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Abstract

Diffusion probabilistic models (DPMs) have exhibited excellent performance for
high-fidelity image generation while suffering from inefficient sampling. Re-
cent works accelerate the sampling procedure by proposing fast ODE solvers
that leverage the specific ODE form of DPMs. However, they highly rely on
specific parameterization during inference (such as noise/data prediction), which
might not be the optimal choice. In this work, we propose a novel formulation
towards the optimal parameterization during sampling that minimizes the first-
order discretization error of the ODE solution. Based on such formulation, we
propose DPM-Solver-v3, a new fast ODE solver for DPMs by introducing several
coefficients efficiently computed on the pretrained model, which we call empir-
ical model statistics. We further incorporate multistep methods and a predictor-
corrector framework, and propose some techniques for improving sample quality
at small numbers of function evaluations (NFE) or large guidance scales. Ex-
periments show that DPM-Solver-v3 achieves consistently better or comparable
performance in both unconditional and conditional sampling with both pixel-
space and latent-space DPMs, especially in 5∼10 NFEs. We achieve FIDs of
12.21 (5 NFE), 2.51 (10 NFE) on unconditional CIFAR10, and MSE of 0.55 (5
NFE, 7.5 guidance scale) on Stable Diffusion, bringing a speed-up of 15%∼30%
compared to previous state-of-the-art training-free methods. Code is available at
https://github.com/thu-ml/DPM-Solver-v3.

1 Introduction

Diffusion probabilistic models (DPMs) [47, 15, 51] are a class of state-of-the-art image generators.
By training with a strong encoder, a large model, and massive data as well as leveraging techniques
such as guided sampling, DPMs are capable of generating high-resolution photorealistic and artistic
images on text-to-image tasks. However, to generate high-quality visual content, DPMs usually
require hundreds of model evaluations to gradually remove noise using a pretrained model [15],
which is much more time-consuming compared to other deep generative models such as generative
adversarial networks (GANs) [13]. The sampling overhead of DPMs emerges as a crucial obstacle
hindering their integration into downstream tasks.

To accelerate the sampling process of DPMs, one can employ training-based methods [37, 53, 45] or
training-free samplers [48, 51, 28, 3, 52, 56]. We focus on the latter approach since it requires no
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(a) DPM-Solver++ [32] (MSE 0.60) (b) UniPC [58] (MSE 0.65) (c) DPM-Solver-v3 (Ours, MSE 0.55)

Figure 1: Random samples of Stable-Diffusion [43] with a classifier-free guidance scale 7.5, using only 5
number of function evaluations (NFE) and text prompt “A beautiful castle beside a waterfall in the woods, by
Josef Thoma, matte painting, trending on artstation HQ”.

extra training and is more flexible. Recent advanced training-free samplers [56, 31, 32, 58] mainly
rely on the ODE form of DPMs, since its absence of stochasticity is essential for high-quality samples
in around 20 steps. Besides, ODE solvers built on exponential integrators [18] converge faster. To
change the original diffusion ODE into the form of exponential integrators, they need to cancel its
linear term and obtain an ODE solution, where only the noise predictor needs to be approximated,
and other terms can be exactly computed. Besides, Lu et al. [32] find that it is better to use another
ODE solution where instead the data predictor needs to be approximated. How to choose such model
parameterization (e.g., noise/data prediction) in the sampling of DPMs remains unrevealed.

In this work, we systematically study the problem of model parameterization and ODE formulation
for fast sampling of DPMs. We first show that by introducing three types of coefficients, the original
ODE solution can be reformulated to an equivalent one that contains a new model parameterization.
Besides, inspired by exponential Rosenbrock-type methods [19] and first-order discretization error
analysis, we also show that there exists an optimal set of coefficients efficiently computed on the
pretrained model, which we call empirical model statistics (EMS). Building upon our novel ODE
formulation, we further propose a new high-order solver for diffusion ODEs named DPM-Solver-
v3, which includes a multistep predictor-corrector framework of any order, as well as some novel
techniques such as pseudo high-order method to boost the performance at extremely few steps or
large guidance scale.

We conduct extensive experiments with both pixel-space and latent-space DPMs to verify the effec-
tiveness of DPM-Solver-v3. Compared to previous fast samplers, DPM-Solver-v3 can consistently
improve the sample quality in 5∼20 steps, and make a significant advancement within 10 steps.

2 Background

2.1 Diffusion Probabilistic Models

Suppose we have a D-dimensional data distribution q0(x0). Diffusion probabilistic models
(DPMs) [47, 15, 51] define a forward diffusion process {qt}Tt=0 to gradually degenerate the data
x0 ∼ q0(x0) with Gaussian noise, which satisfies the transition kernel q0t(xt|x0) = N (αtx0, σ

2
t I),

such that qT (xT ) is approximately pure Gaussian. αt, σt are smooth scalar functions of t, which
are called noise schedule. The transition can be easily applied by xt = αtx0 + σtϵ, ϵ ∼ N (0, I).
To train DPMs, a neural network ϵθ(xt, t) is usually parameterized to predict the noise ϵ by min-
imizing Ex0∼q0(x0),ϵ∼N (0,I),t∼U(0,T )

[
w(t)∥ϵθ(xt, t)− ϵ∥22

]
, where w(t) is a weighting function.

Sampling of DPMs can be performed by solving diffusion ODE [51] from time T to time 0:
dxt

dt
= f(t)xt +

g2(t)

2σt
ϵθ(xt, t), (1)

where f(t) = d logαt

dt , g2(t) =
dσ2

t

dt − 2d logαt

dt σ2
t [23]. In addition, the conditional sampling by

DPMs can be conducted by guided sampling [10, 16] with a conditional noise predictor ϵθ(xt, t, c),
where c is the condition. Specifically, classifier-free guidance [16] combines the unconditional/con-
ditional model and obtains a new noise predictor ϵ′θ(xt, t, c) := sϵθ(xt, t, c) + (1− s)ϵθ(xt, t, ∅),
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where ∅ is a special condition standing for the unconditional case, s > 0 is the guidance scale
that controls the trade-off between image-condition alignment and diversity; while classifier
guidance [10] uses an extra classifier pϕ(c|xt, t) to obtain a new noise predictor ϵ′θ(xt, t, c) :=
ϵθ(xt, t)− sσt∇x log pϕ(c|xt, t).

In addition, except for the noise prediction, DPMs can be parameterized as score predictor sθ(xt, t)
to predict∇x log qt(xt, t), or data predictor xθ(xt, t) to predict x0. Under variance-preserving (VP)
noise schedule which satisfies α2

t + σ2
t = 1 [51], “v” predictor vθ(xt, t) is also proposed to predict

αtϵ− σtx0 [45]. These different parameterizations are theoretically equivalent, but have an impact
on the empirical performance when used in training [23, 59].

2.2 Fast Sampling of DPMs with Exponential Integrators

Among the methods for solving the diffusion ODE (1), recent works [56, 31, 32, 58] find that ODE
solvers based on exponential integrators [18] are more efficient and robust at a small number of
function evaluations (<50). Specifically, an insightful observation by Lu et al. [31] is that, by change-
of-variable from t to λt := log(αt/σt) (half of the log-SNR), the diffusion ODE is transformed
to

dxλ

dλ
=

α̇λ

αλ
xλ − σλϵθ(xλ, λ), (2)

where α̇λ := dαλ

dλ . By utilizing the semi-linear structure of the diffusion ODE and exactly computing
the linear term [56, 31], we can obtain the ODE solution as Eq. (3) (left). Such exact computation
of the linear part reduces the discretization errors [31]. Moreover, by leveraging the equivalence of
different parameterizations, DPM-Solver++ [32] rewrites Eq. (2) by the data predictor xθ(xλ, λ) :=
(xλ − σλϵθ(xλ, λ))/αλ and obtains another ODE solution as Eq. (3) (right). Such solution does not
need to change the pretrained noise prediction model ϵθ during the sampling process, and empirically
outperforms previous samplers based on ϵθ [31].

xt

αt
=
xs

αs
−
∫ λt

λs

e−λϵθ(xλ, λ)dλ,
xt

σt
=
xs

σs
+

∫ λt

λs

eλxθ(xλ, λ)dλ (3)

However, to the best of our knowledge, the parameterizations for sampling are still manually selected
and limited to noise/data prediction, which are not well-studied.

3 Method

We now present our method. We start with a new formulation of the ODE solution with extra
coefficients, followed by our high-order solver and some practical considerations. In the following
discussions, we assume all the products between vectors are element-wise, and f (k)(xλ, λ) =
dkf(xλ,λ)

dλk is the k-th order total derivative of any function f w.r.t. λ.

3.1 Improved Formulation of Exact Solutions of Diffusion ODEs

As mentioned in Sec. 2.2, it is promising to explore the semi-linear structure of diffusion ODEs
for fast sampling [56, 31, 32]. Firstly, we reveal one key insight that we can choose the linear part
according to Rosenbrock-type exponential integrators [19, 18]. To this end, we consider a general
form of diffusion ODEs by rewriting Eq. (2) as

dxλ

dλ
=

(
α̇λ

αλ
− lλ

)
xλ︸ ︷︷ ︸

linear part

− (σλϵθ(xλ, λ)− lλxλ)︸ ︷︷ ︸
non-linear part,:=Nθ(xλ,λ)

, (4)

where lλ is a D-dimensional undetermined coefficient depending on λ. We choose lλ to restrict the
Frobenius norm of the gradient of the non-linear part w.r.t. x:

l∗λ = argmin
lλ

Epθ
λ(xλ)

∥∇xNθ(xλ, λ)∥2F , (5)

where pθλ is the distribution of samples on the ground-truth ODE trajectories at λ (i.e., model
distribution). Intuitively, it makesNθ insensitive to the errors of x and cancels all the “linearty” of
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Nθ. With lλ = l∗λ, by the “variation-of-constants” formula [1], starting from xλs at time s, the exact
solution of Eq. (4) at time t is

xλt
= αλt

e−
∫ λt
λs

lλdλ

(
xλs

αλs

−
∫ λt

λs

e
∫ λ
λs

lτdτ fθ(xλ, λ)︸ ︷︷ ︸
approximated

dλ

)
, (6)

where fθ(xλ, λ) :=
Nθ(xλ,λ)

αλ
. To calculate the solution in Eq. (6), we need to approximate fθ for

each λ ∈ [λs, λt] by certain polynomials [31, 32].

Secondly, we reveal another key insight that we can choose different functions to be approximated
instead of fθ and further reduce the discretization error, which is related to the total derivatives
of the approximated function. To this end, we consider a scaled version of fθ i.e., hθ(xλ, λ) :=

e−
∫ λ
λs

sτdτfθ(xλ, λ) where sλ is a D-dimensional coefficient dependent on λ, and then Eq. (6)
becomes

xλt
= αλt

e−
∫ λt
λs

lλdλ

(
xλs

αλs

−
∫ λt

λs

e
∫ λ
λs

(lτ+sτ )dτ hθ(xλ, λ)︸ ︷︷ ︸
approximated

dλ

)
. (7)

Comparing with Eq. (6), we change the approximated function from fθ to hθ by using an additional
scaling term related to sλ. As we shall see, the first-order discretization error is positively related to
the norm of the first-order derivative h(1)

θ = e−
∫ λ
λs

sτdτ (f
(1)
θ − sλfθ). Thus, we aim to minimize

∥f (1)
θ − sλfθ∥2, in order to reduce ∥h(1)

θ ∥2 and the discretization error. As fθ is a fixed function
depending on the pretrained model, this minimization problem essentially finds a linear function of
fθ to approximate f (1)

θ . To achieve better linear approximation, we further introduce a bias term

bλ ∈ RD and construct a function gθ satisfying g(1)θ = e−
∫ λ
λs

sτdτ (f
(1)
θ − sλfθ − bλ), which gives

gθ(xλ, λ) := e−
∫ λ
λs

sτdτfθ(xλ, λ)−
∫ λ

λs

e−
∫ r
λs

sτdτbrdr. (8)

With gθ, Eq. (7) becomes

xλt
= αλt

e−
∫ λt
λs

lλdλ︸ ︷︷ ︸
linear coefficient

(
xλs

αλs

−
∫ λt

λs

e
∫ λ
λs

(lτ+sτ )dτ︸ ︷︷ ︸
scaling coefficient

(
gθ(xλ, λ)︸ ︷︷ ︸
approximated

+

∫ λ

λs

e−
∫ r
λs

sτdτbrdr︸ ︷︷ ︸
bias coefficient

)
dλ

)
. (9)

Such formulation is equivalent to Eq. (3) but introduces three types of coefficients and a new
parameterization gθ. We show in Appendix I.1 that the generalized parameterization gθ in Eq. (8)
can cover a wide range of parameterization families in the form of ψθ(xλ, λ) = α(λ)ϵθ(xλ, λ) +
β(λ)xλ +γ(λ). We aim to reduce the discretization error by finding better coefficients than previous
works [31, 32].

Now we derive the concrete formula for analyzing the first-order discretization error. By
replacing gθ(xλ, λ) with gθ(xλs

, λs) in Eq. (9), we obtain the first-order approximation

x̂λt = αλte
−

∫ λt
λs

lλdλ
(

xλs

αλs
−
∫ λt

λs
e
∫ λ
λs

(lτ+sτ )dτ
(
gθ(xλs , λs) +

∫ λ

λs
e−

∫ r
λs

sτdτbrdr
)
dλ
)

. As

gθ(xλs
, λs) = gθ(xλ, λ) + (λs − λ)g

(1)
θ (xλ, λ) + O((λ − λs)

2) by Taylor expansion, it follows
that the first-order discretization error can be expressed as

x̂λt
−xλt

= αλt
e−

∫ λt
λs

lλdλ

(∫ λt

λs

e
∫ λ
λs

lτdτ (λ−λs)
(
f
(1)
θ (xλ, λ)−sλfθ(xλ, λ)−bλ

)
dλ

)
+O(h3),

(10)
where h = λt − λs. Thus, given the optimal lλ = l∗λ in Eq. (5), the discretization error x̂λt − xλt

mainly depends on f (1)
θ − sλfθ − bλ. Based on this insight, we choose the coefficients sλ, bλ by

solving

s∗λ, b
∗
λ = argmin

sλ,bλ

Epθ
λ(xλ)

[∥∥∥f (1)
θ (xλ, λ)− sλfθ(xλ, λ)− bλ

∥∥∥2
2

]
. (11)

For any λ, l∗λ, s
∗
λ, b

∗
λ all have analytic solutions involving the Jacobian-vector-product of the pretrained

model ϵθ, and they can be unbiasedly evaluated on a few datapoints {x(n)
λ }K ∼ pθλ(xλ) via Monte-

Carlo estimation (detailed in Section 3.4 and Appendix C.1.1). Therefore, we call lλ, sλ, bλ empirical
model statistics (EMS). In the following sections, we’ll show that by approximating gθ with Taylor
expansion, we can develop our high-order solver for diffusion ODEs.
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x̂t

xs

(ts, gs)

(tin , gin)

estimation

g(0)s

g(1)s

g(n)s

(ti1 , gi1)

(a) Local Approximation

x0 x̂i−2 x̂i−1 x̂i

ϵ̂i−2

ĝi−2

ϵ̂i−1

ĝi−1

ϵ̂i

ĝi

x̂c
i

Predictor

Corrector

cache

ĝ· = a·,i−1x̂· + b·,i−1ϵ̂· + c·,i−1

t0 = 1 ti−2 ti−1 ti

ϵ̂· := ϵθ(x̂·, t·)

(b) Multistep Predictor-Corrector

Figure 2: Illustration of our high-order solver. (a) (n + 1)-th order local approximation from time s to
time t, provided n extra function values of gθ . (b) Multistep predictor-corrector procedure as our global
solver. A combination of second-order predictor and second-order corrector is shown. a·,i−1, b·,i−1, c·,i−1 are
abbreviations of coefficients in Eq. (8).

3.2 Developing High-Order Solver

In this section, we propose our high-order solver for diffusion ODEs with local accuracy and global
convergence order guarantee by leveraging our proposed solution formulation in Eq. (9). The
proposed solver and analyses are highly motivated by the methods of exponential integrators [17, 18]
in the ODE literature and their previous applications in the field of diffusion models [56, 31, 32, 58].
Though the EMS are designed to minimize the first-order error, they can also help our high-order
solver (see Appendix I.2).

For simplicity, denote A(λs, λt) := e−
∫ λt
λs

lτdτ , Eλs(λ) := e
∫ λ
λs

(lτ+sτ )dτ , Bλs(λ) :=∫ λ

λs
e−

∫ r
λs

sτdτbrdr. Though high-order ODE solvers essentially share the same mathematical
principles, since we utilize a more complicated parameterization gθ and ODE formulation in Eq. (9)
than previous works [56, 31, 32, 58], we divide the development of high-order solver into simplified
local and global parts, which are not only easier to understand, but also neat and general for any order.

3.2.1 Local Approximation

Firstly, we derive formulas and properties of the local approximation, which describes how we transit
locally from time s to time t. It can be divided into two parts: discretization of the integral in Eq. (9)
and estimating the high-order derivatives in the Taylor expansion.

Discretization. Denote g(k)s := g
(k)
θ (xλs

, λs). For n ≥ 0, to obtain the (n+1)-th order discretization
of Eq. (9), we take the n-th order Taylor expansion of gθ(xλ, λ) w.r.t. λ at λs: gθ(xλ, λ) =∑n

k=0
(λ−λs)

k

k! g
(k)
s +O((λ− λs)

n+1). Substituting it into Eq. (9) yields

xt

αt
= A(λs, λt)

(
xs

αs
−
∫ λt

λs

Eλs(λ)Bλs(λ)dλ−
n∑

k=0

g(k)s

∫ λt

λs

Eλs(λ)
(λ− λs)

k

k!
dλ

)
+O(hn+2)

(12)
Here we only need to estimate the k-th order total derivatives g(k)θ (xλs , λs) for 0 ≤ k ≤ n, since the
other terms are determined once given λs, λt and lλ, sλ, bλ, which we’ll discuss next.

High-order derivative estimation. For (n+1)-th order approximation, we use the finite difference of
gθ(xλ, λ) at previous n+1 steps λin , . . . , λi1 , λs to estimate each g(k)θ (xλs , λs). Such derivation is to
match the coefficients of Taylor expansions. Concretely, denote δk := λik−λs, gik := gθ(xλik

, λik),

and the estimated high-order derivatives ĝ(k)s can be solved by the following linear system:

δ1 δ21 · · · δn1
...

...
. . .

...
δn δ2n · · · δnn



ĝ
(1)
s

...
ĝ(n)
s

n!

 =

gi1 − gs...
gin − gs

 (13)
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Then by substituting ĝ(k)s into Eq. (12) and dropping theO(hn+2) error terms, we obtain the (n+1)-th
order local approximation:

x̂t

αt
= A(λs, λt)

(
xs

αs
−
∫ λt

λs

Eλs
(λ)Bλs

(λ)dλ−
n∑

k=0

ĝ(k)s

∫ λt

λs

Eλs
(λ)

(λ− λs)
k

k!
dλ

)
(14)

where ĝ(0)θ (xλs , λs) = gs. Eq. (13) and Eq. (14) provide an update rule to transit from time s to time
t and get an approximated solution x̂t, when we already have the solution xs. For (n+ 1)-th order
approximation, we need n extra solutions xλik

and their corresponding function values gik . We
illustrate the procedure in Fig. 2(a) and summarize it in Appendix C.2. In the following theorem, we
show that under some assumptions, such local approximation has a guarantee of order of accuracy.

Theorem 3.1 (Local order of accuracy, proof in Appendix B.2.1). Suppose xλik
are exact (i.e., on

the ground-truth ODE trajectory passing xs) for k = 1, . . . , n, then under some regularity conditions
detailed in Appendix B.1, the local truncation error x̂t − xt = O(hn+2), which means the local
approximation has (n+ 1)-th order of accuracy.

Besides, we have the following theorem showing that, whatever the order is, the local approximation
is unbiased given our choice of sλ, bλ in Eq. (11). In practice, the phenomenon of reduced bias can
be empirically observed (Section 4.3).

Theorem 3.2 (Local unbiasedness, proof in Appendix B.4). Given the optimal s∗λ, b
∗
λ in Eq. (11), For

the (n+ 1)-th order approximation, suppose xλi1
, . . . ,xλin

are on the ground-truth ODE trajectory
passing xλs , then Epθ

λs
(xs) [x̂t − xt] = 0.

3.2.2 Global Solver

Given M + 1 time steps {ti}Mi=0, starting from some initial value, we can repeat the local approxi-
mation M times to make consecutive transitions from each ti−1 to ti until we reach an acceptable
solution. At each step, we apply multistep methods [1] by caching and reusing the previous n
values at timesteps ti−1−n, . . . , ti−2, which is proven to be more stable when NFE is small [32, 56].
Moreover, we also apply the predictor-corrector method [58] to refine the approximation at each step
without introducing extra NFE. Specifically, the (n+ 1)-th order predictor is the case of the local
approximation when we choose (tin , . . . , ti1 , s, t) = (ti−1−n, . . . , ti−2, ti−1, ti), and the (n+ 1)-th
order corrector is the case when we choose (tin , . . . , ti1 , s, t) = (ti−n, . . . , ti−2, ti, ti−1, ti). We
present our (n + 1)-th order multistep predictor-corrector procedure in Appendix C.2. We also
illustrate a second-order case in Fig. 2(b). Note that different from previous works, in the local
transition from ti−1 to ti, the previous function values ĝik (1 ≤ k ≤ n) used for derivative estimation
are dependent on i and are different during the sampling process because gθ is dependent on the
current ti−1 (see Eq. (8)). Thus, we directly cache x̂i, ϵ̂i and reuse them to compute ĝi in the
subsequent steps. Notably, our proposed solver also has a global convergence guarantee, as shown in
the following theorem. For simplicity, we only consider the predictor case and the case with corrector
can also be proved by similar derivations in [58].

Theorem 3.3 (Global order of convergence, proof in Appendix B.2.2). For (n+1)-th order predictor,
if we iteratively compute a sequence {x̂i}Mi=0 to approximate the true solutions {xi}Mi=0 at {ti}Mi=0,
then under both local and global assumptions detailed in Appendix B.1, the final error |x̂M −xM | =
O(hn+1), where | · | denotes the element-wise absolute value, and h = max1≤i≤M (λi − λi−1).

3.3 Practical Techniques

In this section, we introduce some practical techniques that further improve the sample quality in the
case of small NFE or large guidance scales.

Pseudo-order solver for small NFE. When NFE is extremely small (e.g., 5∼10), the error at each
timestep becomes rather large, and incorporating too many previous values by high-order solver at
each step will cause instabilities. To alleviate this problem, we propose a technique called pseudo-
order solver: when estimating the k-th order derivative, we only utilize the previous k + 1 function
values of gθ, instead of all the n previous values as in Eq. (13). For each k, we can obtain ĝ(k)s by
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solving a part of Eq. (13) and taking the last element:δ1 δ21 · · · δk1
...

...
. . .

...
δk δ2k · · · δkk


 ·

...
ĝ(k)
s

k!

 =

gi1 − gs...
gik − gs

 , k = 1, 2, . . . , n (15)

In practice, we do not need to solve n linear systems. Instead, the solutions for ĝ(k)s , k = 1, . . . , n have
a simpler recurrence relation similar to Neville’s method [36] in Lagrange polynomial interpolation.
Denote i0 := s so that δ0 = λi0 − λs = 0, we have

Theorem 3.4 (Pseudo-order solver). For each k, the solution in Eq. (15) is ĝ(k)s = k!D
(k)
0 , where

D
(0)
l := gil , l = 0, 1, . . . , n

D
(k)
l :=

D
(k−1)
l+1 −D

(k−1)
l

δl+k − δl
, l = 0, 1, . . . , n− k

(16)

Proof in Appendix B.3. Note that the pseudo-order solver of order n > 2 no longer has the guarantee
of n-th order of accuracy, which is not so important when NFE is small. In our experiments, we
mainly rely on two combinations: when we use n-th order predictor, we then combine it with n-th
order corrector or (n+ 1)-th pseudo-order corrector.

Half-corrector for large guidance scales. When the guidance scale is large in guided sampling, we
find that corrector may have negative effects on the sample quality. We propose a useful technique
called half-corrector by using the corrector only in the time region t ≤ 0.5. Correspondingly, the
strategy that we use corrector at each step is called full-corrector.

3.4 Implementation Details

In this section, we give some implementation details about how to compute and integrate the EMS in
our solver and how to adapt them to guided sampling.

Estimating EMS. For a specific λ, the EMS l∗λ, s
∗
λ, b

∗
λ can be estimated by firstly drawing K

(1024∼4096) datapoints xλ ∼ pθλ(xλ) with 200-step DPM-Solver++ [32] and then analytically
computing some terms related to ϵθ (detailed in Appendix C.1.1). In practice, we find it both
convenient and effective to choose the distribution of the dataset q0 to approximate pθ0. Thus, without
further specifications, we directly use samples from q0.

Estimating integrals of EMS. We estimate EMS on N (120 ∼ 1200) timesteps λj0 , λj1 , . . . , λjN
and use trapezoidal rule to estimate the integrals in Eq. (12) (see Appendix I.3 for the estimation
error analysis). We also apply some pre-computation for the integrals to avoid extra computation
costs during sampling, detailed in Appendix C.1.2.

Adaptation to guided sampling. Empirically, we find that within a common range of guidance
scales, we can simply compute the EMS on the model without guidance, and it can work for both
unconditional sampling and guided sampling cases. See Appendix J for more discussions.

3.5 Comparison with Existing Methods

By comparing with existing diffusion ODE solvers that are based on exponential integrators [56, 31,
32, 58], we can conclude that (1) Previous ODE formulations with noise/data prediction are special
cases of ours by setting lλ, sλ, bλ to specific values. (2) Our first-order discretization can be seen as
improved DDIM. See more details in Appendix A.

4 Experiments

In this section, we show that DPM-Solver-v3 can achieve consistent and notable speed-up for both
unconditional and conditional sampling with both pixel-space and latent-space DPMs. We conduct
extensive experiments on diverse image datasets, where the resolution ranges from 32 to 256. First,
we present the main results of sample quality comparison with previous state-of-the-art training-free
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Figure 3: Unconditional sampling results. We report the FID↓ of the methods with different numbers of
function evaluations (NFE), evaluated on 50k samples. †We borrow the results reported in their original paper
directly.
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Figure 4: Conditional sampling results. We report the FID↓ or MSE↓ of the methods with different numbers
of function evaluations (NFE), evaluated on 10k samples.

methods. Then we illustrate the effectiveness of our method by visualizing the EMS and samples.
Additional ablation studies are provided in Appendix G. On each dataset, we choose a sufficient
number of timesteps N and datapoints K for computing the EMS to reduce the estimation error,
while the EMS can still be computed within hours. After we obtain the EMS and precompute the
integrals involving them, there is negligible extra overhead in the sampling process. We provide the
runtime comparison in Appendix E. We refer to Appendix D for more detailed experiment settings.

4.1 Main Results

We present the results in 5 ∼ 20 number of function evaluations (NFE), covering both few-step cases
and the almost converged cases, as shown in Fig. 3 and Fig. 4. For the sake of clarity, we mainly
compare DPM-Solver-v3 to DPM-Solver++ [32] and UniPC [58], which are the most state-of-the-art
diffusion ODE solvers. We also include the results for DEIS [56] and Heun’s 2nd order method in
EDM [21], but only for the datasets on which they originally reported. We don’t show the results for
other methods such as DDIM [48], PNDM [28], since they have already been compared in previous
works and have inferior performance. The quantitative results on CIFAR10 [24] are listed in Table 1,
and more detailed quantitative results are presented in Appendix F.

Unconditional sampling We first evaluate the unconditional sampling performance of different
methods on CIFAR10 [24] and LSUN-Bedroom [55]. For CIFAR10 we use two pixel-space DPMs,
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Figure 5: Visualization of the EMS lλ, sλ, bλ w.r.t. λ estimated on different models.
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(a) DPM-Solver++ [32] (FID 18.59) (b) UniPC [58] (FID 12.24) (c) DPM-Solver-v3 (Ours) (FID 7.54)

Figure 6: Random samples of Latent-Diffusion [43] on LSUN-Bedroom [55] with only NFE = 5.

Table 1: Quantitative results on CIFAR10 [24]. We report the FID↓ of the methods with different
numbers of function evaluations (NFE), evaluated on 50k samples. †We borrow the results reported
in their original paper directly.

Method Model NFE

5 6 8 10 12 15 20 25
†DEIS [56]

ScoreSDE [51]

15.37 \ \ 4.17 \ 3.37 2.86 \
DPM-Solver++ [32] 28.53 13.48 5.34 4.01 4.04 3.32 2.90 2.76
UniPC [58] 23.71 10.41 5.16 3.93 3.88 3.05 2.73 2.65
DPM-Solver-v3 12.76 7.40 3.94 3.40 3.24 2.91 2.71 2.64
Heun’s 2nd [21]

EDM [21]

320.80 103.86 39.66 16.57 7.59 4.76 2.51 2.12
DPM-Solver++ [32] 24.54 11.85 4.36 2.91 2.45 2.17 2.05 2.02
UniPC [58] 23.52 11.10 3.86 2.85 2.38 2.08 2.01 2.00
DPM-Solver-v3 12.21 8.56 3.50 2.51 2.24 2.10 2.02 2.00

one is based on ScoreSDE [51] which is a widely adopted model by previous samplers, and another is
based on EDM [21] which achieves the best sample quality. For LSUN-Bedroom, we use the latent-
space Latent-Diffusion model [43]. We apply the multistep 3rd-order version for DPM-Solver++,
UniPC and DPM-Solver-v3 by default, which performs best in the unconditional setting. For UniPC,
we report the better result of their two choices B1(h) = h and B2(h) = eh − 1 at each NFE. For
our DPM-Solver-v3, we tune the strategies of whether to use the pseudo-order predictor/corrector
at each NFE on CIFAR10, and use the pseudo-order corrector on LSUN-Bedroom. As shown in
Fig. 3, we find that DPM-Solver-v3 can achieve consistently better FID, which is especially notable
when NFE is 5∼10. For example, we improve the FID on CIFAR10 with 5 NFE from 23 to 12 with
ScoreSDE, and achieve an FID of 2.51 with only 10 NFE with the advanced DPM provided by EDM.
On LSUN-Bedroom, with around 12 minutes computing of the EMS, DPM-Solver-v3 converges
to the FID of 3.06 with 12 NFE, which is approximately 60% sampling cost of the previous best
training-free method (20 NFE by UniPC).

Conditional sampling. We then evaluate the conditional sampling performance, which is more
widely used since it allows for controllable generation with user-customized conditions. We choose
two conditional settings, one is classifier guidance on pixel-space Guided-Diffusion [10] model
trained on ImageNet-256 dataset [9] with 1000 class labels as conditions; the other is classifier-
free guidance on latent-space Stable-Diffusion model [43] trained on LAION-5B dataset [46] with
CLIP [41] embedded text prompts as conditions. We evaluate the former at the guidance scale of 2.0,
following the best choice in [10]; and the latter at the guidance scale of 1.5 (following the original
paper) or 7.5 (following the official code) with prompts random selected from MS-COCO2014
validation set [26]. Note that the FID of Stable-Diffusion samples saturates to 15.0∼16.0 even within
10 steps when the latent codes are far from convergence, possibly due to the powerful image decoder
(see Appendix H). Thus, following [32], we measure the mean square error (MSE) between the
generated latent code x̂ and the ground-truth solution x∗ (i.e., ∥x̂−x∗∥22/D) to evaluate convergence,
starting from the same Gaussian noise. We obtain x∗ by 200-step DPM-Solver++, which is enough
to ensure the convergence.
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We apply the multistep 2nd-order version for DPM-Solver++, UniPC and DPM-Solver-v3, which
performs best in conditional setting. For UniPC, we only apply the choice B2(h) = eh − 1, which
performs better than B1(h). For our DPM-Solver-v3, we use the pseudo-order corrector by default,
and report the best results between using half-corrector/full-corrector on Stable-Diffusion (s = 7.5).
As shown in Fig. 4, DPM-Solver-v3 can achieve better sample quality or convergence at most NFEs,
which indicates the effectiveness of our method and techniques under the conditional setting. It’s
worth noting that UniPC, which adopts an extra corrector, performs even worse than DPM-Solver++
when NFE<10 on Stable-Diffusion (s = 7.5). With the combined effect of the EMS and the half-
corrector technique, we successfully outperform DPM-Solver++ in such a case. Detailed comparisons
can be found in the ablations in Appendix G.

4.2 Visualizations of Estimated EMS

We further visualize the estimated EMS in Fig. 5. Since lλ, sλ, bλ are D-dimensional vectors,
we average them over all dimensions to obtain a scalar. From Fig. 5, we find that lλ gradually
changes from 1 to near 0 as the sampling proceeds, which suggests we should gradually slide from
data prediction to noise prediction. As for sλ, bλ, they are more model-specific and display many
fluctuations, especially for ScoreSDE model [51] on CIFAR10. Apart from the estimation error of
the EMS, we suspect that it comes from the fluctuations of ϵ(1)θ , which is caused by the periodicity of
trigonometric functions in the positional embeddings of the network input. It’s worth noting that the
fluctuation of sλ, bλ will not cause instability in our sampler (see Appendix J).

4.3 Visual Quality

We present some qualitative comparisons in Fig. 6 and Fig. 1. We can find that previous methods
tend to have a small degree of color contrast at small NFE, while our method is less biased and
produces more visual details. In Fig. 1(b), we can observe that previous methods with corrector may
cause distortion at large guidance scales (in the left-top image, a part of the castle becomes a hill; in
the left-bottom image, the hill is translucent and the castle is hanging in the air), while ours won’t.
Additional samples are provided in Appendix K.

5 Conclusion

We study the ODE parameterization problem for fast sampling of DPMs. Through theoretical analysis,
we find a novel ODE formulation with empirical model statistics, which is towards the optimal one to
minimize the first-order discretization error. Based on such improved ODE formulation, we propose
a new fast solver named DPM-Solver-v3, which involves a multistep predictor-corrector framework
of any order and several techniques for improved sampling with few steps or large guidance scale.
Experiments demonstrate the effectiveness of DPM-Solver-v3 in both unconditional conditional
sampling with both pixel-space latent-space pre-trained DPMs, and the significant advancement of
sample quality in 5∼10 steps.

Limitations and broader impact Despite the great speedup in small numbers of steps, DPM-Solver-
v3 still lags behind training-based methods and is not fast enough for real-time applications. Besides,
we conducted theoretical analyses of the local error, but didn’t explore the global design spaces, such
as the design of timestep schedules during sampling. And commonly, there are potential undesirable
effects that DPM-Solver-v3 may be abused to accelerate the generation of fake and malicious content.
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A Related Work

Diffusion probabilistic models (DPMs) [47, 15, 51], also known as score-based generative models
(SGMs), have achieved remarkable generation ability on image domain [10, 21], yielding extensive
applications such as speech, singing and video synthesis [6, 27, 14], controllable image genera-
tion, translation and editing [38, 42, 43, 35, 57, 8], likelihood estimation [50, 23, 30, 59], data
compression [23] and inverse problem solving [7, 22].

A.1 Fast Sampling Methods for DPMs

Fast sampling methods based on extra training or optimization include learning variances in the
reverse process [37, 2], learning sampling schedule [53], learning high-order model derivatives [11],
model refinement [29] and model distillation [45, 33, 49]. Though distillation-based methods can
generate high-quality samples in less than 5 steps, they additionally bring onerous training costs.
Moreover, the distillation process will inevitably lose part of the information of the original model,
and is hard to be adapted to pre-trained large DPMs [43, 44, 42] and conditional sampling [34]. Some
of distillation-based methods also lack the ability to make flexible trade-offs between sample speed
and sample quality.

In contrast, training-free samplers are more lightweight and flexible. Among them, samplers based on
diffusion ODEs generally require fewer steps than those based on diffusion SDEs [51, 40, 3, 48, 32],
since SDEs introduce more randomness and make the denoising harder in the sampling process.
Previous samplers handle the diffusion ODEs with different methods, such as Heun’s methods [21],
splitting numerical methods [54], pseudo numerical methods [28], Adams methods [25] or exponential
integrators [56, 31, 32, 58].

A.2 Comparison with Existing Solvers Based on Exponential Integrators

Table 2: Comparison between DPM-Solver-v3 and other high-order diffusion ODE solvers based on
exponential integrators.

DEIS
[56]

DPM-Solver
[31]

DPM-Solver++
[32]

UniPC
[58]

DPM-Solver-v3
(Ours)

First-Order DDIM DDIM DDIM DDIM Improved DDIM
Taylor Expanded Predictor ϵθ for t ϵθ for λ xθ for λ xθ for λ gθ for λ
Solver Type (High-Order) Multistep Singlestep Multistep Multistep Multistep
Applicable for Guided Sampling ✓ ✗ ✓ ✓ ✓
Corrector Supported ✗ ✗ ✗ ✓ ✓
Model-Specific ✗ ✗ ✗ ✗ ✓

In this section, we make some theoretical comparisons between DPM-Solver-v3 and existing diffusion
ODE solvers that are based on exponential integrators [56, 31, 32, 58]. We summarize the results in
Table 2, and provide some analysis below.

Previous ODE formulation as special cases of ours. First, we compare the formulation of the
ODE solution. Our reformulated ODE solution in Eq. (9) involves extra coefficients lλ, sλ, bλ, and it
corresponds to a new predictor gθ to be approximated by Taylor expansion. By comparing ours with
previous ODE formulations in Eq. (3) and their corresponding noise/data prediction, we can easily
figure out that they are special cases of ours by setting lλ, sλ, bλ to specific values:

• Noise prediction: lλ = 0, sλ = −1, bλ = 0

• Data prediction: lλ = 1, sλ = 0, bλ = 0

It’s worth noting that, though our ODE formulation can degenerate to previous ones, it may still result
in different solvers, since previous works conduct some equivalent substitution of the same order in
the local approximation (for example, the choice of B1(h) = h or B2(h) = eh − 1 in UniPC [58]).
We never conduct such substitution, thus saving the efforts to tune it.
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Moreover, under our framework, we find that DPM-Solver++ is a model-agnostic approximation
of DPM-Solver-v3, under the Gaussian assumption. Specifically, according to Eq. (5), we have

l∗λ = argmin
lλ

Epθ
λ(xλ)

∥σλ∇xϵθ(xλ, λ)− lλ∥2F , (17)

If we assume qλ(xλ) ≈ N (xλ|αλx0, σ
2
λI) for some fixed x0, then the optimal noise predictor is

ϵθ(xλ, λ) ≈ −σλ∇x log qλ(xλ) =
xλ − αtx0

σλ
. (18)

It follows that σλ∇xϵθ(xλ, λ) ≈ I , thus l∗λ ≈ 1 by Eq. (5), which corresponds the data prediction
model used in DPM-Solver++. Moreover, for small enough λ (i.e., t near to T ), the Gaussian
assumption is almost true (see Section 4.2), thus the data-prediction DPM-Solver++ approximately
computes all the linear terms at the initial stage. To the best of our knowledge, this is the first
explanation for the reason why the data-prediction DPM-Solver++ outperforms the noise-prediction
DPM-Solver.

First-order discretization as improved DDIM Previous methods merely use noise/data parameteri-
zation, whether or not they change the time domain from t to λ. While they differ in high-order cases,
they are proven to coincide in the first-order case, which is DDIM [48] (deterministic case, η = 0):

x̂t =
αt

αs
x̂s − αt

(
σs

αs
− σt

αt

)
ϵθ(x̂s, λs) (19)

However, the first-order case of our method is

x̂t =
αt

αs
A(λs, λt)

((
1 + lλs

∫ λt

λs

Eλs(λ)dλ

)
x̂s −

(
σs

∫ λt

λs

Eλs(λ)dλ

)
ϵθ(x̂s, λs)

)

− αtA(λs, λt)

∫ λt

λs

Eλs(λ)Bλs(λ)dλ

(20)

which is not DDIM since we choose a better parameterization by the estimated EMS. Empirically,
our first-order solver performs better than DDIM, as detailed in Appendix G.

B Proofs

B.1 Assumptions

In this section, we will give some mild conditions under which the local order of accuracy of
Algorithm 1 and the global order of convergence of Algorithm 2 (predictor) are guaranteed.

B.1.1 Local

First, we will give the assumptions to bound the local truncation error.

Assumption B.1. The total derivatives of the noise prediction model dkϵθ(xλ,λ)
dλk , k = 1, . . . , n exist

and are continuous.

Assumption B.2. The coefficients lλ, sλ, bλ are continuous and bounded. dklλ
dλk , dksλ

dλk , dkbλ

dλk , k =
1, . . . , n exist and are continuous.

Assumption B.3. δk = Θ(λt − λs), k = 1, . . . , n

Assumption B.1 is required for the Taylor expansion which is regular in high-order numerical
methods. Assumption B.2 requires the boundness of the coefficients as well as regularizes the
coefficients’ smoothness to enable the Taylor expansion for gθ(xλ, λ), which holds in practice given
the smoothness of ϵθ(xλ, λ) and pθλ(xλ). Assumption B.3 makes sure δk and λt − λs is of the same
order, i.e., there exists some constant rk = O(1) so that δk = rk(λt − λs), which is satisfied in
regular multistep methods.
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B.1.2 Global

Then we will give the assumptions to bound the global error.

Assumption B.4. The noise prediction model ϵθ(x, t) is Lipschitz w.r.t. to x.

Assumption B.5. h = max1≤i≤M (λi − λi−1) = O(1/M).

Assumption B.6. The starting values x̂i, 1 ≤ i ≤ n satisfies x̂i − xi = O(hn+1).

Assumption B.4 is common in the analysis of ODEs, which assures ϵθ(x̂t, t)−ϵθ(xt, t) = O(x̂t−xt).
Assumption B.5 implies that the step sizes are rather uniform. Assumption B.6 is common in the
convergence analysis of multistep methods [5].

B.2 Order of Accuracy and Convergence

In this section, we prove the local and global order guarantees detailed in Theorem 3.1 and Theo-
rem 3.3.

B.2.1 Local

Proof. (Proof of Theorem 3.1) Denote h := λt − λs. Subtracting the Taylor-expanded exact solution
in Eq. (12) from the local approximation in Eq. (14), we have

x̂t−xt = −αtA(λs, λt)

n∑
k=1

ĝ
(k)
θ (xλs

, λs)− g(k)θ (xλs
, λs)

k!

∫ λt

λs

Eλs
(λ)(λ−λs)

kdλ+O(hn+2)

(21)
First we examine the order ofA(λs, λt) and

∫ λt

λs
Eλs(λ)(λ− λs)

kdλ. Under Assumption B.2, there
exists some constant C1, C2 such that −lλ < C1, lλ + sλ < C2. So

A(λs, λt) = e−
∫ λt
λs

lτdτ

< eC1h

= O(1)
(22)

∫ λt

λs

Eλs
(λ)(λ− λs)

kdλ =

∫ λt

λs

e
∫ λ
λs

(lτ+sτ )dτ (λ− λs)
kdλ

<

∫ λt

λs

eC2(λ−λs)(λ− λs)
kdλ

= O(hk+1)

(23)

Next we examine the order of ĝ
(k)
θ (xλs ,λs)−g

(k)
θ (xλs ,λs)

k! . Under Assumption B.1 and Assumption B.2,
since gθ is elementary function of ϵθ and lλ, sλ, bλ, we know g(k)θ (xλs , λs), k = 1, . . . , n exist and
are continuous. Adopting the notations in Eq. (13), by Taylor expansion, we have

gi1 = gs + δ1g
(1)
s + δ21g

(2)
s + · · ·+ δn1 g

(n)
s +O(δn+1

1 )

gi2 = gs + δ2g
(1)
s + δ22g

(2)
s + · · ·+ δn2 g

(n)
s +O(δn+1

2 )

. . .

gin = gs + δng
(1)
s + δ2ng

(2)
s + · · ·+ δnng

(n)
s +O(δn+1

n )

(24)

Comparing it with Eq. (13), we have


δ1 δ21 · · · δn1
δ2 δ22 · · · δn2
...

...
. . .

...
δn δ2n · · · δnn



ĝ
(1)
s − g(1)s

ĝ(2)
s −g(2)

s

2!
...

ĝ(n)
s −g(n)

s

n!

 =


O(δn+1

1 )
O(δn+1

2 )
...

O(δn+1
n )

 (25)
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From Assumption B.3, we know there exists some constants rk so that δk = rkh, k = 1, . . . , n. Thus
δ1 δ21 · · · δn1
δ2 δ22 · · · δn2
...

...
. . .

...
δn δ2n · · · δnn

 =


r1 r21 · · · rn1
r2 r22 · · · rn2
...

...
. . .

...
rn r2n · · · rnn



h

h2

. . .
hn

 ,


O(δn+1

1 )
O(δn+1

2 )
...

O(δn+1
n )

 =


O(hn+1)
O(hn+1)

...
O(hn+1)


(26)

And finally, we have
ĝ
(1)
s − g(1)s

ĝ(2)
s −g(2)

s

2!
...

ĝ(n)
s −g(n)

s

n!

 =


h−1

h−2

. . .
h−n



r1 r21 · · · rn1
r2 r22 · · · rn2
...

...
. . .

...
rn r2n · · · rnn


−1

O(hn+1)
O(hn+1)

...
O(hn+1)



=


O(hn)
O(hn−1)

...
O(h1)


(27)

Substitute Eq. (22), Eq. (23) and Eq. (27) into Eq. (21), we can conclude that x̂t−xt = O(hn+2).

B.2.2 Global

First, we provide a lemma that gives the local truncation error given inexact previous values when
estimating the high-order derivatives.
Lemma B.7. (Local truncation error with inexact previous values) Suppose inexact values x̂λik

, k =
1, . . . , n and x̂s are used in Eq. (13) to estimate the high-order derivatives, then the local truncation
error of the local approximation Eq. (14) satisfies

∆t =
αtA(λs, λt)

αs
∆s +O(h)

(
O(∆s) +

n∑
k=1

O(∆λik
) +O(hn+1)

)
(28)

where ∆· := x̂· − x·, h := λt − λs.

Proof. By replacing x· with x̂· in Eq. (13) and subtracting Eq. (12) from Eq. (14), the expression for
the local truncation error becomes

∆t =
αtA(λs, λt)

αs
∆s − αtA(λs, λt) (gθ(x̂λs , λs)− gθ(xλs , λs))

∫ λt

λs

Eλs(λ)dλ

− αtA(λs, λt)

n∑
k=1

ĝ
(k)
θ (xλs , λs)− g(k)θ (xλs , λs)

k!

∫ λt

λs

Eλs
(λ)(λ− λs)

kdλ+O(hn+2)

(29)

And the linear system for solving g(k)θ (xλs
, λs), k = 1, . . . , n becomes

δ1 δ21 · · · δn1
δ2 δ22 · · · δn2
...

...
. . .

...
δn δ2n · · · δnn



ĝ
(1)
s

ĝ(2)
s

2!
...

ĝ(n)
s

n!

 =


ĝi1 − ĝs
ĝi2 − ĝs

...
ĝin − ĝs

 (30)

where ĝ· = gθ(x̂λ· , λ·). Under Assumption B.4, we know ĝ· − g· = O(∆λ·). Thus, under
Assumption B.1, Assumption B.2 and Assumption B.3, similar to the deduction in the last section,
we have
ĝ
(1)
s − g(1)s

ĝ(2)
s −g(2)

s

2!
...

ĝ(n)
s −g(n)

s

n!

 =


h−1

h−2

. . .
h−n



r1 r21 · · · rn1
r2 r22 · · · rn2
...

...
. . .

...
rn r2n · · · rnn


−1

O(hn+1 +∆s +∆λi1
)

O(hn+1 +∆s +∆λi2
)

...
O(hn+1 +∆s +∆λin

)


(31)
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Besides, under Assumption B.2, the orders of the other coefficients are the same as we obtain in the
last section:

A(λs, λt) = O(1),
∫ λt

λs

Eλs
(λ)(λ− λs)

kdλ = O(hk+1) (32)

Thus
n∑

k=1

ĝ
(k)
θ (xλs , λs)− g(k)θ (xλs , λs)

k!

∫ λt

λs

Eλs
(λ)(λ− λs)

kdλ

=


∫ λt

λs
Eλs(λ)(λ− λs)

1dλ∫ λt

λs
Eλs(λ)(λ− λs)

2dλ
...∫ λt

λs
Eλs(λ)(λ− λs)

ndλ


⊤

ĝ
(1)
s − g(1)s

ĝ(2)
s −g(2)

s

2!
...

ĝ(n)
s −g(n)

s

n!



=


O(h2)
O(h3)

...
O(hn+1)


⊤

h−1

h−2

. . .
h−n



r1 r21 · · · rn1
r2 r22 · · · rn2
...

...
. . .

...
rn r2n · · · rnn


−1

O(hn+1 +∆s +∆λi1
)

O(hn+1 +∆s +∆λi2
)

...
O(hn+1 +∆s +∆λin

)



=


O(h)
O(h)

...
O(h)


⊤

r1 r21 · · · rn1
r2 r22 · · · rn2
...

...
. . .

...
rn r2n · · · rnn


−1

O(hn+1 +∆s +∆λi1
)

O(hn+1 +∆s +∆λi2
)

...
O(hn+1 +∆s +∆λin

)


=

n∑
k=1

O(h)O(hn+1 +∆s +∆λik
)

(33)
Combining Eq. (29), Eq. (32) and Eq. (33), we can obtain the conclusion in Eq. (28).

Then we prove Theorem 3.3 below.

Proof. (Proof of Theorem 3.3)

As we have discussed, the predictor step from tm−1 to tm is a special case of the local approximation
Eq. (14) with (tin , . . . , ti1 , s, t) = (tm−n−1, . . . , tm−2, tm−1, tm). By Lemma B.7 we have

∆m =
αtmA(λtm−1

, λtm)

αtm−1

∆m−1 +O(h)

(
n∑

k=0

O(∆m−k−1) +O(hn+1)

)
(34)

It follows that there exists constants C,C0 irrelevant to h, so that

|∆m| ≤
(
αtmA(λtm−1 , λtm)

αtm−1

+ Ch

)
|∆m−1|+ Ch

n∑
k=0

|∆m−k−1|+ C0h
n+2 (35)

Denote fm := max0≤i≤m |∆i|, we then have

|∆m| ≤
(
αtmA(λtm−1 , λtm)

αtm−1

+ C1h

)
fm−1 + C0h

n+2 (36)

Since
αtmA(λtm−1

,λtm )

αtm−1
→ 1 when h → 0 and it has bounded first-order derivative due to As-

sumption B.2, there exists a constant C2, so that for any C ≥ C2,
αtmA(λtm−1

,λtm )

αtm−1
+ Ch > 1 for

sufficiently small h. Thus, by taking C3 = max{C1, C2}, we have

fm ≤
(
αtmA(λtm−1

, λtm)

αtm−1

+ C3h

)
fm−1 + C0h

n+2 (37)
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Denote Am−1 :=
αtmA(λtm−1

,λtm )

αtm−1
+ C3h, by repeating Eq. (37), we have

fM ≤

(
M−1∏
i=n

Ai

)
fn +

 M∑
i=n+1

M−1∏
j=i

Aj

C0h
n+2 (38)

By Assumption B.5, h = O(1/M), so we have
M−1∏
i=n

Ai =
αtMA(λtn , λtM )

αtn

M−1∏
i=n

(
1 +

αti−1C3h

αtiA(λti−1 , λti)

)

≤ αtMA(λtn , λtM )

αtn

M−1∏
i=n

(
1 +

αti−1
C4

αtiA(λti−1 , λti)M

)
≤ αtMA(λtn , λtM )

αtn

(
1 +

σ

M

)M−n

≤ C5e
σ

(39)

where σ = maxn≤i≤M−1
αti−1

C4

αti
A(λti−1

,λti
) . Then denote β := maxn+1≤i≤M

αtM
A(λti

,λtM
)

αti
, we

have
M∑

i=n+1

M−1∏
j=i

Aj ≤
M∑

i=n+1

αtMA(λti , λtM )

αti

(
1 +

σ

M

)M−i

≤ β

M−n−1∑
i=0

(
1 +

σ

M

)i
=

βM

σ

[(
1 +

σ

M

)M−n

− 1

]
≤ C6 (e

σ − 1)M

(40)

Then we substitute Eq. (39) and Eq. (40) into Eq. (38). Note that M = O(1/h) by Assumption B.5,
and fn = O(hn+1) by Assumption B.6, finally we conclude that |∆M | ≤ fM = O(hn+1).

B.3 Pseudo-Order Solver

First, we provide a lemma that gives the explicit solution to Eq. (15).
Lemma B.8. The solution to Eq. (15) is

ĝ
(k)
s

k!
=

k∑
p=1

gip − gi0∏k
q=0,q ̸=p(δp − δq)

(41)

Proof. Denote

Rk =


δ1 δ21 · · · δk1
δ2 δ22 · · · δk2
...

...
. . .

...
δk δ2k · · · δkk

 (42)

Then the solution to Eq. (15) can be expressed as

ĝ
(k)
s

k!
=

k∑
p=1

(R−1
k )kp(gip − gi0) (43)

where (R−1
k )kp is the element ofR−1

k at the k-th row and the p-th column. From previous studies of
the inversion of the Vandermonde matrix [12], we know

(R−1
k )kp =

1

δp
∏k

q=1,q ̸=p(δp − δq)
=

1

(δp − δ0)
∏k

q=1,q ̸=p(δp − δq)
(44)

Substituting Eq. (44) into Eq. (43), we finish the proof.
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Then we prove Theorem 3.4 below:

Proof. (Proof of Theorem 3.4) First, we use mathematical induction to prove that

D
(k)
l = D̃

(k)
l :=

k∑
p=1

gil+p
− gil∏k

q=0,q ̸=p(δl+p − δl+q)
, 1 ≤ k ≤ n, 0 ≤ l ≤ n− k (45)

For k = 1, Eq. (45) holds by the definition of D(k)
l . Suppose the equation holds for k, we then prove

it holds for k + 1.

Define the Lagrange polynomial which passes (δl+p, gil+p
− gil) for 0 ≤ p ≤ k:

P
(k)
l (x) :=

k∑
p=1

(
gil+p

− gil
) k∏
q=0,q ̸=p

x− δl+q

δl+p − δl+q
, 1 ≤ k ≤ n, 0 ≤ l ≤ n− k (46)

Then D̃
(k)
l = P

(k)
l (x)[xk] is the coefficients before the highest-order term xk in P

(k)
l (x). We then

prove that P (k)
l (x) satisfies the following recurrence relation:

P
(k)
l (x) = P̃

(k)
l (x) :=

(x− δl)P
(k−1)
l+1 (x)− (x− δl+k)P

(k−1)
l (x)

δl+k − δl
(47)

By definition, P (k−1)
l+1 (x) is the (k − 1)-th order polynomial which passes (δl+p, gil+p

− gil) for

1 ≤ p ≤ k, and P
(k−1)
l (x) is the (k − 1)-th order polynomial which passes (δl+p, gil+p

− gil) for
0 ≤ p ≤ k − 1.

Thus, for 1 ≤ p ≤ k − 1, we have

P̃
(k)
l (δl+p) =

(δl+p − δl)P
(k−1)
l+1 (δl+p)− (δl+p − δl+k)P

(k−1)
l (δl+p)

δl+k − δl
= gil+p

− gil (48)

For p = 0, we have

P̃
(k)
l (δl) =

(δl − δl)P
(k−1)
l+1 (δl)− (δl − δl+k)P

(k−1)
l (δl)

δl+k − δl
= gil − gil (49)

for p = k, we have

P̃
(k)
l (δl+k) =

(δl+k − δl)P
(k−1)
l+1 (δl+k)− (δl+k − δl+k)P

(k−1)
l (δl+k)

δl+k − δl
= gil+k

− gil (50)

Therefore, P̃ (k)
l (x) is the k-th order polynomial which passes k+1 distince points (δl+p, gil+p

−gil)
for 0 ≤ p ≤ k. Due to the uniqueness of the Lagrange polynomial, we can conclude that P (k)

l (x) =

P̃
(k)
l (x). By taking the coefficients of the highest-order term, we obtain

D̃
(k)
l =

D̃
(k−1)
l+1 − D̃

(k−1)
l

δl+k − δl
(51)

where by the induction hypothesis we have D
(k−1)
l+1 = D̃

(k−1)
l+1 , D

(k−1)
l = D̃

(k−1)
l . Comparing

Eq. (51) with the recurrence relation of D
(k)
l in Eq. (16), it follows that D(k)

l = D̃
(k)
l , which

completes the mathematical induction.

Finally, by comparing the expression for D̃(k)
l in Eq. (45) and the expression for ĝ(k)s in Lemma B.8,

we can conclude that ĝ(k)s = k!D
(k)
0 .
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B.4 Local Unbiasedness

Proof. (Proof of Theorem 3.2) Subtracting the local exact solution in Eq. (9) from the (n + 1)-th
order local approximation in Eq. (14), we have the local truncation error

x̂t − xt = αtA(λs, λt)

(∫ λt

λs

Eλs
(λ)gθ(xλ, λ)dλ−

n∑
k=0

ĝ
(k)
θ (xλs

, λs)

∫ λt

λs

Eλs
(λ)

(λ− λs)
k

k!
dλ

)

= αtA(λs, λt)

∫ λt

λs

Eλs
(λ) (gθ(xλ, λ)− gθ(xλs

, λs)) dλ

− αtA(λs, λt)

n∑
k=1

ĝ
(k)
θ (xλs , λs)

∫ λt

λs

Eλs(λ)
(λ− λs)

k

k!
dλ

= αtA(λs, λt)

∫ λt

λs

Eλs
(λ) (gθ(xλ, λ)− gθ(xλs

, λs)) dλ

− αtA(λs, λt)

n∑
k=1

(
n∑

l=1

(R−1
n )kl(gθ(xλil

, λil)− gθ(xλs , λs))

)∫ λt

λs

Eλs(λ)
(λ− λs)

k

k!
dλ

(52)
where xλ is on the ground-truth ODE trajectory passing xλs , and (R−1

n )kl is the element of the
inverse matrixR−1

n at the k-th row and the l-th column, as discussed in the proof of Lemma B.8. By
Newton-Leibniz theorem, we have

gθ(xλ, λ)− gθ(xλs , λs) =

∫ λ

λs

g
(1)
θ (xτ , τ)dτ (53)

Also, since xλil
, l = 1, . . . , n are on the ground-truth ODE trajectory passing xλs

, we have

gθ(xλil
, λil)− gθ(xλs

, λs) =

∫ λil

λs

g
(1)
θ (xτ , τ)dτ (54)

where
g
(1)
θ (xτ , τ) = e−

∫ τ
λs

srdr
(
f
(1)
θ (xτ , τ)− sτfθ(xτ , τ)− bτ

)
(55)

Note that sλ, lλ are the solution to the least square problem in Eq. (11), which
makes sure Epθ

τ (xτ )

[
f
(1)
θ (xτ , τ)− sτfθ(xτ , τ)− bτ

]
= 0. It follows that

Epθ
λs

(xλs )

[
f
(1)
θ (xτ , τ)− sτfθ(xτ , τ)− bτ

]
= 0, since xτ is on the ground-truth ODE

trajectory passing xλs
. Therefore, we have Epθ

λs
(xλs )

[gθ(xλ, λ)− gθ(xλs
, λs)] = 0 and

Epθ
λs

(xλs )

[
gθ(xλil

, λil)− gθ(xλs
, λs)

]
= 0. Substitute them into Eq. (52), we conclude that

Epθ
λs

(xλs )
[x̂t − xt] = 0.

C Implementation Details

C.1 Computing the EMS and Related Integrals in the ODE Formulation

The ODE formulation and local approximation require computing some complex integrals involving
lλ, sλ, bλ. In this section, we’ll give details about how to estimate l∗λ, s

∗
λ, b

∗
λ on a few datapoints, and

how to use them to compute the integrals efficiently.

C.1.1 Computing the EMS

First for the computing of l∗λ in Eq. (5), note that

∇xNθ(xλ, λ) = σλ∇xϵ(xλ, λ)− diag(lλ) (56)

Since diag(lλ) is a diagonal matrix, minimizing Epθ
λ(xλ)

[
∥∇xNθ(xλ, λ)∥2F

]
is equivalent to mini-

mizing Epθ
λ(xλ)

[
∥diag−1(∇xNθ(xλ, λ))∥22

]
= Epθ

λ(xλ)

[
∥diag−1(σλ∇xϵ(xλ, λ))− lλ∥22

]
, where
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diag−1 denotes the operator that takes the diagonal of a matrix as a vector. Thus we have
l∗λ = Epθ

λ(xλ)

[
diag−1(σλ∇xϵ(xλ, λ))

]
.

However, this formula for l∗λ requires computing the diagonal of the full Jacobian of the noise
prediction model, which typically has O(d2) time complexity for d-dimensional data and is unaccept-
able when d is large. Fortunately, the cost can be reduced to O(d) by utilizing stochastic diagonal
estimators and employing the efficient Jacobian-vector-product operator provided by forward-mode
automatic differentiation in deep learning frameworks.

For a d-by-d matrixD, its diagonal can be unbiasedly estimated by [4]

diag−1(D) =

[
s∑

k=1

(Dvk)⊙ vk

]
⊘

[
s∑

k=1

vk ⊙ vk

]
(57)

where vk ∼ p(v) are d-dimensional i.i.d. samples with zero mean, ⊙ is the element-wise multiplica-
tion i.e., Hadamard product, and ⊘ is the element-wise division. The stochastic diagonal estimator
is analogous to the famous Hutchinson’s trace estimator [20]. By taking p(v) as the Rademacher
distribution, we have vk ⊙ vk = 1, and the denominator can be omitted. For simplicity, we use
regular multiplication and division symbols, assuming they are element-wise between vectors. Then
l∗λ can be expressed as:

l∗λ = Epθ
λ(xλ)p(v)

[(σλ∇xϵθ(xλ, λ)v)v] (58)

which is an unbiased estimation when we replace the expectation with mean on finite samples
xλ ∼ pθλ(xλ),v ∼ p(v). The process for estimating l∗λ can easily be paralleled on multiple devices
by computing

∑
(σλ∇xϵθ(xλ, λ)v)v on separate datapoints and gather them in the end.

Next, for the computing of s∗λ, b
∗
λ in Eq. (11), note that it’s a simple least square problem. By taking

partial derivatives w.r.t. sλ, bλ and set them to 0, we haveEpθ
λ(xλ)

[(
f
(1)
θ (xλ, λ)− s∗λfθ(xλ, λ)− b∗λ

)
fθ(xλ, λ)

]
= 0

Epθ
λ(xλ)

[
f
(1)
θ (xλ, λ)− s∗λfθ(xλ, λ)− b∗λ

]
= 0

(59)

And we obtain the explicit formula for s∗λ, b
∗
λ

s∗λ =
Epθ

λ(xλ)

[
fθ(xλ, λ)f

(1)
θ (xλ, λ)

]
− Epθ

λ(xλ)
[fθ(xλ, λ)]Epθ

λ(xλ)

[
f
(1)
θ (xλ, λ)

]
Epθ

λ(xλ)
[fθ(xλ, λ)fθ(xλ, λ)]− Epθ

λ(xλ)
[fθ(xλ, λ)]Epθ

λ(xλ)
[fθ(xλ, λ)]

(60)

b∗λ = Epθ
λ(xλ)

[f (1)(xλ, λ)]− s∗λEpθ
λ(xλ)

[fθ(xλ, λ)] (61)

which are unbiased least square estimators when we replace the expectation with mean on finite
samples xλ ∼ pθλ(xλ). Also, the process for estimating s∗λ, b

∗
λ can be paralleled on multiple devices

by computing
∑
fθ,
∑
f
(1)
θ ,

∑
fθfθ,

∑
fθf

(1)
θ on separate datapoints and gather them in the end.

Thus, the estimation of s∗λ, b
∗
λ involving evaluating fθ and f (1)

θ on xλ. fθ is a direct transformation
of ϵθ and requires a single forward pass. For f (1)

θ , we have

f
(1)
θ (xλ, λ) =

∂fθ(xλ, λ)

∂λ
+∇xfθ(xλ, λ)

dxλ

dλ

= e−λ
(
ϵ
(1)
θ (xλ, λ)− ϵθ(xλ, λ)

)
− l̇λαλ − α̇λlλ

α2
λ

xλ −
lλ
αλ

(
α̇λ

αλ
xλ − σλϵθ(xλ, λ)

)
= e−λ

(
(lλ − 1)ϵθ(xλ, λ) + ϵ

(1)
θ (xλ, λ)

)
− l̇λxλ

αλ
(62)

After we obtain lλ, l̇λ can be estimated by finite difference. To compute ϵ(1)θ (xλ, λ), we have

ϵ
(1)
θ (xλ, λ) = ∂λϵθ(xλ, λ) +∇xϵθ(xλ, λ)

dxλ

dλ

= ∂λϵθ(xλ, λ) +∇xϵθ(xλ, λ)

(
α̇λ

αλ
xλ − σλϵθ(xλ, λ)

) (63)
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which can also be computed with the Jacobian-vector-product operator.

In conclusion, for any λ, l∗λ, s
∗
λ, b

∗
λ can be efficiently and unbiasedly estimated by sampling a few

datapoints xλ ∼ pθλ(xλ) and using the Jacobian-vector-product.

C.1.2 Integral Precomputing

In the local approximation in Eq. (14), there are three integrals involving the EMS, which are
A(λs, λt),

∫ λt

λs
Eλs

(λ)Bλs
(λ)dλ,

∫ λt

λs
Eλs

(λ) (λ−λs)
k

k! dλ. Define the following terms, which are
also evaluated at λj0 , λj1 , . . . , λjN and can be precomputed in O(N) time:

Lλ =

∫ λ

λT

lτdτ

Sλ =

∫ λ

λT

sτdτ

Bλ =

∫ λ

λT

e
−

∫ r
λT

sτdτbrdr =

∫ λ

λT

e−Srbrdr

Cλ =

∫ λ

λT

(
e
∫ u
λT

(lτ+sτ )dτ
∫ u

λT

e
−

∫ r
λT

sτdτbrdr

)
du =

∫ λ

λT

eLu+SuBudu

Iλ =

∫ λ

λT

e
∫ r
λT

(lτ+sτ )dτdr =

∫ λ

λT

eLr+Srdr

(64)

Then for any λs, λt, we can verify that the first two integrals can be expressed as

A(λs, λt) = eLλs−Lλt∫ λt

λs

Eλs(λ)Bλs(λ)dλ = e−Lλs (Cλt −Cλs −Bλs(Iλt − Iλs))
(65)

which can be computed in O(1) time. For the third and last integral, denote it as E(k)
λs,λt

, i.e.,

E
(k)
λs,λt

=

∫ λt

λs

Eλs
(λ)

(λ− λs)
k

k!
dλ (66)

We need to compute it for 0 ≤ k ≤ n and for every local transition time pair (λs, λt) in the sampling
process. For k = 0, we have

E
(0)
λs,λt

= e−Lλs−Sλs (Iλt − Iλs) (67)

which can also be computed in O(1) time. But for k > 0, we no longer have such a simplification
technique. Still, for any fixed timestep schedule {λi}Mi=0 during the sampling process, we can use a
lazy precomputing strategy: compute E(k)

λi−1,λi
, 1 ≤ i ≤M when generating the first sample, store it

with a unique key (k, i) and retrieve it in O(1) in the following sampling process.

C.2 Algorithm

We provide the pseudocode of the local approximation and global solver in Algorithm 1 and Algo-
rithm 2, which concisely describes how we implement DPM-Solver-v3.
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Algorithm 1 (n+ 1)-th order local approximation: LUpdaten+1

Require: noise schedule αt, σt, coefficients lλ, sλ, bλ
Input: transition time pair (s, t), xs, n extra timesteps {tik}nk=1, gθ values (gin , . . . , gi1 , gs) at
{(xλik

, tik)}nk=1 and (xs, s)

Input Format: {tin , gin}, . . . , {ti1 , gi1}, {s,xs, gs}, t
1: ComputeA(λs, λt),

∫ λt

λs
Eλs(λ)Bλs(λ)dλ,

∫ λt

λs
Eλs(λ)

(λ−λs)
k

k! dλ (Appendix C.1.2)
2: δk = λik − λs, k = 1, . . . , n

3:


ĝ
(1)
s

ĝ(2)
s

2!
...

ĝ(n)
s

n!

←

δ1 δ21 · · · δn1
δ2 δ22 · · · δn2
...

...
. . .

...
δn δ2n · · · δnn


−1

gi1 − gs
gi2 − gs

...
gin − gs

 (Eq. (13))

4: x̂t ← αtA(λs, λt)

(
xs

αs
−
∫ λt

λs

Eλs(λ)Bλs(λ)dλ−
n∑

k=0

ĝ(k)s

∫ λt

λs

Eλs(λ)
(λ− λs)

k

k!
dλ

)
(Eq. (14))

Output: x̂t

Algorithm 2 (n+ 1)-th order multistep predictor-corrector algorithm
Require: noise prediction model ϵθ, noise schedule αt, σt, coefficients lλ, sλ, bλ, cache Q1, Q2

Input: timesteps {ti}Mi=0, initial value x0

1: Q1
cache← x0

2: Q2
cache← ϵθ(x0, t0)

3: for m = 1 to M do
4: nm ← min{n+ 1,m}
5: x̂m−nm

, . . . , x̂m−1
fetch← Q1

6: ϵ̂m−nm
, . . . , ϵ̂m−1

fetch← Q2

7: ĝl ← e
−

∫ λl
λm−1

sτdτ σλl
ϵ̂l − lλl

x̂l

αλl

−
∫ λl

λm−1

e
−

∫ r
λm−1

sτdτ
brdr, l = m − nm, . . . ,m − 1

(Eq. (8))
8: x̂m ← LUpdatenm

({tm−nm
, ĝm−nm

}, . . . , {tm−2, ĝm−2}, {tm−1, x̂m−1, ĝm−1}, tm)
9: if m ̸= M then

10: ϵ̂m ← ϵθ(x̂m, tm)

11: ĝm ← e
−

∫ λm
λm−1

sτdτ σλm ϵ̂m − lλm x̂m

αλm

−
∫ λm

λm−1

e
−

∫ r
λm−1

sτdτ
brdr (Eq. (8))

12: x̂c
m ← LUpdatenm

({tm−nm+1, ĝm−nm+1}, . . . , {tm−2, ĝm−2}, {tm, ĝm},
{tm−1, x̂m−1, ĝm−1}, tm)

13: ϵ̂cm ← ϵ̂m + lλm
(x̂c

m − x̂m)/σλm
(to ensure ĝcm = ĝm)

14: Q1
cache← x̂c

m

15: Q2
cache← ϵ̂cm

16: end if
17: end for
Output: x̂M

D Experiment Details

In this section, we provide more experiment details for each setting, including the codebases and the
configurations for evaluation, EMS computing and sampling. Unless otherwise stated, we utilize the
forward-mode automatic differentiation (torch.autograd.forward_ad) provided by PyTorch [39]
to compute the Jacobian-vector-products (JVPs). Also, as stated in Section 3.4, we draw datapoints
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xλ from the marginal distribution qλ defined by the forward diffusion process starting from some
data distribution q0, instead of the model distribution pθλ.

D.1 ScoreSDE on CIFAR10

Codebase and evaluation For unconditional sampling on CIFAR10 [24], one experiment set-
ting is based on the pretrained pixel-space diffusion model provided by ScoreSDE [51]. We use
their official codebase of PyTorch implementation, and their checkpoint checkpoint_8.pth under
vp/cifar10_ddpmpp_deep_continuous config. We adopt their own statistic file and code for
computing FID.

EMS computing We estimate the EMS at N = 1200 uniform timesteps λj0 , λj1 , . . . , λjN by
drawing K = 4096 datapoints xλ0

∼ q0, where q0 is the distribution of the training set. We compute
two sets of EMS, corresponding to start time ϵ = 10−3 (NFE≤ 10) and ϵ = 10−4 (NFE>10) in the
sampling process respectively. The total time for EMS computing is ∼7h on 8 GPU cards of NVIDIA
A40.

Sampling Following previous works [31, 32, 58], we use start time ϵ = 10−3 (NFE≤ 10) and
ϵ = 10−4 (NFE>10), end time T = 1 and adopt the uniform logSNR timestep schedule. For
DPM-Solver-v3, we use the 3rd-order predictor with the 3rd-order corrector by default. In particular,
we change to the pseudo 3rd-order predictor at 5 NFE to further boost the performance.

D.2 EDM on CIFAR10

Codebase and evaluation For unconditional sampling on CIFAR10 [24], another experiment setting
is based on the pretrained pixel-space diffusion model provided by EDM [21]. We use their official
codebase of PyTorch implementation, and their checkpoint edm-cifar10-32x32-uncond-vp.pkl.
For consistency, we borrow the statistic file and code from ScoreSDE [51] for computing FID.

EMS computing Since the pretrained models of EDM are stored within the pickles,
we fail to use torch.autograd.forward_ad for computing JVPs. Instead, we use
torch.autograd.functional.jvp, which is much slower since it employs the double back-
ward trick. We estimate two sets of EMS. One corresponds to N = 1200 uniform timesteps
λj0 , λj1 , . . . , λjN and K = 1024 datapoints xλ0

∼ q0, where q0 is the distribution of the training
set. The other corresponds to N = 120,K = 4096. They are used when NFE<10 and NFE≥10
respectively. The total time for EMS computing is ∼3.5h on 8 GPU cards of NVIDIA A40.

Sampling Following EDM, we use start time tmin = 0.002 and end time tmax = 80.0, but adopt the
uniform logSNR timestep schedule which performs better in practice. For DPM-Solver-v3, we use
the 3rd-order predictor and additionally employ the 3rd-order corrector when NFE≤ 6. In particular,
we change to the pseudo 3rd-order predictor at 5 NFE to further boost the performance.

D.3 Latent-Diffusion on LSUN-Bedroom

Codebase and evaluation The unconditional sampling on LSUN-Bedroom [55] is based on the
pretrained latent-space diffusion model provided by Latent-Diffusion [43]. We use their official
codebase of PyTorch implementation and their default checkpoint. We borrow the statistic file and
code from Guided-Diffusion [10] for computing FID.

EMS computing We estimate the EMS at N = 120 uniform timesteps λj0 , λj1 , . . . , λjN by drawing
K = 1024 datapoints xλ0

∼ q0, where q0 is the distribution of the latents of the training set. The
total time for EMS computing is ∼12min on 8 GPU cards of NVIDIA A40.

Sampling Following previous works [58], we use start time ϵ = 10−3, end time T = 1 and adopt
the uniform t timestep schedule. For DPM-Solver-v3, we use the 3rd-order predictor with the pseudo
4th-order corrector.

D.4 Guided-Diffusion on ImageNet-256

Codebase and evaluation The conditional sampling on ImageNet-256 [9] is based on the pre-
trained pixel-space diffusion model provided by Guided-Diffusion [10]. We use their official
codebase of PyTorch implementation and their two checkpoints: the conditional diffusion model
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256x256_diffusion.pt and the classifier 256x256_classifier.pt. We adopt their own statistic
file and code for computing FID.

EMS computing We estimate the EMS at N = 500 uniform timesteps λj0 , λj1 , . . . , λjN by drawing
K = 1024 datapoints xλ0

∼ q0, where q0 is the distribution of the training set. Also, we find that the
FID metric on the ImageNet-256 dataset behaves specially, and degenerated lλ (lλ = 1) performs
better. The total time for EMS computing is ∼9.5h on 8 GPU cards of NVIDIA A40.

Sampling Following previous works [31, 32, 58], we use start time ϵ = 10−3, end time T = 1 and
adopt the uniform t timestep schedule. For DPM-Solver-v3, we use the 2nd-order predictor with the
pseudo 3rd-order corrector.

D.5 Stable-Diffusion on MS-COCO2014 prompts

Codebase and evaluation The text-to-image sampling on MS-COCO2014 [26] prompts is based on
the pretrained latent-space diffusion model provided by Stable-Diffusion [43]. We use their official
codebase of PyTorch implementation and their checkpoint sd-v1-4.ckpt. We compute MSE on
randomly selected captions from the MS-COCO2014 validation dataset, as detailed in Section 4.1.

EMS computing We estimate the EMS at N = 250 uniform timesteps λj0 , λj1 , . . . , λjN by drawing
K = 1024 datapoints xλ0

∼ q0. Since Stable-Diffusion is trained on the LAION-5B dataset [46],
there is a gap between the images in the MS-COCO2014 validation dataset and the images generated
by Stable-Diffusion with certain guidance scale. Thus, we choose q0 to be the distribution of the
latents generated by Stable-Diffusion with corresponding guidance scale, using 200-step DPM-
Solver++ [32]. We generate these latents with random captions and Gaussian noise different from
those we use to compute MSE. The total time for EMS computing is ∼11h on 8 GPU cards of
NVIDIA A40 for each guidance scale.

Sampling Following previous works [32, 58], we use start time ϵ = 10−3, end time T = 1 and
adopt the uniform t timestep schedule. For DPM-Solver-v3, we use the 2nd-order predictor with the
pseudo 3rd-order corrector.

D.6 License

Table 3: The used datasets, codes and their licenses.

Name URL Citation License

CIFAR10 https://www.cs.toronto.edu/~kriz/cifar.html [24] \
LSUN-Bedroom https://www.yf.io/p/lsun [55] \
ImageNet-256 https://www.image-net.org [9] \
MS-COCO2014 https://cocodataset.org [26] CC BY 4.0
ScoreSDE https://github.com/yang-song/score_sde_pytorch [51] Apache-2.0
EDM https://github.com/NVlabs/edm [21] CC BY-NC-SA 4.0
Guided-Diffusion https://github.com/openai/guided-diffusion [10] MIT
Latent-Diffusion https://github.com/CompVis/latent-diffusion [43] MIT
Stable-Diffusion https://github.com/CompVis/stable-diffusion [43] CreativeML Open RAIL-M
DPM-Solver++ https://github.com/LuChengTHU/dpm-solver [32] MIT
UniPC https://github.com/wl-zhao/UniPC [58] \

We list the used datasets, codes and their licenses in Table 3.

E Runtime Comparison

As we have mentioned in Section 4, the runtime of DPM-Solver-v3 is almost the same as other
solvers (DDIM [48], DPM-Solver [31], DPM-Solver++ [32], UniPC [58], etc.) as long as they use
the same NFE. This is because the main computation costs are the serial evaluations of the large
neural network ϵθ, and the other coefficients are either analytically computed [48, 31, 32, 58], or
precomputed (DPM-Solver-v3), thus having neglectable costs.

Table 4 shows the runtime of DPM-Solver-v3 and some other solvers on a single NVIDIA A40
under different settings. We use torch.cuda.Event and torch.cuda.synchronize to accurately
compute the runtime. We evaluate the runtime on 8 batches (dropping the first batch since it contains
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Table 4: Runtime of different methods to generate a single batch (second / batch, ±std) on a single
NVIDIA A40, varying the number of function evaluations (NFE). We don’t include the runtime of
the decoding stage for latent-space DPMs.

Method NFE

5 10 15 20

CIFAR10 [24], ScoreSDE [51] (batch size = 128)

DPM-Solver++ [32] 1.253(±0.0014) 2.503(±0.0017) 3.754(±0.0042) 5.010(±0.0048)
UniPC [58] 1.268(±0.0012) 2.532(±0.0018) 3.803(±0.0037) 5.080(±0.0049)
DPM-Solver-v3 1.273(±0.0005) 2.540(±0.0023) 3.826(±0.0039) 5.108(±0.0055)

CIFAR10 [24], EDM [21] (batch size = 128)

DPM-Solver++ [32] 1.137(±0.0011) 2.278(±0.0015) 3.426(±0.0024) 4.569(±0.0031)
UniPC [58] 1.142(±0.0016) 2.289(±0.0019) 3.441(±0.0035) 4.590(±0.0021)
DPM-Solver-v3 1.146(±0.0010) 2.293(±0.0015) 3.448(±0.0018) 4.600(±0.0027)

LSUN-Bedroom [55], Latent-Diffusion [43] (batch size = 32)

DPM-Solver++ [32] 1.302(±0.0009) 2.608(±0.0010) 3.921(±0.0023) 5.236(±0.0045)
UniPC [58] 1.305(±0.0005) 2.616(±0.0019) 3.934(±0.0033) 5.244(±0.0043)
DPM-Solver-v3 1.302(±0.0010) 2.620(±0.0027) 3.932(±0.0028) 5.290(±0.0030)

ImageNet256 [9], Guided-Diffusion [10] (batch size = 4)

DPM-Solver++ [32] 1.594(±0.0011) 3.194(±0.0018) 4.792(±0.0031) 6.391(±0.0045)
UniPC [58] 1.606(±0.0026) 3.205(±0.0025) 4.814(±0.0049) 6.427(±0.0060)
DPM-Solver-v3 1.601(±0.0059) 3.229(±0.0031) 4.807(±0.0068) 6.458(±0.0257)

MS-COCO2014 [26], Stable-Diffusion [43] (batch size = 4)

DPM-Solver++ [32] 1.732(±0.0012) 3.464(±0.0020) 5.229(±0.0027) 6.974(±0.0013)
UniPC [58] 1.735(±0.0012) 3.484(±0.0364) 5.212(±0.0015) 6.988(±0.0035)
DPM-Solver-v3 1.731(±0.0008) 3.471(±0.0011) 5.211(±0.0030) 6.945(±0.0022)

extra initializations) and report the mean and std. We can see that the runtime is proportional to NFE
and has a difference of about ±1% for different solvers, which confirms our statement. Therefore,
the speedup for the NFE is almost the actual speedup of the runtime.

F Quantitative Results

Table 5: Quantitative results on LSUN-Bedroom [55]. We report the FID↓ of the methods with
different numbers of function evaluations (NFE), evaluated on 50k samples.

Method Model NFE

5 6 8 10 12 15 20

DPM-Solver++ [32]
Latent-Diffusion [43]

18.59 8.50 4.19 3.63 3.43 3.29 3.16
UniPC [58] 12.24 6.19 4.00 3.56 3.34 3.18 3.07
DPM-Solver-v3 7.54 4.79 3.53 3.16 3.06 3.05 3.05

We present the detailed quantitative results of Section 4.1 for different datasets in Table 1, Table 5,
Table 6 and Table 7 respectively. They clearly verify that DPM-Solver-v3 achieves consistently better
or comparable performance under various settings, especially in 5∼10 NFEs.

G Ablations

In this section, we conduct some ablations to further evaluate and analyze the effectiveness of
DPM-Solver-v3.
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Table 6: Quantitative results on ImageNet-256 [9]. We report the FID↓ of the methods with different
numbers of function evaluations (NFE), evaluated on 10k samples.

Method Model NFE

5 6 8 10 12 15 20

DPM-Solver++ [32] Guided-Diffusion [10]
(s = 2.0)

16.87 13.09 9.95 8.72 8.13 7.73 7.48
UniPC [58] 15.62 11.91 9.29 8.35 7.95 7.64 7.44
DPM-Solver-v3 15.10 11.39 8.96 8.27 7.94 7.62 7.39

Table 7: Quantitative results on MS-COCO2014 [26] prompts. We report the MSE↓ of the methods
with different numbers of function evaluations (NFE), evaluated on 10k samples.

Method Model NFE

5 6 8 10 12 15 20

DPM-Solver++ [32] Stable-Diffusion [43]
(s = 1.5)

0.076 0.056 0.028 0.016 0.012 0.009 0.006
UniPC [58] 0.055 0.039 0.024 0.012 0.007 0.005 0.002
DPM-Solver-v3 0.037 0.027 0.024 0.007 0.005 0.001 0.002
DPM-Solver++ [32] Stable-Diffusion [43]

(s = 7.5)

0.60 0.65 0.50 0.46 0.42 0.38 0.30
UniPC [58] 0.65 0.71 0.56 0.46 0.43 0.35 0.31
DPM-Solver-v3 0.55 0.64 0.49 0.40 0.45 0.34 0.29

G.1 Varying the Number of Timesteps and Datapoints for the EMS

Table 8: Ablation of the number of timesteps N and datapoints K for the EMS, experimented with
ScoreSDE [51] on CIFAR10 [24]. We report the FID↓ with different numbers of function evaluations
(NFE), evaluated on 50k samples.

N K
NFE

5 6 8 10 12 15 20

1200 512 18.84 7.90 4.49 3.74 3.88 3.52 3.12
1200 1024 15.52 7.55 4.17 3.56 3.37 3.03 2.78
120 4096 13.67 7.60 4.09 3.49 3.24 2.90 2.70
250 4096 13.28 7.56 4.00 3.45 3.22 2.92 2.70
1200 4096 12.76 7.40 3.94 3.40 3.24 2.91 2.71

First, we’d like to investigate how the number of timesteps N and the number of datapoints K for
computing the EMS affects the performance. We conduct experiments with the DPM ScoreSDE [51]
on CIFAR10 [24], by decreasing N and K from our default choice N = 1200,K = 4096.

We list the FID results using the EMS of different N and K in Table 8. We can observe that the
number of datapoints K is crucial to the performance, while the number of timesteps N is less
significant and affects mainly the performance in 5∼10 NFEs. When NFE>10, we can decrease N
to as little as 50, which gives even better FIDs. Note that the time cost for computing the EMS is
proportional to NK, so how to choose appropriate N and K for both efficiency and accuracy is
worth studying.

G.2 First-Order Comparison

As stated in Appendix A, the first-order case of DPM-Solver-v3 (DPM-Solver-v3-1) is different from
DDIM [48], which is the previous best first-order solver for DPMs. Note that DPM-Solver-v3-1
applies no corrector, since any corrector has an order of at least 2.

In Table 9 and Figure 7, we compare DPM-Solver-v3-1 with DDIM both quantitatively and qual-
itatively, using the DPM ScoreSDE [51] on CIFAR10 [24]. The results verify our statement that
DPM-Solver-v3-1 performs better than DDIM.

29



Table 9: Quantitative comparison of first-order solvers (DPM-Solver-v3-1 and DDIM [48]), ex-
perimented with ScoreSDE [51] on CIFAR10 [24]. We report the FID↓ with different numbers of
function evaluations (NFE), evaluated on 50k samples.

Method NFE

5 6 8 10 12 15 20

DDIM [48] 54.56 41.92 27.51 20.11 15.64 12.05 9.00
DPM-Solver-v3-1 39.18 29.82 20.03 14.98 11.86 9.34 7.19

NFE = 5 NFE = 10 NFE = 20

DDIM
[48]

FID 54.56 FID 20.11 FID 9.00

DPM-Solver-v3-1
(Ours)

FID 39.18 FID 14.98 FID 7.19

Figure 7: Random samples by first-order solvers (DPM-Solver-v3-1 and DDIM [48]) of
ScoreSDE [51] on CIFAR10 dataset [24], using 5, 10 and 20 NFE.

G.3 Effects of Pseudo-Order Solver

We now demonstrate the effectiveness of the pseudo-order solver, including the pseudo-order predictor
and the pseudo-order corrector.

Pseudo-order predictor The pseudo-order predictor is only applied in one case (at 5 NFE on
CIFAR10 [24]) to achieve maximum performance improvement. In such cases, without the pseudo-
order predictor, the FID results will degenerate from 12.76 to 15.91 for ScoreSDE [51], and from
12.21 to 12.72 for EDM [21]. While they are still better than previous methods, the pseudo-order
predictor is proven to further boost the performance at NFEs as small as 5.

Pseudo-order corrector We show the comparison between true and pseudo-order corrector in
Table 10. We can observe a consistent improvement when switching to the pseudo-order corrector.
Thus, it suggests that if we use n-th order predictor, we’d better combine it with pseudo (n+ 1)-th
order corrector rather than (n+ 1)-th order corrector.

G.4 Effects of Half-Corrector

We demonstrate the effects of half-corrector in Table 11, using the popular Stable-Diffusion
model [43]. We can observe that under the relatively large guidance scale of 7.5 which is necessary
for producing samples of high quality, the corrector adopted by UniPC [58] has a negative effect on
the convergence to the ground-truth samples, making UniPC even worse than DPM-Solver++ [32].
When we employ the half-corrector technique, the problem is partially alleviated. Still, it lags behind
our DPM-Solver-v3, since we further incorporate the EMS.
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Table 10: Effects of pseudo-order corrector under different settings. We report the FID↓ with
different numbers of function evaluations (NFE).

Method NFE

5 6 8 10 12 15 20

LSUN-Bedroom [55], Latent-Diffusion [43]

4th-order corrector 8.83 5.28 3.65 3.27 3.17 3.14 3.13
→pseudo (default) 7.54 4.79 3.53 3.16 3.06 3.05 3.05
ImageNet-256 [9], Guided-Diffusion [10] (s = 2.0)

3rd-order corrector 15.87 11.91 9.27 8.37 7.97 7.62 7.47
→pseudo (default) 15.10 11.39 8.96 8.27 7.94 7.62 7.39
MS-COCO2014 [26], Stable-Diffusion [43] (s = 1.5)

3rd-order corrector 0.037 0.028 0.028 0.014 0.0078 0.0024 0.0011
→pseudo (default) 0.037 0.027 0.024 0.0065 0.0048 0.0014 0.0022

Table 11: Ablation of half-corrector/full-corrector on MS-COCO2014 [26] prompts with Stable-
Diffusion model [43] and guidance scale 7.5. We report the MSE↓ of the methods with different
numbers of function evaluations (NFE), evaluated on 10k samples.

Method Corrector Usage NFE

5 6 8 10 12 15 20

DPM-Solver++ [32] no corrector 0.60 0.65 0.50 0.46 0.42 0.38 0.30

UniPC [58] full-corrector 0.65 0.71 0.56 0.46 0.43 0.35 0.31
→half-corrector 0.59 0.66 0.50 0.46 0.41 0.38 0.30

DPM-Solver-v3 full-corrector 0.65 0.67 0.49 0.40 0.47 0.34 0.30
→half-corrector 0.55 0.64 0.51 0.44 0.45 0.36 0.29

G.5 Singlestep vs. Multistep

Table 12: Quantitative comparison of single-step methods (S) vs. multi-step methods (M), ex-
perimented with ScoreSDE [51] on CIFAR10 [24]. We report the FID↓ with different numbers of
function evaluations (NFE), evaluated on 50k samples.

Method NFE

5 6 8 10 12 15 20 25

DPM-Solver (S) [31] 290.51 23.78 23.51 4.67 4.97 3.34 2.85 2.70
DPM-Solver (M) [32] 27.40 17.85 9.04 6.41 5.31 4.10 3.30 2.98
DPM-Solver++ (S) [32] 51.80 38.54 12.13 6.52 6.36 4.56 3.52 3.09
DPM-Solver++ (M) [32] 28.53 13.48 5.34 4.01 4.04 3.32 2.90 2.76
DPM-Solver-v3 (S) 21.83 16.81 7.93 5.76 5.17 3.99 3.22 2.96
DPM-Solver-v3 (M) 12.76 7.40 3.94 3.40 3.24 2.91 2.71 2.64

As we stated in Section 3.2.2, multistep methods perform better than singlestep methods. To study
the relationship between parameterization and these solver types, we develop a singlestep version of
DPM-Solver-v3 in Algorithm 3. Note that since (n+ 1)-th order singlestep solver divides each step
into n+1 substeps, the total number of timesteps is a multiple of n+1. For flexibility, we follow the
adaptive third-order strategy of DPM-Solver [31], which first takes third-order steps and then takes
first-order or second-order steps in the end.
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Algorithm 3 (n+ 1)-th order singlestep solver
Require: noise prediction model ϵθ, noise schedule αt, σt, coefficients lλ, sλ, bλ, cache Q1, Q2

Input: timesteps {ti}(n+1)M
i=0 , initial value x0

1: Q1
cache← x0

2: Q2
cache← ϵθ(x0, t0)

3: for m = 1 to M do
4: i0 ← (n+ 1)(m− 1)
5: for i = 0 to n do
6: x̂i0 , . . . , x̂i0+i

fetch← Q1

7: ϵ̂i0 , . . . , ϵ̂i0+i
fetch← Q2

8: ĝl ← e
−

∫ λl
λi0

sτdτ σλl
ϵ̂l − lλl

x̂l

αλl

−
∫ λl

λi0

e
−

∫ r
λi0

sτdτ
brdr, l = i0, . . . , i0 + i (Eq. (8))

9: x̂i0+i+1 ← LUpdatei+1({ti0+1, ĝi0+1}, . . . , {ti0+i, ĝi0+i}, {ti0 , x̂i0 , ĝi0}, ti0+i+1)
10: if (i+ 1)m ̸= (n+ 1)M then
11: ϵ̂i0+i+1 ← ϵθ(x̂i0+i+1, ti0+i+1)

12: Q1
cache← x̂i0+i+1

13: Q2
cache← ϵ̂i0+i+1

14: end if
15: end for
16: end for
Output: x̂(n+1)M

Since UniPC [58] is based on a multistep predictor-corrector framework and has no singlestep version,
we only compare with DPM-Solver [31] and DPM-Solver++ [32], which uses noise prediction and
data prediction respectively. The results of ScoreSDE model [51] on CIFAR10 [24] are shown in
Table 12, which demonstrate that different parameterizations have different relative performance
under singlestep and multistep methods.

Specifically, for singlestep methods, DPM-Solver-v3 (S) outperforms DPM-Solver++ (S) across
NFEs, but DPM-Solver (S) is even better than DPM-Solver-v3 (S) when NFE≥10 (though when
NFE<10, DPM-Solver (S) has worst performance), which suggests that noise prediction is best
strategy in such scenarios; for multistep methods, we have DPM-Solver-v3 (M) > DPM-Solver++
(M) > DPM-Solver (M) across NFEs. Moreover, DPM-Solver (S) even outperforms DPM-Solver++
(M) when NFE≥20, and the properties of different parameterizations in singlestep methods are left
for future study. Overall, DPM-Solver-v3 (M) achieves the best results among all these methods, and
performs the most stably under different NFEs.

H FID/CLIP Score on Stable-Diffusion

Table 13: Sample quality and text-image alignment performance on MS-COCO2014 [26] prompts
with Stable-Diffusion model [43] and guidance scale 7.5. We report the FID↓ and CLIP score↑ of the
methods with different numbers of function evaluations (NFE), evaluated on 10k samples.

Method Metric NFE

5 6 8 10 12 15 20

DPM-Solver++ [32] FID 18.87 17.44 16.40 15.93 15.78 15.84 15.72
CLIP score 0.263 0.265 0.265 0.265 0.266 0.265 0.265

UniPC [58] FID 18.77 17.32 16.20 16.15 16.09 16.06 15.94
CLIP score 0.262 0.263 0.265 0.265 0.265 0.265 0.265

DPM-Solver-v3 FID 18.83 16.41 15.41 15.32 15.13 15.30 15.23
CLIP score 0.260 0.262 0.264 0.265 0.265 0.265 0.265
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In text-to-image generation, since the sample quality is affected not only by discretization error of
the sampling process, but also by estimation error of neural networks during training, low MSE
(faster convergence) does not necessarily imply better sample quality. Therefore, we choose the
MSCOCO2014 [26] validation set as the reference, and additionally evaluate DPM-Solver-v3 on
Stable-Diffusion model [43] by the standard metrics FID and CLIP score [41] which measure the
sample quality and text-image alignment respectively. For DPM-Solver-v3, we use the full-corrector
strategy when NFE<10, and no corrector when NFE≥10.

The results in Table 13 show that DPM-Solver-v3 achieves consistently better FID and similar CLIP
scores. Notably, we achieve an FID of 15.4 in 8 NFE, close to the reported FID of Stable-Diffusion
v1.4.

Still, we claim that FID is not a proper metric for evaluating the convergence of latent-space diffusion
models. As stated in DPM-Solver++ and Section 4.1, we can see that the FIDs quickly achieve
15.0∼16.0 within 10 steps, even if the latent code does not converge, because of the strong image
decoder. Instead, MSE in the latent space is a direct way to measure the convergence. By comparing
the MSE, our sampler does converge faster to the ground-truth samples of Stable Diffusion itself.

I More Theoretical Analyses

I.1 Expressive Power of Our Generalized Parameterization

Though the introduced coefficients lλ, sλ, bλ seem limited to guarantee the optimality of the pa-
rameterization formulation itself, we claim that the generalized parameterization gθ in Eq. (8) can
actually cover a wide range of parameterization families in the form ofψθ(xλ, λ) = α(λ)ϵθ(xλ, λ)+
β(λ)xλ + γ(λ). Considering the paramerization on [λs, λt], by rearranging the terms, Eq. (8) can
be written as

gθ(xλ, λ) = e−
∫ λ
λs

sτdτ σλ

αλ
ϵθ(xλ, λ)− e−

∫ λ
λs

sτdτ lλ
αλ
xλ −

∫ λ

λs

e−
∫ r
λs

sτdτbrdr (68)

We can compare the coefficients before ϵθ and xλ in gθ and ψθ to figure out how lλ, sλ, bλ corre-
sponds to α(λ),β(λ),γ(λ). In fact, we can not directly let gθ equal ψθ, since when λ = λs, we
have

∫ λ

λs
(·) = 0, and the coefficient before ϵθ in gθ is fixed. Still, ψθ can be equalized to gθ by a

linear transformation, which only depends on λs and does not affect our analyses of the discretization
error and solver.

Specifically, assuming ψθ = ωλsgθ + ξλs , by corresponding the coefficients we have


α(λ) = ωλs

e−
∫ λ
λs

sτdτ σλ

αλ

β(λ) = −ωλs
e−

∫ λ
λs

sτdτ lλ
αλ

γ(λ) = −ωλs

∫ λ

λs
e−

∫ r
λs

sτdτbrdr + ξλs

⇒



ωλs
= eλsα(λs)

ξλs
= γ(λs)

lλ = −σλ
β(λ)
α(λ)

sλ = −1− α′(λ)
α(λ)

bλ = −e−λ γ′(λ)
α(λ)

(69)

Therefore, as long as α(λ) ̸= 0 and α(λ),γ(λ) have first-order derivatives, our proposed parameteri-
zation gθ holds the same expressive power as ψθ, while at the same time enabling the neat optimality
criteria of lλ, sλ, bλ in Eq. (5) and Eq. (11).

I.2 Justification of Why Minimizing First-order Discretization Error Can Help Higher-order
Solver

The EMS s∗λ, b
∗
λ in Eq. (11) are designed to minimize the first-order discretization error in Eq. (10).

However, the high-order solver is actually more frequently adopted in practice (specifically, third-
order in unconditional sampling, second-order in conditional sampling), since it incurs lower sampling
errors by taking higher-order Taylor expansions to approximate the predictor gθ.
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In the following, we show that the EMS can also help high-order solver. By Eq. (52) in Appendix B.4,
the (n+ 1)-th order local error can be expressed as

x̂t − xt = αtA(λs, λt)

∫ λt

λs

Eλs(λ) (gθ(xλ, λ)− gθ(xλs , λs)) dλ

− αtA(λs, λt)

n∑
k=1

(
n∑

l=1

(R−1
n )kl(gθ(xλil

, λil)− gθ(xλs
, λs))

)∫ λt

λs

Eλs
(λ)

(λ− λs)
k

k!
dλ

(70)
By Newton-Leibniz theorem, it is equivalent to

x̂t − xt = αtA(λs, λt)

∫ λt

λs

Eλs(λ)

(∫ λ

λs

g
(1)
θ (xτ , τ)dτ

)
dλ

− αtA(λs, λt)

n∑
k=1

(
n∑

l=1

(R−1
n )kl

∫ λil

λs

g
(1)
θ (xλ, λ)dλ

)∫ λt

λs

Eλs
(λ)

(λ− λs)
k

k!
dλ

(71)

We assume that the estimated EMS are bounded (in the order of O(1), Assumption B.2 in Ap-
pendix B.1), which is empirically confirmed as in Section 4.2. By the definition of gθ in Eq. (8),
we have g(1)θ (xτ , τ) = e−

∫ τ
λs

srdr
(
f
(1)
θ (xτ , τ)− sτfθ(xτ , τ)− bτ

)
. Therefore, Eq. (11) controls

∥g(1)θ ∥2 and further controls ∥x̂t − xt∥2, since other terms are only dependent on the EMS and are
bounded.

I.3 The Extra Error of EMS Estimation and Integral Estimation

Analysis of EMS estimation error In practice, the EMS in Eq. (5) and Eq. (11) are estimated
on finite datapoints by the explicit expressions in Eq. (58) and Eq. (63), which may differ from the
true l∗λ, s

∗
λ, b

∗
λ. Theoretically, on one hand, the order and convergence theorems in Section 3.2 are

irrelevant to the EMS estimation error: The ODE solution in Eq. (9) is correct whatever lλ, sλ, bλ
are, and we only need the assumption that these coefficients are bounded (Assumption B.2 in
Appendix B.1) to prove the local and global order; on the other hand, the first-order discretization
error in Eq. (10) is vulnerable to the EMS estimation error, which relates to the performance at few
steps. Empirically, to enable fast sampling, we need to ensure the number of datapoints for estimating
EMS (see ablations in Table 8), and we find that our method is robust to the EMS estimation error
given only 1024 datapoints in most cases (see EMS computing configs in Appendix D).

Analysis of integral estimation error Another source of error is the process of integral estima-
tion (

∫ λt

λs
Eλs(λ)Bλs(λ)dλ and

∫ λt

λs
Eλs(λ)

(λ−λs)
k

k! dλ in Eq. (14)) by trapezoidal rule. We can
analyze the estimation error by the error bound formula of trapezoidal rule: suppose we use uniform
discretization on [a, b] with interval h to estimate

∫ b

a
f(x)dx, then the error E satisfies

|E| ≤ (b− a)h2

12
max |f ′′(x)| (72)
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Under Assumption B.2, the EMS and their first-order derivative are bounded. Denote f1(λ) =

Eλs
(λ)Bλs

(λ),f2(λ) = Eλs
(λ) (λ−λs)

k

k! , then

f1(λ) = e
∫ λ
λs

(lτ+sτ )dτ

∫ λ

λs

e−
∫ r
λs

sτdτbrdr

f ′
1(λ) = (lλ + sλ)e

∫ λ
λs

(lτ+sτ )dτ

∫ λ

λs

e−
∫ r
λs

sτdτbrdr + bλe
∫ λ
λs

lτdτ

∫ λ

λs

e−
∫ r
λs

sτdτbrdr

f ′′
1 (λ) = (l′λ + s′λ)e

∫ λ
λs

(lτ+sτ )dτ

∫ λ

λs

e−
∫ r
λs

sτdτbrdr + (lλ + sλ)
2e

∫ λ
λs

(lτ+sτ )dτ

∫ λ

λs

e−
∫ r
λs

sτdτbrdr

+ (lλ + sλ)bλe
∫ λ
λs

lτdτ

∫ λ

λs

e−
∫ r
λs

sτdτbrdr + b
′
λe

∫ λ
λs

lτdτ

∫ λ

λs

e−
∫ r
λs

sτdτbrdr

+ bλlλe
∫ λ
λs

lτdτ

∫ λ

λs

e−
∫ r
λs

sτdτbrdr + b
2
λe

∫ λ
λs

(lτ−sτ )dτ

∫ λ

λs

e−
∫ r
λs

sτdτbrdr
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f2(λ) = e
∫ λ
λs

(lτ+sτ )dτ (λ− λs)
k

k!

f ′
2(λ) = (lλ + sλ)e

∫ λ
λs

(lτ+sτ )dτ (λ− λs)
k

k!
+ e

∫ λ
λs

(lτ+sτ )dτ (λ− λs)
k−1

(k − 1)!

f ′′
2 (λ) = (l′λ + s′λ)e

∫ λ
λs

(lτ+sτ )dτ (λ− λs)
k

k!
+ (lλ + sλ)

2e
∫ λ
λs

(lτ+sτ )dτ (λ− λs)
k

k!

+ (lλ + sλ)e
∫ λ
λs

(lτ+sτ )dτ (λ− λs)
k−1

k − 1!
+ (lλ + sλ)e

∫ λ
λs

(lτ+sτ )dτ (λ− λs)
k−1

(k − 1)!

+ e
∫ λ
λs

(lτ+sτ )dτ (λ− λs)
k−2

(k − 2)!

(74)

Since lλ, sλ, bλ, l′λ, s
′
λ, b

′
λ are all O(1), we can conclude that f ′′

1 (λ) = O(h),f ′′
2 (λ) = O(hk−2),

and the errors of
∫ λt

λs
Eλs(λ)Bλs(λ)dλ,

∫ λt

λs
Eλs(λ)

(λ−λs)
k

k! dλ are O(h2
0h

2), O(h2
0h

k−1) respec-
tively, where h0 is the stepsize of EMS discretization (h0 = λt−λs

n , n corresponds to 120∼1200
timesteps for our EMS computing), and h = λt−λs. Therefore, the extra error of integral estimation
is under high order and ignorable.

J More Discussions

J.1 Extra Computational and Memory Costs

The extra memory cost of DPM-Solver-v3 is rather small. The extra coefficients lλ, sλ, bλ are
discretized and computed at N timesteps, each with a dimension D same as the diffused data. The
extra memory cost is O(ND), including the precomputed terms in Appendix C.1.2, and is rather
small compared to the pretrained model (e.g. only ∼125M in total on Stable-Diffusion, compared to
∼4G of the model itself).

The pre-computation time for estimating EMS is rather short. The EMS introduced by our method
can be effectively estimated on around 1k datapoints within hours (Appendix D), which is rather
short compared to the long training/distillation time of other methods. Moreover, the integrals of
these extra coefficients are just some vector constants that can be pre-computed within seconds, as
shown in Appendix C.1.2. The precomputing is done only once before sampling.

The extra computational overhead of DPM-Solver-v3 during sampling is negligible. Once we obtain
the estimated EMS and their integrals at discrete timesteps, they can be regarded as constants.
Thus, during the subsequent sampling process, the computational overhead is the same as previous
training-free methods (such as DPM-Solver++) with negligible differences (Appendix E).
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Figure 8: Visualization of the EMS sλ, bλ and their integrals w.r.t. λ, estimated on ScoreSDE [51]
on CIFAR10 [24]. sλ, bλ are rather fluctuating, but their integrals are smooth enough to ensure the
stability of DPM-Solver-v3.

J.2 Flexibility

The pre-computed EMS can be applied for any time schedule during sampling without re-computing
EMS. Besides, we compute EMS on unconditional models and it can be used for a wide range of
guidance scales (such as cfg=7.5 in Stable Diffusion). In short, EMS is flexible and easy to adopt in
downstream applications.

• Time schedule: The choice of N,K in EMS is disentangled with the timestep scheduler in
sampling. Once we have estimated the EMS at N (e.g., 1200) timesteps, they can be flexibly
adapted to any schedule (uniform λ/uniform t...) during sampling, by corresponding the
actual timesteps during sampling to the N bins. For different time schedule, we only need
to re-precompute E

(k)
λs,λt

in Appendix C.1.2, and the time cost is within seconds.

• Guided sampling: We compute the EMS on the unconditional model for all guided cases.
Empirically, the EMS computed on the model without guidance (unconditional part) per-
forms more stably than those computed on the model with guidance, and can accelerate the
sampling procedure in a wide range of guidance scales (including the common guidance
scales used in pretrained models). We think that the unconditional model contains some
common information (image priors) for all the conditions, such as color, sketch, and other
image patterns. Extracting them helps correct some common biases such as shallow color,
low saturation level and lack of details. In contrast, the conditional model is dependent on
the condition and has a large variance.

Remark J.1. EMS computed on models without guidance cannot work for extremely large guidance
scales (e.g., cfg scale 15 for Stable Diffusion), since in this case, the condition has a large impact
on the denoising process. Note that at these extremely large scales, the sampling quality is very
low (compared to cfg scale 7.5) and they are rarely used in practice. Therefore, our proposed EMS
without guidance is suitable enough for the common applications with the common guidance.

J.3 Stability

As shown in Section 4.2, the estimated EMS sλ, bλ appear much fluctuating, especially for ScoreSDE
on CIFAR10. We would like to clarify that the unstable sλ, bλ is not an issue, and our sampler is
stable:

• The fluctuation of sλ, bλ on ScoreSDE is intrinsic and not due to the estimation error.
As we increase the number of samples to decrease the estimation error, the fluctuation is
not reduced. We attribute it to the periodicity of trigonometric functions in the positional
timestep embedding as stated in Section 4.2.
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• Moreover, we only need to consider the integrals of sλ, bλ in the ODE solution Eq. (9). As
shown in Figure 8, the integrals of sλ, bλ are rather smooth, which ensures the stability of
our method. Therefore, there is no need for extra smoothing.

J.4 Practical Value

When NFE is around 20, our improvement of sample quality is small because all different fast
samplers based on diffusion ODEs almost converge. Therefore, what matters is that our method has a
faster convergence speed to good sample quality. As we observed, the less diverse the domain is, the
more evidently the speed-up takes effect. For example, on LSUN-Bedroom, our method can achieve
up to 40% faster convergence.

To sum up, the practical value of DPM-Solver-v3 embodies the following aspects:

1. 15∼30% speed-up can save lots of costs for online text-to-image applications. Our speed-
ups are applicable to large text-to-image diffusion models, which are an important part of
today’s AIGC community. As the recent models become larger, a single NFE requires more
computational resources, and 15∼30% speed-up can save a lot of the companies’ expenses
for commercial usage.

2. Improvement in 5∼10 NFEs benefits image previewing. Since the samples are controlled
by the random seed, coarse samples with 5∼10 NFEs can be used to preview thousands of
samples with low costs and give guidance on choosing the random seed, which can be then
used to generate fine samples with best-quality sampling strategies. This is especially useful
for text-to-image generation. Since our method achieves better quality and converges faster
to the ground-truth sample, it can provide better guidance when used for preview.

K Additional Samples

We provide more visual samples in Figure 9, Figure 10, Figure 11 and Table 14 to demonstrate the
qualitative effectiveness of DPM-Solver-v3. It can be seen that the visual quality of DPM-Solver-v3
outperforms previous state-of-the-art solvers. Our method can generate images that have reduced
bias (less “shallow”), higher saturation level and more visual details, as mentioned in Section 4.3.
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NFE = 5 NFE = 10

DPM-Solver++
[32]

FID 28.53 FID 4.01

UniPC
[58]

FID 23.71 FID 3.93

DPM-Solver-v3
(Ours)

FID 12.76 FID 3.40

Figure 9: Random samples of ScoreSDE [51] on CIFAR10 dataset [24] with only 5 and 10 NFE.
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NFE = 5 NFE = 10

Heun’s 2nd
[21]

FID 320.80 FID 16.57

DPM-Solver++
[32]

FID 24.54 FID 2.91

UniPC
[58]

FID 23.52 FID 2.85

DPM-Solver-v3
(Ours)

FID 12.21 FID 2.51

Figure 10: Random samples of EDM [21] on CIFAR10 dataset [24] with only 5 and 10 NFE.
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DPM-Solver++
[32]

(FID 11.02)

UniPC
[58]

(FID 10.19)

DPM-Solver-v3
(Ours)

(FID 9.70)

Figure 11: Random samples of Guided-Diffusion [10] on ImageNet-256 dataset [9] with a classifier
guidance scale 2.0, using only 7 NFE. We manually remove the potentially disturbing images such as
those containing snakes or insects.
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Table 14: Additional samples of Stable-Diffusion [43] with a classifier-free guidance scale 7.5, using
only 5 NFE and selected text prompts. Some displayed prompts are truncated.

Text Prompts
DPM-Solver++

[32]
(MSE 0.60)

UniPC
[58]

(MSE 0.65)

DPM-Solver-v3
(Ours)

(MSE 0.55)

“pixar movie still portrait photo of madison beer, jessica alba, woman, as
hero catgirl cyborg woman by pixar, by greg rutkowski, wlop, rossdraws,
artgerm, weta, marvel, rave girl, leeloo, unreal engine, glossy skin,
pearlescent, wet, bright morning, anime, sci-fi, maxim magazine cover”

“oil painting with heavy impasto of a pirate ship and its captain, cosmic
horror painting, elegant intricate artstation concept art by craig mullins
detailed”

“environment living room interior, mid century modern, indoor garden with
fountain, retro, m vintage, designer furniture made of wood and plastic,
concrete table, wood walls, indoor potted tree, large window, outdoor
forest landscape, beautiful sunset, cinematic, concept art, sunstainable
architecture, octane render, utopia, ethereal, cinematic light”

“the living room of a cozy wooden house with a fireplace, at night, interior
design, concept art, wallpaper, warm, digital art. art by james gurney
and larry elmore.”

“Full page concept design how to craft life Poison, intricate details, in-
fographic of alchemical, diagram of how to make potions, captions,
directions, ingredients, drawing, magic, wuxia”

“Fantasy art, octane render, 16k, 8k, cinema 4d, back-lit, caustics, clean
environment, Wood pavilion architecture, warm led lighting, dusk, Land-
scape, snow, arctic, with aqua water, silver Guggenheim museum spire,
with rays of sunshine, white fabric landscape, tall building, zaha hadid
and Santiago calatrava, smooth landscape, cracked ice, igloo, warm
lighting, aurora borialis, 3d cgi, high definition, natural lighting, realis-
tic, hyper realism”

“tree house in the forest, atmospheric, hyper realistic, epic composition,
cinematic, landscape vista photography by Carr Clifton & Galen Rowell,
16K resolution, Landscape veduta photo by Dustin Lefevre & tdraw, de-
tailed landscape painting by Ivan Shishkin, DeviantArt, Flickr, rendered
in Enscape, Miyazaki, Nausicaa Ghibli, Breath of The Wild, 4k detailed
post processing, artstation, unreal engine”

“A trail through the unknown, atmospheric, hyper realistic, 8k, epic com-
position, cinematic, octane render, artstation landscape vista photogra-
phy by Carr Clifton & Galen Rowell, 16K resolution, Landscape veduta
photo by Dustin Lefevre & tdraw, 8k resolution, detailed landscape paint-
ing by Ivan Shishkin, DeviantArt, Flickr, rendered in Enscape, Miyazaki,
Nausicaa Ghibli, Breath of The Wild, 4k detailed post processing, artsta-
tion, rendering by octane, unreal engine”

“postapocalyptic city turned to fractal glass, ctane render, 8 k, exploration,
cinematic, trending on artstation, by beeple, realistic, 3 5 mm camera, un-
real engine, hyper detailed, photo–realistic maximum detai, volumetric
light, moody cinematic epic concept art, realistic matte painting, hyper
photorealistic, concept art, cinematic epic, octane render, 8k, corona
render, movie concept art, octane render, 8 k, corona render, trending
on artstation, cinematic composition, ultra–detailed, hyper–realistic,
volumetric lighting”

““WORLDS”: zoological fantasy ecosystem infographics, magazine lay-
out with typography, annotations, in the style of Elena Masci, Studio
Ghibli, Caspar David Friedrich, Daniel Merriam, Doug Chiang, Ivan
Aivazovsky, Herbert Bauer, Edward Tufte, David McCandless”
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