
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FASTCAR: CACHE ATTENTIVE REPLAY FOR FAST
AUTO-REGRESSIVE VIDEO GENERATION ON THE EDGE

Anonymous authors
Paper under double-blind review

ABSTRACT

Auto-regressive (AR) models, initially successful in language generation, have
recently shown promise in visual generation tasks due to their superior sampling
efficiency. Unlike image generation, video generation requires a substantially larger
number of tokens to produce coherent temporal frames, resulting in significant
overhead during decoding. We first make specific key observations: (i) MLP
modules in the decode phase dominate the inference latency, and (ii) there exists
high temporal redundancy in MLP outputs of adjacent frames. With the insights,
we propose FastCar to accelerate the decode phase for the AR video generation
by exploring the temporal redundancy. The Temporal Attention Score (TAS) is
proposed to determine whether to apply the replay strategy (i.e., reusing cached
MLP outputs from the previous frame to reduce redundant computations) with
detailed theoretical analysis and justification. Furthermore, we develop a hardware
accelerator on FPGA with Dynamic Resource Scheduling based on TAS to enable
better resource utilization and faster inference. Experimental results demonstrate
the effectiveness of our method, which outperforms traditional sparse attention
approaches with more than 2.1× decoding speedup and higher energy efficiency
on the edge. Furthermore, by combining FastCar and sparse attention, FastCar can
boost the performance of sparse attention with alleviated drifting, demonstrating
our unique advantages for high-resolution and long-duration video generation.

1 INTRODUCTION

Recently, there has been growing interest in extending the Auto-Regressive (AR) framework of Large
Language Models (LLMs) (Radford et al., 2019; Touvron et al., 2023; Grattafiori et al., 2024) to
visual generation tasks (Sun et al., 2024a; Wang et al., 2024a; Han et al., 2024; Tian et al., 2024;
Weng et al., 2023; Deng et al., 2024; Jiao et al., 2025; Xie et al., 2024; Sun et al., 2024b; Luo et al.,
2024; Kondratyuk et al., 2023; Wang et al., 2024b). The works (Sun et al., 2024a; Tian et al., 2024;
Sun et al., 2024b; Han et al., 2024; Wang et al., 2024b) convert images into tokens, and apply AR
models to generate image tokens with next-token prediction. The generation quality is surprisingly
strong, often rivaling or surpassing diffusion-based methods (Tian et al., 2024; Sun et al., 2024b; Han
et al., 2024) in perceptual fidelity and semantic coherence.

As video becomes a dominant medium across entertainment, communication, etc., synthesizing
coherent high-quality videos from minimal inputs presents a compelling research challenge (Xiong
et al., 2024; Xing et al., 2024; Li et al., 2024a; Melnik et al., 2024). Prior works (Lin et al., 2024a;
Zheng et al., 2024; Peng et al., 2025; Hong et al., 2022; Yang et al., 2024; Kong et al., 2024) leverage
Diffusion Transformers (DiT) (Peebles & Xie, 2022) to develop video generation models with superior
generation performance, at the cost of substantial computations and massive memory demands (He
et al., 2025; Jin et al., 2024; Xu et al., 2025; Xi et al., 2025; He et al., 2024). These characteristics
limit their applications and deployments for resource-constrained environments (Liu et al., 2025; Zhu
et al., 2023; Kim et al., 2025; Shen et al., 2025a) such as mobile devices or Field-Programmable Gate
Array (FPGA) with tight constraints for energy efficiency, memory, etc.

Motivated by the scalability and fast decoding capabilities of AR transformer-based frameworks in
generative tasks, an increasing number of works (Wu et al., 2024; Deng et al., 2024; Weng et al.,
2023; Xie et al., 2024; Kondratyuk et al., 2023) have adopted AR frameworks for video generation
tasks. To further improve its efficiency, model compression strategies (such as model pruning and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Feedforward
(MLP) Module

Whole Attn
Module

1 2 3 4 5 ⋯ 256 1 2 3

Feedforward
(MLP) Module

KV Cache

Tokens for Previous Frame Tokens for Current Frame

⋯

256

Whole Attn
Module

⋯

Replay
Cache

score ≥ '	?

⋯

⋯

Replay

KV Cache

Average TAS
Traffic Light

!

0
500

1000
1500
2000
2500
3000
3500

0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

Prefill Decoding
Latency (s)

Attn Linear QKV Softmax
Attn Norm MLP Linear MLP Norm

2kSeq. Length 4k 6k 8k

2k 4k 6k 8k

Figure 1: Left: FastCar framework. We replay the cache from the previous frame to skip the
computations for MLP in decoding. Replay is triggered when the average TAS exceeds a predefined
threshold τ . Right Top: Latency cost of both prefill and decode phases for different sequence lengths.
Right Bottom: Detailed latency cost of the decode phase for different sequence lengths.

quantization (Lin et al., 2024b; Ma et al., 2023; Shen et al., 2024; 2025b; Xiao et al., 2023a)) and
spatial redundancy optimizations (such as sparse attention (Xiao et al., 2023b; Rehg, 2024; Hooper
et al., 2024; Liu et al., 2024; Ge et al., 2024; Li et al., 2024b) and efficient sampling methods (Spector
& Re, 2023; Yang et al., 2023; Miao et al., 2023; Ning et al., 2024; Teng et al., 2024; He et al., 2025))
are investigated. However, the inherent temporal redundancy specifically introduced by videos with
multiple sequential frames remains largely unexplored in AR video generation.

Specific Deep Insights. To explore the redundancy for superior efficiency, we first perform a detailed
latency profiling and a similarity analysis between different frames. As shown in the right of Figure 1,
we identify that the MLP modules (rather than the attention modules) in the decode phase dominate
the inference latency. Meanwhile, according to Figure 2, the outputs of adjacent frames for the same
MLP module exhibit relatively high resemblance/similarity, indicating high temporal redundancy.

Framework with Theoretical Justification. Based on the deep insights specific for AR video
generation, we propose FastCar for efficiency optimization. The Temporal Attention Score (TAS) is
proposed to determine whether to skip the computations of the MLP modules (Figure 1). If skipped,
the cached outputs from the previous frame are directly reused as current outputs (similar to video
replay) due to their high similarity. Skipping computation-intensive MLP modules leads to substantial
accelerations. We further provide a detailed theoretical analysis to formally characterize how our
TAS controls the output differences across adjacent frames, thereby justifying the design of FastCar.

Hardware Accelerator. A flexible and efficiency-oriented hardware accelerator is further developped
to support kernel fusion and custom instruction programmability, thus allowing direct reuse of cached
outputs and enabling conditional execution of MLP modules. Specifically, to handle varying workload
sparsity, we propose Dynamic Resource Scheduling (DRS), which leverages attentivity to dynamically
allocate computational resources. DRS, integrated into lightweight control logic, helps alleviate
bandwidth pressure and improves overall resource efficiency, thereby enabling faster inference.

Comprehensive Experiments. Experimental results show that FastCar not only surpasses sparse
attention (SA) methods with better generation quality, but also achieves faster decoding with improved
energy efficiency on FPGA. Additionally, FastCar complements SA approaches by mitigating their
drifting issues. By combining FastCar and SA, FastCar significantly boosts the generation quality of
SA with faster inference and better long-range temporal coherence.

Our contributions are summarized as follows,
1. We perform the latency profiling and similarity analysis between different frames to explore the
temporal redundancy in MLP modules. We then propose FastCar framework to accelerate AR video
generation by replaying MLP modules using cached outputs from the previous frame.
2. Our theoretical analysis demonstrates that the similarity of MLP outputs across adjacent frames
correlates with the attentivity, and this correlation is consistent across various model depths, thus
justifying the design of FastCar with TAS (i.e., the attentivity) to guide replay decisions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3. We develop an efficiency-oriented hardware accelerator with DRS, enabling dynamic allocation
of computational resources to enhance resource utilization and accelerate inference on FPGA.

4. Experimental results show that FastCar outperforms SA methods in generation quality by
alleviating drifting issues of SA, and achieves more than 2.1× speedup, thereby enhancing scalability
and efficiency for high-resolution and long-duration AR video generation.

2 RELATED WORK

Auto-Regressive Visual Generation. Prior works (Sun et al., 2024a; Wang et al., 2024a; Han et al.,
2024; Tian et al., 2024; Jiao et al., 2025; Xie et al., 2024; Sun et al., 2024b; Luo et al., 2024) apply
the AR framework for image generation, demonstrating its potential to outperform diffusion-based
models. In particular, VAR (Tian et al., 2024) introduces next-scale prediction to progressively
generate token sequences across multiple resolutions, demonstrating the effectiveness of AR methods
with enhanced image quality. Inspired by this, several works (Wu et al., 2024; Deng et al., 2024;
Weng et al., 2023; Kondratyuk et al., 2023) adopt the AR framework to develop video generation
models. However, NOVA (Deng et al., 2024) and ART·V (Weng et al., 2023) still incorporate
diffusion modules in their pipelines to boost generation quality, at the cost of substantially slower
inference. Moreover, both models operate at the frame level rather than the token level, differing
from the fine-grained, token-wise AR paradigm commonly used in LLMs. Unlike the above works,
VILA-U (Wu et al., 2024) adopts the same AR framework as LLMs, making it one of the most
promising approaches in video generation.

Efficient Techniques for Auto-Regressive Visual Generation. AR image generation models (Sun
et al., 2024a; Wang et al., 2024a), typically require n2 sequential forward passes to generate an image
represented by n× n tokens, resulting in significant inefficiency, which is further exacerbated when
extending to video generation (Wu et al., 2024) with multiple image frames. Some works (He et al.,
2024; Teng et al., 2024) accelerate the sampling process at decode phase, utilizing contextual cues
from neighboring tokens to reduce redundant computations. The work (Wang et al., 2024b) trains the
model from scratch to enable parallel generation of adjacent token subsets for acceleration. However,
this approach compromises global attention modeling, which limits the generation quality. The
work (He et al., 2025) retains a short token sequence by incorporating neighboring tokens to enable
efficient generation, thus reducing spatial redundancy. However, these works mainly investigate
spatial redundancy, leaving the temporal redundancy of video generation largely unexplored.

3 DEEP INSIGHTS FOR AUTO-REGRESSIVE VIDEO GENERATION

To effectively accelerate AR video generation, we first perform detailed profiling for the inference
latency and computations of VILA-U (Wu et al., 2024). We then provide the following specific deep
insights: (i) The decode phase takes significantly longer than the prefill phase. (ii) The MLP modules
dominate the latency of the decode phase. (iii) The outputs of an MLP module exhibit great similarity
to those of its previous frame. Next we demonstrate our detailed observations and analysis.

Prefill Phase v.s. Decode Phase. We compare the latency of the prefill phase and decode phase
under different input sequence lengths from 2k to 8k, during AR video generation. As shown in the
right top of Figure 1, the decode phase takes significantly longer than the prefill phase under various
input lengths, as it needs to generate a large number of visual tokens for videos with multiple frames.

Attention Modules v.s. MLP Modules. We further explore detailed latency profiling for different
decoding modules. The bottom right of Figure 1 shows that under varying input sequence lengths,
MLP modules consistently dominate the overall latency. This observation underscores the distinct
computational characteristics of AR generation compared with diffusion-based methods. Specifically,
in diffusion transformers, all visual tokens are processed simultaneously through iterative denoising,
with attention modules as the primary computational bottleneck. In contrast, AR models generate
tokens sequentially, where attention modules only contribute marginally to the overall latency. As a
result, efficiency-oriented techniques designed for attention modules are less effective in AR.

Spatial Redundancy v.s. Temporal Redundancy. Spatial Redundancy is commonly explored in
image generation with SA mechanisms (to reduce computations) or efficient sampling (to generate
fewer tokens). In contrast, temporal redundancy in video generation remains largely overlooked, as

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026
0.4

0.5

0.6

0.7

0.8
Cosine Similarity

Head 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Similarity to 1 Frame Before Similarity to 2 Frame Before Similarity to 3 Frame Before

0

0.2

0.4

0.6

0.8

1
Cosine Similarity

Layer1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Similarity to 1 Frame Before Similarity to 2 Frame Before Similarity to 3 Frame Before

Figure 2: Cosine similarity for MLP outputs between neighboring frames for all 32 MLP modules.

prior works focus on image generation. To explore temporal redundancy, we present cosine similarity
between outputs of an MLP module and those of its neighboring frames in Figure 2. The MLP
outputs exhibit high similarity with their most recent frame, demonstrating high temporal redundancy.

Motivation. Based on the observation that MLP modules dominate the overall latency, we mainly
optimize the computations of MLP modules for acceleration. Temporal redundancy with high similar-
ities between the MLP outputs of neighboring frames further motivate us to cache the corresponding
hidden states from the current time step for reuse in its next time step, thus avoiding its computations.

4 FASTCAR FRAMEWORK DESIGN

We demonstrate our FastCar framework in this section. In general, when the proposed Temporal
Attention Score (TAS) indicates high similarity, we then directly reuse the cached outputs from its
previous frame as the outputs of the current frame, thus skipping the MLP computations.

We first provide specific definitions for AR video generation. Then we demonstrate FastCar in great
details. Theoretical analysis are further provided for the rationality and justification of FastCar.

4.1 AUTO-REGRESSIVE VIDEO GENERATION

We model a video V as a temporal sequence of T frames with N visual tokens in each frame. With
Vvis denoting a finite vocabulary of visual tokens, it can be formulated as follows,

V = {zt,i | t = 1, . . . , T ; i = 1, . . . , N}, zt,i ∈ Vvis, (1)

Flattening the temporal–spatial grid yields a sequence of length n = T ·N . We denote the flattened
token index as j = (t, i) := (t−1)N + i, where t denotes the frame index and i denotes the index of
the spatial position. Since frames are consecutively ordered, it satisfies: (t−1, i) = (t, i)−N.

For transformer layers, we define the hidden states: X ∈ Rn×d, where d denotes the hidden size.
We use a batch size of B = 1 for simplicity, with all results readily extendable to B > 1 through
broadcasting. The objective of AR video generation is to model the joint distribution:

P (V) =
n∏

j=1

P (zj | z<j). (2)

4.2 KEY MODULES

We now formalize the key modules in AR video generation and our FastCar framework. The model
has multiple blocks, with an attention module and an MLP module for each block, as defined below.
Definition 4.1 (Attention Module). Given hidden states X ∈ Rn×d, attention output is computed as:

Attn(X) = Softmax

(
QK⊤
√
d

)
V ∈ Rn×d,with Q = XWQ, K = XWK , V = XWV , (3)

where WQ,WK ,WV ∈ Rd×d are the query, key, and value projection matrices.

Definition 4.2 (MLP Module). Given input hidden states X ∈ Rn×d, the MLP module is defined as:

MLP(X) = (act(XWG) ◦ (XWU))WD ∈ Rn×d, (4)

where act(·) is a non-linear activation function (e.g., SiLU), ◦ denotes element-wise multiplication,
and WG,WU ∈ Rd×dff , WD ∈ Rdff×d are learned parameters with the intermediate size of dff .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Next we define TAS to measure the token similarity of adjacent frames and guide replay decisions.
Definition 4.3 (Temporal Attention Score). The temporal attention score at spatial position i and
t-th frame is defined as the scaled dot-product between the query vector qj of token j = (t, i) and the
key vector kj− of its aligned token j− = (t−1, i):

st,i =
⟨qj , kj−⟩

√
d

∈ R. (5)

In our FastCar framework, due to causal decoding, TAS is obtained directly from the attention module
preceding the MLP, incurring no additional computational cost.

4.3 CACHE ATTENTIVE REPLAY FOR FAST GENERATION (FASTCAR)

In FastCar, with TAS, we enable attentive replay in MLP modules by manually setting a threshold τ
to filter tokens of adjacent frames with higher attentivity. When TAS is larger than τ , which indicates
significant temporal similarity, we skip MLP computations by reusing the outputs of its previous
frame at the same spatial location, as illustrated in the left of Figure 1.

Specifically, for each transformer block, at frame t− 1, for each spatial token index i, we cache the
MLP output as follows:

Y(t−1,i),: = MLP (Attn(X) +X)(t−1,i),: . (6)

At frame t, we evaluate the set of TAS {s(m)
t,i }hm=1 between token (t, i) and its aligned token (t−1, i)

across all h attention heads (Definition 4.3), and compute the mean score:

s̄t,i =
1

h

h∑
m=1

s
(m)
t,i . (7)

When the mean score exceeds a predefined threshold τ , i.e., s̄t,i ≥ τ , we then skip the following
MLP computations of this specific token (t, i) and reuse the cached output for the replay in the block:

Y(t,i),: =

{
Y(t−1,i),:, if s̄t,i ≥ τ

MLP (Attn(X) +X)(t,i),: , Otherwise
. (8)

Otherwise, we still perform the normal MLP computations. In the AR model, there are multiple
transformer blocks with the same architecture following the same computation pattern. We apply
FastCar for each block. This selective replay mechanism reduces MLP computations by leveraging
temporal consistency across adjacent frames.

4.4 THEORETICAL SIMILARITY ANALYSIS

We now formally characterize how TAS controls the output differences across adjacent frames,
thereby justifying temporal replay based on TAS.

We first relate temporal attention similarity to the difference in attention outputs.
Theorem 4.4 (Attention Score Controls Attention Output Difference). Let X ∈ Rn×d be the hidden
states, where each row xj ∈ Rd represents the hidden state of token j. Let Attn(X) denote the
attention output defined in Definition 4.1. For tokens j = (t, i) and j− = (t−1, i) aligned at the
same spatial position, define the temporal attention score st,i as in Definition 4.3. Assume that:

• (1) The hidden states are bounded: ∥xj∥2 ≤ M for all j;

• (2) The projection matrices satisfy ∥WQ∥2, ∥WK∥2 ≤ Λ;

• (3) The query and key vectors are normalized: ∥qj∥2 = ∥kj−∥2 = 1 for all j.

Let γ := ∥WQ −WK∥2 denote the projection difference.

Then, under the Lipschitz continuity of the attention, there exists a constant C > 0 such that:

∥Attn(X)j,: − Attn(X)j−,:∥2 ≤ C
(√

1− st,i + γM
)
. (9)

Thus, a larger st,i implies a smaller attention output difference up to a model-dependent offset γM .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Instruction
Fetch

Control
DRS

F
D
M
A

M
U

V
U 256

score ≥ '	?

⋯

R
ep
la
y

Average TAS
Traffic Light

!

I
F
O

F
I
F
O

F
I
F
O

SRAM

0
x
1
2
x
3
0
x
1

x

⋯
⋯

DRS

0

0.2

0.4

0.6

0.8

1

Index
Register

Mapping
Register

1
0
1
1
0
1
1
0
1

0

⋯
⋯

32 32

Core
ID

Instruction Stream

Batch 0 → Core 0

Batch 1 → Core 1

Batch 2 → Core 2

Batch 3 → Core 3

Batch 4 → Core 0

Batch 5 → Core 1⋯
⋯

⋯
⋯

Batch 0 → Core 0

Batch 2 → Core 1

Batch 3 → Core 2

Batch 5 → Core 3

In
str

uc
tio

n
Co

nt
ro

l
A

X
I

D
at

a

Figure 3: Left: The top-level block diagram of our hardware accelerator. Right: The DRS diagram.

Transformers often apply normalization techniques (such as LayerNorm or explicit vector normaliza-
tion) to control query and key magnitudes. Thus assuming ∥qj∥2 = ∥kj−∥2 = 1 is reasonable and
standard for theoretical analysis Shen et al. (2025a;b). We delay the full proof to Appendix C.

Next, we relate input and attention similarity to MLP output similarity.
Theorem 4.5 (Attention and Input Similarity Implies MLP Output Similarity). Let MLP(·) de-
note the MLP module defined in Definition 4.2. Let Yj,: = MLP (Attn(X) +X)j,: and Yj−,: =

MLP (Attn(X) +X)j−,: denote the MLP outputs at tokens j and j−.

Assume that MLP(·) is L-Lipschitz continuous. Then

∥Yj,: − Yj−,:∥2 ≤ L
(
∥Xj,: −Xj−,:∥2 + ∥Attn(X)j,: − Attn(X)j−,:∥2

)
. (10)

The proof is demonstrated in Appendix C. Finally, combining the two results, we directly relate TAS
to MLP output similarity.
Theorem 4.6 (Temporal Attention Score Controls MLP Output Similarity). Let X ∈ Rn×d be the
hidden states, and let Yj,: and Yj−,: denote the MLP outputs at tokens j and j−. Let st,i denote
the temporal attention score. Under the assumptions of Theorem 4.4 and assuming the MLP is
L-Lipschitz, there exists a constant C > 0 such that:

∥Yj,: − Yj−,:∥2 ≤ C
(
∥Xj,: −Xj−,:∥2 +

√
1− st,i + γM

)
. (11)

The proof is demonstrated in Appendix C. Theorem 4.6 formally establishes that high TAS, combined
with input similarity, guarantees small MLP output deviation across adjacent frames. This justifies
the use of thresholds on TAS to dynamically skip MLP computations during decoding, enabling
efficient temporal replay with controlled quality loss. Moreover, as TAS is computed layer-locally, it
offers a stable and depth-independent signal for runtime adaptation (Remark 4.7).
Remark 4.7. The TAS st,i depends only on the local query and key vectors at the current layer and
is independent of model depth. It captures instantaneous similarity without accumulating information
across layers, making it a stable, efficient, and fine-grained signal for dynamic computation reduction
during auto-regressive decoding.

5 HARDWARE DESIGN

We develop a programmable hardware accelerator, as shown in the left of Figure 3. Pre-compiled
instructions are loaded via the AXI bus with the Fetch module, and dispatched to the corresponding
instruction FIFO (First-In-First-Out). The Control module manages the Matrix Unit (MU) and
Vector Unit (VU) to perform matrix multiplication and vector computation, while the Direct Memory
Access (DMA) module is responsible for loading data from off-chip memory (i.e., DDR or HBM).
The instruction FIFO receives control signals from the Control Module to coordinate the computa-
tions of each unit. The Dynamic Resource Scheduling (DRS) module is employed to address the
computational workload imbalance caused by dynamic replay from the FastCar framework.

DYNAMIC RESOURCE SCHEDULING (DRS)

The FastCar framework dynamically determines whether to adopt the replay strategy to skip compu-
tations for certain MLP modules based onthe TAS of different batches. Due to the multi-core design,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Main results of our method compared with sparse attention method StreamingLLM Xiao
et al. (2023b), where dense attention is retained in the first frame for fair comparison. Local size
denotes number of local tokens for sparse attention. Detailed VBench scores are in Appendix A.
Latency is tested for whole generation of one video. Power efficiency is computed by GFLOPs/W.

Method Replay Local PSNR SSIM LPIPS VBench Score TFLOPs Latency Power
Ratio Size ↑ ↑ ↓ Total Quality Semantic ↓ (s) ↓ Effi. ↑

Dense / / - - - 74.1% 76.4% 65.0% 31.79 689.7 (1×) 1.47

Sparse
Attn.

/ 256 18.25 51.54 33.59 72.1% 74.6% 62.5% 30.95 670.5 (1.02×) 1.51
/ 128 13.14 33.61 54.34 60.7% 61.9% 55.9% 30.82 666.9 (1.03×) 1.52
/ 64 13.47 33.79 53.54 62.6% 63.3% 60.2% 30.76 666.3 (1.03×) 1.52
/ 32 13.34 33.14 53.82 61.4% 61.3% 62.0% 30.72 663.9 (1.04×) 1.52
/ 16 13.30 32.02 53.75 64.5% 64.8% 63.3% 30.70 662.7 (1.04×) 1.53

Ours

10% / 18.57 53.32 27.31 73.4% 75.5% 65.2% 30.09 629.1 (1.10×) 1.61
20% / 17.94 51.01 27.57 73.2% 75.3% 65.1% 28.64 556.8 (1.24×) 1.82
30% / 17.87 50.29 28.02 72.4% 74.3% 64.7% 27.18 525.2 (1.31×) 1.93
40% / 17.68 50.14 28.15 71.8% 73.0% 67.2% 25.73 487.2 (1.42×) 2.08
50% / 17.85 50.11 28.08 71.5% 72.7% 66.6% 24.27 475.3 (1.45×) 2.13
60% / 17.85 50.55 28.72 71.4% 72.7% 66.2% 22.33 451.9 (1.53×) 2.24
70% / 17.86 50.18 28.79 71.2% 72.3% 66.9% 20.88 415.8 (1.66×) 2.43
80% / 17.71 49.01 29.50 71.5% 73.0% 65.6% 19.42 390.7 (1.76×) 2.59

computations for different batches in dense mode are mapped to distinct cores statically. However,
the dynamic FastCar introduces computational workload imbalance across different cores, as the
number of MLPs computed for different batches may vary and is difficult to predict during infer-
ence. Moreover, we employ static compilation to pre-generate scheduling instructions. Exhaustively
enumerating all possible cases would incur an unaffordable large instruction storage overhead.

To address this, we propose the DRS to balance the computational workloads, as shown in the right of
Figure 3. After computing TAS, we configure an on-chip computation mapping table. A 32-bit Index
Register, which stores the status of each batch (0=replay, 1=compute), is established to determine
whether computation should be skipped. 32 Mapping Registers, each with log2(num cores) bits,
determine the target core for executing which batch. We adopt a round-robin assignment strategy to
ensure balanced workload distribution among the cores.

When pre-compiled instructions are loaded and the replay mechanism is triggered, the prefetched
instructions are forwarded to the DRS for processing. The DRS then performs scheduling decisions
by consulting the Index Register to determine whether to discard instructions for replayed batches or
dispatch them to the appropriate cores based on the Mapping Registers. Notably, the DRS incurs
minimal overhead by completing its dispatch operations in just hundreds to thousands of cycles,
which is negligible compared to the thousands of cycles required for actual instruction execution.

6 EXPERIMENTAL RESULTS

6.1 EXPERIMENTAL SETUP

We adopt the AR video generation model from VILA-U (Wu et al., 2024). All videos are generated
with 8 frames in 256×256 resolution, where each frame is decoded by 256 tokens. VILA-U is the only
available open-source model in the novel research direction of AR video generation without diffusion
(Section 2). We evaluate the quality of generated videos with VBench (Huang et al., 2024), and the
similarity of generated videos with metrics including Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index Measure (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS) (Zhang
et al., 2018). In detail, we compute the average similarity across all frames except the first one,
as our method generates the first frame in the same manner as the baseline. We generate videos
using prompts from VBench with a batch size of 5, a fixed random seed of 42, and classifier-free
guidance of 3 (Ho & Salimans, 2022) on A100 GPUs. Additionally, there are no available direct
baselines in this novel area, and we compare our method against the sparse attention (SA) approach
StreamingLLM (Xiao et al., 2023b). We set the sink size by extending the prefill length by 256 to
ensure the first frame is preserved throughout video generation for fair comparison.

For hardware implementation, we adopt the Xilinx Alveo U280 FPGA as the target platform with a
chiplet design. We implement multiple accelerator cores on the FPGA to ensure physical implemen-
tation feasibility. Latency and power are tested using a prefill sequence length of 256.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

71%

72%

73%

74%

27
28
29
30
31
32

33
34
LPIPS VBench Score

Ratio

Consistent
Inconsistent

10% 20% 30% 40% 50% 60% 70% 80%

0

0.2

0.4

0.6

0.8

1

71%

72%

73%

74%

0%

20%

40%

60%

80%

100%
Replay Ratio VBench Score

" 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -4 -8 -16

87%

Figure 4: Left: Ablation study comparing consistent vs. inconsistent threshold settings with respect
to LPIPS and the VBench total score. Full results are provided in Table 5 at Appendix A. Right:
Ablation study on the effect of the threshold τ on replay ratio and VBench total score. Full results are
reported in Table 6 at Appendix A.

0%

20%

40%

60%

80%

100%

0

0.2

0.4

0.6

0.8

1

Replay Ratio

Layer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

= −1 # = −2 # = −4

Figure 5: Replay ratio distribution across layers for thresholds τ = −1, −2, and −4, respectively.

6.2 MAIN RESULTS

We provide the main results with different replay ratios compared with the SA method in Table 1. The
detailed VBench scores for all results in different dimensions are included in Appendix A. We make
the following observations: (i) The SA methods, such as StreamingLLM are not able to accelerate AR
video generation models effectively. When its local size shrinks with increasing sparsity, the compu-
tations measured by TFLOPs only decrease marginally without significant accelerations. The reason
is that the MLP modules dominate the computations/latency, and thus optimizing attention modules
does not effectively address the bottleneck. (ii) Our method effectively reduces the computations
and achieves significant accelerations with better power efficiency. With an 80% replay ratio, our
method can reduce 45% computations with a 1.77× acceleration. (iii) Our method better maintains
the generation quality than the SA methods. For similarity metrics including PSNR, SSIM, and
LPIPS, with gradually increasing sparsity, our generation quality only degrades marginally, which
significantly outperforms the SA method with notable degradations. For the VBench scores, we can
make similar observations. Meanwhile, our method achieves higher power efficiency compared to
the SA method, demonstrating strong potential for deployment in resource-constrained environments.
Furthermore, we provide the visualization with our method in different replay ratios in Appendix B.
Visualization shows that video quality is well preserved across different replay ratios, and remains
high even when the threshold τ is set to a very low value with a large replay ratio.

6.3 ABLATION STUDY

Threshold Distributions. We conduct an ablation study on threshold distribution by applying either
consistent or layer-wise varying (i.e., inconsistent) thresholds across all layers, while maintaining the
same overall replay ratio. As shown in the left side of Figure 4, consistent threshold achieves better
performance with lower LPIPS and higher VBench score than inconsistent thresholds, which verifies
the effectiveness of Remark 4.7. More discussions can be found in Section A.2 of Appendix.

Threshold Values. Meanwhile, we ablate the threshold values to evaluate their impact on model
performance, as shown in the right side of Figure 4. When τ ≤ −2.5, if we continue to decrease
τ , the generation quality does not further degrade while higher sparsity with faster inference can
be achieved, demonstrating the robustness of FastCar. Additionally, we observe that the AR video
generation model achieves the highest replay ratio of 87% when τ ≈ −8, indicating that only 13% of
the MLP modules are actually required during the generation process.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Additional results for the combination of the sparse attention method and our method. More
results are included in Table 7 at Appendix A.

Method Replay Local PSNR SSIM LPIPS VBench Score GFLOPs Latency Power
Ratio Size ↑ ↑ ↓ Total Quality Semantic ↓ (s)↓ Effi.↑

Dense / / - - - 74.1% 76.4% 65.0% 31.79 689.7 (1×) 1.47

Ours
+

Sparse
Attn.

87% 256 17.44 47.57 31.27 71.8% 73.3% 65.7% 17.61 354.46 (1.95×) 2.85
87% 128 17.29 46.79 32.10 71.7% 73.3% 65.7% 17.49 342.25 (2.02×) 2.96
87% 64 17.27 46.70 32.09 71.6% 73.1% 65.5% 17.43 334.57 (2.06×) 3.02
87% 32 17.27 46.75 31.96 71.9% 73.4% 65.9% 17.40 327.36 (2.11×) 3.09
87% 16 17.27 46.49 32.37 71.6% 73.1% 65.7% 17.39 324.31 (2.13×) 3.12

Fa
stC

ar
Sp

ar
se

 A
ttn

Co
m

bi
ne

Ba
se

lin
e

Sp
ar

se
 A

ttn
Co

m
bi

ne
Ba

se
lin

e
Fa

stC
ar

Figure 6: Visualization for the prompt ”A dog wearing sunglasses on the beach.”. The second and
third rows are generated with threshold τ = −4 (i.e., 82% replay ratio). The third and fourth rows
are generated with a sink size that extends the prompt length by one frame and 64.

6.4 ADDITIONAL ANALYSIS

Replay Ratio Distribution. We visualize the replay ratio distribution across layers for 3 different
thresholds in Figure 5. We observe that the model tends to replay at the shallow and deep layers,
while replay is less likely to occur in intermediate layers. This indicates that intermediate layers play
a critical role in capturing temporal dynamics and contribute most significantly to generation quality
in auto-regressive video models.

Combination with Sparse Attention. We further provide additional results achieved by combining
SA method and our method in Table 2. The detailed VBench scores for all results in different
dimensions are included in Table 7 at Appendix A. The results show that our method can significantly
boost the performance of the SA method through a straightforward combination. This validates the
effectiveness of our method as a complementary enhancement to existing SA approaches. We further
visualize the results of our method, the SA approach, and their combination in Figure 6 to directly
illustrate how our method alleviates drifting when integrated into sparse attention.

7 CONCLUSION

We propose FastCar, a framework to accelerate AR video generation on the edge. We show that the
similarity across adjacent frames correlates with attentivity and is independent with model depths. We
then introduce a replay strategy that reuses cached MLP outputs from the previous frame to reduce
computation. Furthermore, the DRS design is adopted to improve resource utilization and inference
speed on FPGAs. Results show that our method outperforms SA approaches and complements them
with more than 2.1× speedup, enabling better scalability for high-resolution, long-duration video
generation. In future work, we plan to extend our framework to a broader range of model families.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The proposed framework is developed on top of auto-regressive video generation models and leverages
the reuse of MLP outputs to reduce computation. The theoretical analysis supporting the similarity
of MLP outputs across adjacent frames correlates with the attentivity is provided in the paper. All
hardware metrics, including latency and power efficiency, are empirically evaluated on real devices.
The full codebase and implementation details will be released publicly upon acceptance of the paper.

LLMS USAGE STATEMENT

We report that LLMs were used only for stylistic editing of the manuscript text. All scientific content,
analysis, and conclusions remain the sole work of the authors.

REFERENCES

Haoge Deng, Ting Pan, Haiwen Diao, Zhengxiong Luo, Yufeng Cui, Huchuan Lu, Shiguang Shan,
Yonggang Qi, and Xinlong Wang. Autoregressive video generation without vector quantization.
arXiv preprint arXiv:2412.14169, 2024.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive KV cache compression for LLMs. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=uNrFpDPMyo.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Jian Han, Jinlai Liu, Yi Jiang, Bin Yan, Yuqi Zhang, Zehuan Yuan, Bingyue Peng, and Xiaobing Liu.
Infinity: Scaling bitwise autoregressive modeling for high-resolution image synthesis, 2024. URL
https://arxiv.org/abs/2412.04431.

Yefei He, Feng Chen, Yuanyu He, Shaoxuan He, Hong Zhou, Kaipeng Zhang, and Bohan Zhuang.
Zipar: Accelerating auto-regressive image generation through spatial locality. arXiv preprint
arXiv:2412.04062, 2024.

Yefei He, Yuanyu He, Shaoxuan He, Feng Chen, Hong Zhou, Kaipeng Zhang, and Bohan
Zhuang. Neighboring autoregressive modeling for efficient visual generation. arXiv preprint
arXiv:2503.10696, 2025.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale
pretraining for text-to-video generation via transformers. arXiv preprint arXiv:2205.15868, 2022.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing
Wu, Qingyang Jin, Nattapol Chanpaisit, Yaohui Wang, Xinyuan Chen, Limin Wang, Dahua Lin,
Yu Qiao, and Ziwei Liu. VBench: Comprehensive benchmark suite for video generative models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.

Siyu Jiao, Gengwei Zhang, Yinlong Qian, Jiancheng Huang, Yao Zhao, Humphrey Shi, Lin Ma,
Yunchao Wei, and Zequn Jie. Flexvar: Flexible visual autoregressive modeling without residual
prediction. arXiv preprint arXiv:2502.20313, 2025.

Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Hao Jiang, Nan Zhuang, Quzhe Huang, Yang Song,
Yadong Mu, and Zhouchen Lin. Pyramidal flow matching for efficient video generative modeling.
arXiv preprint arXiv:2410.05954, 2024.

10

https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://arxiv.org/abs/2412.04431

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Bosung Kim, Kyuhwan Lee, Isu Jeong, Jungmin Cheon, Yeojin Lee, and Seulki Lee. On-device
sora: Enabling diffusion-based text-to-video generation for mobile devices. arXiv preprint
arXiv:2502.04363, 2025.

Dan Kondratyuk, Lijun Yu, Xiuye Gu, José Lezama, Jonathan Huang, Grant Schindler, Rachel
Hornung, Vighnesh Birodkar, Jimmy Yan, Ming-Chang Chiu, et al. Videopoet: A large language
model for zero-shot video generation. arXiv preprint arXiv:2312.14125, 2023.

Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
et al. Hunyuanvideo: A systematic framework for large video generative models, 2024. URL
https://arxiv.org/abs/2412.03603.

Chengxuan Li, Di Huang, Zeyu Lu, Yang Xiao, Qingqi Pei, and Lei Bai. A survey on long video
generation: Challenges, methods, and prospects. arXiv preprint arXiv:2403.16407, 2024a.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. SnapKV: LLM knows what you are looking for before
generation. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024b. URL https://openreview.net/forum?id=poE54GOq2l.

Bin Lin, Yunyang Ge, Xinhua Cheng, Zongjian Li, Bin Zhu, Shaodong Wang, Xianyi He, Yang Ye,
Shenghai Yuan, Liuhan Chen, et al. Open-sora plan: Open-source large video generation model.
arXiv preprint arXiv:2412.00131, 2024a.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
llm compression and acceleration. In MLSys, 2024b.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan Zhuang. Minicache: Kv
cache compression in depth dimension for large language models. arXiv preprint arXiv:2405.14366,
2024.

Jun Liu, Shulin Zeng, Li Ding, Widyadewi Soedarmadji, Hao Zhou, Zehao Wang, Jinhao Li, Jintao
Li, Yadong Dai, Kairui Wen, Shan He, Yaqi Sun, Yu Wang, and Guohao Dai. Flightvgm: Efficient
video generation model inference with online sparsification and hybrid precision on fpgas. In
Proceedings of the 2025 ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, FPGA ’25, pp. 2–13, New York, NY, USA, 2025. Association for Computing Machinery.
ISBN 9798400713965. doi: 10.1145/3706628.3708864. URL https://doi.org/10.1145/
3706628.3708864.

Zhuoyan Luo, Fengyuan Shi, Yixiao Ge, Yujiu Yang, Limin Wang, and Ying Shan. Open-magvit2:
An open-source project toward democratizing auto-regressive visual generation. arXiv preprint
arXiv:2409.04410, 2024.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. In Advances in Neural Information Processing Systems, 2023.

Andrew Melnik, Michal Ljubljanac, Cong Lu, Qi Yan, Weiming Ren, and Helge Ritter. Video
diffusion models: A survey. Transactions on Machine Learning Research, 2024. ISSN 2835-8856.
URL https://openreview.net/forum?id=rJSHjhEYJx. Survey Certification.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating generative
large language model serving with tree-based speculative inference and verification. arXiv preprint
arXiv:2305.09781, 2023.

Xuefei Ning, Zinan Lin, Zixuan Zhou, Zifu Wang, Huazhong Yang, and Yu Wang. Skeleton-
of-thought: Prompting LLMs for efficient parallel generation. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=mqVgBbNCm9.

William Peebles and Saining Xie. Scalable diffusion models with transformers. arXiv preprint
arXiv:2212.09748, 2022.

11

https://arxiv.org/abs/2412.03603
https://openreview.net/forum?id=poE54GOq2l
https://doi.org/10.1145/3706628.3708864
https://doi.org/10.1145/3706628.3708864
https://openreview.net/forum?id=rJSHjhEYJx
https://openreview.net/forum?id=mqVgBbNCm9
https://openreview.net/forum?id=mqVgBbNCm9

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xiangyu Peng, Zangwei Zheng, Chenhui Shen, et al. Open-sora 2.0: Training a commercial-level
video generation model in $200k. arXiv preprint arXiv:2503.09642, 2025.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Isaac Rehg. Kv-compress: Paged kv-cache compression with variable compression rates per attention
head, 2024. URL https://arxiv.org/abs/2410.00161.

Xuan Shen, Peiyan Dong, Lei Lu, Zhenglun Kong, Zhengang Li, Ming Lin, Chao Wu, and Yanzhi
Wang. Agile-quant: Activation-guided quantization for faster inference of llms on the edge. In
AAAI, 2024.

Xuan Shen, Zhao Song, Yufa Zhou, Bo Chen, Yanyu Li, Yifan Gong, Kai Zhang, Hao Tan, Jason
Kuen, Henghui Ding, et al. Lazydit: Lazy learning for the acceleration of diffusion transformers.
In AAAI, 2025a.

Xuan Shen, Zhao Song, Yufa Zhou, Bo Chen, Jing Liu, Ruiyi Zhang, Ryan A. Rossi, Hao Tan, Tong
Yu, Xiang Chen, Yufan Zhou, Tong Sun, Pu Zhao, Yanzhi Wang, and Jiuxiang Gu. Numerical
pruning for efficient autoregressive models. Proceedings of the AAAI Conference on Artificial
Intelligence, 39(19):20418–20426, Apr. 2025b. doi: 10.1609/aaai.v39i19.34249. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/34249.

Benjamin Spector and Chris Re. Accelerating llm inference with staged speculative decoding. arXiv
preprint arXiv:2308.04623, 2023.

Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
Autoregressive model beats diffusion: Llama for scalable image generation. arXiv preprint
arXiv:2406.06525, 2024a.

Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
Autoregressive model beats diffusion: Llama for scalable image generation. arXiv preprint
arXiv:2406.06525, 2024b.

Yao Teng, Han Shi, Xian Liu, Xuefei Ning, Guohao Dai, Yu Wang, Zhenguo Li, and Xihui Liu. Ac-
celerating auto-regressive text-to-image generation with training-free speculative jacobi decoding.
arXiv preprint arXiv:2410.01699, 2024.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need.
arXiv preprint arXiv:2409.18869, 2024a.

Yuqing Wang, Shuhuai Ren, Zhijie Lin, Yujin Han, Haoyuan Guo, Zhenheng Yang, Difan Zou,
Jiashi Feng, and Xihui Liu. Parallelized autoregressive visual generation. arXiv preprint
arXiv:2412.15119, 2024b.

Wenming Weng, Ruoyu Feng, Yanhui Wang, Qi Dai, Chunyu Wang, Dacheng Yin, Zhiyuan Zhao,
Kai Qiu, Jianmin Bao, Yuhui Yuan, Chong Luo, Yueyi Zhang, and Zhiwei Xiong. Art•v: Auto-
regressive text-to-video generation with diffusion models. arXiv preprint arXiv:2311.18834,
2023.

Yecheng Wu, Zhuoyang Zhang, Junyu Chen, Haotian Tang, Dacheng Li, Yunhao Fang, Ligeng
Zhu, Enze Xie, Hongxu Yin, Li Yi, et al. Vila-u: a unified foundation model integrating visual
understanding and generation. arXiv preprint arXiv:2409.04429, 2024.

12

https://arxiv.org/abs/2410.00161
https://ojs.aaai.org/index.php/AAAI/article/view/34249
https://ojs.aaai.org/index.php/AAAI/article/view/34249

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Haocheng Xi, Shuo Yang, Yilong Zhao, Chenfeng Xu, Muyang Li, Xiuyu Li, Yujun Lin, Han Cai,
Jintao Zhang, Dacheng Li, et al. Sparse videogen: Accelerating video diffusion transformers with
spatial-temporal sparsity. arXiv preprint arXiv:2502.01776, 2025.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. SmoothQuant:
Accurate and efficient post-training quantization for large language models. In Proceedings of the
40th International Conference on Machine Learning, 2023a.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv, 2023b.

Desai Xie, Zhan Xu, Yicong Hong, Hao Tan, Difan Liu, Feng Liu, Arie Kaufman, and Yang Zhou.
Progressive autoregressive video diffusion models. arXiv preprint arXiv:2410.08151, 2024.

Zhen Xing, Qijun Feng, Haoran Chen, Qi Dai, Han Hu, Hang Xu, Zuxuan Wu, and Yu-Gang Jiang.
A survey on video diffusion models. ACM Computing Surveys, 57(2):1–42, 2024.

Jing Xiong, Gongye Liu, Lun Huang, Chengyue Wu, Taiqiang Wu, Yao Mu, Yuan Yao, Hui Shen,
Zhongwei Wan, Jinfa Huang, et al. Autoregressive models in vision: A survey. arXiv preprint
arXiv:2411.05902, 2024.

Ruyi Xu, Guangxuan Xiao, Haofeng Huang, Junxian Guo, and Song Han. Xattention: Block sparse
attention with antidiagonal scoring. arXiv preprint arXiv:2503.16428, 2025.

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin Jiang, Linjun Yang, Rangan Majumder, and
Furu Wei. Inference with reference: Lossless acceleration of large language models. arXiv preprint
arXiv:2304.04487, 2023.

Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, , et al. Cogvideox: Text-to-video diffusion
models with an expert transformer. arXiv preprint arXiv:2408.06072, 2024.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun Zhou,
Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all. arXiv
preprint arXiv:2412.20404, 2024.

Junchen Zhu, Huan Yang, Wenjing Wang, Huiguo He, Zixi Tuo, Yongsheng Yu, Wen-Huang Cheng,
Lianli Gao, Jingkuan Song, Jianlong Fu, et al. Mobilevidfactory: Automatic diffusion-based social
media video generation for mobile devices from text. In Proceedings of the 31st ACM International
Conference on Multimedia, pp. 9371–9373, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A ADDITIONAL RESULTS

A.1 DETAILED RESULTS FOR VBENCH

We provide the detailed scores of VBench in Table 3 and Table 4. Our method better maintains
the generation quality than SA methods. Specifically, on the VBench, when increasing the sparsity,
unlike SA method with a significant drop on most of subtasks, our method keeps high scores close to
the dense model on most subtasks under various sparsity.

Table 3: Detailed VBench scores.

Method Replay Local Overall Subject Background Temporal Motion Dynamic Aesthetic Imaging
Ratio Size Consistency Consistency Consistency Flickering Smoothness Degree Quality Quality

Dense / / 27.9% 87.8% 94.6% 95.8% 94.9% 59.4% 57.4% 58.8%

Sparse
Attn.

/ 16 28.0% 71.9% 88.0% 84.5% 84.8% 100.0% 54.2% 59.1%
/ 32 27.9% 66.8% 86.2% 82.5% 82.3% 100.0% 54.2% 59.0%
/ 64 27.7% 67.4% 86.3% 84.6% 84.4% 100.0% 54.0% 58.0%
/ 128 27.5% 63.7% 85.1% 84.4% 84.3% 99.7% 52.9% 57.2%
/ 256 27.8% 82.7% 92.8% 92.5% 92.4% 94.4% 55.9% 56.8%

Ours

10% / 27.7% 86.2% 94.0% 95.9% 94.6% 57.8% 57.0% 57.5%
20% / 27.9% 86.7% 93.7% 95.5% 94.7% 57.5% 56.9% 57.4%
30% / 27.9% 85.7% 93.4% 95.1% 94.4% 52.8% 57.0% 57.1%
40% / 27.9% 87.1% 93.7% 95.0% 94.9% 35.6% 57.2% 57.5%
50% / 27.9% 88.2% 94.1% 95.1% 95.0% 20.6% 57.7% 57.8%
60% / 27.9% 89.3% 94.2% 94.9% 95.2% 12.8% 57.9% 58.0%
70% / 28.1% 89.4% 94.1% 94.4% 95.0% 11.4% 58.2% 58.3%
80% / 28.2% 88.7% 93.8% 93.7% 94.4% 23.3% 58.2% 58.5%

Table 4: Detailed VBench scores.

Method Replay Local Object Multiple Human Color Spatial Scene Appearance Temporal
Ratio Size Class Objects Action Relationship Style Style

Dense / / 76.7% 30.8% 74.8% 82.0% 37.6% 42.6% 24.7% 25.0%

Sparse
Attn.

/ 16 67.8% 20.5% 81.8% 81.7% 41.2% 37.3% 24.6% 24.9%
/ 32 65.7% 19.0% 83.2% 80.0% 37.2% 35.0% 24.5% 24.8%
/ 64 61.9% 17.2% 81.8% 77.6% 30.9% 33.7% 24.5% 25.2%
/ 128 50.1% 12.0% 78.8% 73.4% 19.9% 32.6% 24.3% 25.1%
/ 256 68.1% 26.6% 80.4% 76.7% 31.8% 38.9% 24.5% 25.3%

Ours

10% / 74.9% 33.7% 76.8% 78.6% 42.2% 40.4% 24.7% 24.9%
20% / 74.0% 34.0% 76.0% 78.9% 41.0% 40.6% 24.7% 25.1%
30% / 74.4% 32.8% 75.8% 78.0% 39.8% 40.8% 24.8% 25.1%
40% / 76.5% 31.0% 73.8% 76.1% 40.9% 40.6% 24.7% 25.2%
50% / 77.1% 34.3% 74.0% 76.8% 42.7% 42.0% 24.8% 25.2%
60% / 77.6% 36.0% 75.4% 79.2% 43.5% 42.2% 24.8% 25.3%
70% / 77.9% 36.3% 79.0% 79.2% 43.8% 42.6% 24.8% 25.3%
80% / 77.9% 36.3% 75.4% 77.3% 44.9% 42.3% 24.7% 25.4%

A.2 DETAILED ABLATION RESULTS FOR THRESHOLD DISTRIBUTION

We provide full results for the ablation of threshold distribution in Table 5. We observe that consistent
threshold achieves better performance with lower LPIPS and higher VBench score than inconsistent
thresholds, which verifies the effectiveness of Remark 4.7 discussed in Section 4.4.

Inconsistent Thresholds. The experimental results in Figure 4 include both consistent threshold
and inconsistent threshold settings. However, we emphasize that the inconsistent threshold setting
used in our experiment is not a truly adaptive thresholding strategy. In our setup, the inconsistent
thresholds were manually assigned across layers according to the replay ratio distributions as shown
in Figure 5. This configuration mimics an uneven thresholding scheme but was designed to maintain
the same overall replay ratio as the consistent threshold baseline, allowing for a controlled comparison.
Although they are inconsistent, they are still fixed, and not optimal or adaptive.

A genuinely adaptive thresholding mechanism, which dynamically adjusts thresholds based on
token importance (e.g., derived from attention score distributions), may potentially lead to better

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

performance than consistent threshold. Our work focus on exploring the temporal redundancy in
MLP modules using a plug-and-play cache replay strategy with consistent threshold simplifying
deployments and achieving better performance. We leave the promising direction to explore more-
advanced attention-aware adaptive thresholds as our future work.

Performance of Inconsistent Thresholds. In Figure 4 (left), we observe that according to the LPIPS
score for the inconsistent thresholds, the performance initially improves as the replay ratio increases,
and eventually degrades at very high replay levels. We highlight that since inconsistent thresholds are
not optimal or adaptive as discussed above, we still recommend to use consistent threshold with better
performance. This trend of inconsistent thresholds can be explained by the fact that our proposed
method helps reduce temporal drifting in the generated videos, as discussed in Section 6.4.

More specifically, moderate replaying of MLP outputs introduces temporal consistency across frames,
which helps suppress frame-to-frame inconsistencies and improves perceptual similarity. This effect
is visually evident in Figure 6, where our method exhibits minimal drifting compared to sparse
attention-based baselines, which suffer from severe drift artifacts. Furthermore, when our method is
combined with sparse attention, it can help mitigate the drifting effects introduced by sparse attention,
leading to improved overall visual coherence in the generated videos.

However, as the replay ratio becomes too large, over-replaying leads to excessive reuse of stale
information, which degrades generation quality. Thus, there exists an optimal replay ratio where
replay enhances consistency without sacrificing content fidelity, explaining the observed trend in
LPIPS.

A.3 DETAILED ABLATION RESULTS FOR THRESHOLD VALUES

We provide full results for the ablation of threshold values in Table 6. When τ ≤ −2.5, if we
continue to decrease τ , the generation quality does not further degrade while higher sparsity with
faster inference is achieved, demonstrating the robustness of FastCar. Additionally, we observe that
the AR video generation model achieves the highest replay ratio of 87% when τ ≈ −8, indicating
that only 13% of the MLP modules are actually required during the generation process.

A.4 FULL RESULTS FOR ADDITIONAL ANALYSIS

We provide full results for the combination of the sparse attention method and our method in Table 7.
The results show that our method significantly boosts the performance of SA method through the
straightforward combination. This validates the effectiveness of our method as a complementary
enhancement to existing SA approaches.

Table 5: Full results for the ablation of the threshold distribution.

Threshold Replay PSNR SSIM LPIPS VBench Score
Distribution Ratio ↑ ↑ ↓ Total Quality Semantic

Consistent 10% 18.57 53.32 27.31 73.4% 75.5% 65.2%
Inconsistent 10% 16.73 46.63 32.94 71.8% 73.7% 64.3%

Consistent 20% 17.94 51.01 27.57 73.2% 75.3% 65.1%
Inconsistent 20% 16.30 45.05 33.60 71.7% 73.3% 65.4%

Consistent 30% 17.87 50.29 28.02 72.4% 74.3% 64.7%
Inconsistent 30% 16.67 45.39 31.96 72.5% 74.0% 66.5%

Consistent 40% 17.68 50.14 28.15 71.8% 73.0% 67.2%
Inconsistent 40% 17.34 48.61 30.65 71.8% 73.6% 64.5%

Consistent 50% 17.85 50.11 28.08 71.5% 72.7% 66.6%
Inconsistent 50% 17.65 49.94 29.40 71.5% 73.0% 65.4%

Consistent 60% 17.85 50.55 28.72 71.4% 72.7% 66.2%
Inconsistent 60% 17.79 49.55 28.56 71.3% 72.5% 66.5%

Consistent 70% 17.86 50.18 28.79 71.2% 72.3% 66.9%
Inconsistent 70% 17.68 48.84 29.39 71.1% 72.4% 65.9%

Consistent 80% 17.71 49.01 29.50 71.5% 73.0% 65.6%
Inconsistent 80% 17.59 48.06 30.01 71.3% 72.5% 66.3%

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: Full results for the ablation of the threshold values.

Threshold Replay PSNR SSIM LPIPS VBench Score
Values Ratio ↑ ↑ ↓ Total Quality Semantic

0 3.96% 19.71 57.66 24.14 73.7% 75.7% 65.8%
-0.5 9.13% 18.61 53.49 27.27 73.6% 75.6% 65.5%
-1 17.32% 17.84 50.49 29.22 73.0% 75.1% 64.6%

-1.5 27.81% 17.31 48.39 30.85 72.6% 74.5% 64.7%
-2 40.92% 17.38 48.84 30.45 71.9% 73.6% 65.2%

-2.5 54.55% 17.76 50.30 29.05 71.4% 72.7% 65.8%
-3 66.78% 17.87 50.42 28.69 71.3% 72.5% 66.3%

-3.5 76.20% 17.76 49.42 29.26 71.3% 72.6% 66.2%
-4 82.41% 17.65 48.51 29.83 71.4% 72.7% 66.2%
-8 87.49% 17.60 48.50 30.09 71.5% 72.9% 66.0%

-16 87.49% 17.60 48.04 30.09 71.5% 72.9% 66.0%

Table 7: Full results for the combination of the sparse attention method and our method.

Method Threshold Replay Local PSNR SSIM LPIPS VBench Score TFLOPs Latency Power
Value Ratio Size ↑ ↑ ↓ Total Quality Semantic ↓ (s) ↓ Effi. ↑

Dense / / / - - - 74.1% 76.4% 65.0% 31.79 689.71 1.47

Ours
+

Sparse
Attn.

-1 17.72% 16 12.96 29.57 55.13 60.8% 61.6% 57.8% 28.05 497.35 2.03
-2 46.11% 16 14.38 36.14 47.50 64.7% 66.5% 57.5% 23.69 427.75 2.36
-3 70.23% 16 16.95 45.72 34.25 70.5% 72.0% 64.9% 19.81 356.35 2.84
-4 83.85% 16 17.27 46.49 32.37 71.6% 73.1% 65.7% 17.87 331.29 3.05

Ours
+

Sparse
Attn.

-1 17.72% 32 13.25 31.58 53.77 61.2% 61.9% 58.2% 28.07 499.79 2.02
-2 46.11% 32 14.43 36.81 47.18 65.0% 66.6% 59.0% 23.71 430.18 2.35
-3 70.23% 32 16.94 46.02 34.09 70.8% 72.3% 64.9% 19.83 358.78 2.82
-4 83.85% 32 17.27 46.75 31.96 71.9% 73.4% 65.9% 17.89 333.73 3.03

Ours
+

Sparse
Attn.

-1 17.72% 64 13.25 31.90 54.32 60.0% 60.9% 56.5% 28.10 504.60 2.00
-2 46.11% 64 14.41 36.83 47.72 64.6% 66.2% 58.4% 23.74 435.00 2.33
-3 70.23% 64 16.88 45.87 34.60 70.4% 71.8% 64.7% 19.86 363.60 2.78
-4 83.85% 64 17.27 46.70 32.09 71.6% 73.1% 65.5% 17.92 338.55 2.99

Ours
+

Sparse
Attn.

-1 17.72% 128 13.14 31.63 55.02 59.1% 60.3% 53.9% 28.16 514.00 1.97
-2 46.11% 128 14.44 37.20 47.80 64.2% 65.9% 57.6% 23.80 444.40 2.28
-3 70.23% 128 16.89 46.02 34.77 70.0% 71.5% 63.9% 19.92 373.00 2.71
-4 83.85% 128 17.29 46.79 32.10 71.7% 73.3% 65.7% 17.98 347.95 2.91

Ours
+

Sparse
Attn.

-1 17.72% 256 15.22 40.77 44.61 67.7% 70.0% 58.7% 28.28 531.87 1.90
-2 46.11% 256 15.78 43.05 40.25 68.9% 71.1% 60.1% 23.92 462.27 2.19
-3 70.23% 256 17.21 47.63 32.94 70.7% 72.2% 64.8% 20.04 390.87 2.59
-4 83.85% 256 17.44 47.57 31.27 71.8% 73.3% 65.7% 18.10 365.82 2.76

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B ADDITIONAL VISUALIZATION

We visualize the results of our method under different replay ratios. Our method generates high
quality videos.

Waves rolling on the sea.
Ba

se
lin

e
!=

−1
17

%
 R

ep
la

y
!=

−2
40

%
 R

ep
la

y
!=

−4
82

%
 R

ep
la

y

A cat wearing sunglasses sitting on a chair.

Ba
se

lin
e

!=
−1

17
%

 R
ep

la
y

!=
−2

40
%

 R
ep

la
y

!=
−4

82
%

 R
ep

la
y

A dog wearing sunglasses on the beach.

Ba
se

lin
e

!=
−1

17
%

 R
ep

la
y

!=
−2

40
%

 R
ep

la
y

!=
−4

82
%

 R
ep

la
y

Figure 7: Additional visualization with threshold τ = −1,−2,−4.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C DETAILED PROOFS

C.1 PROOF OF THEOREM 4.4

Proof of Theorem 4.4. Step 1 (Score exactly matches cosine similarity). By Definition 4.3, st,i =
⟨qj , kj−⟩/

√
d, where qj = xjWQ and kj− = xj−WK . Under Assumption (3), ∥qj∥2 = ∥kj−∥2 = 1,

so st,i (up to
√
d scaling) equals the cosine similarity:

cos θ(qj , kj−) = ⟨qj , kj−⟩.
Thus, by the Law of Cosines for unit vectors,

∥qj − kj−∥22 = 2(1− st,i).

Step 2 (Logit gap from query gap). The attention logits satisfy

ℓj = qjK
⊤, ℓj− = qj−K

⊤,

thus

∥ℓj − ℓj−∥2 = ∥(qj − qj−)K
⊤∥2

≤ ∥K∥2∥qj − qj−∥2,
where K = XWK is the stacked key matrix. Since K = XWK , we have

∥K∥2 ≤ ∥X∥2∥WK∥2 ≤
√
nMΛ,

where ∥X∥2 ≤
√
nM since each ∥xj∥2 ≤ M .

Step 3 (Attention output is Lipschitz). Since softmax and value projection are Lipschitz continuous
(see Shen et al. (2025a)), there exists Lattn > 0 such that

∥Attn(X)j,: − Attn(X)j−,:∥2 ≤ Lattn∥ℓj − ℓj−∥2 ≤ C1∥qj − qj−∥2,
where C1 = Lattn

√
nMΛ.

Step 4 (Bounding query–key difference). Since

qj− = xj−WQ, kj− = xj−WK ,

it follows that
∥kj− − qj−∥2 = ∥xj−(WK −WQ)∥2 ≤ γ∥xj−∥2 ≤ γM.

By triangle inequality,

∥qj − qj−∥2 ≤ ∥qj − kj−∥2 + ∥kj− − qj−∥2 ≤
√
2(1− st,i) + γM.

Step 5 (Final bound). Thus,

∥Attn(X)j,: − Attn(X)j−,:∥2 ≤ C1

(√
2(1− st,i) + γM

)
≤ C

(√
1− st,i + γM

)
,

after absorbing constants into C > 0. This completes the proof.

C.2 PROOF OF THEOREM 4.5

Proof of Theorem 4.5. Define

Zj = Attn(X)j,: +Xj,:, Zj− = Attn(X)j−,: +Xj−,:.

Then
Yj,: = MLP(Zj), Yj−,: = MLP(Zj−).

By Lipschitz continuity of MLP,

∥Yj,: − Yj−,:∥2 ≤ L∥Zj − Zj−∥2.
Expanding Zj − Zj− and applying triangle inequality,

∥Zj − Zj−∥2 ≤ ∥Attn(X)j,: − Attn(X)j−,:∥2 + ∥Xj,: −Xj−,:∥2.
The claim follows.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C.3 PROOF OF THEOREM 4.6

Proof of Theorem 4.6. By Theorem 4.5,

∥Yj,: − Yj−,:∥2 ≤ L
(
∥Xj,: −Xj−,:∥2 + ∥Attn(X)j,: − Attn(X)j−,:∥2

)
.

By Theorem 4.4,

∥Attn(X)j,: − Attn(X)j−,:∥2 ≤ C ′ (√1− st,i + γM
)
.

Substituting gives

∥Yj,: − Yj−,:∥2 ≤ C
(
∥Xj,: −Xj−,:∥2 +

√
1− st,i + γM

)
,

where C = L(1 + C ′) absorbs constants.

19

	Introduction
	Related Work
	Deep Insights for Auto-Regressive Video Generation
	FastCar Framework Design
	Auto-Regressive Video Generation
	Key Modules
	Cache Attentive Replay for Fast Generation (FastCar)
	Theoretical Similarity Analysis

	Hardware Design
	Experimental Results
	Experimental Setup
	Main Results
	Ablation Study
	Additional Analysis

	Conclusion
	Additional Results
	Detailed Results for VBench
	Detailed Ablation Results for Threshold Distribution
	Detailed Ablation Results for Threshold Values
	Full Results for Additional Analysis

	Additional Visualization
	Detailed Proofs
	Proof of Theorem 4.4
	Proof of Theorem 4.5
	Proof of Theorem 4.6

