
A Bayesian Approach to Data Point Selection

Xinnuo Xu†∗

Microsoft Research Cambridge
xinnuoxu@microsoft.com

Minyoung Kim†

Samsung AI Center Cambridge, UK
mikim21@gmail.com

Royson Lee
Samsung AI Center Cambridge, UK

royson.lee@samsung.com

Brais Martinez
Samsung AI Center Cambridge, UK

brais.mart@samsung.com

Timothy Hospedales
Samsung AI Center Cambridge, UK

University of Edinburgh, UK
t.hospedales@ed.ac.uk

Abstract

Data point selection (DPS) is becoming a critical topic in deep learning due to the
ease of acquiring uncurated training data compared to the difficulty of obtaining
curated or processed data. Existing approaches to DPS are predominantly based on
a bi-level optimisation (BLO) formulation, which is demanding in terms of memory
and computation, and exhibits some theoretical defects regarding minibatches.
Thus, we propose a novel Bayesian approach to DPS. We view the DPS problem
as posterior inference in a novel Bayesian model where the posterior distributions
of the instance-wise weights and the main neural network parameters are inferred
under a reasonable prior and likelihood model. We employ stochastic gradient
Langevin MCMC sampling to learn the main network and instance-wise weights
jointly, ensuring convergence even with minibatches. Our update equation is
comparable to the widely used SGD and much more efficient than existing BLO-
based methods. Through controlled experiments in both the vision and language
domains, we present the proof-of-concept. Additionally, we demonstrate that
our method scales effectively to large language models and facilitates automated
per-task optimization for instruction fine-tuning datasets.

1 Introduction

Practical machine learning efficacy is heavily dependent on the choice, quality and quantity of training
data, especially so in the case of neural networks that can easily fit every detail of the training set.
This leads to challenges from how to learn reliably with imbalanced data [22], noisy data, noisy labels
[46], and so on. Similarly there is often a key subset of data, which is most informative for a given
learning problem, but buried among a much larger set of less relevant data. If the most salient data
could be efficiently identified, learning could potentially be accelerated [15]. All these challenges are
only growing in the era of large scale training on web-scraped data, where curation and gold-standard
quality control are not feasible.

Data Point Selection (DPS) algorithms aim to address these challenges by filtering or re-weighting the
training data to reduce noise, imbalance, irrelevant background data and so on. The most established

∗Part of this work was completed while Xinnuo was affiliated with Samsung AI Center Cambridge, UK.
†Equal Contribution.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

family of approaches [19, 15, 41, 45, 62] to DPS falls under the bi-level optimization or meta-learning
umbrella, where one wraps the conventional learning problem with an outer loop that optimizes
the dataset itself, so as to maximise performance on some validation set. These methods vary in
the choice of their outer optimization variable (e.g., data point weights [41, 45, 19] vs mini-batch
sampler [15]), the method of computing meta-gradients (e.g., reverse mode differentiation [45, 62] or
reinforcement learning [15]), and the customization of their losses and other design parameters for
the different scenarios (e.g., label-noise [45, 41], etc). However, all the BLO approaches are quite
expensive in computation and/or memory, which limits their applicability to the most salient use case
of large models trained on large web data.

In this paper we revisit the DPS problem from the perspective of Bayesian learning. Rather than
constructing expensive nested optimization problems whose convergence is hard to analyse, we
treat it as a problem of inferring the joint posterior over the main neural network parameters and
instance-wise weights induced by a second weight-estimation neural network. This framework has
several advantages in terms of being more efficient and scalable than typical BLO competitors and
having a clear convergence guarantee. It is also able to address a variety of DPS-related problems –
from noise and imbalance to data curation – within a single framework.

Our empirical results present proof of concepts for all these capabilities on a variety of learning
tasks in vision and language. We also show a use case of automating Large Language Models
(LLMs) instruction fine-tuning (IFT) data curation for specific downstream tasks. The available
IFT datasets are large, diverse, and of varying quality. This means that a key activity for natural
language processing (NLP) researchers and developers is often finding the right composition of IFT
data sources to optimize particular use cases. Our framework can automatically resample and curate
the wide array of available auxiliary IFT data to optimize performance for each NLP task of interest.
To our knowledge, no BLO alternative has been demonstrated on billion-parameter scale LLMs. We
name our approach BADS (Bayesian Data Point Selection).3

2 Our Approach

2.1 Problem Setup

For the DPS problem, we assume that we are given two datasets: the train set Dt={zti}
Nt
i=1 and the

meta set Dm={zmi }
Nm
i=1. Each data point zi can be an input-target pair zi = (xi, yi) in the traditional

(class-)labeled data scenarios. But in the autoregressive generative model scenarios (e.g., LLM), zi is
simply a sequence of tokens in which the inputs and targets are rather implicitly defined (e.g., all the
tokens up until current time as input and the next token as target). We will use the notation l(zi; θ)
for the loss of the model θ on the data point zi, which must be well-defined in both scenarios.

The meta dataset Dm is considered as in-domain, meaning that the distribution of Dm matches that
of the downstream test task of interest. The size of Dm, denoted by Nm, is typically small, due to
the cost of curation/annotation processes in practice. The train dataset Dt consists of out-of-domain
samples, possibly noisy, imbalanced, and uncurated, but the size Nt is usually large. The goal of
DPS is to select a (soft weighted) subset of the train set Dt with the guidance of the meta set Dm, so
that the model trained on the selected train and meta dataset points performs well. Typical baselines
include training with the meta-set alone, or union of meta and train sets.

Perhaps one of the most widely adopted DPS techniques is the bi-level optimisation (BLO) formu-
lation of the problem [41, 58]. Letting wi (≥0) be the weight (or importance) variable associated
with the training data point zti , the main intuition is to find the weights w ∈ RNt

+ such that the model
θ trained with the weighted train data with weights w yields the best performance on the meta set.
More formally, this leads to the following BLO problem:

min
w∈RNt

+

Nm∑
j=1

l(zmj ; θ∗(w)) s.t. θ∗(w) = argmin
θ

Nt∑
i=1

wi ·l(zti ; θ). (1)

However, a critical drawback is that solving this difficult problem is costly in computation and/or
memory, and unrealible due the practical heuristics required. Typical BLO solutions to obtain the

3The code for this paper is available at https://github.com/XinnuoXu/BADS.

2

https://github.com/XinnuoXu/BADS

hypergradient dl/dω rely on approximate Hessian estimation or reverse mode differentiation with
few-step SGD approximation of the inner optimisation. Aside from cost, for practical neural network
implementations computed over minibatches, there is no theoretical guarantee for convergence.

2.2 (Our Approach) Bayesian Data Point Selection (BADS)

Figure 1: Graphical model for BADS.
Shaded nodes, representing curated
(Dm) and uncurated (Dt) data, are
evidence. Unshaded nodes, includ-
ing model θ and instance weights w,
are random variables.

We view the DPS problem from a completely different per-
spective, and tackle it via Bayesian learning. Our model’s
generative process, that is, the graphical model representation,
is depicted in Fig. 1. The main neural network model parame-
ters set θ is a random variable, which can generate data points
in the meta dataset Dm (precisely speaking, the backbone θ
generates the target part of each data point). To make use of
the train set Dt in an appropriate way, we constrain θ to follow
a prior distribution governed by the weighted train data with
weights w ∈ RNt

+ which are also random variables. Before
observing the meta set Dm, the weight vector w follows a
prior distribution p(w) – a specific distributional choice for p(w) will be discussed later. Given w and
Dt, our backbone θ has to be compatible with the weight data {(wi, z

t
i)}

Nt
i=1. This can be interpreted

as placing a weighted-data-driven prior on θ, more specifically,

(Weighted-data-driven prior) p(θ|w,Dt) ∝ p(θ) ·
Nt∏
i=1

p(wi, z
t
i |θ) (2)

where p(θ) is a base prior (e.g., 0-centered Gaussian that amounts to weight decay regularisation),
and p(wi, z

t
i |θ) can be defined from the loss, e.g., exp(−wi ·l(zti ; θ)), following the conventional

tricks [36, 25]. Then given θ, the meta data are generated following the likelihood defined as:

(Likelihood) p(Dm|θ) ∝
Nm∏
j=1

exp(−l(zmj ; θ)) (3)

The equations (2) and (3) fully constitute the prior and likelihood for our Bayesian model. Our
ultimate goal is to describe the distributions of θ and w after observing all evidences Dt and Dm,
which boils down to the posterior inference p(θ, w|Dt,Dm). Formally, we have:

(Posterior) p(θ, w|Dt,Dm) ∝ p(w) · p(θ|w,Dt) · p(Dm|θ) (4)

The detailed derivations for Eq. (4) can be found in Appendix A. However, it is widely known that
(4) does not admit any closed-form expressions. One main difficulty arises from the intractable
normalizing constant in (4).

Stochastic Gradient Langevin Dynamic Sampling. For computationally efficient posterior in-
ference, we adopt the stochastic-gradient MCMC technique, specifically the Stochastic Gradient
Langevin Dynamic (SGLD) sampling [55]. Applied to our model, we can obtain samples from the
posterior p(θ, w|Dt,Dm) by running the Langevin dynamic system (until convergence, i.e., mixing):

[θ, w] ← [θ, w] +
η

2
∇θ,w log p(θ, w|Dt,Dm) + ϵ

√
η, ϵ ∼ N (0, I) (5)

where η is a small (constant) step size. There are two critical benefits: i) Since we differentiate the
log-posterior, the difficult normalizing constant in (5) will disappear; ii) The update (5) is essentially
gradient descent with additive Gaussian noise, leading to a computationally efficient update.

Going one step further, even though the log-posterior involves the entire train data (and entire meta
data), it is shown in [55] that the stochastic-gradient version (SGLD) that replaces the whole batch
likelihood with a minibatched one, theoretically guarantees that the SGLD update converges to the
posterior samples. More specifically, the SGLD update equations (one for θ and the other for w) can
be written as follows:

θ ← θ +
η

2
∇θ

(
log p(θ)−Nt ·Ei∼Bt

[
wi ·l(zti ; θ)

]
−Nm ·Ej∼Bm

[
l(zmj ; θ)

])
+ ϵθ
√
η (6)

w ← w +
η

2
∇w

(
log p(w)−Nt ·Ei∼Bt

[
wi ·l(zti ; θ)

])
+ ϵw

√
η (7)

3

where Bt and Bm are minibatches from Dt and Dm, respectively, and ϵθ, ϵw ∼ N (0, I) are indepen-
dent Gaussian samples.

Repeating (6) and (7) for a sufficient amount of iterations (until we reach good mixing) leads us to
posterior samples (θ, w). There are several options to take these samples for a final model for test
prediction. One option is to collect latest M samples (either consecutive collection or thinning to
take every kth samples) from the iterations, and either take the average as posterior means or perform
full Bayesian treatment with the collected samples. Alternatively, we can just take the last single
iterate (θ, w) as a point representative for the posterior distribution. For simplicity, we take the latter
approach, which also works well empirically.

2.3 Interpretation and Benefits

Interpretation We discuss several intuitions and implications of our proposed approach (Eq. 6-7).
First, looking at the θ update Eq. (6), our model essentially updates θ in a way that it decreases the
loss on the combined data of the whole meta data points and the weighted train data points with the
current weights. This is a fairly intuitive strategy provided that the weights are properly determined.
Then the next question is how the weights are determined. If we inspect the w update (Eq. 7), and
take the gradient of the expected loss term with respect to w directly, we see that: i) those train
data points ztis with smaller losses at current backbone θ will get higher weights wis; ii) those train
data points ztis with larger losses at current backbone θ will get lower weights wis. This essentially
means that our model performs loss alignment for DPS – In the course of training/update, once the
backbone θ enters a good regime in the parameter space such that θ can assign (valid) low loss values
on the in-domain meta data points, then it starts putting high weights on those train data points that
have low losses under the current backbone. In other words, the model will assign high weights to
those train data points that are well-aligned with the meta data points in terms of loss.

Benefits over BLO Our Bayesian approach provides several benefits over BLO: (1) Efficiency.
Our SGLD is efficient so does not require computationally demanding Hessian computations like
implicit function theorem based methods (cf: [19]) or huge memory demand like reverse-mode
differentiation methods [41, 19]. (2) Sparsity. Our method straightforwardly achieves sparsity on
the w weights allowing efficient sample selection unlike [19]. (3) Reliability. BLO-based methods
rely on approximations (truncation, or Hessian approximations) for practical feasibility that make
finding optimal solutions unreliable. Our straightforward Bayesian approach has reliable convergence
properties thanks to being a standard application of SGLD.

Convergence of our SGLD algorithm In Appendix C we provide a theorem showing that our
SGLD algorithm converges to the true posterior. Our analysis is based on [64] where we make some
adjustments for our case.

2.4 Implementation Details

Choice of Priors For the base prior p(θ), i.e., the prior before being driven by the weighted data,
we adopt 0-mean Gaussian, which amounts to adding the weight decay regularisation for θ. For the
weight prior p(w), we have made a careful design effort to come up with a viable sparsity inducing
prior. Although encouraging sparsity in learned weights is ideal to avoid overfitting, during our initial
experiments we have found that most of the weights eventually tend to vanish to 0, which is not what
we actually want. We need to be able to impose both sparsity and a certain level of non-zero weights.
To this end, we first introduce a hyperparameter β (e.g., 0.01) for the target sparsity level that we
want to attain. Roughly saying, among the Nt training data points, we aim to select ⌊Nt ·β⌋. For the
(soft) weights, we impose

∑
i∈Dt

wi ≈ ⌊Nt ·β⌋, which can be encoded in the prior form as:

p(w) ∝ e−
(∑

i wi−⌊Nt·β⌋
)2

/2σ2

(8)

where σ controls the strength of the regularisation. One technical difficulty in directly plugging (8)
into the weight update (7) is that we have to load the whole {wi}Nt

i=1 in memory for backprop. To
avoid this issue, we use the following fact:∑

i∈Dt

wi ≈
∑
i∈Bt

wi + (Nt − |Bt|)·w̄ (9)

4

where w̄ represent historic running average of the entire weights. We basically build a computation
graph only for the first term of batch Bt weight sum, and regard the (historic) running average of the
entire weights as constant during backprop. After each SGLD iteration, we update the running weight
average with the new updated weights on the recent batch. We use the simple averaging scheme for
the running average. To approximate the average weight w̄ precisely, we only conduct the average
over the most recent savg step.

Introducing impact constants In the SGLD principle, we have the log-likelihood terms that are
proportional to the sizes of the datasets. In particular, we have Nt and Nm in (6). However, this
scheme does not properly capture our preference to the in-domain meta data set in contrast to the
noisy, out-of-domain train data set. To this end, we introduce the impact constants (hyperparameters)
in the update equations where we downweigh or upweigh the loss terms of train and meta sets.

Weight Network Instead of directly optimising individual weights wi, we can consider a weight
network, wi = w(zti ;ϕ), a neural network with parameters ϕ that takes the train data point zti as
input and returns its weight wi as output. We can then regard ϕ as random variables and the w update
equation can be modified accordingly for ϕ update straightforwardly. This weight network approach
can be useful for smoothing/regularising the output weights thanks to the smooth functional property
of neural networks. Furthermore, if one needs to supplement the train dataset with extra new train
samples after the model training, the learned weight network can be used for assigning weights
or selecting samples from the new set, without retraining the whole model from the scratch. The
posterior distribution similar to Eq. (4) is derived in full detail in Appendix B.

3 Experiments: Proof of Concept
In this section, we assess the effectiveness of the proposed BADS method in three critical scenarios
where DPS is essential: Data Balancing, Data Denoising, and Efficient Learning. We begin by
introducing the baseline systems and then present the experimental results for each of these scenarios.

3.1 Baselines

There are three types of DPS setups with different supervision signals:

• Unsupervised DPS selects data without the guidance of a held-out meta set [47, 42]. Instead, it is
guided by human-defined hypotheses, such as “challenging examples improve model performance”.
This approach aligns with curriculum learning. We include the online variant of AskLLM [42],
i.e. AskLLM-O, in our baseline comparisons. It selects examples from training set by querying a
pretrained OpenLLaMA 3B to obtain the sampling score for each training sample.4

• Self-supervised DPS selects data with the guidance of a held-out meta set. However, the meta
set does not share the same data distribution as the targeted test set [13, 4, 14, 49]. Typically, the
examples in the meta set are selected from the training set based on specific hypotheses, such as
“learnable examples enhance model performance”. We include two approaches in our baseline
comparisons: Contrastive Data Selection (CDS) [49] is tailored for data denoising. The algorithm
assigns weights to each data point in Dt according to the difference between the denoised and
the noisy log probability, predicted using a denoised and a noisy model trained on a clean dataset
and an uncurated dataset, respectively. These weights are then used to sample data points from
minibatches in the training of LM.5 Similar to CDS, ClassAct utilizes small proxy models trained
on a limited portion of Dt to calculate learnability scores for the remaining training data points.6

• Meta-set guided DPS selects data with the guidance of a small meta set that shares the same
distribution as the test set, aiming to train a model that excels specifically on the target test set.
The test set may encompass one or multiple downstream domains or tasks. This DPS is closely
related to meta learning, domain adaptation, and transfer learning. Current methods primarily rely
on Bilevel Optimization (BLO) for purposes such as data denoising [19, 37], data balancing [41],

4Since [47] showed that unsupervised DPS can amplify class imbalances, and open-source LLMs generally
do not accommodate vision input, we compare to AskLLM-O only in the LLM fine-tuning use case in Section 4.

5In our experiments, we use Mixing and Meta_only as the noisy and denoised model.
6To fairly compare the selection mechanism, we replaced their meta set using our meta set.

5

Figure 2: Proof-of-Concept experiment results. The top row displays the overall test performance
across the three scenarios throughout the training phase, with x and y axis denote the training steps
and the evaluation metrics, respectively. The bottom row visualizes the model-predicted weights of
data points in each mini-batches in the final 2000 steps in WebNLG training (scenario 3). x and y
axis show the training steps and average weights, respectively. Data points in blue color are expected
to get higher weights compared to their counterparts (in red color).

and efficient learning [28, 59, 29]. Considering both performance and code availability, we use the
online BLO7 [41, 19] as our baseline. Our approach, BADS, also falls under this category.

To ensure a fair comparison, we also introduce several baselines that train the backbone models
using different combinations of the meta set and training set: Mixing trains the model using a
combination of the train set Dt and the meta set Dm. Meta_Only trains the model exclusively on
Dm. Random_Select usesDm combined with a randomly selected subset fromDt. Duplicate_Meta
utilize Dt along with multiple copies of the meta set, duplicating Dm until it matches the size of Dt.

Note that, the selection ratio/sparsity level in AskLLM-O, ClassAct, Random_Select, BLO, and CDS
is the same as in BADS.8

3.2 Scenario 1: Data Balancing (MNIST)

Figure 3: The MNIST test accuracy
when trained with meta sets in vary-
ing sizes (x-aixs).

In this scenario, we assess the model’s capability to manage an
imbalanced train set, Dt. Despite being trained on this imbal-
anced dataset, the models are expected to perform effectively
on a balanced test set. Following the setup in [41], we use the
standard MNIST handwritten digit classification dataset [33] to
create a class-imbalanced binary classification task. A total of
5,000 images from classes 4 and 9 were selected as the train set
Dt, with class 9 dominating the training data distribution (4,975
examples) and class 4 having only 25 examples. A balanced
meta set Dm is created by selecting another 25 examples from
each of these two classes, ensuring no overlap between Dt and
Dm. The models are tested on the original MNIST test set,
including only classes 4 and 9.

In this scenario, the loss function is defined using the standard binary cross-entropy loss. Following
[41], all classification models are LeNet5 [32]. The training is conducted on a single GPU, using
SGD with a fixed learning rate of 1e-3 and a mini-batch size of 100, over a total of 15,000 steps. In
BADS, the weight network is implemented as a single-layer Feedforward Neural Network (FNN)
with a sigmoid activation function. It takes the top-layer image embeddings from LeNet5 as input

7https://github.com/danieltan07/learning-to-reweight-examples.git
8We acknowledge the existence of recent work on DPS with [57, 7] or without [59, 40] meta-data alignment.

However, all these studies use two-stage pipelines, where data points are selected offline and then used in the
final model training. Since our approach employs an online selection method, i.e. dynamically selecting data
while the model is under training, we have only chosen baselines that follow the same style.

6

https://github.com/danieltan07/learning-to-reweight-examples.git

and outputs a weight wi ∈ [0, 1] for each image. The learning rate for the weight network is 1e-3
and the target sparsity level β is 0.005. Other hyperparameters, including those in the baselines, are
detailed in Table 3 (Appendix E).

3.2.1 Experiment Results and Ablation Study
The classification accuracy is presented in the top-left plot in Figure 2. All approaches, except for
Mixing and ClassAct, achieve over 90% accuracy even when trained with a highly imbalanced train
set. Meta_only demonstrates that training with a small amount of balanced data yields significantly
better performance compared to training with a larger but imbalanced training set (Mixing). Both
BLO and BADS outperform non-DPS baselines in terms of both accuracy and convergence speed,
with BADS further outperforming BLO by a noticeable margin. CDS underperforms all the non-DPS
baselines, which we believe is due to the mini-batch-level discrete data selection. When dealing with
an extremely imbalanced train set, it is possible that the minority class might not be present in some
mini-batches. Under these circumstances, the model is compelled to learn from the top examples
from the majority class in each mini-batch, potentially leading to biased training outcomes. The
top row in Figure 13 and the left plot in Figure 14 (Appendix F) visualizes the weights assigned to
the examples in each mini-batch by DPS approaches. All methods, except forClassAct, effectively
assigns higher weights to the minority class than to the majority class, thereby directing the classifiers
to focus more on the minority class in training.

We further evaluate the models’ performance using meta sets Dm of various sizes, with 5, 10, 25,
and 50 examples per class included.9 As illustrated in Figure 3, with a very limited number of meta
examples (5 per class), only BADS and BLO achieve over 90% accuracy on the balanced test set.
As the number of available meta data increases, BADS consistently leads in performance. However,
when sufficient meta data is provided, the gap between BADS and the other approaches narrows.

3.3 Scenario 2: Data Denoising (CIFAR)

Figure 4: The CIFAR test accuracy
when trained with 80% noisy data.

In this scenario, we evaluate the model’s ability to manage a
noisy train set Dt. Although the models are trained using a
dataset with significant noise, they are anticipated to perform
well on a clean test set. Our experiment utilizes the standard
CIFAR 10-class classification dataset [30]. Following the stan-
dard CIFAR train/validation set split ratio, we first create a
clean and balanced meta set Dm by randomly sampling 1000
examples from each class in the training data. Then, we use the
remaining 40,000 examples to create a noisy train set Dt by
introducing noise based on the symmetric noise injection setup
described in [37, 8, 21]. We set the noise ratio to 0.5 and use
the original CIFAR-10 test set in testing.

We use ResNet32 [23] as the backbone classification model. Training is performed on a single GPU
using SGD with a fixed learning rate of 1e-1 and a mini-batch size of 120 over 20,000 steps. The
loss function is the standard multi-class cross-entropy loss. For BADS, the weight network structure
retains the same as in scenario 1. However, in this scenario, data point weighting takes into account
both the image and its associated label. We represent each label using a one-hot embedding, which
is then concatenated with the top-layer image embeddings from ResNet32 and fed into the weight
network. The learning rate for the weight network is set to 1e-4. Note that in Eq 7, the gradient of
θ become large if Nt is big. Therefore, we reduce the learning rate of the backbone classification
model to 1e-4. The target sparsity level β is set to 0.8.10.

3.3.1 Experiment Results and Ablation Study
The classification accuracy is shown in the top-middle plot in Figure 2. All methods, except for the
BLO approach11, manage to achieve over 60% accuracy, even using a train set contaminated by 50%.

9Since ClassAct uses a similar approach to CDS but performs worse, we exclude it from this ablation study.
10Besides the primary results, we also present results for asymmetric noise in the top right plot of Figure 11

(see Appendix F.1). Additionally, we explore performance variations by substituting the weight network with the
individual weights strategy outlined in [41] (refer to Appendix F.2).

11The convergence of BLO is slower than that of other approaches. To further explore this, we conduct an
ablation study to compare the learning curves for all methods in Appendix F.1.

7

Notably, CDS, ClassAct and BADS deliver the highest three performances, with BADS surpasses all
other methods by a noticeable margin. The bottom row of Figure 13 and the middle plot of Figure 14
(Appendix F) visualizes the weights allocated to the examples in each mini-batch by DPS approaches.

Figure 5: The CIFAR test accuracy
when trained with 20% noisy data.

All methods, except for ClassAct, consistently gives lower
weights to the noisy examples, guiding the classifiers to dis-
regard the noisy examples during training. ClassAct assigned
lower weights to the noisy examples during the initial stages of
training. However, these weights exceeded those of the clean
examples in the later phases of training. Interestingly, this
behavior did not significantly impact the model’s performance.

If we raise the noise label ratio in the train set to 80% (Figure 4),
both BLO and BADS still lead the performance, with BADS
exceeds BLO and non-DPS approaches by 15% and 20% in
classification accuracy, respectively. CDS does not exceed the
performance of non-DPS approaches and starts to overfit on the noisy data after 15,000 training steps.
When we lower the noise label ratio to 20% (Figure 5), all methods achieve a classification accuracy
of around 80%. Although BADS continues to outperform both DPS and non-DPS approaches, the
lead is narrower.12

3.4 Scenario 3: Efficient Learning (WebNLG)
In this scenario, we assess the model’s ability to adapt to new domains with very few data points. To
demonstrate the robustness of BADS across various research topics and backbone models, we focus
on the Natural Language Generation (NLG) task in this section. NLG [18, 12] aims to accurately
generate textual descriptions from input tuples. An example is shown in Figure 7 (Appendix D). The
English benchmark introduced in WebNLG 2020 [6] includes a training set spanning 16 domains and
a test set covering 3 different domains (for details, check Appendix D). We use the original training
set (14,239 examples) as our train set Dt, and create a single clean and balanced meta set Dm by
randomly sampling 30 examples from the WebNLG 2020 validation set in each test domain.

All backbone models are the encoder-decoder T5-small [26]. Training is on a single GPU using Adam
with a fixed learning rate of 3e-5 and a mini-batch size of 20 over 40,000 steps. The loss function is
the standard negative log likelihood loss. In BADS, the weight network structure remains the same
as in scenario 1. Its input is the embedding of the input sequence, represented by the contextual
embedding of the “[EOS]” token, and the learning rate is set to 1e-4. The sparsity level β is 0.05.

3.4.1 Experiment Result

Methods Mem (MB) Time (s)
Base 9184.4 61.2
BLO 22361.3 113.48
CDS 9183.9 62.0
-weight calc – +700.0
ClassAct 34821.36 269.81
AskLLM-O 32908.89 115.24
-LLM call – +13932
BADS 14694.58 61.03

Table 1: The average GPU memory and
time usage over 100 steps. “Base” repre-
sent all non-DPSs.

The BLEU scores are displayed in the top-right plot of
Figure 2. BADS leads the performance, achieving a 2
BLEU score advantage over the second-best system, Dupli-
cate_Meta, and surpassing the remaining systems by more
than 5 BLEU scores. The other three DPS approaches do
not distinguish themselves from the non-DPS methods.

In this scenario, we opt for a more controlled examination
of data selection effectiveness due to the big amount of
domains in the train set13. We select three occupation-
centric domains—Athlete, Politician, and Astronaut—as
our test domains. Additionally, we create a meta setDm by
randomly selecting 50 examples in each of these domains
from their WebNLG 2020 validation set. We then choose two distinct domains, Artist and City, for
training. Artist, as another occupation-centric domain, shares a similar schema and vocabulary with
the test domains, whereas City does not. Ideally, DPS should prioritize the Artist examples over
those from City. The BLEU scores for text descriptions generated by the DPS methods are shown in
Figure 12 (Appendix F). These results reinforce the findings from the original experimental setup,
with BADS outperforming both BLO and CDS by over 10 BLEU scores. The weights given to the

12ClassAct uses a similar approach to CDS and has similar results. We exclude it from this ablation study.
13Given that the train set spans 16 domains, it is difficult to assess the adequacy of the data selection behavior.

We still show the weighting plots for the 16 domain in the bottom row of Figure 13 in Appendix F.

8

examples in each mini-batch are visualized in the bottom row of Figure 2. BADS effectively prioritizes
the examples in the Artist domain. Instead, BLO fails to differentiate between the two domains, and
CDS incorrectly weights the opposite domain higher. This illustrates that the effectiveness of DPS is
linked to the overall performance of the models.

3.4.2 Latency
We evaluate the average GPU memory and time consumption using the WebNLG task. Table 1 shows
that the training time for BADS and CDS is similar to that of non-DPSs, while BLO and AskLLM-O
takes nearly twice as long, and ClassAct takes even longer. Note that CDS and AskLLM-O requires
additional time to weight examples in the train set. Given that the WebNLG 2020 train set consists of
35,426 examples, we execute the weighting with a batch size of 20, CDS takes a total of 700 seconds.
For larger-scale tasks, such as foundation model fine-tuning (Section 4), the weighting process is
estimated to consume approximately 22 hours per 1 million training examples. The offline scoring in
AskLLM-O takes around four hours in our setup on a single NVIDIA A40 GPU. In terms of memory
usage, CDS aligns with non-DPS approaches, while BADS and BLO require approximately 1.5 and
2.5 times more GPU memory, respectively. ClassAct and AskLLM-O takes even more GPU memory.

4 Use Case: Large Language Model Instruction Fine-tuning

Methods MMLU ARCc ARCe HellaSwag
Mixing 25.16 33.79 64.65 51.97
Meta_Only 25.51 32.08 52.23 52.07
Random_Select 25.62 28.92 66.75 51.83
Duplicate_Meta 25.30 33.28 65.15 52.76
CDS 25.62 21.16 60.14 51.68
ClassAct 24.90 31.91 67.34 52.09
AskLLM-O 25.55 35.15 66.88 53.71
BADS 26.59 34.39 67.00 52.91

Table 2: Test accuracy of LLMs across four popular bench-
marks in eval-harness [17]. Checkpoint selection is using
next token prediction accuracy as the selection metric. Mix-
ing represents standard IFT.

Instruction Fine-tuning (IFT) for
LLMs is a practical application where
all three mentioned scenarios are en-
countered simultaneously. IFT data
can be acquired through prompting
LLMs [52, 48, 56], gathering existing
Natural Language Processing (NLP)
benchmarks [35, 54, 50, 43, 53, 38,
56], or employing human annotation
[52, 63, 48]. Noise is likely to accu-
mulate during each of these data col-
lection methods. Furthermore, since
NLP benchmarks often vary greatly
in size, the IFT data typically lacks
balance. Additionally, the IFT data does not include data points from the downstream tasks, leading
to domain shift in testing.

We use the same IFT data as [57, 51] as our train set Dt, which is a mix of FLAN V2 [35], COT [54],
DOLLY [10], and OPEN ASSISTANT 1 [31]. Following [57, 5], we focus on four downstream tasks:
MMLU [24], which consists of multiple-choice questions across 57 sub-tasks, ARC-challenge/-easy
[9], and HellaSwag [61]. Following [57], 5 examples were selected from each sub-task to create the
meta set Dm for MMLU, totaling 285 examples. Additionally, following [5], for the other tasks, we
randomly chose 25 examples from their validation set to create the respective meta sets. To facilitate
checkpoint selection, we additionally create a validation set of equivalent size to the meta sets.

Due to limited computational resources, we use OpenLLaMA 3B 14 as the backbone model. Training
uses one A40 GPU utilizing Adam with a fixed learning rate of 3e-5 and a mini-batch size of 3.
In BADS, while the weight network remains the same as described in scenario 3, we modify the
input to be the average contextual embedding of all tokens in the sequence. The sparsity level β
is 0.05. Results are presented in Table 2. We excluded BLO from this experiment due to their
prohibitive GPU memory usage. Given that the training data for the Mixing baseline predominantly
consists of IFT data points, it is considered as a standard IFT process. Table 2 indicates that while
individual methods may excel in specific tasks, none of the non-DPS baselines nor the CDS and
ClassAct consistently surpass the others across all downstream tasks. However, BADS stands out
by consistently outperforming all other baselines across every task, except for AskLLM-O, which,
as indicated in Table 1, demands significantly more computational resources. According to Table 4
(Appendix F) BADS prefers the human-written-from-scratch, OPEN ASSISTANT 1 and DOLLY,
over the rest two created using existing benchmarks.

14https://huggingface.co/openlm-research/open_llama_3b_v2

9

https://huggingface.co/openlm-research/open_llama_3b_v2

To facilitate the use of our proposed datapoint selection method, we provide comprehensive guidelines
for hyperparameter tuning in Appendix E. We also include an in-depth discussion and ablation study
on the influence of hyperparameters on the method’s effectiveness.

5 Related Work
Recent works on DPS broadly fall into four categories: i) Approaches based on meta learning (or
BLO), ii) Gradient-based methods, iii) Methods based on domain adaptation and transfer learning
methods, and iv) General sample reweighing strategies.

•Meta learning (BLO) approaches. The DPS can be formulated as a meta learning BLO problem
where the outer loss is defined with the training data selection variables, and the inner optimisation is to
minimize the model’s loss with the selected data [19, 15, 41, 45, 62]. These methods vary in the choice
of their outer optimization variables: either directly using the data point weights [41, 45, 19] or mini-
batch samplers [15]. To solve the BLO, most approaches rely on computing meta-gradients via reverse
mode differentiation [45, 62] while some works utilised reinforcement learning techniques [15]. All
these BLO-based methods are computationally demanding with large memory footprint, hindering
them from being applied to large-scale models/data.

• Gradient-based methods. The key idea is to measure the importance of training data points
based on the alignment scores between the loss gradients on training and meta data points. The
rationale behind the gradient alignment can be theoretically underpinned by the BLO perspective. As
shown in [41], the one-step inner loss update with zero initial weights in BLO reduces to the gradient
alignment (cosine angle) between the train and meta data points [57]. However, the method in [57]
requires evaluating and storing gradients of the entire training data points, thus computationally
expensive. Furthermore, the final solution may not be optimal since the gradient computation is done
with an initial network that is warm-up trained with a random subset of the training data. In [16] the
weights are optimised by the expected gradient norms during the network training, which serves as a
proxy for the importance of data points. In [28] they find the subsets that closely match the gradient
of the training and meta sets using an orthogonal matching pursuit algorithm. Under online continual
learning setup [2], they formulate sample selection as a constraint reduction problem based on the
constrained optimization view of continual learning.

• Domain adaptation and transfer learning methods. Selecting a subset of the train set that are
best aligned with the in-domain meta set can be naturally seen as domain adaptation and transfer
learning. In the NLP community, [1] finds that the large language models implicitly learn sentence
representations that cluster by domains without supervision, while in [20], they show the effectiveness
of domain-adaptive pre-training with data augmented using simple data selection strategies. In [39]
they proposed domain adaptive transfer learning which computes the importance weights on the target
dataset from the ideas in domain adaptation and estimation of the label distribution. In multi-task
transfer learning community, some previous works identify the detrimental effects of the gradients
from different tasks, and propose strategies to mitigate the conflicting gradients issue [60, 11, 34].

• General sample reweighing strategies. Since DPS essentially involves finding the optimal
reweighed distribution with the underlying domain itself unchanged, several approaches aim to
tackle the problem via importance sampling techniques. In [27] they derive a tractable upper bound
to the per-sample gradient norm, and derive an estimator of the variance reduction achieved with
importance sampling. The curriculum learning [3] is also closely related as one can design an optimal
schedule of the successive training distributions. For instance, in [44] they introduce the so-called
data parameters, associating samples and classes in the train data with learnable parameters, which
governs their importance in the learning process within the curriculum learning framework.

6 Conclusion
We revisited the DPS problem from the perspective of Bayesian learning. By treating the neural
network of interest, as well as an auxiliary weighting neural network as random variables and inferring
their joint posterior using SGLD, we achieve a simple and effective approach to data reweighting that
is more reliable and scalable than BLO alternatives. Our framework is straightforwardly applicable to
learning with data imbalance, label noise, and automating auxiliary data curation. We demonstrate our
framework can apply to automating curation of the wide variety of auxiliary instruction fine-tuning
data available for billion-scale language models. Overall this demonstrates a promising new kind of
approach to the growing need for data optimization in neural network learning.

10

Limitations

Our proposed BADS algorithm has the following limitations, which we plan to address as our future
work.

1. There are several hyperparameters involved, which need to be carefully tuned for best perfor-
mance. These include: the sparsity level parameter β, the relative impact constants ρ’s of the
objective terms in our SGLD update (detailed in App. E), and the standard hyperparameters
(e.g., batch size, learning rates, weight decay). Some of these hyperparameters may be
optimised via Bayesian model selection in a principled manner. For instance, the sparsity
level β can be regarded as a latent random variable (a part of the model) with a proper prior
distribution imposed on it, and we can do posterior inference of β (or marginalise it out)
together with w and θ in our SGLD update equations. We will pursue this in our future
study.

2. Although our method is computationally far more efficient than BLO and some other DPS
approaches, its GPU memory footprint is demanding compared to non-DPS algorithms. This
mainly originates from the entire weight variables or the whole weight network parameters
loaded/maintained in the memory for frequent updates. One possible workaround is to
load only the weight variables that are assoicated with the current minibatches. We will be
investigating this code optimisation further in our ongoing future study.

References
[1] Roee Aharoni and Yoav Goldberg. Unsupervised domain clusters in pretrained language models. In Annual

Meeting of the Association for Computational Linguistics, 2020.

[2] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection for online
continual learning. In Advances on Neural Information Processing Systems, 2019.

[3] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
International Conference on Machine Learning, 2019.

[4] David Brandfonbrener, Hanlin Zhang, Andreas Kirsch, Jonathan Richard Schwarz, and Sham Kakade.
Color-filter: Conditional loss reduction filtering for targeted language model pre-training. arXiv preprint
arXiv:2406.10670, 2024.

[5] Yihan Cao, Yanbin Kang, Chi Wang, and Lichao Sun. Instruction mining: Instruction data selection for
tuning large language models, 2024. URL https://openreview.net/forum?id=kce6LTZ5vY.

[6] Thiago Castro Ferreira, Claire Gardent, Nikolai Ilinykh, Chris van der Lee, Simon Mille, Diego Moussallem,
and Anastasia Shimorina. The 2020 bilingual, bi-directional WebNLG+ shared task: Overview and
evaluation results (WebNLG+ 2020). In International Workshop on Natural Language Generation from
the Semantic Web (WebNLG+), 2020.

[7] Hao Chen, Yiming Zhang, Qi Zhang, Hantao Yang, Xiaomeng Hu, Xuetao Ma, Yifan Yanggong, and
Junbo Zhao. Maybe only 0.5% data is needed: A preliminary exploration of low training data instruction
tuning. arXiv preprint arXiv:2305.09246, 2023.

[8] Pengfei Chen, Benben Liao, Guangyong Chen, and Shengyu Zhang. Understanding and utilizing deep
neural networks trained with noisy labels. In International Conference on Machine Learning, 2019.

[9] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. CoRR,
abs/1803.05457, 2018.

[10] Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick
Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world’s first truly
open instruction-tuned LLM, 2023. URL https://www.databricks.com/blog/2023/04/12/
dolly-first-open-commercially-viable-instruction-tuned-llm.

[11] Lucio M. Dery, Yann Dauphin, and David Grangier. Auxiliary task update decomposition: The good, the
bad and the neutral. In International Conference on Learning Representations, 2021.

[12] Ondřej Dušek, Jekaterina Novikova, and Verena Rieser. Evaluating the state-of-the-art of end-to-end
natural language generation: The E2E NLG challenge. Comput. Speech Lang., 59(C):123–156, jan 2020.

11

https://openreview.net/forum?id=kce6LTZ5vY
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm

[13] Talfan Evans, Shreya Pathak, Hamza Merzic, Jonathan Schwarz, Ryutaro Tanno, and Olivier J Henaff. Bad
students make great teachers: Active learning accelerates large-scale visual understanding. arXiv preprint
arXiv:2312.05328, 2023.

[14] Talfan Evans, Nikhil Parthasarathy, Hamza Merzic, and Olivier J Henaff. Data curation via joint example
selection further accelerates multimodal learning. arXiv preprint arXiv:2406.17711, 2024.

[15] Yang Fan, Fei Tian, Tao Qin, Jiang Bian, and Tie-Yan Liu. Learning what data to learn. In arXiv, 2017.

[16] Mohsen Fayyaz, Ehsan Aghazadeh, Ali Modarressi, Mohammad Taher Pilehvar, Yadollah Yaghoobzadeh,
and Samira Ebrahimi Kahou. Bert on a data diet: Finding important examples by gradient-based pruning.
ArXiv e-prints: arXiv:2211.05610, 2022.

[17] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris
Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang,
Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation,
12 2023. URL https://zenodo.org/records/10256836.

[18] Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini. The WebNLG
challenge: Generating text from RDF data. In International Conference on Natural Language Generation,
2017.

[19] David Grangier, Pierre Ablin, and Awni Hannun. Adaptive training distributions with scalable online
bilevel optimization. arXiv preprint arXiv:2311.11973, 2023.

[20] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey, and
Noah A. Smith. Don’t stop pretraining: Adapt language models to domains and tasks. In Annual Meeting
of the Association for Computational Linguistics, 2020.

[21] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor W. Tsang, and Masashi
Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels. In Advances
on Neural Information Processing Systems, 2018.

[22] Haibo He and E.A. Garcia. Learning from imbalanced data. 21(9):1263 –1284, 2009.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition,
2015. URL http://arxiv.org/abs/1512.03385.

[24] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on Learning
Representations, 2021.

[25] A. Immer, M. Bauer, V. Fortuin, G. Ratsch, and M. E. Khan. Scalable marginal likelihood estimation for
model selection in deep learning. In International Conference on Machine Learning, 2021.

[26] Mihir Kale and Abhinav Rastogi. Text-to-text pre-training for data-to-text tasks. In International Confer-
ence on Natural Language Generation, 2020.

[27] Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning with
importance sampling. In International Conference on Machine Learning, 2018.

[28] Krishnateja Killamsetty, Durga S, Ganesh Ramakrishnan, Abir De, and Rishabh Iyer. Grad-match: Gradient
matching based data subset selection for efficient deep model training. In International Conference on
Machine Learning, Proceedings of Machine Learning Research, 2021.

[29] KrishnaTeja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh K. Iyer. Glister:
Generalization based data subset selection for efficient and robust learning. In AAAI, 2021.

[30] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009. URL
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

[31] Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens,
Abdullah Barhoum, Nguyen Minh Duc, Oliver Stanley, Richárd Nagyfi, Shahul ES, Sameer Suri, David
Glushkov, Arnav Dantuluri, Andrew Maguire, Christoph Schuhmann, Huu Nguyen, and Alexander Mattick.
OpenAssistant conversations - democratizing large language model alignment. CoRR, abs/2304.07327,
2023.

12

https://zenodo.org/records/10256836
http://arxiv.org/abs/1512.03385
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

[32] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[33] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

[34] Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent for
multi-task learning. In Advances in Neural Information Processing Systems, 2021.

[35] Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le,
Barret Zoph, Jason Wei, and Adam Roberts. The flan collection: Designing data and methods for effective
instruction tuning. In International Conference on Machine Learning, 2023.

[36] J. Martens and R. Grosse. Optimizing neural networks with kronecker-factored approximate curvature. In
International Conference on Machine Learning, 2015.

[37] Baharan Mirzasoleiman, Kaidi Cao, and Jure Leskovec. Coresets for robust training of deep neural
networks against noisy labels. In NeurIPS, 2020.

[38] Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generalization via
natural language crowdsourcing instructions. In Annual Meeting of the Association for Computational
Linguistics, 2022.

[39] Jiquan Ngiam, Daiyi Peng, Vijay Vasudevan, Simon Kornblith, Quoc V Le, and Ruoming Pang. Domain
adaptive transfer learning with specialist models. In arXiv preprint, 2018. URL https://arxiv.org/
abs/1811.07056.

[40] Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding
important examples early in training. In Advances on Neural Information Processing Systems, 2021.

[41] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to Reweight Examples for Robust
Deep Learning. International Conference on Machine Learning, 2018.

[42] Noveen Sachdeva, Benjamin Coleman, Wang-Cheng Kang, Jianmo Ni, Lichan Hong, Ed H Chi, James
Caverlee, Julian McAuley, and Derek Zhiyuan Cheng. How to train data-efficient llms. arXiv preprint
arXiv:2402.09668, 2024.

[43] Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin,
Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker, Shanya Sharma
Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti Datta, Jonathan
Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey,
Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault
Fevry, Jason Alan Fries, Ryan Teehan, Teven Le Scao, Stella Biderman, Leo Gao, Thomas Wolf, and
Alexander M Rush. Multitask prompted training enables zero-shot task generalization. In International
Conference on Learning Representations, 2022.

[44] Shreyas Saxena, Oncel Tuzel, and Dennis DeCoste. Data parameters: A new family of parameters for
learning a differentiable curriculum. In NeurIPS, 2019.

[45] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng. Meta-weight-net:
Learning an explicit mapping for sample weighting. In NeurIPS, 2019.

[46] Hwanjun Song, Minseok Kim, Dongmin Park, and Jae-Gil Lee. Learning from noisy labels with deep
neural networks: A survey. TNNLS, 2022.

[47] Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari S. Morcos. Beyond neural
scaling laws: beating power law scaling via data pruning. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=UmvSlP-PyV.

[48] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model. https://github.
com/tatsu-lab/stanford_alpaca, 2023.

[49] Wei Wang, Taro Watanabe, Macduff Hughes, Tetsuji Nakagawa, and Ciprian Chelba. Denoising neural
machine translation training with trusted data and online data selection. In Conference on Machine
Translation: Research Papers, 2018.

13

https://arxiv.org/abs/1811.07056
https://arxiv.org/abs/1811.07056
https://openreview.net/forum?id=UmvSlP-PyV
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

[50] Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap, Eshaan Pathak, Giannis
Karamanolakis, Haizhi Lai, Ishan Purohit, Ishani Mondal, Jacob Anderson, Kirby Kuznia, Krima Doshi,
Kuntal Kumar Pal, Maitreya Patel, Mehrad Moradshahi, Mihir Parmar, Mirali Purohit, Neeraj Varshney,
Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh Puri, Rushang Karia, Savan Doshi, Shailaja Keyur
Sampat, Siddhartha Mishra, Sujan Reddy A, Sumanta Patro, Tanay Dixit, and Xudong Shen. Super-
NaturalInstructions: Generalization via declarative instructions on 1600+ NLP tasks. In Conference on
Empirical Methods in Natural Language Processing, 2022.

[51] Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Chandu, David Wadden,
Kelsey MacMillan, Noah A. Smith, Iz Beltagy, and Hannaneh Hajishirzi. How far can camels go? exploring
the state of instruction tuning on open resources. In Neural Information Processing Systems - Datasets and
Benchmarks Track, 2023.

[52] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In Annual
Meeting of the Association for Computational Linguistics, 2023.

[53] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International Conference on
Learning Representations, 2022.

[54] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V.
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In Advances
on Neural Information Processing Systems, 2022.

[55] Max Welling and Yee Whye Teh. Bayesian Learning via Stochastic Gradient Langevin Dynamics. In
International Conference on Machine Learning, 2011.

[56] Minghao Wu, Abdul Waheed, Chiyu Zhang, Muhammad Abdul-Mageed, and Alham Aji. LaMini-LM: A
diverse herd of distilled models from large-scale instructions. In Conference of the European Chapter of
the Association for Computational Linguistics, 2024.

[57] Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less: Selecting
influential data for targeted instruction tuning. CoRR, abs/2402.04333, 2024.

[58] Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. LESS: Selecting
Influential Data for Targeted Instruction Tuning. arXiv preprint arXiv:2402.04333, 2024.

[59] Hu Xu, Saining Xie, Po-Yao Huang, Licheng Yu, Russell Howes, Gargi Ghosh, Luke Zettlemoyer, and
Christoph Feichtenhofer. Cit: Curation in training for effective vision-language data. In IEEE International
Conference on Computer Vision, 2023.

[60] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn. Gradient
surgery for multi-task learning. In Advances in Neural Information Processing Systems, 2020.

[61] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a machine
really finish your sentence? In ACL (1), pages 4791–4800. Association for Computational Linguistics,
2019.

[62] Zizhao Zhang and Tomas Pfister. Learning fast sample re-weighting without reward data. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 725–734, 2021.

[63] Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
LILI YU, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy. LIMA: Less is
more for alignment. In Advances on Neural Information Processing Systems, 2023.

[64] Difan Zou, Pan Xu, and Quanquan Gu. Faster convergence of stochastic gradient langevin dynamics for
non-log-concave sampling. Uncertainty in Artificial Intelligence (UAI), 2021.

14

Appendix

A Posterior Derivation for Eq. 4

From the graphical model in Fig. 1, we exploit the conditional independence Dm ⊥ (w,Dt) | θ.

p(θ, w|Dt, Dm) =
p(θ, w,Dm|Dt)

p(Dm|Dt)
(10)

=
1

p(Dm|Dt)
· p(w) · p(θ,Dm|w,Dt) (11)

=
1

p(Dm|Dt)
· p(w) · p(Dm|θ, w,Dt) · p(θ|w,Dt) (12)

=
1

p(Dm|Dt)
· p(w) · p(Dm|θ) · p(θ|w,Dt) (13)

∝ ·p(w) · p(Dm|θ) · p(θ|w,Dt) (14)

In (13) we use Dm ⊥ (w,Dt) | θ, and in (14) 1
p(Dm|Dt)

is regarded as constant for it has nothing to
do with θ and w.

B Posterior Derivation for Weight Network Cases

Here we provide posterior derivation for the weight network case wi = w(zti ;ϕ). First, the weights
become a deterministic function of Dt and ϕ (here ϕ = weight network parameters) as shown in
Fig. 6(a). But since w is a deterministic function of ϕ and Dt, we can simplify it by having w
absorbed into ϕ while introducing conditional dependence (an arrow) from Dt to ϕ, as depicted in
Fig. 6(b). Note that Dt is always given, we treat ϕ as a random variable, and wherever wi appears,
we replace it by w(zti ;ϕ). More specifically, we make the following changes to the equations in the
weight net scenario:

Eq. 2: p(θ|ϕ,Dt) ∝ p(θ) ·
∏Nt

i=1 p(w(z
t
i ;ϕ), z

i
t|θ)

Eq. 8: p(ϕ|Dt) ∝ e−(
∑

i w(zt
i ;ϕ)−⌊Ntβ⌋)2/2σ2

Eq. 4 (with detailed derivations):

p(θ, ϕ|Dt, Dm) =
p(θ, ϕ,Dm|Dt)

p(Dm|Dt)
(15)

=
1

p(Dm|Dt)
· p(ϕ|Dt) · p(θ,Dm|ϕ,Dt) (16)

=
1

p(Dm|Dt)
· p(ϕ|Dt) · p(Dm|θ, ϕ,Dt) · p(θ|ϕ,Dt) (17)

=
1

p(Dm|Dt)
· p(ϕ|Dt) · p(Dm|θ) · p(θ|ϕ,Dt) (18)

∝ ·p(ϕ|Dt) · p(Dm|θ) · p(θ|ϕ,Dt) (19)

Eq. (5): [θ, ϕ] ← [θ, ϕ] + η
2∇θ,ϕ log p(θ, ϕ|Dt,Dm) + ϵ

√
η, ϵ ∼ N (0, I)

Eq. (6): θ ← θ+ η
2∇θ

(
log p(θ)−Nt·Ei∼Bt

[
w(zti ;ϕ)·l(zti ; θ)

]
−Nm·Ej∼Bm

[
l(zmj ; θ)

])
+ ϵθ
√
η

Eq. (7): ϕ ← ϕ+ η
2∇ϕ

(
log p(ϕ|Dt)−Nt ·Ei∼Bt

[
w(zti ;ϕ)·l(zti ; θ)

])
+ ϵϕ
√
η

15

(a) (b)

Figure 6: Graphical models when the weight network is adopted. (a) One possible representation. (b)
More simplified representation by absorbing w into ϕ using deterministic w = weightnet(zti ;ϕ). See
texts for details.

C Convergence Analysis

Assumption C.1 (Adjusted from Assumption 4.3 in [64]). There exists m > 0 and b ≥ 0 such that〈
∇θ,w log p(θ, w|Dt, Dm),

[
θ
w

]〉
≥ m

∥∥∥∥ [θw
] ∥∥∥∥2

2

− b (20)

holds for any θ, w.

Assumption C.2 (Adjusted from Assumption 4.4 in [64]). Any minibatch gradient of the log-
posterior is Lipschitz continuous. That is, there exists a constant L such that for any zti ∈ Dt and
zmj ∈ Dm,∥∥∥∥∇θ,w

(
log p(w) + log p(θ)−Ntwil(z

t
i ; θ)−Nml(zmi ; θ)

)
−

∇θ′,w′

(
log p(w′) + log p(θ′)−Ntwil(z

t
i ; θ

′)−Nml(zmi ; θ′)
)∥∥∥∥

2

≤ L

∥∥∥∥ [θw
]
−

[
θ′

w′

] ∥∥∥∥
2
(21)

holds for any θ, w, θ′, w′.

Theorem C.3 (Adjusted from Theorem 4.5 in [64]). Let d = dim(θ) +Nt, B be the batch size, and

ρ be the Cheeger constant. For any ϵ ∈ (0, 1), with the initial iterate satisfying p

(∥∥∥∥ [θinitwinit

] ∥∥∥∥ ≤
R/2

)
≤ ϵ/16 for R = R(ϵK−1/12), and step size η = Õ(min{ρ2d−2, B2ρ2d−4}), the distribution

µSGLD
K of the K-th iterate in our SGLD iterations Eq. (6–7) satisfies:∥∥µSGLD

K − p(θ, w|Dt, Dm)
∥∥
TV
≤ λ(1− C0η)

K +B−1C1η
1/2 + C2η

1/2 + ϵ/2 (22)

for some constant λ > 0, C0 = Õ(ρ2), C1 = Õ(Rdρ−1), C2 = Õ(dρ−1). Here ∥ · ∥TV stands for
the total variation distance, and R is defined as:

R(z) = max

{
625d log(4/z)

m
,
4d log(4L/m) + 4b

m
,
4d+ 8

√
d log(1/z) + 8 log(1/z)

m

}1/2

.

(23)

D Details of the Tasks

WebNLG 2020 We use the release_v3.0_en version of WebNLG benchmark. Domains in training
set are: Building, Astronaut, City, University, MeanOfTransportation, SportsTeam, Food, Artist,
Company, ComicsCharacter, Monument, Airport, Politician, Athlete, WrittenWork, CelestialBody.
Domains in test set are MusicalWork, Scientist, Film.

16

Figure 7: An example of Natural Language Generation.

E Details of the Experiments

E.1 Hyperparameters Details

To enhance flexibility in managing the training process, we incorporate ρtθ, ρmθ , and ρtw into Eq 7 as
follows:

θ ← θ +
η

2
∇θ

(
log p(θ)− ρtθNt ·Ei∼Bt

[
wi ·l(zti ; θ)

]
− ρmθ Nm ·Ej∼Bm

[
l(zmj ; θ)

])
+ ϵθ
√
η

(24)

w ← w +
η

2
∇w

(
log p(w)− ρtwNt ·Ei∼Bt

[
wi ·l(zti ; θ)

])
+ ϵw

√
η (25)

The training hyperparameters for BADS and CDS are shown in the table below. Other hyperparame-
ters have been shown in the main paper.

BADS η ρtθ ρmθ ρtw σ β savg CDS rfloor H lr_halv
MNIST 1.0 1.0 1.0 1.0 5e-5 * Nt 0.005 10 MNIST 0.005 1000 5000
CIFAR 1.0 0.1 1.0 1.0 5e-5 * Nt 0.8 10 CIFAR 0.8 15000 10000
WebNLG 1.0 1.0 1.0 1.0 1e-5 * Nt 0.05 10 WebNLG 0.05 6700 20000
LLMs 1.0 0.5 1.0 1.0 1e-3 * Nt 0.05 10 LLMs 0.05 4200 15000

Table 3: Hyperparameters for all experiments.

E.2 Guildline for Hyperparameters Tuning

There are two primary sets of hyperparameters in BADS:

• hyperparameters for model’s parameters update: η, ϵθ, ϵw, ρtθ, ρmθ , and ρtw (Eq. 24-25),
• hyperparameters for the prior distribution of the example weights, which are σ, β, savg (Eq. 8-9).

In general,

• we set η to 1 and kept the Gaussian noise small with ϵθ and ϵw equal to 1e-5;
• ρtw is set to 1;
• we set ρmθ to 1 and primarily adjust ρtθ;
• in most cases, ρtθ is simply set to 1. However, if the training set contains noise—where the

ground truth labels might be incorrect—the loss from the training examples, particularly in the
early stages of training, may be unreliable. In such cases, we decrease ρtθ;

• savg should not be too large, as it may incorporate outdated weights from earlier training steps.
We set it to 10;

• we select β based on the proportion of training data we consider beneficial for the downstream
tasks. For the LLMs Instruction Fine-tuning experiments, we adopt the same ratio used in the
previous studies [52, 46].

• σ controls how tightly the weights should match β. We set σ based on our confidence in the
selection ratio β: a smaller σ indicates greater confidence in β.

17

• data denoising scenario is a bit special, Eq 7 shows that high losses from the training batch push
the example weights w toward 0. With a high noise rate (50% and 80%), the training batch
losses remain high throughout the training process. To prevent the weights w from collapsing to
0, we use a high selection ratio β and a low σ.

E.3 Ablation study: Influence of the impact constants σ and sparsity level β.

Impact constant σ Higher σ causes the example weights w to drift away from β, occasionally
collapsing to 0, and may result in incorrect example weights (see Figure 8). The right column in
Figure 11 shows that in all three proof-of-concept scenarios, the models achieve similarly good
performance when σ is reduced to around 10−5.

Sparsity level β In both WebNLG and MNIST scenarios, high β leads to incorrect example weights
(see Figure 9). Conversely, due to the reason we mentioned above, in data denoising (CIFAR)
scenario, lower β leads to incorrect weights. The left column in Figure 11 shows that the backbone
models’ performance significantly declines in both the WebNLG and MNIST scenarios when the
example weights are incorrect. In the CIFAR scenario, the impact is less pronounced.

Figure 8: Varying the impact constant σ. The data denoising scenario is conducted on CIFAR-
10 with 50% noisy data, while the sparsity level β is maintained at 0.8, consistent with the main
experiments. From left to right, σ decreases from 0.5 to 5 × 10−5. When σ = 0.5, the weighting
network assigns higher weights to the noisy examples. At σ = 0.05, it assigns similar weights to
both noisy and clean examples. Only when σ is sufficiently low (≤ 5× 10−5) does the model assign
distinctly higher weights to the clean examples.

Figure 9: Varying the sparsity level β. This efficient learning scenario is conducted on WebNLG
training with two domains: City and Artists. Since Artists has greater overlap in schema and
vocabulary with the downstream domains, the model should assign higher weights to examples from
this domain. The impact constant σ is maintained at 1× 10−5, consistent with the main experiments.
As β decreases from 0.8 to 0.05, the weighting network behaves as follows: at β = 0.8, it assigns
higher weights to the City domain; at β = 0.2, it assigns similar weights to both domains; and at
β = 0.05, it assigns significantly higher weights to the Artists domain.

F Analysis of Main Results

F.1 Learning Curves Study

The experimental results discussed in Section 3.3.1 demonstrate that BLO converges more slowly
compared to other approaches. In this section, we aim to examine the learning curves of DPS
approaches, as illustrated in Figure 11. The trends for each approach appear consistent across both

18

Figure 10: Model’s performance in the three proof-of-concept scenarios with different β and σ.

symmetric and asymmetric noise experiments. The convergence rate of BADS aligns with that of non-
DPS approaches, whereas CDS converges faster than BADS, and BLO converges significantly slower.
In the asymmetric noise experiments, overfitting is less pronounced compared to the symmetric noise
experiments, where after 50,000 training steps, the test accuracy for all approaches decreases. BLO
and BADS exhibit a notably slower rate of overfitting compared to other methods. Conversely, CDS
overfits more quickly than non-DPS approaches, resulting in significantly lower test accuracy even
compared to the non-DPS methods.

F.2 Individual Scalar Weights vs. Weight Network

In [41], each training example is associated with a learnable scalar weight. The scalability issues
of this method compared to the weight network used in BADS are detailed in Section 2.4. In this
section, we examine the CIFAR-10 denoising task to assess performance differences that result from
replacing the BADS weight network with the individual weights strategy described in [41]. From the
top row of Figure 11, it is evident that the performance of BADS with scalar weight (referred to as

19

Figure 11: This graph shows the test/train accuracy over 200K training steps. The x-axis denotes the
training steps, and the y-axis indicates the accuracy levels. The top row displays the testing accuracy,
while the bottom row shows the training accuracy. In the left column all models are trained using train
set contaminated by 50% symmetric noise. While, in the right column, the train set contaminated by
40% asymmetric noise.

Bayesian_per_sample in the legend) slightly surpasses that of the original BADS (labeled as Bayesian
in the legend).

IFT sets Avg Example Weights
OPEN ASSISTANT 1 [31] 0.0063
DOLLY [10] 0.0025
Flan-V2 [35] 0.0023
CoT [54] 0.0005

Table 4: The average scores IFT examples get from BADS.

20

Figure 12: Scenario 3, domain adaptation using WebNLG benchmark. This plot shows the BLEU
scores on WebNLG benchmark. All DPS models are trained on 2 domains, Artist and City, and tested
on other 3 domains – Athlete, Politician, and Astronaut. The x-axis represents the training steps,
while the y-axis shows the evaluation metric, BLEU.

Figure 13: Proof-of-Concept experiment supplementary results. All plots illustrate the average
weights of data points within mini-batches during the last 2000 training steps, with the x-axis
representing the training steps and the y-axis showing the average weights. Classes depicted in blue
are expected to receive higher weights compared to those in red. The top row displays the MNIST
experiments from scenario 1, the middle row shows the CIFAR experiments from scenario 2, and
the bottom row features the WebNLG experiments from scenario 3. The left, middle, and right
columns correspond to BADS, BLO, and CDS, respectively.

21

Figure 14: Proof-of-Concept experiment supplementary results. All plots illustrate the average
weights of data points within mini-batches during the training of ClassAct method, with the x-axis
representing the training steps and the y-axis showing the average weights. Classes depicted in blue
are expected to receive higher weights compared to those in red. The left plot displays the MNIST
experiments from scenario 1, the middle plot shows the CIFAR experiments from scenario 2, and the
right plot features the WebNLG experiments from scenario 3.

22

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have included our main claims in the abstract and introduction that
accurately reflect the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed several limitations of the current work, together with
workarounds and our plans to address them in our future work. Please see the Limitations
section right before the References.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

23

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have described all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and conclusions of
the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

24

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We plan to release code, with sufficient instructions to faithfully reproduce the
main experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies all the training and test details necessary to understand the
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The results are accompanied by error bars wherever possible.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The information on the computer resources needed to reproduce the experi-
ments is described in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper presents work whose goal is to advance the field of Machine
Learning. At this point we do not see any negative impacts of the current work on society.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

26

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The authors cite the original papers that produced the code package or dataset
under proper licenses.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

27

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

	Introduction
	Our Approach
	Problem Setup
	(Our Approach) Bayesian Data Point Selection (BADS)
	Interpretation and Benefits
	Implementation Details

	Experiments: Proof of Concept
	Baselines
	Scenario 1: Data Balancing (MNIST)
	Experiment Results and Ablation Study

	Scenario 2: Data Denoising (CIFAR)
	Experiment Results and Ablation Study

	Scenario 3: Efficient Learning (WebNLG)
	Experiment Result
	Latency

	Use Case: Large Language Model Instruction Fine-tuning
	Related Work
	Conclusion
	Posterior Derivation for Eq. 4
	Posterior Derivation for Weight Network Cases
	Convergence Analysis
	Details of the Tasks
	Details of the Experiments
	Hyperparameters Details
	Guildline for Hyperparameters Tuning
	Ablation study: Influence of the impact constants and sparsity level .

	Analysis of Main Results
	Learning Curves Study
	Individual Scalar Weights vs. Weight Network

