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Abstract: Recent advances in Behavior Cloning (BC) have led to strong perfor-
mance in robotic manipulation, driven by expressive models, sequence modeling
of actions, and large-scale demonstration data. However, BC faces significant
challenges when applied to heterogeneous datasets, such as visual shift with differ-
ent camera poses or object appearances, where performance degrades despite the
benefits of learning at scale. This stems from BC’s tendency to overfit individual
demonstrations rather than capture shared structure, limiting generalization. To
address this, we introduce Contrastive Learning via Action Sequence Supervision
(CLASS), a method for learning behavioral representations from demonstrations
using supervised contrastive learning. CLASS leverages weak supervision from
similar action sequences identified via Dynamic Time Warping (DTW) and opti-
mizes a soft InfoNCE loss with similarity-weighted positive pairs. We evaluate
CLASS on 5 simulation benchmarks and 3 real-world tasks to achieve competi-
tive results using retrieval-based control with representations only. Most notably,
for downstream policy learning under significant visual shifts, Diffusion Policy
with CLASS pre-training achieves an average success rate of 75%, while all other
baseline methods fail to perform competitively.

Keywords: Robot Manipulation, Action Chunking, Supervised Contrastive
Learning, Vision Representation Learning

1 Introduction

Behavior Cloning (BC) has demonstrated strong performance in robotic manipulation by leveraging
expressive models and action sequence modeling. Efforts to improve BC have focused on large-scale
dataset collection [1, 2] and advances in model architectures [3, 4, 5] to better capture the complex
distribution of demonstration data. However, expressive policies often struggle to generalize, es-
pecially when trained on demonstrations collected under heterogeneous conditions—that is, where
the policy must adapt to additional properties not present in homogeneous data, such as changes in
viewpoint or object appearance [6, 7]. This suggests a tendency to overfit individual actions and a
limited ability to capture shared structure across demonstrations [8].

To address this, we propose Contrastive Learning via Action Sequence Supervision (CLASS),
a framework for learning behaviorally grounded representations from demonstrations using super-
vised contrastive learning. Rather than relying on direct action prediction, CLASS supervises the
encoder by aligning observations based on action sequence similarity, measured via Dynamic Time
Warping (DTW), encouraging states that lead to similar future behaviors to cluster in the latent
space. This weak supervision enables the model to capture shared structure across demonstrations,
improving robustness to variations in visual conditions such as camera pose and object appearance.
The learned representation supports both retrieval-based inference and policy fine-tuning, and con-
sistently improves performance across both homogeneous and heterogeneous data settings. Across
a range of simulated and real-world robotic manipulation tasks, CLASS achieves strong gains over
behavior cloning and representation learning baselines, demonstrating its ability to learn more trans-
ferable and composable behavioral representations.
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Figure 1: Comparison between Behavior Cloning (BC) and Contrastive Learning via Action
Sequence Supervision (CLASS). (A) With homogeneous demonstrations with consistent visual
conditions, BC learns a compact representation with high transferability. (B) With heterogeneous
demonstrations such as varying viewpoints, BC overfits to individual state-action pairs and gen-
eralizes poorly. (C) CLASS addresses this by attracting states with similar action sequences and
repelling those with dissimilar ones, with a soft supervised contrastive learning objective to learn
more robust and composable representations.

Our contributions are as follows: 1) We introduce CLASS, a method for learning robust visual
representations from demonstrations by aligning observations based on action sequence similarity.
2) We develop a novel scheme for soft contrastive learning that focuses on weighting similar action
sequences according to their DTW-based similarity. 3) We show that CLASS outperforms behavior
cloning and representation learning baselines across a range of simulated and real-world robotic
manipulation tasks, particularly under heterogeneous visual conditions.

2 Related Work

Action Sequence Modeling (Action Chunking) Real-world physical tasks demand executing ac-
tion sequences that are both temporally coherent and sensitive to system dynamics. However, tra-
ditional policy learning methods that rely on the Markov assumption and produce actions one step
at a time have struggled with long-horizon tasks with compounding errors [9, 10]. Recent research
addresses these issues by casting policy learning as a sequence modeling problem, an approach
that has demonstrated strong empirical performance across domains [11, 12]. For behavior cloning
in robot manipulation, Diffusion Policy (DP) [3] incorporates a diffusion framework with action
chunking to achieve the state-of-the-art performance. Action Chunking Transformer [4] uses tem-
poral ensembling between previously generated actions to further improve temporal consistency. In
addition, VQ-BET [5] leverages Vector Quantization [13] to discretize continuous action chunks.
These discrete representations are then integrated into the Behavior Transformer [14], leading to
improvements in both inference speed and policy performance. While the previous action chunking
methods rely on strong supervision via behavior cloning, our method focuses on using the similarity
between action sequences as a contrastive signal for representation learning.

Contrastive Representation Learning Contrastive learning has been applied across different fields
to extract informative representations from high-dimensional inputs. In reinforcement learning (RL),
it is often used to encourage representations that capture task-relevant dynamics and improve sam-
ple efficiency. For example, [15] contrasts observations based on whether a sampled state is likely
to occur in the future relative to a given anchor state. In imitation learning, time-contrastive objec-
tives [16, 17, 18] within each demonstration are applied to learn visual representations for down-
stream robot manipulation tasks. In trajectory prediction, [19] proposes a hierarchical contrastive
approach that uses high-level action information to bring similar behaviors closer in the embedding
space. In autonomous driving, [20] uses pseudo-labeled actions from videos to identify positive
pairs in a binary manner to perform contrastive learning on vision representations. More broadly,
recent works [21, 22, 23, 24] explore soft contrastive learning by assigning continuous similarity-
based weights, providing finer-grained learning signals that better capture inter-sample relationships.
Unlike prior contrastive methods in robotics that focus on learning temporal relationships within in-
dividual demonstrations, our method composes similar behaviors across different demonstrations.



In addition, whereas most previous soft contrastive learning methods focus on assigning similarity-
based weights to negative pairs, we focus on soft similarity weighting between positive pairs. This
design choice aligns well with the goal of imitation learning and retrieval-based policy learning
methods like VINN [25], where the quality of the learned representation depends on how well sim-
ilar demonstrations are clustered.

3 Problem Statement

We address imitation learning by reformulating it as a behaviorally grounded representation learning
problem. The goal is to learn an embedding space where observations with similar future behaviors
are mapped close together, while dissimilar ones are separated. Instead of relying on direct action
supervision, we propose to learn the embedding space via a soft supervised contrastive objective
guided by trajectory-level action similarity.

Specifically, given a dataset of demonstration trajectories consisting of observation and action se-
quences, we define O; = {o;—71,-1,...,0i-1,0:;} and Ay = {a¢,a¢41,...,0i47,-1}, Where Ty,
is the number of past observations and 7T}, is the number of future actions. We seek to learn an en-
coder fy that maps the observation sequence O; to a latent representation z = f»(Oy¢). The learned
embedding should exhibit two key properties: (i) observation sequences that lead to behaviorally
similar trajectories should be mapped close together in the latent space, and (ii) sequences from
behaviorally dissimilar trajectories should be mapped farther apart.

4 Method

In this section, we describe the components of our method. CLASS consists of two stages: (a) pre-
computing pairwise action sequence similarities from demonstration data, and (b) representation
learning via supervised contrastive learning with a Soft InfoNCE loss.

4.1 Action Sequence Similarity

The first stage of our approach involves measuring similarity between action sequences using Dy-

namic Time Warping (DTW) [26, 27], which accounts for temporal misalignment between time-
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sequences, respectively, the DTW distance is computed as follows:

DTW(AT, Af) =min Y lag’ — ag,,
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serves as its own anchor, augmented with random cropping and Gaussian noise. During training,
the pre-defined positive pairs, identified via DTW, are pulled together, while all other samples are
pushed apart. The encoder fy is composed of a ResNet-18 [30] backbone and a spatial softmax
layer, as shown in Fig. 2. Given an input batch with data augmentation, we encode it into z using
fo to obtain the L2-normalized image latents {2;}2 |, where 2; = z;/||2;||2 and |22 = 1. The
pairwise similarity matrix S € RP*5 is computed as S;; = 2,/ 2; /7 where 7 > 0 is a temperature
hyperparameter. We define a soft positive weight w;; € [0, 1] between anchor i and candidate j,
computed via DTW-based similarity:

1 — CDF(DTW(i,j)), if (4,7) is a positive pair
W;i =
’ 0, otherwise,

where CDF denotes the empirical cumulative distribution function computed over all anchor-positive
DTW distances. The soft InfoNCE loss is defined as a weighted log-softmax over positive pairs:

B B
1 Zj:l W4 1ngij
ECL = _E E - B

where p;; = exp( Sij ) (D

B ) B
o1 2oje1 Wi 2k=1, ki €XP(Sik)

Eq. (1) generalizes InfoNCE by weighting positives using soft DTW-based scores w;;. This ap-
proach enables graded similarity supervision by allowing positive pairs to contribute proportionally
to their action sequence similarity. For additional discussion about pre-computation, see Appendix
B.

4.3 Training

We use two training schemes. In the first, the encoder is trained solely with the representation
learning objective (e.g., the inner block in Fig. 2) without a policy head. In the second scheme, we
follow a two-stage protocol: the encoder is first pretrained with the representation objective, and the
encoder is fine-tuned with a policy head using the behavior cloning (BC) loss. Additional training
details are available in Appendix C.

4.4 Policy Evaluation

We evaluate policies under two different settings. In the parametric setting, actions are gener-
ated directly by the learned policy network, following standard policy inference procedures. The
parametric evaluation requires training a policy head. In the non-parametric setting, we extend the
approach of Pari et al. [25] to action sequence rollout. At inference time, the most recent observation
is encoded into a latent space using the vision encoder, and the k,, nearest neighbors are retrieved
from the training data using cosine similarity between representations. Their corresponding action
sequences are then ensembled using a similarity-weighted average as follows:

. Zf;"l exp (¢;) - A®

A— cos_sim(2, ()

% y with C; =
o exp (¢) Thn

where A represents the action sequence rolled out during evaluation, c; denotes the cosine similarity-
based weight, Z denotes the L2-normalized latent vector obtained by concatenating proprioception
and image features, 7y, is a temperature hyperparameter, and (3(*), A(i)) are ith nearest latent ob-
servation and action sequence pair in the dataset. The non-parametric setting relies solely on the
learned representation and does not require a policy head.

4.5 Theoretical Analysis

The proposed method leverages similarity in action sequences to guide representation learning. As
a theoretical justification, we show the relationship between action sequence supervision and the
learned latent representation when optimizing the proposed loss function.



Proposition 1. L, optimizes the KL divergence between the distribution of soft positive weights
w;; of actions and the distribution of corresponding similarities in the latent representation.

See Appendix A for the proof. This proposition establishes the relationship between the similarities
in the latent representation space and the sequence-level similarities between action trajectories.
When the representation is learned, the error is bounded by KL plus a constant factor determined by
the quantile threshold we set for the positive pairs.

S Experiments

We conduct extensive experiments in both simulation and real-world tasks. Our investigation ad-
dresses the following questions.

RQ1 Can CLASS learn representations that achieve competitive retrieval-based policy perfor-
mance in both homogeneous and heterogeneous settings?

RQ2 Does the representation learned with CLASS transfer to downstream policy learning
through fine-tuning with BC?

RQ3 How well does CLASS generalize across different settings, including different action
spaces and multi-task learning?

5.1 Tasks and Datasets

We evaluate CLASS on 5 simulated and 3 real-robot tasks. Each task represents a class of robotic
manipulation tasks. See Appendix D for environment details.

* Square is a task from robomimic [31], where the robot places a square nut into a rod, evaluating
the basic pick-and-place skill. We use 200 proficient human demonstrations.

* Three-Stack is a high-equivariance stacking task from MimicGen [32], where the robot stacks
three colored blocks in a specified order. The dataset contains 1000 expert demonstrations with
the default reset distribution.

» Aloha-Transfer [4] involves a bi-dexterous manipulation task rendered from a top-down view
using the Aloha robot. The dataset includes 100 demonstrations. Unlike the other manipula-
tion tasks, it uses bi-robot joint position control, allowing us to assess if CLASS generalizes to
different action spaces.

* LIBERO-Object [33] is a multi-task benchmark consisting of ten object-centric pick-and-place
tasks, each paired with a natural language instruction encoded using a pretrained BERT [34].
Each task includes 50 human-teleoperated demonstrations.

* Push-T [3] requires the robot to push a T-shaped object into a designated goal on a 2D plane,
evaluating a contact-rich setting. A rollout is considered successful if the intersection-over-union
between the object and the goal region exceeds 90%. The dataset has 206 human demonstrations.

» Two-Stack is a real-world equivariant task where a red cube is stacked on top of a green cube.
200 demonstrations are collected.

* Mug-Hang is a real-world precise placement task where the robot picks up a mug placed at a
random pose and hangs it onto a mug rack. 200 demonstrations are collected.

» Toaster-Load is a real-world task where the robot picks up a piece of soft bread and places it into
a toaster slot at a random pose. 200 demonstrations are collected.

5.2 Baselines

We follow the training and evaluation procedures described in Sections 4.3 and 4.4. Baselines are
categorized into two groups: representation learning methods for pre-training the vision encoder,
and policy classes for fine-tuning with different policy head architectures and BC objectives. We
include results for different combinations of the two groups and report them in Table 1.

Representation Learning

* Random, ImageNet, R3M: ResNet-18 trained from scratch, or initialized with ImageNet-1K
[35] or R3M [17] pre-trained weights.
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Figure 3: Heterogeneous data collection setups. (A) Fixed camera (Fixed-Cam), commonly
used in conventional behavior cloning pipelines. (B) Random static camera (Rand-Cam), where
the camera pose is randomly sampled at the start of each episode but remains fixed during the
episode. (C) Dynamic camera (Dyn-Cam), where a randomly initialized camera moves during the
episode with a random direction while maintaining a consistent look-at target. (D) Fixed object
color (Fixed-Color), commonly assumed in vision-based behavior cloning tasks. (E) Random ob-
ject color (Rand-Color), where the color of the objects is randomly varied in each demonstration.
We compare setups (A) and (C) for simulated tasks, (D) and (E) for the Push-T task, and evaluate
under setup (B) for real-world tasks. See Appendix E for additional details.

* TCN: A single-view time-contrastive network [16].

VINN: A Bootstrap Your Own Latent (BYOL) [36] pre-training on demonstrations [25].
* DynaMo: In-domain pre-training with inverse and forward dynamics model [37].

» EquiVar: Rotation group-equivariant encoder that improves data efficiency for DP [38].

Policy Class When fine-tuning with the BC objective, we consider two policy classes:

* MLP: A CNN-based policy head with a direct supervised learning objective.
* DP (Diffusion Policy): A CNN-based policy head trained with diffusion objective [3].

5.3 Heterogeneous Data Collection Setup

Behavior cloning methods are commonly trained on demonstrations collected from a consistent
viewpoint, often using a static, fixed camera—a condition that humans do not require. While this
assumption simplifies the learning problem by enforcing visual consistency, it breaks down at scale,
where data naturally spans diverse camera setups and collection conditions [2]. Even minor varia-
tions in camera pose between demonstrations have been shown to substantially degrade performance
[6, 7]. To evaluate generalization under such visual shifts, we construct settings where each demon-
stration begins from a randomized camera pose, with optional movements during the episode to
introduce additional viewpoint variation. For the Push-T task, we randomize object and background
colors to test robustness to appearance shifts, as shown in Fig. 3. To evaluate compositional general-
ization across demonstrations, we do not apply rotation or color augmentations during training. For
additional details, see Appendix E.

5.4 Simulation Results

Table 1 summarizes the simulation performance of CLASS compared to baseline methods. CLASS
consistently improves success rates across all tasks and policy classes: Across the static and dynamic
settings, it achieves 85% success rate with MLP and 91% with Diffusion Policy (DP) on average,
significantly outperforming the best baselines, which reach only 63% and 77%, respectively. Larger
gains are observed under dynamic camera and random object color setups, where CLASS achieves
mean success rates of 76% (MLP) and 85% (DP), compared to 32% and 57% from the best baselines.
In the non-parametric (Rep-Only) setting, CLASS achieves success rates comparable to parametric
DP, despite using no policy head, with only a 9% drop in mean success rate with an average of 83%
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Rep-Only

ImageNet 0.20 0.00 0.00 0.00 0.26 0.02 0.82 0.59 0.00 0.00
R3M 0.04 0.00 0.02 0.00 0.28 0.00 0.57 0.56 0.00 0.00
TCN 0.53 0.07 0.28 0.01 0.17 0.00 0.90 0.92 0.04 0.02
VINN 0.13 0.04 0.00 0.00 0.13 0.02 0.92 0.62 0.00 0.01
DynaMo 0.01 0.00 0.00 0.00 0.11 0.09 0.58 0.57 0.00 0.02
CLASS 0.93 0.70 0.94 0.77 0.91 0.56 0.99 0.99 0.85 0.66
MLP

ImageNet | 0.61/0.91 0.11/0.18 | 0.31/091 0.05/0.36 | 0.25/1.00 0.10/0.33 | 0.99/1.00 0.60/0.46 | 0.66/0.87  0.21/0.27
CLASS 0.88/0.95 0.67/0.62 | 0.62/0.93 0.61/0.80 | 0.72/1.00 0.52/0.78 | 1.00/0.99 1.00/0.96 | 0.82/0.89  0.69/0.64

DP
Random 0.45/0.85 0.06/0.06 | 0.53/0.86 0.05/0.38 | 0.32/1.00 0.11/0.15 | 0.99/0.91 0.57/0.04 | 0.62/0.89  0.04/0.16
ImageNet | 0.72/0.91 0.09/0.21 | 0.86/0.94 0.07/0.61 | 0.37/1.00 0.09/0.20 | 1.00/0.97 0.64/0.19 | 0.70/0.92  0.15/0.53

R3M 0.42/0.88 0.04/0.14 | 0.36/0.84 0.02/0.36 | 0.35/1.00 0.10/0.09 | 0.99/0.94 0.60/0.12 | 0.65/0.89  0.00/0.05
TCN 0.78/091 0.17/0.34 | 0.85/0.93 0.12/0.71 | 0.52/1.00 0.11/0.33 | 0.98/0.99 0.95/0.96 | 0.69/0.96  0.33/0.49
VINN 0.57/0.87 0.07/0.07 | 0.63/0.88 0.01/0.22 | 0.39/1.00 0.08/0.15 | 0.92/0.99 0.57/0.06 | 0.66/0.93  0.13/0.06
DynaMo 0.39/0.80 0.07/0.05 | 0.48/0.81 0.02/0.28 | 0.82/0.88 0.17/023 | 0.96/0.99 0.46/0.40 | 0.67/0.90  0.06/0.24
EquiVar 0.77/0.94 0.03/0.08 | 0.43/0.95 0.06/0.36 - - 0.99/0.99 0.61/0.10 - -

CLASS 0.91/0.95 0.64/0.68 | 0.89/0.97 0.76/0.93 | 0.83/0.99 0.61/0.95 | 1.00/0.99 1.00/0.97 | 0.81/0.96 0.69/0.70

Table 1: Performance comparison between CLLASS and baselines on simulation tasks. We
report the maximum task success rate across 50 randomly initialized scenes except for LIBERO-
object which tests each task 20 times, averaged over three seeds. All methods are evaluated ten times
throughout training at regular intervals. Each cell shows non-parametric / parametric evaluation
when applicable. For Rep-Only settings, only non-parametric results are reported. All results use
a single global-view camera. Whenever applicable, ImageNet pre-training weights are used for
representation learning. For additional discussions and evaluations, see Appendix F.

across all tasks. Finally, strong performance on Aloha-Transfer and LIBERO-Object demonstrates
that CLASS generalizes effectively to different action spaces and multi-task learning scenarios.

5.5 Design Choice Analysis for CLASS

We evaluate the impact of key design choices in CLASS, including soft contrastive learning, the
use of a sequence-level similarity metric, the choice of DTW for measuring action similarity, and
the positive pair selection threshold. Fig. 4(a) compares soft contrastive learning against hard con-
trastive learning, where the soft positive weights w;; > 0 in Equation 1 are replaced with uniform
weights of 1. Critically, it is shown that removing the graded similarity signals leads to significant
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Figure 4: Design Choice Analysis: Success rate of Fixed-Cam (blue) and Dynamic-Cam (orange)
for Square task with Rep-Only as a function of (a) hard or soft contrastive learning, (b) size of DTW
sliding window, (c) similarity metric, and (d) the quantile K (%) value for positive sample selection.
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Figure 6: Real-world task execution. The initial scenes and the subtasks are visualized.

Two-Stack (real) Mug-Hang (real) Toaster-Load (real)
Method Grasped Stacked Grasped Hung Grasped Loaded

ImageNet-DP  0.15/0.30 0.00/0.10 0.15/0.05 0.00/0.00 0.95/1.00 0.00/0.05
CLASS-DP 0.70/0.80 0.45/0.60 0.75/0.80 0.55/0.65 1.00/1.00 0.35/0.55

Table 2: The performance of CLASS pre-trained DP for real-world tasks in comparison to ImageNet
pre-trained DP. We report the success rate for each subtask over 20 randomly initialized scenes and
camera placements. Each cell shows the results using the non-parametric / parametric evaluations.

degradation of performance. Fig. 4(b) shows that increasing the sliding window size for calculating
DTW between action sequences improves success rates up to 7' = 16, indicating the importance of
using sequence-level similarity. As shown in Fig. 4(c), DTW outperforms L2 distance in both static
and dynamic settings. Finally, varying the positive selection quantile in Fig. 4(d) reveals a tradeoff:
small thresholds limit available information, while large thresholds lead to more false positives. See
Appendix C for implementation details.

5.6 Real-World Experiment / Results

We design three real-world manipulation tasks as described
in Section 5.1, using a Franka Research 3 robot and a single
RealSense D435 camera capturing 720p RGB images at 30
FPS. The images are cropped and resized to 256 x 256 x 3.
A proficient expert teleoperates the robot using a VR con-

. . . . . ' Random | y
troller. To introduce visual variation, the camera is mounted Cam. Pose

on a tripod and randomly repositioned after each demonstra-
tion, as illustrated in Fig. 5. For evaluation, we compare Dif-
fusion Policy pre-trained on ImageNet (ImageNet-DP) with
CLASS-DP, which uses representations learned via the CLASS objective. All results use a single
global-view camera.

Figure 5: Visualization of camera
poses for the Mug-Hang task.

Table 2 summarizes performance on real-world tasks. CLASS-DP outperforms ImageNet-DP across
all three tasks, achieving on average 37 % and 45 % higher subtask success and final task completion
rates, respectively, in the non-parametric setting. In the parametric setting, the differences increase to
41% and 55%, respectively. These results demonstrate that CLASS generalizes effectively to real-
world settings and improves policy performance when learning from demonstrations with varying
viewpoints.

6 Conclusion

This paper presents CLASS, a novel framework for imitation learning in robotic manipulation based
on soft contrastive learning with an action sequence similarity metric. We confirm that BC suffers
from its strong end-to-end supervision mechanism, especially when learning from heterogeneous
datasets. In contrast, CLASS learns representations that map observations with similar trajectory-
level behaviors closer in feature space, enabling robust representation learning in both homogeneous
and heterogeneous settings. Across 5 simulated and 3 real-world tasks, CLASS consistently outper-
forms baselines in both retrieval-based evaluations and downstream policy fine-tuning. Future direc-
tions include extending CLASS to large-scale policy learning and cross-embodiment learning with
a unified action space, leveraging diverse offline data to enable few-shot learning, and investigating
its effectiveness when learning from suboptimal or noisy demonstrations.



Limitations

While CLASS demonstrates strong performance across a range of tasks and settings, several limi-
tations remain. First, CLASS requires additional pre-computing pairwise DTW distances to define
positive pairs, which has a quadratic cost in the number of data points. However, CLASS’s faster
convergence during training can make it more computationally efficient in repeated training runs.
For more detailed analysis, see Appendix G. Second, the use of suboptimal or noisy demonstrations
is not addressed in this work. Lastly, the current scope of the work is limited to vision modality.

Failure modes On real-world tasks, the most common failure mode involves the robot proceeding
to the next subtask region without completing the current one. For example, in the Mug-Hang task,
the policy occasionally fails to grasp the mug but still moves toward the hanger with the gripper
closed. During non-parametric evaluations, we observe less fine-grained control, particularly on
high-precision tasks such as Toaster-Load, where it fails to accurately insert the bread into the slot.
Additionally, when the camera is positioned outside the pre-defined region used during data collec-
tion, performance degrades significantly, indicating that the policy still has a limited extrapolative
generalization capability to unseen viewpoints.
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A Proof of Proposition 1

Let g;; = w;;/Z where Z = Zle wj; is the partition function. We can write the instance-wise
proposed loss as follows:

cL = B
Zj:l Wij

Let P and @ be the probability distribution of p;; and ¢;;. We can rewrite the instance-wise loss as

B B B

Gy 2aj—1Wijlogpi Wi ij

I = - =) logpi; = Y gijlog = — g;;log i,
= A = Dij N——

constant

lg) = Dxr(Q||P) + const

This is the KL divergence of the predicted softmax similarity from the soft positive assignments.

B DTW-based Similarity Calculation

To compute DTW between action sequences, we use aeon [27], a Python toolkit that supports effi-
cient DTW computation for multivariate time-series data. For the Aloha-Transfer environment, each
action sequence is 8-dimensional, comprising 7D joint positions and a 1D gripper action. In Push-T,
actions are 2-dimensional, controlling the absolute 2D target position. For the other environments
that use end-effector pose control, each action sequence is 10-dimensional, consisting of 3D posi-
tion, 6D orientation, and 1D gripper action. To balance the influence of position and orientation,
orientation values are scaled by a factor of 0.5 prior to the DTW calculations.

To enable consistent interpretation of DTW distances, we modeled the empirical cumulative dis-
tribution function (CDF) from a set of pairwise DTW values. In our experiments, we precomputed
these distances for all anchor-positive pairs. As noted in the main text, this approach is more efficient
than constructing a full N x NN distance matrix and was feasible for the datasets used.

However, we recognize that this pre-computation method is not fully scalable. While it avoids the
full distance matrix, the computational and memory cost still scales quadratically with the number of
anchor-positive pairs, becoming prohibitive for large datasets. For these scenarios, an online DTW
computation strategy offers a potential alternative. This method would estimate the CDF from a
data sample and compute pairwise distances on-the-fly within training batches. This bypasses the
need for pre-computation and large-scale storage, as the computational overhead is tied to the much
smaller batch size, thereby extending the scalability of our method to larger datasets.

C Implementation Details and Hyperparameters

C.1 Representation Learning

We focus on training the vision encoder for representation learning. Except for Equivariant Diffu-
sion Policy, all methods use a ResNet-18 backbone followed by a spatial softmax layer. All batch
normalization layers are replaced with group normalization layers.

Name Value
Gradient clip norm 0.5
Scheduler Cosine
Warmup steps 500
Use EMA True
EMA Power 0.75

Table 3: Shared hyperparameters for representation learning methods.

Contrastive Learning via Action Sequence Supervision (CLASS)
Table 4 lists the shared training and evaluation hyperparameters used across all tasks. T}, indicates
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the rollout horizon for action sequences during evaluation. Table 5 shows task-specific settings for
Top K (%) similarity thresholds for positive sample selection and number of pre-training epochs.
Epochs are tuned based on dataset size and validation performance.

Name Value
Pre-computing

DTW Horizon 16
Training

Optimizer LARS [39]
Batch size 160
Learning rate 0.5
Momentum 0.9
Weight decay le=©
T 0.05
Non-parametric Evaluation

Ty 16
knn 64

Table 4: Shared hyperparameters for CLASS.

Task Top K (%) Epochs Tnn
Square 2.5 50 0.01/0.02
Three-Stack 1.0 10 0.01/0.02
Aloha-Transfer 2.5 50 0.01/0.02
LIBERO-Object 2.5 50 0.01/0.02
Push-T 1.5 100 0.001 /0.002
Two-Stack 2.5 50 0.02
Mug-Hang 25 50 0.02
Toaster-Load 2.5 50 0.02

Table 5: Task-specific hyperparameters for CLASS. Homogeneous and heterogeneous settings are
distinguished in the 7, values in each cell.

Time Contrastive Network (TCN)

We use the single-view TCN implementation from https://github.com/kekeblom/tcn. The model is
trained for 200 epochs with a batch size of 64 and a learning rate of le—*, where each batch consists
of 64 triplets of images used for contrastive learning.

Visual Imitation through Nearest Neighbors (VINN)
We follow the BYOL implementation from https://github.com/lucidrains/byol-pytorch. The model
is trained for 200 epochs with a batch size of 64 and a learning rate of 1e~%.

Dynamics pre-training for Visuo-Motor Control (DynaMo)
We follow the procedures from the original paper. The encoder is based on a ResNet-18 backbone
and is trained for 40 epochs with a batch size of 64 and a learning rate of le~%.

C.2 Policy Learning

For all experiments, we choose reduced the learning rate for the vision encoder to better preserve
the pre-trained representation. The learning rate for the vision encoder is 1e~® and the learning rate
for the policy head is 1e™4.

MLP
The architecture is based on a U-Net structure adapted from the CNN-based Diffusion Policy (DP),
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Name Value

Epochs 40
Batch size 64
Obs. context 5

Forward dynamics dropout 0.0
Transition latent dim 32

Table 6: Hyperparameters for DynaMo.

modified to support action chunking with direct action sequence supervision. Table 7 includes the
policy hyperparameters.

Diffusion Policy
We adopt the CNN-based model architecture from Chi et al. [3]. Table 8 includes diffusion-specific
hyperparameters for regular DP and Equivariant DP.

Equivariant Diffusion Policy (EquiVar)

We focus on the equivariant vision encoder as a replacement of the ResNet-18 encoder, following
the official implementation from https://github.com/pointW/equidiff. The vision encoder is trained
from scratch for policy training. The model architecture is modified to accept input images of size
224 x 224 x 3.

Name Value
Training

Batch size 64
Weight decay le=6
Betas 0.9, 0.99)
Gradient clip norm 0.5
Scheduler Cosine
Warmup steps 500
Use EMA True
EMA Power 0.75
T, 1

T 16

Parametric Evaluation
T, 12

Table 7: Shared policy hyperparameters for MLP and DP.

Name Value
Training

Model Type DDIM [40]
Prediction Type epsilon
Denoising Step 16

Parametric Evaluation
Denoising Step 16

Table 8: Diffusion-specific hyperparameters.
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Task Training Epochs Fine-tuning Epochs

Square 500 100
Three-Stack 100 20
Aloha-Transfer 500 400
LIBERO-Object 500 100
Push-T 500 250
Two-Stack 500 100
Mug-Hang 500 100
Toaster-Load 500 100

Table 9: Task-specific hyperparameters for policy head training. Training Epochs denote the number
of epochs used to train the BC policy head for the baseline methods. Fine-tuning Epochs indicate the
number of epochs used to fine-tune the policy head after CLASS pre-training. CLASS pre-training
enables faster convergence speed during fine-tuning and thus requires less number of epochs.

D Environments Details

All environments use position-based control. For tasks involving control of the end-effector pose,
orientation is represented using the continuous 6D representation proposed by Zhou et al. [41].

Task Name Observation Modalities Image Resolution Action Space Max Steps
Simulation

Square Agent-View Image, End-Effector Pose, Joint Position, Gripper State 256 x 256 x 3 End-Effector Position 400
Three-Stack  Agent-View Image, End-Effector Pose, Joint Position, Gripper State 256 x 256 x 3 End-Effector Position 600
Aloha-Transfer Top-Down Image, Joint Position, Gripper State 256 x 256 x 3 Bi-manual Joint Position 600
Libero-Object Agent-View Image, End-Effector Pose, Joint Position, Gripper State 256 x 256 x 3 End-Effector Position 400
Push-T Top-Down Image, Agent Position 256 x 256 x 3 2D Position 500
Real-world

Two-Stack Agent-View Image, End-Effector Pose, Joint Position, Gripper State 256 x 256 x 3 End-Effector Position 600
Mug-Hang Agent-View Image, End-Effector Pose, Joint Position, Gripper State 256 x 256 x 3 End-Effector Position 600
Toaster-Load ~ Agent-View Image, End-Effector Pose, Joint Position, Gripper State 256 x 256 x 3 End-Effector Position 600

Table 10: Observation modalities, image resolution, action space, and maximum episode length for
each task.

E Heterogeneous Data Illustration

E.1 Simulation Camera Placement

For LIBERO-Object, Square, and Three-Stack tasks, we implement a moving camera by attaching
it to a mocap body and updating its pose at every environment step. The camera is initialized at
a random position on a sphere of radius 1.0 centered at a fixed look-at target. The azimuth 6 is
sampled from [0, 27), and the elevation ¢ from [7/3, 27 /3], ensuring relatively horizontal views.
The orientation is set to point at the target using a look-at transform with world up-vector [0, 0, 1].
At the start of each episode, a direction vector is sampled from = € [-1,1], y € [-0.01,0.3],
then projected onto the tangent plane at the initial camera position. The camera moves along this
direction by rotating the position vector around the perpendicular axis, with a fixed arc step of 1.5¢ =4
per timestep. The orientation is updated each step to remain focused on the target.

For the ALOHA-TRANSFER task, we simulate camera motion by introducing a consistent per-
episode image rotation on the top-down view. At the start of each episode, an initial rotation angle
is uniformly sampled from [0°,360°), and a fixed rotation direction of either +0.5° or —0.5° per
timestep is chosen. At each step, the image is rotated accordingly.

E.2 Object/Background Color

For the PUSH-T task, we introduce per-episode color variation by randomly sampling RGB values
for the background, goal region, tee block, and agent. The background color is constrained to avoid
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strong red tones. To ensure visibility, the goal, tee, and agent colors are sampled to be visually
distinct from the background and from each other, based on a minimum Euclidean distance in RGB
space. Colors remain fixed throughout each episode but vary across episodes.

E.3 Real-world Camera Placement

Two-Stack Mug-Hang Toaster-Load

Figure 7: Top-down views from 25 randomly selected episodes, illustrating the distribution of real-
world camera placements across the three real-world tasks.

Figure 7 shows top-down views from 25 randomly sampled episodes across the three real-world
tasks. The variation in camera placement reflects the heterogeneity in data collection setups.

F Additional Experiments

To evaluate the compositionality of the learned representation and to challenge methods to general-
ize without additional observations—such as a wrist-view camera—we constrain our original exper-
imental setup to a single global view camera and apply image augmentations excluding color and
rotational transformations. In this section, we demonstrate that incorporating a wrist-view camera
or applying additional task-aligned data augmentations—both expected to benefit Behavior Cloning
(BC)—also enhances CLASS performance. Crucially, CLASS still retains its advantages over BC
under these conditions.

F.1 Additional Wrist-View Camera

In Figure 9(a), we evaluate adding a wrist-mounted camera for the Dynamic Camera Square task.
The wrist camera provides a consistent viewpoint that is invariant to the global camera placement
variations tested in our main study, which is expected to boost performance for behavior cloning.

With the wrist camera view added, the performance of fine-tuned policy with CLASS pre-training in-
creases the from 68% to 90% success rate, while BC improves from 21% to 66%. This demonstrates
that while providing a stable, ego-centric view does help both methods, CLASS still significantly
outperforms BC.

F.2 Additional Color Augmentation

Figure 9(b) examines color augmentation on the Rand-Color Push-T task, where object colors are
randomized to test visual robustness. We apply random hue, saturation, and brightness shifts during

17



training, which is expected to improve generalization by reducing overfitting to specific color pat-
terns. With color augmentation, the fine-tuned policy with CLASS pre-training increases from 72%
to 90% success rate, while BC improves from 53% to 78%. This confirms that while data augmen-
tation benefits both approaches, CLASS pre-training continues to provide substantial performance
gains even when visual robustness is enhanced through augmentation.

Adding Wrist Camera

0.8 W CLASS
[N .
2 CLASS (+ Wrist Cam)
< o0.6{ = BC
a . BC (+ Wrist Cam)
0.4
5 .
A 0.2

CLASS
Square
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BC

Adding Color Augmentation

B CLASS

CLASS (+ Color Aug)
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©
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Figure 8: Impact of adding wrist camera and task-aligned augmentations. (a) Success rates of the
Dynamic Camera Square task with and without adding the wrist camera. (b) Success rates of the
Random Color Push-T task with and without color augmentation during training. Both experiments
are reported using parametric evaluation with BC fine-tuned policies with and without CLASS pre-
training.

F.3 Benefits of ImageNet Pre-training for CLASS

In our paper, all representation methods utilize ImageNet pre-training whenever applicable. In this
section, we show the benefits of using ImageNet pre-trained weights for CLASS. We conduct an
ablation study where we compare the policy performance using CLASS pre-training with and with-
out ImageNet pre-trained Resnet-18 as initial weights for Square, Three-Stack, and Push-T tasks.
As shown in Figure 9, training from scratch leads to significant drops in success rates across all
three tasks. The performance drop is more pronounced in heterogeneous settings, including both
Dynamic Camera and Random Color settings. Most significantly, training from scratch for Ran-
dom Color Push-T task leads to 64% drop in performance in comparison to using the ImageNet
pre-trained weights.

Relative Performance Drop w/o ImageNet Weights

0
-2.9% -2.8% —— 26.7%
—201
-22.9%
—40+ Square
B Three-Stack
—60 Push-T
: : : : : -64.2%
Fixed- Dyn- Fixed- Dyn- Fixed- Rand-
Cam Cam Cam Cam Color Color

Figure 9: The relative performance drop when training from scratch instead of using ImageNet pre-
trained weights for CLASS pret-raining. The results are reported using non-parametric rollouts,
averaged over three seeds.

G Training Dynamics
Although pre-computation introduces additional computational overheads, CLASS benefits from
fast convergence during both pre-training and fine-tuning. CLASS pre-training converges much

faster than BC training from scratch, as shown in Figure 10 across different tasks. In addition, as
shown in Table 9, CLASS works with a fewer number of epochs during BC fine-tuning due to fast
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convergence rate for the policy learning, thanks to action-centric pre-training. This means that in
repeated training runs, CLASS becomes more computationally efficient than BC, where there are
multiple pre-training or fine-tuning attempts following a one-time pre-computation.
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Figure 10: Success Rate during Training for Dynamic Cam Square, Dynamic Cam Three Stack, and
Random Color Push-T Rasks. In this plot, CLASS utilizes non-parametric rollouts using the learned
representation, whereas BC uses diffusion policy head with parametric rollouts. CLASS requires
significantly less number of training steps than BC and is more compute-efficient in repeated training
runs.

H Scaling Law

Similar to BC, CLASS follows a scaling law with improved performance as the dataset size in-
creases. Larger datasets yield higher-quality and behaviorally-relevant positive pairs, thereby im-
proving the contrastive signal and learned representations. To illustrate this trend, we evaluate pol-
icy performance using 20, 50, 100, 200, 500, and 1000 demonstrations on the Three-Stack task, as
shown in Fig. 11. CLASS with non-parametric rollouts consistently outperforms BC with parametric
rollouts across different dataset sizes for both fixed and dynamic camera settings.
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Figure 11: Success rates on the Three-Stack task under varying dataset sizes (20—1000 demonstra-
tions). We compare CLASS pre-training and behavioral cloning (BC) from scratch under both fixed
and dynamic camera settings. CLASS consistently outperforms BC across all data regimes, demon-
strating its scalability with larger datasets.
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I Inference Time

Inference efficiency varies across policy classes. Representation-only methods avoid the overhead
of a policy head and rely solely on embedding retrieval, resulting in fast inference, especially for
small datasets. This makes them well-suited for high-frequency control. However, their inference
time scales with dataset size due to retrieval costs. We compare inference times across policy classes
to show these differences in Figure I. On average, Rep-Only methods achieve an inference time of
5.5 ms, compared to 7.3 ms for MLP and 84.4 ms for DP.
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Figure 12: Inference time across policy classes and simulation tasks, averaged over 100 runs on an
NVIDIA A40 GPU. Rep-Only methods are fastest on average but scale with dataset size due to the
retrieval process. MLP and DP have fixed inference costs, with DP being slower due to its iterative
denoising process. The dataset sizes for Square, Three-Stack, Aloha-Transfer, LIBERO-Object, and
Push-T are 30K, 254K, 40K, 75K, and 27K samples, respectively.

J Visualization of Representation

J.1 Latent Trajectory

We visualize latent trajectories for the Dynamic Camera Square task in Fig. 12 to assess represen-
tation quality. Models trained with standard behavioral cloning and with CLASS pre-training are
compared. CLASS learns representations where different demonstrations align and overlap in la-
tent space, indicating higher transferability. In contrast, the BC-trained representation shows little
overlap across demonstrations, suggesting poor generalization and less structured embeddings.
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Figure 13: Visualization of latent representations for the Dynamic Camera Square task using dif-
fusion policy trained with (left) a standard behavioral cloning objective from scratch and (right)
CLASS pre-training. Each colored spline represents an individual episode, with 20 episodes shown
per plot. The embeddings are projected using t-SNE with a perplexity of 100.

20



J.2 Nearest Neighbors

We additionally visualize nearest neighbors using CLASS-trained representations in Figure 14 and
compare to BC-trained representations in Figure 15. Specifically, for Square task with varying view-
points, it is observed that CLASS allows the representation from different viewpoints to be clustered
if the future expert action sequences match, whereas BC exhibits little variations in viewpoints be-
tween neighbors.
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Figure 14: Visualizations of top 8 nearest neighbors for Dynamic Camera Square task with CLASS
pre-trained policy. The nearest neighbors are retrieved using cosine similarity in the latent space.
It can be seen that similar environment scenes with varying viewpoints are identified as closest
neighbors.

PG 1

Anchor Sim: 0.995 Sim: 0.994 Sim: 0.993 Sim: 0.990 Sim: 0.990 Sim: 0.990 Sim: 0.988 Sim: 0.987

/' - - = =
™ P Py Py ‘l Nyt ‘l ‘l

Anchor Sim: 0.994 Sim: 0.993 Sim: 0.980 Sim: 0.978 Sim: 0.961 Sim: 0.958 Sim: 0.956 Sim: 0.955

Anchor Sim: 1.000 Sim: 0.999 Sim: 0.999 Sim: 0.998 Sim: 0.998 Sim: 0.997 Sim: 0.996 Sim: 0.995

Anchor Sim: 0.993 Sim: 0.989 Sim: 0.987 Sim: 0.981 Sim: 0.975 Sim: 0.946 Sim: 0.924 Sim: 0.919

P R S

Figure 15: Visualizations of top 8 nearest neighbors for Dynamic Camera Square task with BC
trained diffusion policy with ImageNet pre-trained weights. Unlike CLASS pre-trained policy, near-
est neighbors exhibit little variations in viewpoints.
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K Real Robot Experiments

We conduct real-world experiments using a Franka Research 3 robot with the UMI gripper [42].
Visual observations are captured by an Intel RealSense D435 camera mounted on a tripod, recording
RGB images at a resolution of 1280 x 720. These images are subsequently cropped and resized to
256 x 256 x 3. All experiments are executed on a single workstation equipped with an NVIDIA
RTX 4090 GPU. Detailed descriptions of initialization, subtasks, and task completion criteria are
provided below.

Two-Stack
* Initialized: The red and green cubes are randomly placed within a predefined 30 cm X
15 cm area.
* Grasped: The robot successfully picks up the red cube.
* Stacked: The red cube is placed stably on top of the green cube.

Mug-Hang

* Initialized: A mug is placed at a random pose on the table within a predefined 10 cm X
10 cm bounding box, with the handle visible from the agent’s view.
* Grasped: The robot successfully grasps the mug.

* Hung: The mug is hung by its handle on a horizontal rod of the mug tree.
Toaster-Load

* Initialized: A mock soft bread slice is placed vertically using a support handle. The toaster
is placed at a random orientation with a pre-defined position.
* Grasped: The robot successfully lifts the bread slice from the holder.

* Loaded: The bread is fully inserted into the toaster slot.
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Trajectory Rollout
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Figure 16: Visualizations of heterogeneous episodes in the simulation tasks. For all tasks except
Push-T, trajectories progress from left to right.
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Figure 17: Visualizations of successful evaluation rollouts for real-world tasks. Before each episode,
the camera is randomly placed to introduce the visual shifts.
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