||k;- |2 = 1 for all j.

Let y := |[Wq — Wi ||2 denote the projection difference.

Then, under the Lipschitz continuity of the attention, there exists a constant C > 0 such that:

|Attn(X),,. — Attn(X) ;- ,[l» < C (\/1 it 7M> . )

Thus, a larger s ; implies a smaller attention output difference up to a model-dependent offset M.
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Figure 3: Left: The top-level block diagram of our hardware accelerator. Right: The DRS diagram.

Transformers often apply normalization techniques (such as LayerNorm or explicit vector normaliza-
tion) to control query and key magnitudes. Thus assuming ||¢;||2 = ||k;- ||2 = 1 is reasonable and
standard for theoretical analysis[Shen et al| (2025ab). We delay the full proof to Appendix[C]

Next, we relate input and attention similarity to MLP output similarity.

Theorem 4.5 (Attention and Input Similarity Implies MLP Output Similarity). Let MLP(-) de-
note the MLP module defined in Definition Let Y;, = MLP (Attn(X) + X), and Yj- . =
MLP (Attn(X) + X),_ . denote the MLP outputs at tokens j and j~.

Assume that MLP(-) is L-Lipschitz continuous. Then
1V = Y- ll2 < L (11X = X5 ll2 + [|Attn(X);. — Attn(X);- . ]l2) - (10)

The proof is demonstrated in Appendix [C] Finally, combining the two results, we directly relate TAS
to MLP output similarity.

Theorem 4.6 (Temporal Attention Score Controls MLP Output Similarity). Let X € R"*? be the
hidden states, and let Y. and Y;- . denote the MLP outputs at tokens j and j~. Let s;; denote
the temporal attention score. Under the assumptions of Theorem and assuming the MLP is
L-Lipschitz, there exists a constant C > 0 such that:

1Y, = Y= ll2 < C(I1X;,: — Xj- N2+ /1 = s + M) . (11)

The proof is demonstrated in Appendix[C] Theorem[4.6|formally establishes that high TAS, combined
with input similarity, guarantees small MLP output deviation across adjacent frames. This justifies
the use of thresholds on TAS to dynamically skip MLP computations during decoding, enabling
efficient temporal replay with controlled quality loss. Moreover, as TAS is computed layer-locally, it
offers a stable and depth-independent signal for runtime adaptation (Remark [4.7).

Remark 4.7. The TAS s; ; depends only on the local query and key vectors at the current layer and
is independent of model depth. It captures instantaneous similarity without accumulating information
across layers, making it a stable, efficient, and fine-grained signal for dynamic computation reduction
during auto-regressive decoding.

5 HARDWARE DESIGN

We develop a programmable hardware accelerator, as shown in the left of Figure[3] Pre-compiled
instructions are loaded via the AXI bus with the Fetch module, and dispatched to the corresponding
instruction FIFO (First-In-First-Out). The Control module manages the Matrix Unit (MU) and
Vector Unit (VU) to perform matrix multiplication and vector computation, while the Direct Memory
Access (DMA) module is responsible for loading data from off-chip memory (i.e., DDR or HBM).
The instruction FIFO receives control signals from the Control Module to coordinate the computa-
tions of each unit. The Dynamic Resource Scheduling (DRS) module is employed to address the
computational workload imbalance caused by dynamic replay from the FastCar framework.

DYNAMIC RESOURCE SCHEDULING (DRS)

The FastCar framework dynamically determines whether to adopt the replay strategy to skip compu-
tations for certain MLP modules based onthe TAS of different batches. Due to the multi-core design,
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Table 1: Main results of our method compared with sparse attention method Streamingl.I.M Xiao
et al.| (2023b)), where dense attention is retained in the first frame for fair comparison. Local size
denotes number of local tokens for sparse attention. Detailed VBench scores are in Appendix
Latency is tested for whole generation of one video. Power efficiency is computed by GFLOPs/W.

Method | Replay  Local | PSNR  SSIM  LPIPS \ VBench Score | TFLOPs Latency Power
Ratio Size T T | | Total Quality Semantic | 1 ()} Effi. 1
Dense | / A - - | 741% 764%  650% | 3179  689.7(1x) 147
/ 256 18.25 51.54 3359 | 72.1% 74.6% 62.5% 30.95 670.5 (1.02x)  1.51
Sparse / 128 13.14  33.61 5434 | 60.7% 61.9% 55.9% 30.82 666.9 (1.03x) 152
Attn / 64 13.47 3379 5354 | 62.6% 63.3% 60.2% 30.76 666.3 (1.03 %) 1.52
. / 32 13.34  33.14 5382 | 61.4% 61.3% 62.0% 30.72 663.9 (1.04x) 1.52
/ 16 13.30  32.02 5375 | 64.5% 64.8% 63.3% 30.70 662.7 (1.04x) 1.53
10% / 18.57 5332 2731 | 73.4% 75.5% 65.2% 30.09 629.1 (1.10x) 1.61
20% / 17.94 51.01 2757 | 732% 753% 65.1% 28.64 556.8 (1.24x) 1.82
30% / 17.87 5029 28.02 | 72.4% 74.3% 64.7% 27.18 525.2 (1.31x) 1.93
Ours 40% / 17.68 50.14 28.15 | 71.8% 73.0% 67.2% 25.73 4872 (1.42x)  2.08
50% / 17.85 50.11 28.08 | 71.5% 72.7% 66.6% 24.27 4753 (1.45x)  2.13
60% / 17.85 50.55 28.72 | 71.4% 72.7% 66.2% 22.33 4519 (1.53x) 224
70% / 17.86  50.18 28.79 | 71.2% 72.3% 66.9% 20.88 415.8 (1.66x)  2.43
80% / 17.71  49.01 2950 | 71.5% 73.0% 65.6% 19.42 390.7 (1.76x)  2.59

computations for different batches in dense mode are mapped to distinct cores statically. However,
the dynamic FastCar introduces computational workload imbalance across different cores, as the
number of MLPs computed for different batches may vary and is difficult to predict during infer-
ence. Moreover, we employ static compilation to pre-generate scheduling instructions. Exhaustively
enumerating all possible cases would incur an unaffordable large instruction storage overhead.

To address this, we propose the DRS to balance the computational workloads, as shown in the right of
Figure[3| After computing TAS, we configure an on-chip computation mapping table. A 32-bit Index
Register, which stores the status of each batch (O=replay, 1=compute), is established to determine
whether computation should be skipped. 32 Mapping Registers, each with log,(num_cores) bits,
determine the target core for executing which batch. We adopt a round-robin assignment strategy to
ensure balanced workload distribution among the cores.

When pre-compiled instructions are loaded and the replay mechanism is triggered, the prefetched
instructions are forwarded to the DRS for processing. The DRS then performs scheduling decisions
by consulting the Index Register to determine whether to discard instructions for replayed batches or
dispatch them to the appropriate cores based on the Mapping Registers. Notably, the DRS incurs
minimal overhead by completing its dispatch operations in just hundreds to thousands of cycles,
which is negligible compared to the thousands of cycles required for actual instruction execution.

6 EXPERIMENTAL RESULTS

6.1 EXPERIMENTAL SETUP

We adopt the AR video generation model from VILA-U (Wu et al., 2024). All videos are generated
with 8 frames in 256 X256 resolution, where each frame is decoded by 256 tokens. VILA-U is the only
available open-source model in the novel research direction of AR video generation without diffusion
(Section . We evaluate the quality of generated videos with VBench (Huang et al.| 2024), and the
similarity of generated videos with metrics including Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index Measure (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS) (Zhang
et al., 2018). In detail, we compute the average similarity across all frames except the first one,
as our method generates the first frame in the same manner as the baseline. We generate videos
using prompts from VBench with a batch size of 5, a fixed random seed of 42, and classifier-free
guidance of 3 (Ho & Salimans [2022) on A100 GPUs. Additionally, there are no available direct
baselines in this novel area, and we compare our method against the sparse attention (SA) approach
StreamingLLM (Xiao et al.,2023b). We set the sink size by extending the prefill length by 256 to
ensure the first frame is preserved throughout video generation for fair comparison.

For hardware implementation, we adopt the Xilinx Alveo U280 FPGA as the target platform with a
chiplet design. We implement multiple accelerator cores on the FPGA to ensure physical implemen-
tation feasibility. Latency and power are tested using a prefill sequence length of 256.
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Ablation study on the effect of the threshold 7 on replay ratio and VBench total score. Full results are
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Figure 5: Replay ratio distribution across layers for thresholds 7 = —1, —2, and —4, respectively.

6.2 MAIN RESULTS

We provide the main results with different replay ratios compared with the SA method in Table[I] The
detailed VBench scores for all results in different dimensions are included in Appendix [A] We make
the following observations: (i) The SA methods, such as StreamingLLM are not able to accelerate AR
video generation models effectively. When its local size shrinks with increasing sparsity, the compu-
tations measured by TFLOPs only decrease marginally without significant accelerations. The reason
is that the MLP modules dominate the computations/latency, and thus optimizing attention modules
does not effectively address the bottleneck. (ii) Our method effectively reduces the computations
and achieves significant accelerations with better power efficiency. With an 80% replay ratio, our
method can reduce 45% computations with a 1.77 x acceleration. (iii) Our method better maintains
the generation quality than the SA methods. For similarity metrics including PSNR, SSIM, and
LPIPS, with gradually increasing sparsity, our generation quality only degrades marginally, which
significantly outperforms the SA method with notable degradations. For the VBench scores, we can
make similar observations. Meanwhile, our method achieves higher power efficiency compared to
the SA method, demonstrating strong potential for deployment in resource-constrained environments.
Furthermore, we provide the visualization with our method in different replay ratios in Appendix
Visualization shows that video quality is well preserved across different replay ratios, and remains
high even when the threshold 7 is set to a very low value with a large replay ratio.

6.3 ABLATION STUDY

Threshold Distributions. We conduct an ablation study on threshold distribution by applying either
consistent or layer-wise varying (i.e., inconsistent) thresholds across all layers, while maintaining the
same overall replay ratio. As shown in the left side of Figure4] consistent threshold achieves better
performance with lower LPIPS and higher VBench score than inconsistent thresholds, which verifies
the effectiveness of Remark [4.7] More discussions can be found in Section of Appendix.

Threshold Values. Meanwhile, we ablate the threshold values to evaluate their impact on model
performance, as shown in the right side of Figure E} When 7 < —2.5, if we continue to decrease
T, the generation quality does not further degrade while higher sparsity with faster inference can
be achieved, demonstrating the robustness of FastCar. Additionally, we observe that the AR video
generation model achieves the highest replay ratio of 87% when 7 ~ —8, indicating that only 13% of
the MLP modules are actually required during the generation process.
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Table 2: Additional results for the combination of the sparse attention method and our method. More
results are included in Table[7at Appendix [A]

Method Replay Local | PSNR SSIM LPIPS \ VBench Score \ GFLOPs Latency Power
Ratio Size T T L | Total Quality Semantic | J ()4 Effi.?
Dense | / I - - - | 741%  76.4% 65.0% | 31.79 689.7 (1x) 1.47

87% 256 17.44 4757 3127 | 711.8% 73.3% 65.7% 17.61 354.46 (1.95x)  2.85
Oirs 87% 128 17.29 4679 3210 | 711.7% 73.3% 65.7% 17.49 342.25 (2.02x)  2.96
Sparse 87% 64 17.27 46770  32.09 | 71.6% 73.1% 65.5% 17.43 334.57 (2.06x)  3.02
Attn. 87% 32 17.27 46775 3196 | 71.9% 73.4% 65.9% 17.40 327.36 2.11x)  3.09

87% 16 17.27 4649 3237 | 711.6% 73.1% 65.7% 17.39 32431 (2.13x)  3.12

Baseline

FastCar

Sparse Attn

Combine

- -

=

Figure 6: Visualization for the prompt "A dog wearing sunglasses on the beach.”. The second and
third rows are generated with threshold 7 = —4 (i.e., 82% replay ratio). The third and fourth rows
are generated with a sink size that extends the prompt length by one frame and 64.

6.4 ADDITIONAL ANALYSIS

Replay Ratio Distribution. We visualize the replay ratio distribution across layers for 3 different
thresholds in Figure[5] We observe that the model tends to replay at the shallow and deep layers,
while replay is less likely to occur in intermediate layers. This indicates that intermediate layers play
a critical role in capturing temporal dynamics and contribute most significantly to generation quality
in auto-regressive video models.

Combination with Sparse Attention. We further provide additional results achieved by combining
SA method and our method in Table 2l The detailed VBench scores for all results in different
dimensions are included in Table[7)at Appendix [A] The results show that our method can significantly
boost the performance of the SA method through a straightforward combination. This validates the
effectiveness of our method as a complementary enhancement to existing SA approaches. We further
visualize the results of our method, the SA approach, and their combination in Figure[6]to directly
illustrate how our method alleviates drifting when integrated into sparse attention.

7 CONCLUSION

We propose FastCar, a framework to accelerate AR video generation on the edge. We show that the
similarity across adjacent frames correlates with attentivity and is independent with model depths. We
then introduce a replay strategy that reuses cached MLP outputs from the previous frame to reduce
computation. Furthermore, the DRS design is adopted to improve resource utilization and inference
speed on FPGAs. Results show that our method outperforms SA approaches and complements them
with more than 2.1 x speedup, enabling better scalability for high-resolution, long-duration video
generation. In future work, we plan to extend our framework to a broader range of model families.
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REPRODUCIBILITY STATEMENT

The proposed framework is developed on top of auto-regressive video generation models and leverages
the reuse of MLP outputs to reduce computation. The theoretical analysis supporting the similarity
of MLP outputs across adjacent frames correlates with the attentivity is provided in the paper. All
hardware metrics, including latency and power efficiency, are empirically evaluated on real devices.
The full codebase and implementation details will be released publicly upon acceptance of the paper.

LLMS USAGE STATEMENT

We report that LLMs were used only for stylistic editing of the manuscript text. All scientific content,
analysis, and conclusions remain the sole work of the authors.
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APPENDIX

A ADDITIONAL RESULTS

A.1 DETAILED RESULTS FOR VBENCH

We provide the detailed scores of VBench in Table [3| and Table d Our method better maintains
the generation quality than SA methods. Specifically, on the VBench, when increasing the sparsity,
unlike SA method with a significant drop on most of subtasks, our method keeps high scores close to
the dense model on most subtasks under various sparsity.

Table 3: Detailed VBench scores.

Method | Replay | Local Overall Subject Background  Temporal Motion Dynamic  Aesthetic Imaging
Ratio Size | Consistency Consistency Consistency Flickering Smoothness  Degree Quality Quality

Dense | / | [/ | 219% 87.8% 94.6% 95.8% 94.9% 59.4% 57.4% 58.8%
/ 16 28.0% 71.9% 88.0% 84.5% 84.8% 100.0% 54.2% 59.1%

Sparse / 32 27.9% 66.8% 86.2% 82.5% 82.3% 100.0% 54.2% 59.0%
Attn / 64 27.7% 67.4% 86.3% 84.6% 84.4% 100.0% 54.0% 58.0%
. / 128 27.5% 63.7% 85.1% 84.4% 84.3% 99.7% 52.9% 57.2%

/ 256 27.8% 82.7% 92.8% 92.5% 92.4% 94.4% 55.9% 56.8%

10% / 27.7% 86.2% 94.0% 95.9% 94.6% 57.8% 57.0% 57.5%

20% / 27.9% 86.7% 93.7% 95.5% 94.7% 57.5% 56.9% 57.4%

Ours 30% / 27.9% 85.7% 93.4% 95.1% 94.4% 52.8% 57.0% 57.1%
40% / 27.9% 87.1% 93.7% 95.0% 94.9% 35.6% 57.2% 57.5%

50% / 27.9% 88.2% 94.1% 95.1% 95.0% 20.6% 57.7% 57.8%

60% / 27.9% 89.3% 94.2% 94.9% 95.2% 12.8% 57.9% 58.0%

70% / 28.1% 89.4% 94.1% 94.4% 95.0% 11.4% 58.2% 58.3%

80% / 28.2% 88.7% 93.8% 93.7% 94.4% 23.3% 58.2% 58.5%

Table 4: Detailed VBench scores.

Method ‘ Replay | Local | Object Multiple Human Color Spatial Scene Appearance  Temporal
Ratio Size | Class  Objects  Action Relationship Style Style

Dense | / | [/ |767% 308% 748% 82.0% 37.6% 42.6% 24.7% 25.0%
/ 16 67.8%  205%  81.8% 81.7% 41.2% 37.3% 24.6% 24.9%

Sparse / 32 65.7%  19.0%  832% 80.0% 37.2% 35.0% 24.5% 24.8%
Attn / 64 61.9% 172%  81.8% 77.6% 30.9% 33.7% 24.5% 25.2%
’ / 128 | 50.1%  12.0%  788% 13.4% 19.9% 32.6% 24.3% 25.1%

/ 256 | 68.1%  26.6%  80.4% 16.7% 31.8% 38.9% 24.5% 25.3%

10% / 749%  337%  76.8% 78.6% 42.2% 40.4% 24.7% 24.9%

20% / 74.0%  34.0%  76.0% 78.9% 41.0% 40.6% 24.7% 25.1%

Ours 30% / 74.4%  32.8%  158% 78.0% 39.8% 40.8% 24.8% 25.1%
40% / 76.5%  31.0%  73.8% 76.1% 40.9% 40.6% 24.7% 25.2%

50% / 771%  343%  740% 76.8% 42.7% 42.0% 24.8% 25.2%

60% / 77.6%  36.0%  754% 79.2% 43.5% 42.2% 24.8% 25.3%

70% / 779%  363%  79.0% 79.2% 43.8% 42.6% 24.8% 25.3%

80% / 77.9%  363%  754% 77.3% 44.9% 42.3% 24.7% 25.4%

A.2 DETAILED ABLATION RESULTS FOR THRESHOLD DISTRIBUTION

We provide full results for the ablation of threshold distribution in Table[5] We observe that consistent
threshold achieves better performance with lower LPIPS and higher VBench score than inconsistent
thresholds, which verifies the effectiveness of Remark [4.7] discussed in Section [4.4]

Inconsistent Thresholds. The experimental results in Figure @ include both consistent threshold
and inconsistent threshold settings. However, we emphasize that the inconsistent threshold setting
used in our experiment is not a truly adaptive thresholding strategy. In our setup, the inconsistent
thresholds were manually assigned across layers according to the replay ratio distributions as shown
in Figure[5] This configuration mimics an uneven thresholding scheme but was designed to maintain
the same overall replay ratio as the consistent threshold baseline, allowing for a controlled comparison.
Although they are inconsistent, they are still fixed, and not optimal or adaptive.

A genuinely adaptive thresholding mechanism, which dynamically adjusts thresholds based on
token importance (e.g., derived from attention score distributions), may potentially lead to better
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performance than consistent threshold. Our work focus on exploring the temporal redundancy in
MLP modules using a plug-and-play cache replay strategy with consistent threshold simplifying
deployments and achieving better performance. We leave the promising direction to explore more-
advanced attention-aware adaptive thresholds as our future work.

Performance of Inconsistent Thresholds. In Figure ] (left), we observe that according to the LPIPS
score for the inconsistent thresholds, the performance initially improves as the replay ratio increases,
and eventually degrades at very high replay levels. We highlight that since inconsistent thresholds are
not optimal or adaptive as discussed above, we still recommend to use consistent threshold with better
performance. This trend of inconsistent thresholds can be explained by the fact that our proposed
method helps reduce temporal drifting in the generated videos, as discussed in Section [6.4]

More specifically, moderate replaying of MLP outputs introduces temporal consistency across frames,
which helps suppress frame-to-frame inconsistencies and improves perceptual similarity. This effect
is visually evident in Figure [6] where our method exhibits minimal drifting compared to sparse
attention-based baselines, which suffer from severe drift artifacts. Furthermore, when our method is
combined with sparse attention, it can help mitigate the drifting effects introduced by sparse attention,
leading to improved overall visual coherence in the generated videos.

However, as the replay ratio becomes too large, over-replaying leads to excessive reuse of stale
information, which degrades generation quality. Thus, there exists an optimal replay ratio where
replay enhances consistency without sacrificing content fidelity, explaining the observed trend in
LPIPS.

A.3 DETAILED ABLATION RESULTS FOR THRESHOLD VALUES

We provide full results for the ablation of threshold values in Table @ When 7 < —2.5, if we
continue to decrease 7, the generation quality does not further degrade while higher sparsity with
faster inference is achieved, demonstrating the robustness of FastCar. Additionally, we observe that
the AR video generation model achieves the highest replay ratio of 87% when 7 ~ —8, indicating
that only 13% of the MLP modules are actually required during the generation process.

A.4 FULL RESULTS FOR ADDITIONAL ANALYSIS

We provide full results for the combination of the sparse attention method and our method in Table
The results show that our method significantly boosts the performance of SA method through the
straightforward combination. This validates the effectiveness of our method as a complementary
enhancement to existing SA approaches.

Table 5: Full results for the ablation of the threshold distribution.

Threshold | Replay | PSNR SSIM LPIPS \ VBench Score
Distribution | Ratio T T | | Total —Quality Semantic
Consistent 10% 18.57 5332 2731 | 7134% 75.5% 65.2%
Inconsistent | 10% 16.73 46.63 3294 | 71.8% 73.7% 64.3%
Consistent 20% 17.94 51.01 2757 | 7132% 75.3% 65.1%
Inconsistent | 20% 1630 45.05 33.60 | 71.7% 73.3% 65.4%
Consistent 30% 17.87 5029 28.02 | 724% 74.3% 64.7%
Inconsistent | 30% 16.67 4539 3196 | 72.5% 74.0% 66.5%
Consistent 40% 17.68 50.14 28.15 | 71.8% 73.0% 67.2%
Inconsistent | 40% 17.34  48.61 30.65 | 71.8% 73.6% 64.5%
Consistent 50% 17.85 50.11 28.08 | 71.5% 72.7% 66.6%
Inconsistent | 50% 17.65 4994 2940 | 71.5% 73.0% 65.4%
Consistent 60% 17.85 50.55 2872 | 71.4% 72.7% 66.2%
Inconsistent | 60% 1779 4955 2856 | 71.3%  72.5% 66.5%
Consistent 70% 17.86  50.18 2879 | 71.2% 72.3% 66.9%
Inconsistent |  70% 17.68 4884 2939 | 71.1% 72.4% 65.9%
Consistent 80% 17.71  49.01 2950 | 71.5%  73.0% 65.6%
Inconsistent | 80% 17.59 48.06 3001 | 71.3% 72.5% 66.3%
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Table 6: Full results for the ablation of the threshold values.

Threshold | Replay | PSNR SSIM LPIPS VBench Score
Values Ratio 0 1 Total  Quality Semantic
0 396% | 19.71 57.66 24.14 | 73.7% 75.7% 65.8%
-0.5 9.13% | 18.61 53.49 2727 | 73.6% 75.6% 65.5%
-1 17.32% | 17.84 5049 2922 | 73.0% 75.1% 64.6%
-1.5 27.81% | 17.31 48.39 30.85 | 72.6% 74.5% 64.7%
2 40.92% | 17.38 48.84 3045 | 711.9% 73.6% 65.2%
-2.5 54.55% | 17.76 5030 29.05 | 71.4% 72.7% 65.8%
-3 66.78% | 17.87 5042 28.69 | 71.3% 72.5% 66.3%
-3.5 76.20% | 17.76 4942 2926 | 71.3% 72.6% 66.2%
-4 82.41% | 17.65 48.51 2983 | 71.4% 72.7% 66.2%
-8 87.49% | 17.60 4850 30.09 | 71.5% 72.9% 66.0%
-16 87.49% | 17.60 48.04 30.09 | 71.5% 72.9% 66.0%

Table 7: Full results for the combination of the sparse attention method and our method.

Method | Threshold | Replay | Local | PSNR SSIM  LPIPS | VBench Score | TFLOPs Latency Power
Value Ratio Size 0 4 | | Total  Quality Semantic | 1 ()4 Effi. 1

Dense | / A - - | 741%  764%  65.0% | 3179 68971 147
Ours -1 1772% | 16 | 1296 2957 55.13 | 608% 61.6%  57.8% 28.05 49735 203

S + 2 46.11% | 16 | 1438 36.14 4750 | 64.7% 66.5%  57.5% 23.69 42775 236
parse 3 7023% | 16 | 1695 4572 3425 | 70.5% 72.0% = 64.9% 19.81 356.35 284

Attn. 4 83.85% | 16 | 1727 4649 3237 | 71.6% 73.1%  65.7% 1787 33129  3.05

Ours -1 1772% | 32 | 1325 3158 5377 | 612% 619%  58.2% 28.07 49979  2.02

S + 2 46.11% | 32 | 1443 3681 47.18 | 650% 66.6%  59.0% 2371 430.18 235
parse 3 70.23% | 32 | 1694 46.02 34.09 | 708% 72.3%  64.9% 19.83 35878  2.82

Atn. -4 83.85% | 32 | 1727 4675 3196 | 711.9% 734%  65.9% 1789 33373 3.03

Ours -1 17.72% | 64 | 1325 3190 5432 | 60.0% 609%  56.5% 28.10 50460  2.00

S + 2 46.11% | 64 | 1441 3683 4772 | 64.6% 662%  58.4% 2374 43500 233
parse 3 70.23% | 64 | 1688 4587 34.60 | 704% 71.8%  64.7% 1986  363.60 2.78

Attn. -4 83.85% | 64 | 1727 4670 3209 | 71.6% 73.1%  65.5% 1792 33855 299

Ours -1 17.72% | 128 | 13.14 31.63 55.02 | 59.1% 60.3%  53.9% 28.16 51400 197

S + 2 46.11% | 128 | 1444 3720 47.80 | 642% 659%  57.6% 23.80 44440 228
parse 3 70.23% | 128 | 16.89 46.02 3477 | 70.0% 71.5% = 63.9% 1992  373.00 271

Attn. 4 83.85% | 128 | 17.29 4679 32.10 | 71.7% 733%  65.7% 1798 34795 291

Ours -1 17.72% | 256 | 1522 4077 4461 | 67.7% 70.0%  58.7% 2828  531.87  1.90

S + 2 46.11% | 256 | 1578 43.05 4025 | 689% 71.1%  60.1% 23.92 46227 219
parse 3 70.23% | 256 | 1721 47.63 3294 | 70.7% 722%  64.8% 20.04  390.87 259

Attn. -4 83.85% | 256 | 17.44 4757 3127 | 71.8% 733%  65.7% 18.10 36582 276
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B ADDITIONAL VISUALIZATION

We visualize the results of our method under different replay ratios. Our method generates high
quality videos.
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Figure 7: Additional visualization with threshold 7 = —1, -2, —4.
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C DETAILED PROOFS

C.1 PROOF OF THEOREM [4.4]

Proof of Theorem[{.4] Step 1 (Score exactly matches cosine similarity). By Deﬁnition 514 =
(g;, kj-)/Vd, where ¢; = ;Wg and k;- = z;- W Under Assumption (3), [|g;[|2 = ||k;- |2 = 1,
0 54 ; (up to V/d scaling) equals the cosine similarity:

COSG(Qja k]’) = <q]a kj’>
Thus, by the Law of Cosines for unit vectors,

lgj — k=113 = 2(1 = 500)-

Step 2 (Logit gap from query gap). The attention logits satisfy
lj=q¢K", (j-=¢-K',
thus
145 = €512 = ll(g; — ;- )K" |l2
< IKll2llaj — g;-ll2,
where K = X W is the stacked key matrix. Since K = XWjy, we have
K2 < [| X2 Wkll2 < VRMA,
where || X || < \/nM since each ||z;]|2 < M.

Step 3 (Attention output is Lipschitz). Since softmax and value projection are Lipschitz continuous
(see|Shen et al.|(2025a)), there exists Ly, > 0 such that

[Attn(X);. — Attn(X) ;- [2 < Lawll€; — ;- [l2 < Cillg; — g;-]2,
where C1 = Lynyv/nMA.
Step 4 (Bounding query-key difference). Since
qi- =z2;-Wq, kj-=x;-Wkg,

it follows that
kj- —aj-ll2 = llzj- Wk = Wo)ll2 < vllzj-[l2 < vM.
By triangle inequality,

lg; — a-1l2 < llaj — kj-ll2 + lkj- — gj-1l2 < /2(1 = s¢,5) + ¥M.
Step 5 (Final bound). Thus,
HAttn(X)j’: — Attn(X>j—,:||2 < Cl ( 2(1 — Stﬂ;) + ’7M>

<C(V1=sui+M),

after absorbing constants into C' > 0. This completes the proof. O

C.2 PROOF OF THEOREM [4.3]

Proof of Theorem{.3] Define
Zj =Attn(X);. + X;., Z;- =Attn(X),;- . + X;- ..
Then
Yi. =MLP(Z)), Y;-. =MLP(Z,-).
By Lipschitz continuity of MLP,
¥ = Yyl < 125 = 24
Expanding Z; — Z;- and applying triangle inequality,
12 = Zj-[l2 < ||Attn(X);,; — Attn(X)j . fl2 + [| X, — X [l

The claim follows. O
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C.3 PROOF OF THEOREM [4.6]

Proof of Theorem By Theorem[4.5]
Vi = Y- ll2 < L (11X, — Xj- 12 + IAttn(X) 1, — Attn(X) ;- 12) -
By Theorem [4.4]
[Attn(X);.. — Attn(X);- 12 < € (T =505+ 7M)
Substituting gives
Vi = Vi lla < O (1X5: = Xy ll2 + /1 = 540 + M),
where C' = L(1 4 C") absorbs constants.

19



	Introduction
	Related Work
	Deep Insights for Auto-Regressive Video Generation
	FastCar Framework Design
	Auto-Regressive Video Generation
	Key Modules
	Cache Attentive Replay for Fast Generation (FastCar)
	Theoretical Similarity Analysis

	Hardware Design
	Experimental Results
	Experimental Setup
	Main Results
	Ablation Study
	Additional Analysis

	Conclusion
	Additional Results
	Detailed Results for VBench
	Detailed Ablation Results for Threshold Distribution
	Detailed Ablation Results for Threshold Values
	Full Results for Additional Analysis

	Additional Visualization
	Detailed Proofs
	Proof of Theorem 4.4
	Proof of Theorem 4.5
	Proof of Theorem 4.6


