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Tissue Reassembly with Generative AI

Anonymous Authors1

Abstract

The spatial arrangement of cells plays a critical
role in determining their functions and interac-
tions within tissues. However, single-cell RNA
sequencing dissociates cells from their native tis-
sue context, resulting in a loss of spatial informa-
tion. Here, we show that complex tissue structures
can be reassembled from the gene expression pro-
files of dissociated cells. To achieve this, we de-
veloped LUNA, a generative AI model that re-
constructs tissues conditioned solely on the gene
expression of cells by learning spatial priors over
existing spatially resolved datasets. We show that
LUNA effectively reconstructs slices from the
MERFISH whole mouse brain atlas with over 1.2
million cells. Applying LUNA to the mouse cen-
tral nervous system scRNA-seq atlas, we show
that LUNA is applicable for de novo generation
of tissue structures. We envision that AI-driven
tissue reassembly can help to overcome current
technological limitations and advance our under-
standing of tissue organization and function.

1. Introduction
Single-cell RNA sequencing (scRNA-seq) technologies
have enabled the high-throughput profiling of cellular tran-
scriptomes, making it possible to identify and explore
unique transcriptional profiles within individual cells (Tang
et al., 2009; Macosko et al., 2015). These technologies have
revolutionized our understanding of cellular diversity, pro-
viding unprecedented insights into the complexity of cells
and tissues (Patel et al., 2014; Consortium* et al., 2022; Lu
et al., 2023; Li et al., 2022; Sikkema et al., 2023; Hickey
et al., 2023). However, a major limitation of scRNA-seq
technologies is the loss of spatial context, as cells are dis-
sociated from their native microenvironments during the
sequencing process. The spatial context is crucial for un-
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derstanding how cells interact with their neighbors and the
surrounding microenvironment, influencing their roles in
healthy tissue function and disease development. Although
spatially resolved sequencing technologies aim to address
this limitation (Chen et al., 2015; Codeluppi et al., 2018;
Wang et al., 2018), they are restricted in the number of genes
that can be measured.

To address the limitations of individual technologies, com-
putational methods have been developed to infer spatial con-
text from gene expression of single-cells. Early approaches
relied on in situ hybridization (ISH)-based reference atlases
of landmark gene expression and leveraged them to infer
the spatial location of cells in scRNA-seq datasets (Achim
et al., 2015; Satija et al., 2015). More recently, reference
mapping methods such as Tangram (Biancalani et al., 2021),
CytoSPACE (Vahid et al., 2023), and CeLEry (Zhang et al.,
2023b), proposed mapping dissociated tissue data to refer-
ence spatial datasets. Although these methods have shown
promising results, they rely on an exact spatial reference for
mapping scRNA-seq datasets, thus primarily functioning
as data integration tools. On the other hand, novoSpaRc
(Nitzan et al., 2019; Moriel et al., 2021) enabled a de novo
spatial reconstruction of single-cell gene expression. How-
ever, novoSpaRc assumes that cells in close physical proxim-
ity exhibit similar gene expression profiles — an assumption
that is often violated in complex tissue architectures.

Here, we present LUNA (Location reconstrUction using
geNerative Ai), a generative AI model that reassembles
complex tissue structures from gene expression of cells by
learning spatial priors over spatial transcriptomics datasets
(Figure 1). LUNA learns cell representations that capture
cellular interactions globally and locally across the entire
tissue slice, enabled by an attention mechanism (Vaswani
et al., 2017; Shen et al., 2021b) that takes into account in-
teractions across all cells. LUNA operates as a diffusion
model (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song
& Ermon, 2019) – during training it learns to denoise cor-
rupted cell coordinates, while during inference it starts from
random noise and reconstructs the physical locations of cells
de novo solely from their gene expression.

We apply LUNA to reassemble the MERFISH whole mouse
brain atlas, which consists of 1.23 million cells spanning all
brain regions (Zhang et al., 2023a), as well as the scRNA-
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Figure 1. Given gene expressions of cells, the tissue reassembly process involves predicting the complex tissue architecture. We visualize
the UMAP projection of cells based on their gene expression profiles (1, 122 genes) from the MERFISH whole mouse Allen Brain Cell
(ABC) Atlas (Zhang et al., 2023a) (left). Each cell is colored according to one of 338 distinct subclasses. LUNA’s predictions of the
spatial tissue structure is displayed on the right with eight slices randomly chosen from a total of 66 slices.

seq mouse central nervous system atlas of 1.08 million cells
(Zeisel et al., 2018). LUNA effectively reconstructs com-
plex mouse brain tissue across a wide range of brain regions
and captures spatial gene expression patterns. Furthermore,
LUNA outperforms existing methods, achieving an 100%
improvement on MERFISH mouse cortex atlas. We apply
LUNA to simulate the knockout of individual genes in sil-
ico, allowing us to investigate their impact on the spatial
organization of cells within tissues. LUNA is highly scal-
able, with linear time and memory complexity relative to the
number of input cells, and it can infer the spatial coordinates
of tens of thousands of cells in less than a few minutes on a
single GPU.

2. Method
LUNA is a diffusion-based generative model designed to
generate spatial locations of cells from their gene expression.
Using an attention-based mechanism, LUNA learns how
each individual cell should attend to other cells according
to their relevance to a cell’s own location and molecular
features as shown in Figure 2. During training, LUNA
leverages spatial transcriptomics data with ground truth cell
locations to learn to generate cell locations conditioned on
gene expression. During inference, the input to LUNA is
the gene expression of dissociated cells, and the model then
generates cell locations from pure noise conditioned on gene
expression, enabling de novo inference of cell locations.

In the training phase, the input to LUNA is spatial transcrip-
tomics data from single or multiple slices. LUNA learns

cell embeddings that capture both the local and global tis-
sue structure using a multi-head self-attention mechanism
(Vaswani et al., 2017; Shen et al., 2021b) that enables cells
to learn to attend to other cells. We designed the loss in
LUNA as an SE(2)-invariant function (Segol & Lipman,
2020; Torres-Mendez et al., 2000; Romero et al., 2020; Wu
et al., 2016), i.e., it is robust to arbitrary rotations, trans-
lations and reflections of the predicted locations, only en-
forcing the preservation of relative distances between cells
within each slice.

Training LUNA involves two main steps: (i) a corruption
process that iteratively adds noise to the ground truth cell
locations, and (ii) a denoising process that generates the
ground truth locations from the noise-corrupted locations.
During the denoising process, LUNA learns to reverse the
corruption process, gradually transitioning from noisier to
less noisy cell locations, ultimately reconstructing true cell
locations from pure noise.

2.1. Learning cell representations

LUNA learns cell representations that capture the relation-
ship between the molecular features of individual cells and
their spatial context within tissue. These embeddings form
the foundation for predicting the locations of cells.

The model is built on the premise that a cell’s location is
influenced not only by its own molecular features but also by
those of other cells in the tissue. To effectively model these
interactions, LUNA employs a multi-head self-attention
mechanism (Vaswani et al., 2017; Shen et al., 2021b), which
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Figure 2. Overview of the training stage of LUNA. LUNA takes as input spatial transcriptomics data and corrupts the spatial locations of
cells by adding noise. Using the attention mechanism, LUNA learns how to position each individual cell with respect to other cells based
on their gene expressions. The loss function in LUNA ensures invariance to the rotations and reflections of the predicted slice.

dynamically integrates information from all cells in the slice.
This mechanism allows the model to assign attention scores
to different cells based on their relevance to the prediction of
each cell’s location, capturing both local and global cellular
interactions. Once the cell embeddings are learned, LUNA
projects each cell’s embedding into a 2-dimensional space
to predict its locations.

Formally, LUNA takes as input (i) molecular features of
cells Xs ∈ Rm×d in a given slice s where m denotes the
number of cells and d denotes the number of genes, (ii) time
step t ∈ N uniformly sampled from 0 to the maximum diffu-
sion time T, and (iii) corrupted cell locations R̃s,t ∈ Rm×2

at time step t. The output of the model are the denoised cell
locations R̂s ∈ Rm×2 for a given slice s. We omit slice
index s for the ease of notation.

LUNA is composed of multiple transformer layers, each
integrating fully connected layers followed by the self-
attention block. At each layer l given a fixed diffusion time
t, LUNA learns (i) cell embeddings F(l) ∈ Rm×d(l)

x , (ii) a
diffusion time embedding γ

(l)
t ∈ R, and (iii) cell location

embeddings R(l) ∈ Rm×d(l)
r . The cell embeddings F(0) in

layer 0 are initialized via fully connected neural network
layer that maps the molecular features of cells into the latent
embedding space with dimensionality d

(0)
x :

F(0) = FCN(Xs), (1)

where FCN denotes a fully connected neural network layer.
The diffusion time embedding γ

(0)
t is initialized to the value

of the diffusion time itself:

γ
(0)
t = t. (2)

Finally, the cell location embeddings are initialized as the
corrupted cell locations obtained from the corruption pro-
cess at time step t:

R(0) = R̃t. (3)

Then, at each layer l ∈ {1, . . . , L}, LUNA first transforms
cell embeddings, a diffusion time embedding and cell loca-
tion embeddings using fully connected layers:

F
(l)
f = FCN

(
F(l−1)

)
, (4)

γ
(l)
t = FCN

(
γ
(l−1)
t

)
, (5)

R(l)
r = FCN

(
R(l−1)

)
. (6)

The transformed cell embeddings, diffusion time embedding
and cell location embeddings are concatenated to form a
unified representation for each cell:

H(l) =
[
F

(l)
f , γ

(l)
t 1m×1 ,R

(l)
r

]
, (7)

where 1m×1 is a column vector of ones used to replicate
the diffusion time embedding γ

(l)
t across all m cells. To

obtain final cell embeddings F(l) in layer l, the unified
representation H(l) is passed through a self-attention block
which computes attention weights between all pairs of cells
(Shen et al., 2021b):

F(l) = SelfAttention(l)
(
H(l)

)
. (8)

This self-attention operation enables the model to aggre-
gate information from all cells in a slice, capturing how
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each cell’s location is influenced by others. To ensure scal-
ability, we implemented the efficient attention (Shen et al.,
2021b) – an approximation of attention computation with
a linear complexity. This approach reduces memory usage
and computational complexity by circumventing the need
for explicit pairwise interactions between every query-key
pair (Appendix A).

Finally, the cell embeddings F(l) are used to predict the
locations of each cell. The cell locations are generated from
the embeddings using a fully connected layer that projects
the location of each cell from the latent embedding space to
the two-dimensional physical space:

R(l) = FCN
(
F(l)

)
. (9)

At each layer, the updated locations are centered by subtract-
ing the mean, ensuring that the cell locations remain stable
and consistent relative to the tissue structure. At the final
layer, the output cell locations are the predicted clean cell
locations R̂ = R(L).

2.2. Loss objective

To optimize LUNA, we introduce a specific loss objective
that is SE(2)-invariant. This geometric invariance is crucial
because the spatial arrangement of cells in the tissue may
undergo transformations due to experimental artifacts, while
the underlying gene expression profiles remain unchanged.

To ensure SE(2)-invariance, LUNA introduces a pairwise
loss function which focuses on preserving the relative dis-
tances between all cells in the slice defined as follows:

Ldiff =
1

m2
∥∆(R̂)−∆(Rgt)∥2F , (10)

where ∆(·) : Rm×2 → Rm×m computes the pairwise
squared Euclidean distances between the locations of all
cells and Rgt ∈ Rm×2 represents the ground true cell loca-
tions.

The function ∆(R̂)ij = ∥r̂i − r̂j∥22 computes the squared
distance between the predicted locations of cells i and j,
and similarly, ∆(Rgt)ij = ∥ri−rj∥22 computes the squared
distance between the true locations. The pairwise loss then
becomes:

Ldiff =
1

m2

m∑
i=1

m∑
j=1

(∥r̂i − r̂j∥22 − ∥ri − rj∥22)2, (11)

which penalizes deviations between the predicted and true
pairwise distances, ensuring that the spatial relationships
between cells are preserved.

The final loss is computed over all slices s ∈ {1, ...S} where
S denotes the total number of slices:

L =
1

S

S∑
s=1

L(s)
diff. (12)

2.3. Corruption process

The diffusion model training begins with a corruption pro-
cess, where LUNA progressively introduces noise to the
true cell locations in an autoregressive manner. This step
gradually transitions the true cell locations into pure noise,
with the resulting corrupted locations serving as inputs for
the subsequent denoising process.

We denote the initial diffusion time step, where no noise
has been introduced to the cell locations, as time step 0,
where ground-truth spatial information is fully retained.
Conversely, the maximum diffusion time step, denoted
as T , represents the state where no ground-truth informa-
tion is preserved, and the locations are sampled from pure
Gaussian noise. The time step t is randomly selected from
{0, 1, 2, . . . , T}. The corrupted cell locations at time step t
for the slice s are denoted as R̃t ∈ Rm×2 where again we
omit the slice index s for the ease of notation. From time
step t− 1 to t, Gaussian noise is added to the corrupted cell
locations R̃t−1, yielding noisier locations R̃t according to
a predefined noise scheduler (Ho et al., 2020; Song et al.,
2021; Sohl-Dickstein et al., 2015). At time step T , the true
cell locations Rgt = R̃0 are transformed into corrupted cell
locations R̃T that have standard Gaussian distribution. The
conditional distribution is defined as:

qϕ(R̃t|R̃t−1) = N (R̃t|
√
αtR̃t−1, (1− αt)I), (13)

where qϕ(·|·) represents the corruption process with a noise
scheduler ϕ that conditionally transitions the cell location
distribution from less corrupted to more corrupted states.
N (·|·, ·) denotes a Gaussian distribution, while I is the iden-
tity matrix. The noise scheduler ϕ, regulated by hyperpa-
rameters {αt}, controls the balance between retaining the
original cell locations and adding noise.

To mitigate computational complexity, we compute the con-
ditional distribution of corrupted cell locations given the true
cell locations Rgt, rather than from the previous diffusion
step (Ho et al., 2020; Chan, 2024):

qϕ(R̃t|R̃0) = N (R̃t|
√
αtR̃0, (1− αt)I). (14)

Sampling from this conditional distribution is equivalent to
adding Gaussian noise to the true cell locations. As shown
in (Chan, 2024), the corrupted cell locations are computed
as:
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R̃t =
√
αtR̃0 +

√
(1− αt)ϵ, (15)

where αt =
∏t

i=1 αi, and ϵ is drawn from a Gaussian
distribution with mean 0 and variance I, i.e., ϵ ∼ N (0, I).
As t progresses from 0 to T , the cell locations become
increasingly corrupted until they are indistinguishable from
white noise. At t = T , the corrupted locations R̃T are
sampled purely from Gaussian noise, with αT = 0. To
ensure robustness to translations, we additionally subtract
the center of mass from the noise ϵ and the data slices R̃0,
thus working with distributions defined in the subspace
where the center of mass is fixed to 0 (Xu et al., 2022;
Hoogeboom et al., 2022).

2.4. Denoising process

Given the corrupted locations, we train the LUNA model
to recover the true cell locations by reversing the corrup-
tion process using gene expression profiles. We denote the
model as µθ(·, ·, ·) where θ represents all model parameters.
LUNA progressively denoises the corrupted cell locations
R̃t producing less corrupted locations R̃t−1 given time step
t, more corrupted locations R̃t at the time step t, and the
molecular features X.

Eventually, LUNA learns to generate clean cell locations
from pure white noise, transitioning from t = T to t = 0. To
achieve this, the model first predicts the clean cell locations
R̂ using the learned network µθ(·, ·, ·). It then interpolates
between the corrupted locations R̃t and the predicted clean
locations R̂, producing less corrupted locations for the next
diffusion step:

R̃t−1 =
(1− αt−1)

√
αt

1− αt
R̃t +

(1− αt)
√
αt−1

1− αt
R̂. (16)

Inference phase. Once the model µθ(·, ·, ·) is trained,
LUNA generates cell locations based on the molecular
features of the cells in the test set Xts ∈ Rmts×d. The
inference process starts by sampling locations from a nor-
mal distribution ϵ ∼ N (0, I), where ϵ ∈ Rmts×2. The noisy
locations, Rts,T = ϵ are then refined through a sequence of
diffusion steps.

At each step t, the model takes the noisy locations Rts,t,
the molecular features Xts, and the time step t as inputs to
predict the denoised locations for the next time step t− 1:

Rts,t−1 =
(1− αt−1)

√
αt

1− αt
Rts,t

+
(1− αt)

√
αt−1

1− αt
µθ(Rts,t,Xts, t). (17)
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Figure 3. Performance comparison on the cross-animal generaliza-
tion task between LUNA and alternative baselines on the MER-
FISH mouse primary motor cortex atlas (Zhang et al., 2021). The
performance is measured as the median Spearman’s rank correla-
tion between the ground truth spatial coordinates and the predicted
spatial coordinates over all slices from an unseen mice (31 slices,
118, 036 cells). Higher correlation indicate better prediction per-
formance. Error bars represent standard deviation across 31 slices.

This process is repeated for each time step, iterating from
t = {T, ..., 0} until the model generates the final clean cell
locations at t = 0.

3. Results
3.1. LUNA significantly outperforms other methods

LUNA is a unique method in its capability to reconstruct
complex tissue structures. Existing methods are reference
mapping methods and require the pre-selection of a single
reference slice to which then new cells are mapped based
on the similarity of the gene expression between the cells
in the reference slice and the input gene expression profiles.
This mapping is performed either by explicitly learning
a mapping matrix, as in novoSpaRc (Nitzan et al., 2019),
Tangram (Biancalani et al., 2021), and CytoSPACE (Vahid
et al., 2023), or by implicitly regressing from gene expres-
sion space to the physical space, as in CeLEry (Zhang et al.,
2023b) (Appendix C).

We compared the performance of LUNA to alternative meth-
ods on the spatially resolved cell atlas of the mouse primary
motor cortex sequenced by MERFISH (Zhang et al., 2021).
We used 31 slices (118, 036 cells) from one animal as the
test set and trained LUNA on 33 slices (158, 379 cells) from
another mouse to learn spatial priors across multiple slices
(Appendix B). During inference, all methods were condi-
tioned only on the gene expression. Since existing methods
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Figure 4. Visualization of ground-truth locations and predictions using LUNA and alternative baselines for one example slices (5, 235
cells) (a) using randomly selected reference slice and (b) using the best matched slice as a reference for alternative baselines. Colors
denote cell class labels. Performance comparison on that slice using Spearman’s rank correlation between the ground truth spatial
coordinates and the predicted spatial coordinates as a metric (far right).

can not accept multiple slices as input, we randomly se-
lected a single slice from the training mouse to serve as
the reference, repeating the procedure for each slice of the
testing mouse (Appendix C).

We evaluated the results using the Spearman’s rank cor-
relation between the predicted and ground truth locations,
averaging the performance across all slices from the unseen
mouse (Appendix D). LUNA achieved an average correla-
tion coefficient of 44.8%, outperforming the best alternative
baseline CeLEry by 100% (Figure 3). Performance gains of
LUNA were retained using other evaluation metrics, such as
precision and RSSD (Figure S1). We visualized the spatial
locations predicted by different methods on a sample slice
from the unseen test mouse (Figure 4a). LUNA accurately
predicted the layer-wise structure of mouse primary motor
cortex tissues and correctly inferred the spatial priors of the
tissue, such as the contour of the tissue. The limitations
of other methods stem from their reliance on pre-selected
reference slices, which constrains their generalization capa-
bilities.

Given the sensitivity of reference mapping methods to the
choice of reference slices, we further explored alternative
methods by selecting the most similar slice from another
animal as the reference. To identify the most similar slice,
we used cell class information. Specifically, for each of
the 31 slices in the test set, we computed the cosine simi-
larity between its cell class distribution and the cell class
distribution of all other slices from another animal (Ap-
pendix C). Each test slice was then paired with the reference
slice that exhibited the highest cosine similarity. We then

reassessed the performance of alternative methods using
this prior information. This prior information improved the
performance of alternative baselines (Figure 4b); however,
they still lagged significantly behind LUNA’s performance.
Even without any prior information, LUNA outperformed
all baselines, achieving 37.5% better performance than the
best alternative method, CeLEry (Figure S2).

3.2. Whole mouse brain atlas reconstruction

LUNA effectively scales to atlas-scale large datasets and
accurately reconstructed a whole mouse brain of the Allen
Brain Cell (ABC) MERFISH mouse brain atlas (Zhang et al.,
2023a). We trained LUNA on 2.85 million cells across 147
slices from one mouse (Appendix B). We then applied it
to reassemble cells from the whole brain of another mouse,
never seen during model training, consisting of 1.23 million
cells and 338 identified subclasses in 66 slices.

We evaluated LUNA’s predictions using the ground-truth
cell locations. We found that LUNA’s predictions agree
well with the ground-truth cell locations across 11 major
regions identified in the ABC atlas, despite their distinct
structural characteristics. For example, LUNA accurately
captured the circular structure of the olfactory bulb region,
the layered organization of the isocortex region, and the
anatomical separation between the brain stem and cerebrum
(Figure 5a). In the slice from the olfactory bulb region
affected by sequencing artifacts, LUNA inferred the spatial
distribution of cells in areas lacking ground truth spatial
information.

To further evaluate the generation results, we compared
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Figure 5. (a) Examples of tissue reassembly results using LUNA on three representative slices from distinct major brain regions of the
MERFISH whole mouse Allen Brain Cell (ABC) atlas (Zhang et al., 2023a). Cells are coloured according to their cell type annotations
with 338 distinct cell subclasses, showing ground truth (top) and predicted (bottom) locations. (b) LUNA’s predictions across 4
neurotransmitter types and 1, 201 supertypes. Ground truth locations (top) and LUNA’s predictions (bottom) for a slice with 35, 738
cells . (c) Spatial expression patterns of two spatially variable genes in the IT-ET Glut cell type. Representative genes include Rxfp1 and
Rorb for IT-ET Glut. Cells from other cell types are shown in gray color.

LUNA’s predictions across various levels of categorization,
including the neurotransmitter level (4 types) and cell su-
pertype level (1, 201 types). LUNA accurately positioned
cells at different levels of categorization, from coarser to
finer (Figure 5b).

We next assessed LUNA’s ability to infer the spatial distri-
bution of gene expression and correctly position cells within
a cell type based on their gene expression profiles. We
identified spatially variable genes by computing Moran’s I
statistic (Moran, 1950) and visualized the expression values
of genes with the highest Moran’s I values (Appendix D).
LUNA successfully captured the spatial expression patterns
of genes within individual cell types, demonstrating its abil-
ity to preserve biological information. For example, LUNA
accurately positioned cells expressing Rxfp1 and Rorb in ex-
tratelencephalic and intratelencephalic neurons containing
the neurotransmitter Glut (Figure 5c).

3.3. De novo reconstruction of scRNA-seq data

We next applied LUNA for de novo generation of tissue
structures of 1.08 million dissociated single cells across 13
coronal slices from the mouse central nervous system (CNS)
scRNA-seq atlas (Zeisel et al., 2018) (Appendix B). We used
the model trained on the ABC MERFISH mouse brain atlas
to predict spatial locations for cells in the scRNA-seq mouse
CNS atlas. Since the scRNA-seq atlas lacks spatial infor-
mation, we validated LUNA’s performance using estimated
cell locations derived from the integration of the scRNA-
seq atlas with the STARmap PLUS CNS spatial atlas (Shi
et al., 2023). In (Shi et al., 2023), in situ sequencing method
STARmap PLUS was performed to create the mouse CNS
spatial atlas, which was then integrated with the scRNA-

seq data. The integrated dataset underwent careful quality
control by human experts, ultimately providing estimated
cell locations of the scRNA-seq atlas (Shi et al., 2023). To
validate LUNA’s predictions, we used these estimated cell
locations obtained after the integration. Notably, LUNA
never used spatial information from the STARmap PLUS
atlas.

LUNA ’s predictions aligned closely with cell locations esti-
mated through the integration data with the STARmap PLUS
atlas at cell class level (27 types; Figure 6a). Additionally,
we examined LUNA’s predictions for specific neuronal sub-
types including di- and mesencephalon excitatory neurons
and telencephalon projecting excitatory neurons (Figure 6b),
along with their respective sub-molecular classes. The re-
sults indicate that LUNA not only accurately placed cells
across major cell classes but also precisely predicted the spa-
tial relationships of complex sub-molecular classes within
these neuronal cells. This underscores LUNA’s capability
to capture both broad and intricate cellular architectures
within the CNS.

3.4. In silico gene knockout with LUNA

We use LUNA to simulate the knockout of individual genes
in silico, allowing us to investigate their impact on the spatial
organization of cells within tissues. During the inference
stage of LUNA, we knockout a specific gene by masking
its expression to zero and assess its contribution to spatial
reconstruction compared to using all genes. To quantify
the impact of excluding a certain gene, we measured the
discrepancies of the physical spaces between predictions
inferred with the complete gene panel and those with one
gene knocked out. Using this approach, LUNA can reveal
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Figure 6. (a) Tissue reassembly of the scRNA-seq mouse central
nervous system atlas using LUNA for one example slice (35, 738
cells). Cells are colored based on the cell classes (27 types). (b)
Tissue reassembly of the scRNA-seq mouse central nervous system
atlas using LUNA for di- and mesencephalon excitatory neurons
(left) and telencephalon projecting excitatory neurons (right). The
top plot shows estimated ground truth locations obtained by align-
ing scRNA-seq atlas with the STARmap atlas and the bottom plot
shows LUNA’s predictions. Cells from each cell type are colored
by their sub-molecule class. Cells from other cell types are shown
in gray color.

how specific genes affect the local tissue structure.

We investigated how the exclusion of individual genes af-
fects the predictions of physical locations within major cell
classes of the ABC atlas. We train LUNA on all slices from
the Animal 1 with the whole gene panel and during infer-
ence exclude individual genes from Animal 2. To quantify
the effect, we calculated the Spearman Rank Correlation
(SRC) within each cell class and determined gene contribu-
tions in a cell-class-specific manner. Our analysis revealed
that certain genes have a particularly strong effect on pre-
diction accuracy, including Igfbpl1, Cldn11, Vgf, Nefh, and
Nr2f1 (Figure 7). These genes showed the highest impact
within the olfactory bulb–intracerebral migrating stream
GABA neurons (OB-IMN GABA), oligodendrocyte precur-
sor cells and oligodendrocytes (OPC-Oligo), cortex–medial
ganglionic eminence GABA neurons (CTX-MGE GABA),
and cortex–caudal ganglionic eminence GABA neurons
(CTX-CGE GABA), respectively.

Functionally, these genes are closely tied to cell identity and
function: Igfbpl1 is involved in regulating cell growth and
GABAergic transmission in mice (Gonda et al., 2007; Butti
et al., 2022); Cldn11 encodes for oligodendrocyte-specific
protein essential for myelin sheath formation (Bronstein
et al., 2000); Vgf and Nefh genes are biomarkers related to
neurodegenerative diseases and neuronal damage (Quinn
et al., 2021; Theunissen et al., 2022); Nr2f1 plays a crucial
role in neurodevelopment, significantly influencing cortical

development and network activity maturation (Zhang et al.,
2020; Tocco et al., 2021). Interestingly, previous work has
shown that myelin mutant mice lacking expression of the
Claudin11 gene in oligodendrocytes exhibit central auditory
deficits, reduced anxiety-like behavior and neurotransmitter
imbalances (Maheras et al., 2018).

(%
)

Figure 7. Performance difference caused by excluding each gene
for different cell classes. The performance is measured using the
Spearman’s Rank Correlation (SRC) coefficient computed within
each cell class. The top and middle bars of each box represent the
25% quantile and the mean performance difference, respectively.

4. Conclusion
LUNA is a generative AI model that enables de novo gener-
ation of tissue architectures from their gene expression. By
learning spatial priors from existing spatial transcriptomics
datasets, LUNA captures the underlying patterns of tissue
organization, enabling it to reconstruct complex tissue ar-
chitectures. LUNA’s scalability, accuracy, and versatility
position it as a powerful resource for studying tissue spa-
tial organization across a wide range of biological contexts,
paving the way towards the construction of comprehensive,
spatially resolved single-cell transcriptome atlases and gen-
eration of virtual tissue models. We envision that AI-driven
tissue reassembly can help to overcome current technolog-
ical limitations and advance our understanding of tissue
organization and function, paving the way towards virtual
tissue models.
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Software and Data
All analyzed datasets are publicly available. MERFISH
Whole Mouse Brain Atlas (ABC Atlas) for Animal 1 is
available at https://alleninstitute.github.
io/abc_atlas_access/descriptions/
Zhuang-ABCA-1.html and for Animal 2 is avail-
able at https://alleninstitute.github.
io/abc_atlas_access/descriptions/
Zhuang-ABCA-2.html. MERFISH Mouse Pri-
mary Motor Cortex Atlas is available at the Brain Image
Library: https://doi.brainimagelibrary.
org/doi/10.35077/g.21. scRNA-seq Mouse
Central Nervous System Atlas is available at the Single Cell
Portal: https://singlecell.broadinstitute.
org/single_cell/study/SCP1830. Slide-tags
Datasets for all the tissues are available at the Broad
Institute Single Cell Portal under the following accession
numbers: SCP2170 (mouse E14), SCP2171 (human
melanoma), SCP2169 (human tonsil) and SCP2167 (human
brain).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. We envision that AI-driven tissue
reassembly holds great potential for advancing our under-
standing of complex biological processes and can drive
future discoveries in cellular and tissue architecture, ulti-
mately enhancing our ability to map and interpret the spatial
structure across multiple biological systems in healthy and
disease states.
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A. Efficient Attention
LUNA learns cell representations that capture cellular interactions globally and locally across entire tissue slice. To
ensure scalability, we implemented Efficient Attention (Shen et al., 2021a). Different from traditional dot-product attention
mechanism, Efficient Attention is an approximation of attention computation with linear complexity.

Dot-product Attention. Dot-product attention (Vaswani et al., 2017), the traditional method for implementing attention
mechanisms, captures pairwise dependencies between input elements by transforming each input feature vector xi ∈ Rd

into three distinct vectors: a query qi ∈ Rdk , a key ki ∈ Rdk , and a value vi ∈ Rdv . These transformations are performed
through linear layers, which apply learned weight matrices to the input feature vectors. The similarities between the query
and key vectors are computed by taking their dot products, capturing the interactions between different input features.

In matrix form, the set of queries, keys, and values are represented as Q ∈ Rn×dk , K ∈ Rn×dk , and V ∈ Rn×dv ,
respectively, where n represents the number of input feature vectors (in our case, the number of cells). The core operation of
dot-product attention is expressed as:

D(Q,K, V ) = ρ
(
QKT

)
V

Here, ρ(Y ) is a normalization function, typically a row-wise softmax, denoted as σrow(Y ), which normalizes the raw
dot-product scores across each row of the matrix Y = QKT. This ensures that the attention scores are positive and sum to
1 across each row, allowing the model to focus on the most relevant keys for each query while still considering all input
features. The row-wise softmax function σrow(Y ) for a given row i is defined as:

σrow(Y )i =
exp(Yij)∑
j′ exp(Yij′)

where Yij represents the element in the i-th row and j-th column of the matrix Y . This transformation converts the raw
similarity scores into normalized attention weights. The resulting attention weights are then used to compute a weighted sum
of the value vectors V , where the weight assigned to each value vector is determined by its corresponding attention score.

Thus, the final output of dot-product attention becomes:

D(Q,K, V ) = σrow
(
QKT

)
V

This mechanism enables the model to dynamically adjust its focus on different parts of the input sequence, ensuring that it
captures the most important interactions between elements while maintaining a global view of the data through the attention
weights.

Dot-product attention is effective but requires calculating all pairwise similarities, which leads to high memory and
computational demands. Specifically, the memory complexity is O(n2), and the computational complexity is O(dkn

2),
where n represents the number of input feature vectors. These complexities grow quadratically with n, making it challenging
to scale to large inputs.

Efficient Attention. Efficient attention (Shen et al., 2021a) addresses the scaling issues of dot-product attention by
reinterpreting the keys as global feature maps, eliminating the need to compute similarities for each individual pair of queries
and keys. Instead, it uses the keys to summarize the input globally, and this summary is then applied to the queries. The
output of efficient attention is computed as:

E(Q,K, V ) = ρ(Q)
(
ρ(K)TV

)
Efficient attention reduces memory and computation by avoiding the computation of pairwise interactions for each query-key
pair. Instead, it aggregates global context vectors based on the keys. This leads to the fact that efficient attention scales
linearly with n, making it a more practical solution for large-scale data without sacrificing performance. When using
softmax normalization, the overall memory complexity becomes O(dn+ d2) and the computational complexity becomes
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O(d2n), assuming that dv = dk = d
2 . In practice, d ≪ n, therefore the complexity of Efficient Attention becomes linear to

the number of cells n. Thus, making efficient attention a better option for processing large-scale data, from a computational
standpoint.

Method Memory Complexity Computational Complexity
Dot-Product Attention O(n2) O(dkn

2)
Efficient Attention O(dn+ d2) O(d2n)

Table S1. Comparison of the memory and computational complexities of dot-product attention and efficient attention.

B. Datasets and preprocessing
In LUNA, we considered the following datasets:

• MERFISH Whole Mouse Brain Atlas (ABC Atlas) (Zhang et al., 2023a): We utilized raw gene expression data
from Animal 1 (2.85 million cells) and Animal 2 (1.23 million cells) from the ABC atlas dataset. The data was
log2-transformed, and 1, 122 genes were selected as input features. All slices from Animal 1 were used for training,
and all slices from Animal 2 were used for testing. In the zero-shot setting, we trained LUNA on all slices from Animal
1, excluding cells from randomly selected cell classes, and applied LUNA to predict tissue structures in Animal 2,
including the unseen cells, which were not part of the training set. All slices from Animal 1 were used for training, and
all slices from Animal 2 were used for testing.

• MERFISH Mouse Primary Motor Cortex Atlas (Zhang et al., 2021): This dataset consisted of raw gene expression
data from 33 slices (158, 379 cells) from one animal and 31 slices (118, 036 cells) from another animal. After applying
a log2 transformation, 254 genes were used as input features. We trained LUNA using all 33 slices from the first
animal and tested it using all 31 slices from the second animal.

• scRNA-seq Mouse Central Nervous System Atlas (Zeisel et al., 2018): Wang et al. (Shi et al., 2023) constructed
the Mouse Central Nervous System (CNS) atlas by integrating STARmap PLUS measurements (Shi et al., 2023)
with a published single-cell RNA-sequencing atlas (Zeisel et al., 2018). This integration resulted in the imputation
of expression profiles for 11, 844 genes and the estimation of spatial locations. We utilized this publicly available
dataset from Wang et al. (Shi et al., 2023), which includes imputed transcriptomes and estimated spatial coordinates.
By intersecting the gene panels from the ABC atlas and the CNS dataset, we identified 804 common genes. The
CNS dataset comprises 13 coronal slices containing 1.08 million cells. Before integrating, both datasets were log2-
transformed. For running LUNA, we integrated the gene expression matrices for these 804 common genes from both
datasets—ABC Atlas (Animal 1) with 2.85 million cells and the CNS dataset with 1.08 million cells—using the
Harmony method (Korsunsky et al., 2019). This integration, performed via the scanpy.external.pp.harmony integrate
function from the Scanpy library (Wolf et al., 2018), resulted in a 600-dimensional latent space. The ABC dataset
served as the training set, while the CNS dataset was utilized for testing. The effectiveness of the model was assessed
by comparing the results to the estimated ground truth locations provided in the work of Wang et al. (Shi et al., 2023).

All spatial locations were normalized to a range of −0.5 to 0.5 and used as the ground truth for cell spatial coordinates.

C. Baselines
We compared LUNA with four existing tissue spatial reconstruction methods—novoSpaRc (Nitzan et al., 2019), Tan-
gram (Biancalani et al., 2021), CytoSPACE (Vahid et al., 2023), and CeLEry (Zhang et al., 2023b)—using the MERFISH
Mouse Primary Cortex Atlas dataset (Zhang et al., 2021) with in total 254 genes. Notably, CeLEry is the only method
capable of processing multiple slices simultaneously. Consequently, we trained CeLEry using all 33 slices from the first
animal and tested it on all 31 slices from the second animal. For each method, we inferred locations for all slices from the
test set, which includes 31 slices, under two scenarios:

1. For each slice in the test set, we randomly select one of the 33 slices from the training set as a reference using a fixed
random seed.
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2. For each slice in the test set, we calculate the cosine similarity between its cell class distribution and those of the 33
training set slices in LUNA. We then matched each test slice with the training slice that showed the highest cosine
similarity which should be the best match as a reference slice.

We conducted extensive hyperparameter tuning for all methods. For novoSpaRc (Nitzan et al., 2019),we use the cell locations
of the reference slice as the target mapping space. We conducted 50 trials of hyperparameter tuning to optimize the model’s
performance. During each trial, we explored different values for two key hyperparameters: αlinear and ϵ. The parameter
αlinear, which controls the trade-off between prior spatial information and gene expression similarity, was tested across
values ranging from 0.1 to 1 in increments of 0.1. The ϵ parameter, which governs the convergence of the reconstruction
algorithm, was varied across values 5×10−5, 1×10−4, 5×10−4, 1×10−3, 5×10−3, 1×10−2, 5×10−2, 1×10−1, and 1.
For Tangram (Biancalani et al., 2021), we run it at the cell level with “uniform” density prior for MERFISH data by
calling “tg.map cells to space” and explored different values for the learning rate. The learning rate was tested across
5× 10−5, 1× 10−4, 5× 10−4, 1× 10−3, 5× 10−3, 1× 10−2, 5× 10−2, 1× 10−1, and 1. For CytoSPACE (Vahid et al.,
2023), we run it under default settings of single-cell mode since it has no hyperparameters to tune. For CeLEry (Zhang
et al., 2023b), we performed 50 trials for hyperparameter optimization. During each trial, we explored different values for
the learning rate, the dimension of the latent embedding, and the number of layers. The learning rate was tested across
5 × 10−5, 1 × 10−4, 5 × 10−4, 1 × 10−3, 5 × 10−3, 1 × 10−2, 5 × 10−2, 1 × 10−1, and 1. The dimension of the latent
embedding was explored with values of 32, 64, 128, and 256, while the number of layers was varied across 3, 4, 5, 7, 8, 9, 10.

In the paper, we report the results from the hyperparameter configuration that achieved the best performance for each of the
baseline models.

D. Evaluation Metrics
There are various ways to assess the quality of tissue spatial reconstruction results. A high-quality reconstruction should
preserve the local neighborhood composition of each cell, accurately capture the spatial distribution across different cell
types, reflect biologically meaningful spatial gradients for various genes, and be robust to artificial effects.

We evaluate the quality of the cell location predictions across these dimensions using several metrics:

Spearman’s Rank Correlation (SRC). SRC quantifies the strength and direction of association between two ranked
variables. In our study, SRC is computed by comparing the ranks of pairwise distances between predicted and actual spatial
coordinates for a group of cells. Specifically, for each cell, we calculate the rank correlation between its predicted pairwise
distances to all other cells and the actual (ground truth) pairwise distances:

ρ = 1− 6
∑

d2i
n(n2 − 1)

where di represents the difference between the ranks of each predicted and actual pairwise distance, and n is the total
number of pairwise comparisons (cell pairs) in the group.

For each slice, we compute the Spearman Rank Correlation (SRC) for all the cells. We then aggregate these correlations
across all cells in the slice by calculating either the average—referred to as Spearman Rank Correlation (Average), or the
median—referred to as Spearman Rank Correlation (Median).

Moran’s I. Moran’s I is a measure of spatial autocorrelation used to assess whether the spatial distribution of gene expression
is clustered, dispersed, or random. It quantifies the degree of similarity between gene expression values at nearby cells based
on a weighted spatial graph. The formula for Moran’s I is:

I =
N

∑
i,j wi,jzizj

S0

∑
i z

2
i

where N is the total number of cells, wi,j represents the spatial weight (distance) between cells i and j, zi and zj are the
deviations of the gene expression values from the mean for cells i and j, respectively, and S0 is the sum of all spatial weights.
In our case, wi,j corresponds to the distance between cell i and cell j, while zi and zj denote the expression levels of a
specific gene in these cells. A high Moran’s I value indicates spatial clustering of gene expression, whereas a low value
suggests spatial dispersion.
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Precision. The precision is for evaluating the performance of our model in predicting contacts between cells. In the contact
prediction task, we classify pairs of cells as being in contact or not based on the distances between them. To define what
constitutes a contact, we use a threshold determined by a specific percentile of the distance distribution, referred to as the
percentile. For example, using the 10% percentile means we consider the top 10% closest cell pairs as contacts.

Once the threshold is established, we label cell pairs with distances less than the threshold as positive (contacts) and those
with distances greater than or equal to the threshold as negative (non-contacts). With these labels, we calculate the Precision
(P ) measures the proportion of predicted contacts that are actual contacts and is defined as:

P =
True Positives

True Positives + False Positives
.

Root Sum Square Deviation (RSSD). The Root Sum Square Deviation (RSSD) is a metric used to quantify the total
deviation between predicted and true cell positions in spatial data after optimal alignment. It provides an overall measure of
how accurately the model predicts cell locations by comparing the predicted positions to the true ones.

Given two sets of two-dimensional points, the true positions V = {v1, v2, . . . , vn} and the predicted positions W =
{w1, w2, . . . , wn}, where both sets contain n points (cells), the RSSD is calculated after aligning W to V using the Kabsch
algorithm (Lawrence et al., 2019). This algorithm finds the optimal rotation (and optionally translation) that minimizes the
deviation between the two sets.

The Global RSSD, denoted as Absolute RSSD (RSSDabsolute) , measures the total alignment error across all cells and is
defined as:

RSSDabsolute =

√√√√ n∑
i=1

∥vi − w′
i∥2,

where w′
i represents the predicted positions after optimal alignment. To evaluate the model’s performance on individual cell

types, we compute the Per-Class RSSD for each cell class c in the set of all classes C. For a specific class c, we extract the
subsets Vc and Wc, representing the true and predicted positions of cells in class c, respectively. The Per-Class RSSD is
then given by:

RSSDc =

√√√√ nc∑
i=1

∥vci − wc′
i ∥2,

where nc is the number of cells in class c, and wc′
i are the aligned predicted positions for class c. To summarize the

performance across all classes, we compute two aggregate metrics: Sum RSSD (RSSDsum), which reflects the cumulative
deviation across all classes and Mean RSSD (RSSDmean) which represents the average deviation per class, given by:

RSSDsum =
∑
c∈C

RSSDc.

RSSDmean =
1

|C|
∑
c∈C

RSSDc,

where |C| is the total number of cell classes.

E. Hyperparameters and Model Selection

Hyperparameters. In LUNA, we maintain a consistent learning rate of 5× 10−4 across all experiments, with a maximum
diffusion time of 1000 steps and a cosine noise schedule characterized by ν = 2, which dictates the noise addition rate to
the coordinates. The model consistently employs a latent dimension of 64 for position encoding and utilizes 16 attention
heads in every experiment.
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For large-scale atlas experiments such as the MERFISH Whole Mouse Brain Atlas, MERFISH Mouse Primary Motor Cortex
Atlas, and scRNA-seq Mouse Central Nervous System Atlas, we implement 8 transformer layers.

The latent dimension of node features is set at 384 for the MERFISH Whole Mouse Brain Atlas and the scRNA-seq Mouse
Central Nervous System Atlas. For the smaller MERFISH Mouse Primary Motor Cortex Atlas experiment, we adjust the
latent dimension to 256.

Model Selection. For large-scale datasets, including the MERFISH Whole Mouse Brain Atlas and the scRNA-seq Mouse
Central Nervous System Atlas, we adopt a model trained for up to 3500 epochs. This extensive training period accommodates
the complexity and size of these datasets. Conversely, for smaller datasets such as the MERFISH Mouse Primary Motor
Cortex Atlas experiment, the model is sufficiently trained after 1000 epochs, optimizing performance without overfitting to
limited data.
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Figure S1. Performance comparison on the cross-animal generalization task between LUNA and alternative baselines on the MERFISH
mouse primary motor cortex atlas (Zhang et al., 2021). Models were trained on slices from one mouse and evaluated on all slices from an
unseen mouse (31 slices, 118, 036 cells). We evaluated performance based on precision at the 10% percentile threshold for predicting
the closest cell pairs as contacts (a), average and median Spearman’s rank correlation across all cells within the same slice (b, c), and
absolute, sum, and mean Root Sum Square Deviation (RSSD) between the ground truth and predicted spatial coordinates (d-f).

17



935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Submission and Formatting Instructions for ICML 2025 GenBio Workshop

+37.5%

Figure S2. Evaluation of alternative methods using the best match of the reference slice. For each fixed test slice, the most similar
slice from the train set (including 33 slices) was selected by computing the cosine similarity of the cell type distributions. The average
performance of these methods was computed across all slices from an unseen mouse, comprising 31 slices and 118, 036 cells. Performance
was evaluated based on the median Spearman’s rank correlation across all cells within the same slice.
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