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Abstract

Effectively modeling phenomena present in highly nonlinear dynamical systems
whilst also accurately quantifying uncertainty is a challenging task, which often re-
quires problem-specific techniques. We present a novel, domain-agnostic approach
to tackling this problem, using compositions of physics-informed random features,
derived from ordinary differential equations. The architecture of our model lever-
ages recent advances in approximate inference for deep Gaussian processes, such
as layer-wise weight-space approximations which allow us to incorporate random
Fourier features, and stochastic variational inference for approximate Bayesian
inference. We provide evidence that our model is capable of capturing highly
nonlinear behaviour in real-world multivariate time series data. In addition, we
find that our approach achieves comparable performance to a number of other
probabilistic models on benchmark regression tasks.

1 Introduction

Dynamical systems are ubiquitous across the natural sciences, with many physical and biological
processes being driven on a fundamental level by differential equations. Inferring ordinary differential
equation (ODE) parameters using observational data from such systems is an active area of research
[Meeds et al., 2019, Ghosh et al., 2021], however, in particularly complex systems it is often infeasible
to characterise all of the individual processes present and the interactions between them. Rather than
attempt to fully describe a complex system, latent force models (LFMs) [Alvarez et al., 2009] specify
a simplified mechanistic model of the system which captures salient features of the dynamics present.
This leads to a model which is able to readily extrapolate beyond the training input space, thereby
retaining one of the key advantages of mechanistic modeling over purely data-driven techniques.

Modeling nonlinear dynamical systems presents an additional challenge, and whilst nonlinear
differential equations have been incorporated into LFMs [Ward et al., 2020], shallow models such as
LFMs are generally less capable than deep models of modeling the non-stationarities often present
in nonlinear systems. Deep model architectures have greater representational power than shallow
models as a result of their hierarchical structure, which typically consists of compositions of functions
[LeCun et al., 2015]. Deep probabilistic models such as deep Gaussian processes (DGPs) [Damianou
and Lawrence, 2013] are able to leverage this representational power, with the additional advantage
of being able to accurately quantify uncertainty.

In this paper, we aim to model nonlinear dynamics by constructing a DGP from compositions of
physics-informed random Fourier features, with the motivation behind this approach being that many
real-world systems are compositional hierarchies [LeCun et al., 2015]. Whilst a number of recent
works have incorporated random Fourier features into deep models [Cutajar et al., 2017, Mehrkanoon
and Suykens, 2018], the only work we are aware of which does so in the context of a physics-informed
DGP is that of Lorenzi and Filippone [2018]. The authors impose physical structure on a DGP with
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Figure 1: A conceptual explanation of how our proposed DLFM differs from a DGP. At each
layer, we perform the operation L(`){x,G} =

∫ x
0
G(`)(x − τ)u(τ)dτ , where G is the Green’s

function corresponding to an ODE, and u(·) represents an exponentiated quadratic GP prior. For
example, the second operation in the model shown above would take the form, L(2){f1, G} =∫ f1
0
G(2)(f1 − τ)u(τ)dτ .

random features by constraining the function values within the model as a means of performing
ODE parameter inference. Rather than following the approach of Lorenzi and Filippone [2018]
and placing constraints on function values whilst using an exponentiated quadratic (EQ) kernel, we
instead integrate a physics-informed prior into the structure of the DGP by utilising a kernel based on
an ODE.

Our main contribution in this paper is the introduction of a novel approach to incorporating physical
structure into a deep probabilistic model, whilst providing a sound quantification of uncertainty. We
achieve this through derivation of physics-informed random Fourier features via the convolution of
an EQ GP prior with the Green’s function associated with a first order ODE. These features are then
incorporated into each layer of a DGP, as shown in Figure 1. To ensure the scalability of our model to
large datasets, stochastic variational inference is employed as a method for approximate Bayesian
inference. We provide experimental evidence that our modeling framework is capable of capturing
highly nonlinear dynamics effectively in both toy examples and real world data, whilst also being
applicable to more general regression problems.

2 Background

In this section, we review the theory behind using random Fourier features for deep Gaussian
processes. We also review the idea of building covariance functions for GPs that encode the dynamics
of ODEs and how to compute those covariances using random Fourier features.

2.1 Deep Gaussian Processes with Random Feature Expansions

Gaussian processes (GPs) are non-parametric probabilistic models which offer a great degree
of flexibility in terms of the data they can represent, however this flexibility is not unbounded.
The hierarchical networks of GPs now widely known as deep Gaussian processes (DGPs) were
first formalised by Damianou and Lawrence [2013], with the motivating factor behind their cre-
ation being the ability of deep networks to reuse features and allow for higher levels of ab-
straction in said features [Bengio et al., 2013], which results in such models having more rep-
resentational power and flexibility than shallow models such as GPs. DGPs are effectively a
composite function, where the input to the model is transformed to the output by being passed
through a series of latent mappings (i.e. multivariate GPs). If we consider a supervised learn-
ing problem with inputs denoted by X = {xn}Nn=1 and targets denoted by y = {yn}Nn=1, we
can write the analytic form of the marginal likelihood for a DGP with Nh hidden layers as
p(y|X, θ) =

∫
p(y|F(Nh))p(F(Nh)|F(Nh−1), θ(Nh−1)) ... p(F(1)|X, θ(0))dF(Nh) ... dF(1), where

F(`) and θ(`) represent the latent values and covariance parameters respectively at the `-th layer,
where ` = 0, ..., Nh. However, due to the need to propagate densities through non-linear GP covari-
ance functions within the model, this integral is intractable [Damianou, 2015]. As this precludes
us from employing exact Bayesian inference in these models, various techniques for approximate
inference have been applied to DGPs in recent years, with most approaches broadly based upon either
variational inference [Salimbeni and Deisenroth, 2017, Salimbeni et al., 2019, Yu et al., 2019] or
Monte Carlo methods [Havasi et al., 2018].
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Cutajar et al. [2017] outline an alternative approach to tackling this problem, which involves replacing
the GPs present at each layer of the network with their two layer weight-space approximation, forming
a Bayesian neural network which acts as an approximation to a DGP. If the `-th layer of such a DGP
(consisting of zero-mean GPs with exponentiated quadratic kernels) receives an input F(`) (where
F(0) = X), the random features for this layer are denoted by Φ(`) ∈ RN×2N

(`)
RF (where N (`)

RF denotes
the number of random features used), and are given by,

Φ(`) =

√
(σ2)(`)

N
(`)
RF

[
cos(F(`)Ω(`)), sin(F(`)Ω(`))

]
, (1)

where (σ2)(`) is the marginal variance kernel hyperparameter, N (`)
RF is the number of random features

used and Ω(`) ∈ RDF (`)×N
(`)
RF is the matrix of spectral frequencies used to determine the random

features. This matrix is assigned a prior p(Ω(`)
d ) = N (Ω

(`)
d | 0,

(
l(`)
)−2

) where l(`) is the lengthscale
kernel hyperparameter, DF (`) is the number of GPs within the layer, and d = 1, ..., DF (`) . The
random features then undergo the linear transformation, F(`+1) = Φ(`)W(`), where W(`) ∈
R2N

(`)
RF×DF (`+1) is a weight matrix with each column assigned a standard normal prior. Training is

achieved via stochastic variational inference, which involves establishing a tractable lower bound
for the marginal likelihood and optimising said bound with respect to the mean and variance of the
variational distributions over the weights and spectral frequencies across all layers of the network.
The bound is also optimised with respect to the kernel hyperparameters across all layers.

2.2 Random Feature Approximations for Latent Force Models

In this paper, we take a similar approach to Cutajar et al. [2017], but we utilise physically-inspired
random features. Physics-inspired covariance functions for GPs have been proposed by [Alvarez
et al., 2009] under the name of latent force models, and more recently, the authors of Guarnizo and
Álvarez [2018] studied the construction of random features related to such covariance functions.

Latent force models (LFMs) [Alvarez et al., 2009] are GPs which incorporate a physically-inspired
kernel function, which typically encodes the behaviour described by a specific form of differential
equation. Instead of taking a fully mechanistic approach and specifying all the interactions within
a physical system, the kernel describes a simplified form of the system in which the behaviour is
determined byQ latent forces. Given an input data-point t and a set ofD output variables {fd(t)}Dd=1,
a LFM expresses each output as fd(t) =

∑Q
q=1 Sd,q

∫ t
0
Gd(t− τ)uq(τ)dτ , where Gd(·) represents

the Green’s function for a certain form of linear differential equation, uq(t) ∼ GP(0, kq(t, t
′))

represents the GP prior over the the q-th latent force, and Sd,q is a sensitivity parameter weighting
the influence of the q-th latent force on the d-th output. The general expression for the covariance of
a LFM is given by kfd,fd′ (t, t

′) =
∑Q
q=1 Sd,qSd′,q

∫ t
0
Gd(t− τ)

∫ t′
0
Gd′(t

′ − τ ′)kq(τ, τ ′)dτ ′dτ .

Typically, an EQ form is assumed for the kernel governing the latent forces, kq(·). Due to the linear
nature of the convolution used to compute fd(t), the outputs can also be described by a GP. Exact
inference in LFMs is tractable, however as with GPs, it scales with O(N3) complexity [Rasmussen
and Williams, 2006]. Furthermore, computing the double integration for kfd,fd′ (t, t

′) leads to terms
that include the numerical approximation of complex functions which burden the computation of the
kernel function. By providing a random Fourier feature representation for the EQ kernel kq(t, t′),
Guarnizo and Álvarez [2018] were able to reduce this cubic dependence on the number of data-points
to a linear dependence. This representation arises from Bochner’s theorem, which states,

kq(τ, τ
′) = e

−(τ−τ′)2

`2q =

∫
p(ω)ej(τ−τ

′)ωdω ≈ 1

NRF

NRF∑

s=1

ejωsτe−jωsτ
′
, (2)

where `q is the lengthscale of the EQ kernel, NRF is the number of random features used
in the approximation and ωs ∼ p(ω) = N (ω|0, 2/`2q). Substituting this form of the EQ
kernel into kfd,fd′ (t, t

′) leads to a fast approximation to the LFM covariance kfd,fd′ (t, t
′) ≈

∑Q
q=1

Sd,qSd′,q
NRF

[∑NRF
s=1 φd(t, θd, ωs)φ

∗
d′(t
′, θd′ , ωs)

]
, where

φd(t, θd, ω) =

∫ t

0

Gd(t− τ)ejωτdτ, (3)
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with θd representing the Green’s function parameters. When the Green’s function is a real function,
φ∗d′(t

′, θd′ , ω) = φd′(t
′, θd′ ,−ω). Guarnizo and Álvarez [2018] refer to φd(t, θd, ω) as random

Fourier response features (RFRFs).

3 Deep Latent Force Models

In this section, we present the deep latent force model (DLFM), a novel approach to incorporating
physically-inspired prior beliefs into a deep Gaussian process. Firstly, we will outline the model
architecture, before discussing our approach to training the model via stochastic variational inference.

3.1 Model Formulation

Rather than deriving the random features Φ(`) within the DGP from an EQ kernel [Cutajar et al.,
2017], we instead populate this matrix with features derived from an LFM kernel. The exact
form of the features derived is dependent on the Green’s function used, which in turn depends
on the form of differential equation whose characteristics we wish to encode within the model.
Guarnizo and Álvarez [2018] derived a number of different forms corresponding to various differential
equations, with the simplest case being that of a first order ordinary differential equation (ODE) of the
form,df(t)dt + γf(t) =

∑Q
q=1 Squq(t), where γ is a decay parameter associated with the ODE and Sq

is a sensitivity parameter which weights the effect of each latent force. For simplicity of exposition,
we assume D = 1. The Green’s function associated to this ODE has the form G(x) = e−γx. By
using equation (3), the RFRFs associated with this ODE follow as

φ(t, γ, ωs) =
ejωst − e−γt
γ + jωs

, (4)

where compared to the expression (3), the parameter θ of the Green’s function corresponds to the
decay parameter γ. From here on, we redefine the spectral frequencies as ωq,s to emphasise the fact
that the values sampled are dependent on the lengthscale of the latent force by way of the prior, ωq,s ∼
N (ω|0, 2/`2q). We can collect all of the random features corresponding to the q-th latent force into

a single vector, φcq(t, γ,ωq) =
√
S2
q/NRF [φ(t, γ, ωq,1), · · · , φ(t, γ, ωq,NRF )]> ∈ CNRF×1, where

ωq = {ωq,s}NRFs=1 , C refers to the complex plane and the super index c inφcq(·) makes explicit that this
vector contains complex-valued numbers. By including the random features corresponding to all Q
latent forces within the model, we obtain φc(t, γ,ω) = [(φc1(t, γ,ω1)

>
, · · · ,

(
φcQ(t, γ,ωQ)

)>
]> ∈

CQNRF×1, with ω = {ωq}Qq=1. These random features will be denoted as φcLFM (t, γ,ω) to
differentiate them from the features φ(·) computed from a generic EQ kernel.

Higher-dimensional inputs Although the expression for φcLFM (t, γ,ω) was obtained in the
context of an ODE where the input is the time variable, in this paper we exploit this formalism to
propose the use of these features even in the context of a generic supervised learning problem where
the input is a potentially high-dimensional vector x = [x1, x2, · · · , xp]> ∈ Rp×1. As will be noticed
later, such an extension is also necessary if we attempt to use such features at intermediate layers of
the composition. Essentially, we compute a vector φcLFM (xm, γm,ωm) for each input dimension xm
leading to a set of vectors {φcLFM (x1, γ1,ω1), · · · ,φcLFM (xp, γp,ωp)}. Notice that the samples
ωm can also be different per input dimension, xm. Although there are different ways in which
these feature vectors can be combined, in this paper, we assume that the final random feature vector
computed over the whole input vector x is given as φcLFM (x,γ,Ω) =

∑p
m=1 φ

c
LFM (xm, γm,ωm),

where Ω = {ωm}pm=1 and γ = {γm}pm=1. An alternative to explore for future work involves
expressing φcLFM (x,γ,Ω) as φcLFM (x,γ,Ω) =

∑p
m=1 αmφ

c
LFM (xm, γm,ωm), with αm ∈ R a

parameter that weights the contribution of each input feature differently. Although we allow each
input dimension to have a different decay parameter γm in the experiments in Section 5, for ease of
notation we will assume that γ1 = γ2 = · · · = γp = γ. For simplicity, we write φcLFM (x, γ,Ω).
Therefore, φcLFM (x, γ,Ω) is a vector-valued function that maps from Rp×1 to CQNRF×1.

Real version of the RFRFs Rather than working with the complex-value random features
φcLFM (x, γ,Ω), we can work with their real-valued counterpart by using φLFM (x, γ,Ω) =
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(b) Deep latent force model (DLFM)

Figure 2: An illustration of how our proposed model differs from a DGP with random feature
expansions, with this example containing two layers. At each layer of the DLFM, for each input
dimension, NRF random features of the form shown in (4) are computed for each of the Q latent
forces. The random feature vector φ(`)

LFM is then formed by taking the sum of these features across
the input dimensions. This summation is shown in the Figure by the block containing Σ.

[(Re{φcLFM (x, γ,Ω)})> , (Im{φcLFM (x, γ,Ω)})>]> ∈ R2QNRF×1 Guarnizo and Álvarez [2018],
where Re(a) and Im(a) take the real component and imaginary component of a, respec-
tively. For an input matrix X = [x1, · · · ,xN ]> ∈ RN×p, the matrix ΦLFM (X, γ,Ω) =
[φLFM (x1, γ,Ω), · · · ,φLFM (xN , γ,Ω)]> ∈ RN×2QNRF .

Composition of RFRFs We now use ΦLFM (X, γ,Ω) as a building block of a layered architecture
of RFRFs. We write Φ

(`)
LFM (F(`), γ(`),Ω(`)) ∈ RN×2Q(`)N

(`)
RF and follow a similar construction

to the one described in Section 2.1, where F(`+1) = Φ
(`)
LFM (F(`), γ(`),Ω(`))W(`), and W(`) ∈

R2Q(`)N
(`)
RF×DF (`+1) . As before, F(0) = X. Figure 2 is an example of this compositional architecture

of RFRFs, which we refer to as a deep latent force model (DLFM). When considering multiple-output
problems, we allow extra flexibility to the decay parameters and lengthscales at the final (L-th) layer
such that they vary not only by input dimension, but also by output. Mathematically, this corresponds
to computing F

(L)
d = Φ

(L−1)
LFM (F(`), γ

(L−1)
d ,Ω

(L−1)
d )W

(L−1)
d , where d = 1, ..., D.

Model interpretation In a DGP, the layers of GPs successively warp the input space, propagating
uncertainty through the model. The DLFM also performs a similar warping of the inputs, however, in
addition, the Green’s function involved in the convolution which takes place within our model can be
interpreted as a filter, which selectively filters out some of the frequencies of the GPs at each layer.
Therefore, the DLFM is not only warping the intermediate inputs, but also filtering components in
the latent GPs, altering their degree of smoothness.

3.2 Variational Inference

As previously mentioned, exact Bayesian inference is intractable for models such as ours, therefore
in order to train the DLFM we employ stochastic variational inference [Hoffman et al., 2013].
For notational simplicity, let W, Ω and Θ represent the collections of weight matrices, spectral
frequencies and kernel hyperparameters respectively, across all layers of the model. We seek to
optimise the variational distributions over Ω and W whilst also optimising Θ, however we do not
place a variational distribution over these hyperparameters. Our approach resembles the VAR-FIXED
training strategy described by Cutajar et al. [2017] which involves reparameterizing Ω

(`)
ij such that

Ω
(`)
ij = s

(`)
ij ε

(`)
rij +m

(`)
ij , where m(`)

ij and (s2)
(`)
ij represent the means and variances associated with
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the variational distribution over Ω
(`)
ij , and ensuring that the standard normal samples ε(`)rij are fixed

throughout training rather than being resampled at each iteration. If we denote Ψ = {W,Ω} and
consider training inputs X ∈ RN×Din and outputs y ∈ RN×Dout , we can derive a tractable lower
bound on the marginal likelihood using Jensen’s inequality, which allows for minibatch training using
a subset of M observations from the training set of N total observations. This bound, derived by
Cutajar et al. [2017], takes the form,

log[p(y|X,Θ] = Eq(Ψ) log[p(y|X,Ψ,Θ)]− DKL[q(Ψ)||p(Ψ|Θ)] (5)

≈
[
N

M

∑

k∈IM

1

NMC

NMC∑

r=1

log[p(yk|xk, Ψ̃r,Θ)]

]
− DKL[q(Ψ)||p(Ψ|Θ)], (6)

where DKL denotes the KL divergence, Ψ̃r ∼ q(Ψ), the minibatch input space is denoted by IM and
NMC is the number of Monte Carlo samples used to estimate Eq(Ψ). q(Ψ) and p(Ψ|Θ) denote the
approximate variational distribution and the prior distribution over the parameters respectively, both
of which are assumed to be Gaussian in nature. A full derivation of this bound and the expression for
the KL divergence between two normal distributions are included in the supplemental material.

We mirror the approach of Cutajar et al. [2017] and Kingma and Welling [2014] by reparameterizing
the weights and spectral frequencies, which allows for stochastic optimisation of the means and
variances of our distributions overW and Ω via gradient descent techniques. Specifically, we use the
AdamW optimizer [Loshchilov and Hutter, 2018], implemented in PyTorch, as empirically it led to
superior performance compared to other alternatives such as conventional stochastic gradient descent.

4 Related Work

As mentioned previously, the work of Lorenzi and Filippone [2018] also aims to incorporate physical
structure into a deep probabilistic model, however the authors achieve this by constraining the
dynamics of their DGP with random feature expansions, rather than specifying a physics-informed
kernel as in our approach. Additionally, the model developed by Lorenzi and Filippone [2018] is
primarily designed for tackling the problem of ODE parameter inference in situations where the form
of the underlying ODEs driving the behaviour of a system are known. In contrast, our DLFM does
not assume any knowledge of the differential equations governing the complex dynamical systems we
study in Section 5, and thus we do not attempt to perform parameter inference; our primary aim is to
construct a robust, physics-inspired model with extrapolation capabilities and the ability to quantify
uncertainty in its predictions.

The work of Mehrkanoon and Suykens [2018] is another example of a deep model in which each
layer consists of a feature mapping computed using random Fourier features, followed by a linear
transformation. Whilst this bears a similarity to the architecture of our model and to that of Lorenzi
and Filippone [2018], the authors only consider an EQ kernel for their feature mapping, with no
consideration given to physically-inspired features or constraining function dynamics. Wang et al.
[2019] also propose a scalable deep probabilistic model capable of modeling non-linear functions
(they specifically consider multivariate time series), but their approach relies on a deep neural network
to model global behaviour, whilst relying on GPs at each layer to capture random effects and local
variations specific to individual time series. Zammit-Mangion et al. [2021] is another example of
recent work which aims to model nonstationary processes using a deep probabilistic architecture,
with their primary focus being spatial warping. In Duncker and Sahani [2018], the authors propose a
nested GP model in which the inner GP warps the temporal input it is provided. If we consider a
univariate time input, our model performs a similar process, with the weight-space GP layer warping
the temporal input and passing the output into a second GP layer. However, unlike in Duncker and
Sahani [2018], our framework allows for an arbitrary number of warping transformations.

We wish to clarify that although our model is based on LFMs defined by convolutions of the form
used to compute fd(t) in Section 2.2, our model differs from the convolutional DGP construction
outlined by Dunlop et al. [2018], f (`+1)(t) =

∫
f (`)(t − τ)u(`+1)(τ)dτ , which the authors argue

results in trivial behaviour with increasing depth. Instead, our model takes the form, f (`+1)(f (`)) =
∫ f(`)

0
G(f (`) − τ (`+1))u(`+1)(τ (`+1))dτ (`+1), which is more akin to the compositional construction

outlined by the Dunlop et al. [2018], just with a kernel which happens to involve a convolution.
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Figure 3: Three model fits to data from our toy dynamical system with the latent function u(t) =
cos(0.5t) + 6 sin(3t). Grey, orange and red data-points represent training data, interpolation test data
and extrapolation test data respectively. The purple curves represent the predictive means, and the
shaded areas represent ±2σ.

5 Experiments

All of the experimental results in this section were obtained using a single node of a cluster, consisting
of a 40 core Intel Xeon Gold 6138 CPU and a NVIDIA Tesla V100 SXM2 GPU with 32GB of RAM.
Unless otherwise specified, all models in this section were implemented in pure PyTorch, trained
using the AdamW optimizer with a learning rate of 0.01 and a batch size of 1000.1 The DLFMs and
DGPs with random feature expansions [Cutajar et al., 2017] tested all utilised a single hidden layer
of dimensionality DF (`) = 3, 100 Monte Carlo samples and 100 random features per layer. Further
details regarding experimental setups are provided in the supplemental material, alongside additional
experimental results.

5.1 Compositional System Toy Problem

Firstly, to verify that our model is capable of modeling the compositional systems which its
architecture resembles, we train the model on the vector-valued inputs t and noise-corrupted
outputs y2(t) = f2(t) + ε of a system characterised by f1(t) =

∫ t
0
G1(t − τ)u(τ)dτ and

f2(f1) =
∫ f1
0
G2(f1 − τ ′)u(τ ′)dτ ′, where G1(·) and G2(·) represent the Green’s functions cor-

responding to the first order ODEs which these two integrals represent the solutions to, and
ε ∼ N (0, 0.04). We evaluate an exact GP, a DLFM (with a single latent force and 100 random
features) and a DGP with random features, with a batch size equal to the size of the training set. The
latent function is sinusoidal in nature, resulting in a signal consisting of pulses with varying amplitude.
From the model predictions shown in Figure 3, we see that all three models capture the behaviour
of the system well in the training regime, but only the deep models are able to extrapolate. The
DLFM and DGP have similar normalised mean squared errors (NMSE) on the extrapolation test set
of 1.5 and 1.4 respectively, however, the DLFM appears to provide a more realistic quantification of
predictive uncertainty, which is supported by the fact that the mean negative log likelihood (MNLL)
evaluated on the extrapolation test set for the DLFM was 2.4, whereas for the DGP it was 3.7.

5.2 PhysioNet Multivariate Time Series

To assess the ability of our model to capture highly nonlinear behaviour, we evaluate its performance
on a subset of the CHARIS dataset (ODC-BY 1.0 License) [Kim et al., 2016], which can be found on
the PhysioNet data repository [Goldberger et al., 2000]. The data available for each patient consists
of an electrocardiogram (ECG), alongside arterial blood pressure (ABP) and intracranial pressure
(ICP) measurements; all three of these signals are sampled at regular intervals and are nonlinear in
nature. We use a subset of this data consisting of the first 1000 time steps for a single patient. We
test two variations of the DLFM in this section, one with two latent forces and 50 random features
per force (Q = 2), and one with a single latent force and 100 random features (Q = 1). To clarify,
both of these models contain 100 random features per layer, but in the Q = 2 case, 50 features are

1Our code is publicly available in the repository: https://github.com/tomcdonald/Deep-LFM. The
code was also included within the supplemental material at the time of review.
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Figure 4: Predictions generated for each of the three outputs within the CHARIS dataset from a
DLFM with one latent force (in the left-hand column), and a DGP with an exponentiated quadratic
kernel (in the right-hand column). The shaded grey areas in each plot represent ±2σ.

Table 1: Extrapolation test set results for each output within the CHARIS dataset, with standard error
in brackets.

ABP ECG ICP

NMSE MNLL NMSE MNLL NMSE MNLL

DLFM (Q = 1) 0.39 (0.05) 0.75 (0.07) 0.45 (0.04) 0.99 (0.05) 0.36 (0.04) 0.90 (0.06)
DLFM (Q = 2) 0.42 (0.07) 0.77 (0.08) 1.58 (0.98) 1.16 (0.16) 0.32 (0.06) 0.88 (0.11)

DGP-EQ 0.73 (0.002) 1.21 (0.001) 0.66 (0.01) 1.22 (0.01) 0.44 (0.01) 1.00 (0.01)
DGP-ARC 1.01 (0.001) 2.60 (0.02) 1.03 (0.001) 2.73 (0.04) 1.36 (0.003) 3.25 (0.02)
VAR-GP 1.01 (0.0002) 26.90 (9.02) 1.02 (0.001) 4.98 (0.10) 1.33 (0.003) 15.50 (6.48)

DNN 1.04 (0.01) N/A 1.08 (0.02) N/A 2.41 (0.09) N/A
LFM-RFF 1.00 (0.003) N/A 1.11 (0.02) N/A 1.02 (0.01) N/A

derived from two distinct latent forces. We compare these models to two DGPs with random features,
employing EQ (DGP-EQ) and arccosine (DGP-ARC) kernels, as well as a deep neural network
(DNN) with a single hidden layer of dimensionality 300, ReLU activations, and a dropout rate of 0.5.
In addition to deep models, we also evaluate the performance of a heterogeneous multi-output GP
trained using stochastic variational inference (VAR-GP) [Moreno-Muñoz et al., 2019] and a shallow
LFM with random Fourier features derived from the same first order ODE as our model (LFM-RFF)
[Guarnizo and Álvarez, 2018], consisting of two latent forces and 20 random features. Experimental
results comparing the ability of each of these models to impute values within the training-input space
are presented in the supplemental material, however we focus here on the more challenging task of
extrapolating beyond the training input-space by training the aforementioned models on the first 700
observations and withholding the remaining 300 as a test set.

The results in Table 1 show that our model outperforms the other techniques tested, with the single
latent force variant in particular converging to a significantly lower NMSE and MNLL than the
other approaches across all three outputs. From these results we can conclude that the improved
performance we see is a result of the ODE-based random features in the DLFM allowing the model
to extrapolate accurately beyond the training input-space, rather than purely due to the additional
flexibility afforded by allowing an increased number of lengthscales per layer, as the Q = 1 model
contains the same number of lengthscales per layer as the DGP. We also find that the deep models
tested consistently outperform the shallow models. From Figure 4, we can see that the DLFM is more
able to accurately extrapolate the nonlinear dynamics present in the system than the DGP, especially
the variations in ABP.
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Figure 5: Progression of validation set metrics on the UCI benchmarks, averaged over three folds.

Table 2: Test set results on the UCI benchmarks, with standard error in brackets.
Powerplant Protein

NMSE MNLL NMSE MNLL

DLFM 0.0557 (0.0005) - 0.017 (0.005) 0.698 (0.004) 0.754 (0.006)
DGP-EQ 0.0581 (0.0002) 0.016 (0.003) 0.553 (0.005) 1.101 (0.002)

DGP-ARC 0.0619 (0.0002) 0.039 (0.002) 0.644 (0.027) 1.203 (0.008)
VAR-GP 0.0576 (0.0001) 0.050 (0.001) 0.520 (0.005) 1.174 (0.002)

DNN 0.0754 (0.0011) N/A 0.664 (0.010) N/A

5.3 UCI Regression Benchmarks

Finally, we also evaluated the performance of the model on two regression datasets from the UCI
Machine Learning Repository [Dua and Graff, 2017], ’Powerplant’ and ’Protein’, which both consist
of a multivariate input and a univariate target. For both of these experiments, we evaluate the
same DLFM, DGP and DNN architectures as for the PhysioNet experiment, alongside a multi-task
variational GP (VAR-GP) [Hensman et al., 2015] implemented using GPyTorch [Gardner et al., 2018].
Achieving high performance on benchmark regression datasets was not the primary motivation behind
this work, however from the results shown in Figure 5 and Table 2, we find that the DLFM exhibits
comparable performance to the models described above. Most notably, our model consistently
converges to a superior mean negative log likelihood (MNLL), both on the validation set during
training and also on the held-out test set.

6 Conclusion

We have presented a novel approach to modeling highly nonlinear dynamics with a sound quan-
tification of uncertainty, using compositions of random features derived from a first order ordinary
differential equation (ODE). Our results show that our model is able to effectively capture non-
linear dynamics in both single and multiple output settings, with the added benefit of competitive
performance on benchmark regression datasets.

Whilst we did find that utilising a kernel based on a first order ODE yielded superior results compared
to competing models, the simplicity of the ODE on which our model is based limits its flexibility.
However, random features can also be derived from more expressive kernels based on higher order
ODEs [Guarnizo and Álvarez, 2018] and even partial differential equations. Integrating such kernels
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into our modeling framework, and perhaps even varying the kernel choice between layers, would be
interesting avenues for future research. Another limitation of our approach is that whilst we giveW
and Ω a variational treatment, we do not extend this to the kernel hyperparameters Θ; this could also
be considered in future work.

In this work, we have demonstrated the applicability of our model to healthcare data in Section 5.2.
Whilst our results demonstrate the capability of our model to learn complex dynamics within a highly
nonlinear system, it is important to note that relying heavily on machine learning (ML) software
within the domain of healthcare presents the possibility for negative societal impact, specifically
ethical and practical issues. Care must be taken to ensure that such software is thoroughly tested
and that appropriate safeguards are in place to avoid situations which could cause possible harm
to patients. For example, clinical decisions should be made with input from a trained professional,
rather than purely based upon information from an ML system.
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