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Abstract

Text augmentation is one of the most effec-
tive techniques to solve the critical problem of
insufficient data in text classification. Exist-
ing text augmentation methods achieve hopeful
performance in few-shot text data augmenta-
tion. However, these methods usually lead to
performance degeneration on public datasets
due to poor quality augmentation instances.
Our study shows that even employing pre-
trained language models, existing text augmen-
tation methods generate numerous low-quality
instances and lead to the feature space shift
problem in augmentation instances. However,
we note that the pre-trained language model
is good at finding low-quality instances pro-
vided that it has been fine-tuned on the target
dataset. To alleviate the feature space shift and
performance degeneration in existing text aug-
mentation methods, we propose BoosTAUG,
which reconsiders the role of the language
model in text augmentation and emphasizes
the augmentation instance filtering rather than
generation. We evaluate BoosTAUG on both
sentence-level text classification and aspect-
based sentiment classification. The experimen-
tal results on seven commonly used text clas-
sification datasets show that our augmentation
method obtains state-of-the-art performance.
Moreover, Boos TAUG is a flexible framework;
we release the code which can help improve
existing augmentation methods.

1 Introduction

Due to the progress of pre-training techniques in
natural language processing, the pretrained lan-
guage models (Devlin et al., 2019; He et al.,
2021)(PLM) has been capable of learning large-
scale data. As a result, data insufficiency has been
an urgent problem in many low-resource NLP tasks.
To mitigate the above problem, many text aug-
mentation works (Sennrich et al., 2016; Coulombe,
2018; Li et al., 2019; Wei and Zou, 2019; Kumar
etal., 2020) that aim at improving text classification

have been proposed in recent studies. These works
achieve hopeful improvement in few-shot augmen-
tation experiments, while most of them encounter a
failure mode (Zhou et al., 2021) in relatively large
public datasets. Recent works (Body et al., 2021;
Chang et al., 2021; Luo et al., 2021) expect to lever-
age the language modeling ability of PLMs in text
augmentation, but these methods can degenerate
the performance as well.

To explore the crux of the augmentation failure
mode, we conduct experiments to prove that the
existing text augmentation methods generate plenty
of unnecessary augmentation instances. These
low-quality augmentation cause the feature space
shift problem and degrade the performance. Un-
fortunately, these unnecessary augmentation in-
stances can be introduced in both text edit-based
and text generation-based augmentation methods.
For the edit-based methods, the low-quality in-
stances mainly come from some breaking text trans-
formation (e.g., changing a word * ’
to ‘worst’ in a sentence leads to an adverse
meaning in a sentiment analysis task.), while
generation-based methods usually introduce out-of-
distribution words due to synonym replacement and
word insertion. To solve the performance degener-
ation of existing augmentation methods, we intend
to alleviate the feature space shift caused by low-
quality instances. According to our preliminary
research, we notice that the PLMs fine-tuned on
the targeted dataset will be familiar with the identi-
cal distribution data. In other words, the fine-tuned
PLMs always have high confidence and lower per-
plexity for identical distribution text. Motivated by
this finding, we reconsider the role of PLMs in text
augmentation and propose an instance-filter frame-
work, BoosTAUG, based on DeBERTa (He et al.,
2021). BoosTAuG adopts the existing text aug-
mentation methods (Wei and Zou, 2019; Coulombe,
2018; Li et al., 2019; Kumar et al., 2019) as back-
ends and consists of three instance filtering strate-



gies(which will be discussed in Section 2.3): per-
plexity filtering, confidence ranking and predicted
label constraint. Moreover, we introduce a cross-
boosting strategy for BoosTAUG to alleviate bi-
ased filter training in Section 2.1. According to
our experimental results on four aspect-based sen-
timent classification and two sentence-level text
classification datasets, we find Boos TAuUG signifi-
cantly alleviates the feature space shift problem in
existing augmentation methods. Moreover, due to
the mitigation of feature space shift, BoosTAuG

can generate more augmentation instances and im-

prove the performance; on the contrary, more aug-

mentation instances trigger performance degenera-
tion in other methods.

To the best of our knowledge, Boos TAUG is the
first text augmentation method that emphasizes the
instance-quality control and applies the PLMs as fil-
ters instead of augmentor. The experiment results'
show that BoosTAuUG outperforms existing text
augmentation methods and achieves state-of-the-
art performance on ABSC and TC tasks. Therefore,
our main contribution concludes:

* We explore the crux for performance degenera-
tion in existing text augmentation methods and
emphasize the importance of augmentation in-
stance quality control.

* We propose a PLM-based augmentation instance
filter Boos TAUG to mitigate feature space shift
and significantly improve the performance on the
ABSC and TC tasks according to the experimen-
tal results.

* Our experiments show that the existing text aug-
mentation methods can be improved by employ-
ing an instance filter, indicating BoosTAUG is
available for improving existing text augmenta-
tion methods.

2 Proposed Method

The workflow of our proposed BoosTAuUG for text
classification tasks is shown in Figure 1 and the
pseudo code is given in Algorithm 1. Different
from most existing studies, which focus on an unsu-
pervised instance generation, Boos TAUG mainly
works on the selection of high-quality augmenta-
tion instances. Generally speaking, it consists of
two major phases: one is to build a surrogate lan-
guage model; while the other is to use the surrogate

'We release the source code and experiment scripts of
BoosTAUG in the supplementary materials to help reproduce
the experimental results.

Algorithm 1:
BOOSTAUG

1 Split D into k folds, D := {F'}r_,;

2 Dayg = 0;

3 fori< 1tokdo .

4 D;Ug =0, Dhoost = F 5

5 Randomly pick up k — 2 folds except F* to

The pseudo code of

constitute D!,

6 Dz/alid = ]:\ (]:Z UDz}rain); )

7 Use the DeBERTa on Dy,.,;, and Dy, ;4 to build
the surrogate language model;

8 forall do,g € Dioose do

9 D;ug = F(dirg7 Nv e)a
10 forall d,,, € Dgug do
11 Use the surrogate language model to

predict P(daug ), C(daug), and the
Laug Of daug;

12 if]P(daug) 2 (e || C(da‘lg) S
R

13 L D;ug = D;ug \ {daug};

14 | Daug := Daug UD;ug;

i .
15 | Daug = Daug U Dboost’

16 return Dy,

language model as the driver to guide the augmen-
tation instance generation. In the following para-
graphs, we will delineate their implementations
step by step.

2.1 Building a surrogate language model

At the beginning of the Phase #1, the original
training dataset is divided into k£ > 3 folds where
the £ — 2 ones are used for the training purpose
(denoted as the training fold) while the other two
are used for the validation and augmentation pur-
poses, denoted as the validation and boosting fold,
respectively? (lines 4-6). Note that the generated
augmentation instances, which will be introduced
in Section 2.2, can be identical to the data used
for training the surrogate language model. This is
called a data overlapping problem that leads to a
feature space shift thus overfit the surrogate lan-
guage model. We argue that the proposed k-fold
augmentation approach, a.k.a. cross-boosting, can
alleviate the feature space shift of the augmentation
instances which will be validated and discussed in
detail in Section 4.3. The main crux of the Phase
#1 is to build a surrogate language model as a filter

“Note that we iteratively select the i-th fold, i €
{1,--- ,k}, as the boosting fold (line 3 in Algorithm 1).
Meanwhile, we randomly pick up the other k — 2 folds to
constitute the training folds and the remaining one as the vali-
dation fold. In particular, the validation fold is used to select
the best checkpoint of the surrogate language model.
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Figure 1: The workflow of BoosTAuG. In Phase #1, we fine-tune the DeBERTa-based classification model
using the re-split training and validation sets and extract the fine-tuned DeBERTa to build a surrogate language
model. In Phase #2, BoosTAUG employs a text augmentation backend to generate raw augmentations and filter
the low-quality instance identified by the surrogate language model. Boos TAuG performs k-fold cross-boosting to
avoid boosting, so Phase #1 and Phase #2 repeat k times.

to guide the elimination of harmful and poor aug-
mentation instances. This is different from the ex-
isting works that use a pre-trained language model
to directly generate augmentation instances. We
clarify our motivation for this from the following
two aspects.

* In addition to modeling the semantic feature, the
surrogate language model can provide more infor-
mation such as the text perplexity, classification
confidence and predicted labels that can be use-
ful for the quality control of the augmentation
instances.

» Comparing to the instance generation, we argue
that the instance filtering approach can be readily
integrated with any existing text augmentation
approach.

In practice, we first build a temporary classifica-
tion model based on DeBERTa (He et al., 2021).
Thereafter, it is fine-tuned based on the data in
the k£ — 2 training folds and the validation fold to
learn the semantic features therein (line 7). Note
that we do not use the original training dataset
to carry out this fine-tuning. At the end, the lan-
guage model built from the DeBERTa classifica-
tion model is thus used as the surrogate language
model for the instance filtering step in the Phase
#2 of BoosTAUG.

2.2 Augmentation instance generation

As a building block of the Phase #2, we apply
some prevalent data augmentation approaches as
the back end to generate the augmentation instances

in BoosTAuc (line 9). More specifically, let
Dorg := {dérg}ij\il be the original training dataset.
doyg = (s',¢") is a data instance where s’ indi-
cates a sentence and ¢* is the corresponding label,
i € {1,---,N}. By applying the transformation
function F'(-,-,-) upon d_, as follows, we expect

org X
to obtain a set of augmentation instances D}wg for
Ao
D;ug = F(dgrg> N7 ®)> (1)

where N > 1 is used to control the maximum num-
ber of generated augmentation instances. At the
end, the final augmentation set is constituted as
Daug = UL Di,, (line 14). Note that depend-
ing on the specific augmentation back end, there
can be more than one strategies to constitute the
transformation function. For example, the EDA
developed in (Wei and Zou, 2019) has four transfor-
mation strategies including synonym replacement,
random insertion, random swap, random deletion.
O consists of the parameters associated with the
transformation strategies of the augmentation back
end, e.g., the percentage of words to be modified
and the mutation probability of a word.

2.3 Instance filtering

Our preliminary experiments have shown that
merely using the data augmentation can be detri-
mental to the modeling performance no matter how
many augmentation instances are applied in the
training process. In addition, our experiments
in Section 4.3 have shown a surprising feature



space shift between the original data and the aug-
mented instances in the feature space. To miti-
gate this issue, BOoSTAUG proposes an instance
filtering approach to control the quality of the aug-
mentation instances. It consists of three filtering
strategies including the perplexity filtering, the con-
fidence ranking, and the predicted label constraint
which will be delineated in the following para-
graphs, respectively. Note that all these filtering
strategies are built up the surrogate language model
developed in the Phase #1 of BoosTAuG (lines
12 and 13).

2.3.1 Perplexity filtering

Text perplexity is a widely used metric to evaluate
the modeling capability of a language model (Chen
and Goodman, 1999; Sennrich, 2012). Our prelim-
inary experiments have shown that the low-quality
instances have a relatively high perplexity. This in-
dicates that the perplexity information can be used
to evaluate the quality of an augmentation instance.
Since the surrogate language model built in the
Phase #1 is bidirectional, the text perplexity of an
augmentation instance dy,, is calculated as:

S
P(dang) = [ [ 2 (wi [ w1, s wisg, wign, - ws),
i=1

2)
where w; represents the token in the con-
text, s is the number of tokens in da,g, and
p(w; | wi, -+, wi—1, Wig1,- - ,ws) is the prob-
ability of w; conditioned on the preceding to-
kens, according to the surrogate language model,
i € {1,---,s}. Note that dny, is treated as an
low-quality instance and is dumped if P(daug) >
while o > 0 is a predefined threshold.

2.3.2 Confidence ranking

Our preliminary experiments have shown that the
fine-tuned surrogate language model is always con-
fident about the data in the training folds (or those
having the identical distribution) where the con-
fidence level is larger than 99%. However, we
observe a significant feature space shift in the aug-
mentation instances when there exist fatal errors
in the grammars, syntaxes and words of the aug-
mentation instances generated by the augmentation
back ends. These instances will be allocated with
a low confidence by the surrogate language model.
In this case, we can leverage the classification con-
fidence as a driver to control the quality of the
augmentation instances. Note that since the classi-

fication confidence of most augmentation instances
are larger than 95%, it can lead to an unbalanced
distribution if we simply use the classification con-
fidence as the criterion for instance filtering. In
particular, such unbalanced distribution can be at-
tributed to the following two aspects.

* The surrogate language model is difficult to cap-
ture the change of several words for the long texts
whereas it can be sensitive to deleting or adding
words for the short texts.

* There can be various transformations leading to
valid augmentation instances whereas the alter-
natives for the short texts are limited.

Therefore, it is natural that the long texts can have

way more augmentation instances than the short

texts, thus leading to the so called unbalanced dis-
tribution. In Boo s TAUG, to mitigate the side effect
brought by the unbalanced distribution, we develop

a confidence ranking strategy to eliminate the re-

dundant augmentation instances generated from the

long texts while retain the rare instances having a

relatively low confidence. More specifically, we ap-

ply a softmax operation on the output hidden state
learned by the surrogate language model, denoted
as H(daug)), to evaluate the confidence of dg as:

exp(Hag,,,) )
] )3
SCexpy)) O

where c is the number of classes of the original
training dataset. To conduct the confidence rank-
ing, 2x N instances are generated at first while only
the top N instance are selected to carry out the con-
fidence ranking. By doing so, we expect to obtain
a balanced augmentation dataset even when there
exists a large variance on the confidence predicted
by the surrogate language model. After the confi-
dence ranking, the augmentation instances whose
Cd,,, < B are dumped while 3 > 0 is a predefined
threshold.

C(dang) = argmax (

2.3.3 Predicted label constraint

Due to some breaking text transformation, the text
augmentation can lead to noisy data, e.g., chang-
ing aword ‘greatest’to ‘worst’ in a sentence
leads to an adverse label in a sentiment analysis
task. Since the surrogate language model can pre-
dict the label of an augmentation instance based
on its confidence distribution, we develop another
filtering strategy that eliminates the augmentation
instances whose predicted label gdaug is different
from the ground truth. By doing so, we expect to
mitigate the feature space bias.



Table 1: The split of different datasets.

Dataset Training Set | Validation Set | Testing Set
Laptopl4 2328 0 638
Restaurantl4 3608 0 1120
Restaurantl5 1120 0 540
Restaurantl6 1746 0 615
MAMS 11186 1332 1336
SST2 6920 872 1821
SST5 8544 1101 2210
AGNews10K 7000 1000 2000

3 Experimental Setup

3.1 Datasets

Our experiments are conducted on two classifica-
tion tasks including the sentence-level text clas-
sification (TC) and the aspect-based sentiment
classification (ABSC). SST-2, SST-5 (Socher
et al., 2013) from the Stanford Sentiment Tree-
bank and AGNews10K> (Zhang et al., 2015)are
used to constitute the datasets for the TC
task; while the datasets for the ABSC task are
Laptopl4, Restaurantl4 (Pontiki et al.,
2014), Restaurant1l5 (Pontiki et al., 2015),
Restaurant16 (Pontiki et al.,, 2016), and
MAMS (Jiang et al., 2019). The split of these
datasets are summarized in Table 1. The widely
used accuracy (Acc) and macro F1 as used as the
metric for evaluating the performance of differ-
ent algorithms following existing research (Wang
et al., 2016; Zhou et al., 2021). In particular, all
experiments are repeated five times with a different
random seed.

3.2 Augment Backends

The performance of BoosTAUG is compared with
four state-of-the-art (SOTA) word-level text aug-
mentation methods, all of which are used as the
text augmentation back end of BoosTAUG.

e EDA (Wei and Zou, 2019) (TextAttack®): it per-
forms augmentation via random word insertions,
substitutions and deletions.

* SpellingAug (Coulombe, 2018) (NLPAug’):
it substitutes words according to spelling mistake
dictionary.

* SplitAug (Lietal., 2019) (NLPAug): it splits
some words in the sentence into two words ran-
domly.

3We collect first 10K examples to build the AGNews10K
dataset (7K for training set, 1 K for validation set and 2K for
testing), and it is large enough compared to other datasets.

“https://github.com/QData/TextAttack

Shttps://github.com/makcedward/nlpaug

* WordEmbsAug (Kumar et al., 2020) (NLPAug):
it substitutes similar words according to the PLM,
Roberta-base (Liu et al., 2019) in particular,
given the context.

In our experiments, LSTM, BERT-BASE (De-
vlin et al., 2019), and DeBERTa—-BASE (He et al.,
2021) are used as the classification models for the
TC task while Fast LCF is used as the additional
model for the ABSC task.

3.3 Parameter Settings

Some important parameters are set as follows.

* k is set to 5 for the k-fold cross-boosting on all
datasets.

* The number of augmentation instances per exam-
ple N is 8.

* The transformation probability of each token in a
sentence is set to 0.1 for all augmentation meth-
ods.

* The fixed confidence and perplexity thresholds
are setas o = 0.99 and 5 = 5.

e The learning rates of LSTM and
DeBERTa-BASE are set as 1073 and 107°,
respectively.

* The batch size and maximum sequence modeling
length are 16 and 80, respectively.

* The Lj regularization parameter \ is 10~%; we
use Adam as the optimizer for all models during
the training process.

4 Experimental Results

4.1 Comparison with Four Selected Text
Augmentation Methods

From the comparison results shown in Table 2, it is
clear to see that the overall performance improve-
ment of using BoosTAUG is consistently better
than the other four peer text augmentation methods.
It is also worth noting that the performance of some
classification models can be degraded by using a
conventional text augmentation methods. Another
interesting observation is the performance improve-
ment is relatively marginal for a large dataset like
SST2, SST5 and MAMS. Furthermore, the perfor-
mance of LSTM is more sensitive to the data aug-
mentation because it lacks knowledge learned from
a large-scale corpus compared to the PLMs.

As for the selected peer text augmentation meth-
ods, the best one is EDA, even though it is the
simplest, given that its augmentation strategies
are more resilient to the distribution of the fea-
ture space. In contrast, SplitAug is almost the


https://github.com/QData/TextAttack
https://github.com/makcedward/nlpaug

Table 2: Performance comparison of Boos TAuG w.r.t. four selected text augmentation methods. The best metric
values are highlighted in bold face.

Method Model Laptop R antl4 | R antl5 | R ant16 MAMS SST2 SST5 AGNews10K
Acc Fl Acc F1l Acc F1l Acc F1l Acc F1l Acc Fl Acc Fl Acc F1l

LSTM | 71.32 | 65.45 | 77.54 | 66.89 | 78.61 | 58.54 | 87.40 | 64.41 | 56.96 | 56.18 || 84.36 | 84.36 | 45.29 | 44.61 | 87.60 | 87.36

BERT | 79.47 | 75.70 | 85.18 | 78.31 | 83.61 | 69.73 | 91.3 | 77.16 | 82.78 | 82.04 || 90.88 | 90.88 | 53.53 | 52.06 | 92.47 | 92.26

None DeBERTa | 8331 | 80.02 | 87.72 | 81.73 | 86.58 | 7422 | 93.01 | 81.93 | 8331 | 82.87 || 95.07 | 95.07 | 56.47 | 5558 | 92.30 | 92.13
FastLCF | 83.23 | 79.68 | 88.5 | 82.7 | 87.74 | 73.69 | 93.69 | 81.66 | 83.46 | 82.88 — — — — — —

LSTM | 68.65 | 62.09 | 76.18 | 62.41 | 7630 | 56.88 | 85.59 | 61.78 | 56.59 | 55.33 || 84.79 | 84.79 | 43.85 | 43.85 | 87.72 | 87.46

BERT | 78.37 | 74.23 | 83.75 | 75.38 | 81.85 | 65.63 | 91.38 | 77.27 | 81.81 | 81.10 || 91.16 | 91.16 | 51.58 | 50.49 | 92.50 | 92.28

EDA DeBERTa | 80.96 | 78.65 | 86.79 | 79.82 | 84.44 | 70.40 | 93.01 | 77.59 | 81.96 | 81.96 || 94.07 | 94.07 | 56.43 | 53.88 | 92.55 | 92.33
FastLCF | 81.97 | 79.57 | 87.68 | 81.52 | 86.39 | 72.51 | 93.17 | 78.96 | 82.19 | 81.63 — — — — — —

LSTM | 67.24 | 60.30 | 75.36 | 63.01 | 73.52 | 49.04 | 84.72 | 53.92 | 55.99 | 55.16 || 83.14 | 83.14 | 41.45 | 40.40 | 87.25 | 86.96

BERT | 73.59 | 69.11 | 82.54 | 73.18 | 79.63 | 62.32 | 89.76 | 74.74 | 81.89 | 81.42 || 91.00 | 91.00 | 52.26 | 50.90 | 92.42 | 92.22

SpellingAug | DeBERTa | 80.17 | 76.01 | 85.13 | 76.67 | 85.83 | 71.54 | 92.76 | 7833 | 81.89 | 81.24 || 93.68 | 93.68 | 55.95 | 53.78 | 92.68 | 92.50
FastLCF | 79.62 | 74.81 | 86.03 | 78.73 | 87.41 | 75.14 | 92.60 | 7527 | 82.19 | 81.66 — — — — — —

LSTM | 62.98 | 56.53 | 73.43 | 58.57 | 70.19 | 4571 | 83.93 | 54.41 | 56.74 | 5534 || 84.29 | 84.29 | 44.00 | 42.10 | 87.23 | 87.01

) BERT | 7547 | 70.56 | 82.86 | 74.48 | 82.87 | 65.19 | 90.98 | 77.51 | 81.74 | 81.35 || 90.88 | 90.88 | 51.99 | 50.95 | 92.45 | 92.16
SplitAug | DeBERTa | 79.15 | 75.72 | 86.03 | 79.28 | 85.46 | 7043 | 9276 | 79.79 | 81.59 | 81.09 || 94.29 | 94.29 | 5551 | 49.77 | 92.52 | 92.29
FastLCF | 81.82 | 78.46 | 86.34 | 78.36 | 86.67 | 70.87 | 93.09 | 76.50 | 82.07 | 81.53 — — — — — —

LSTM | 6740 | 61.57 | 75.62 | 62.13 | 74.44 | 51.67 | 84.98 | 58.67 | 56.06 | 55.10 || 83.14 | 83.14 | 44.07 | 42.03 | 87.53 | 87.24

BERT | 75.63 | 70.79 | 83.26 | 75.11 | 78.61 | 61.48 | 90.24 | 7237 | 81.29 | 80.50 || 91.02 | 91.02 | 51.27 | 50.27 | 92.10 | 91.86

WordEmbsAug | DeBERTa | 76.88 | 71.98 | 85.49 | 77.22 | 84.63 | 70.50 | 9228 | 77.42 | 81.66 | 81.32 | 94.12 | 94.12 | 5548 | 53.60 | 92.80 | 92.62
FastLCF | 79.08 | 74.61 | 85.62 | 76.88 | 84.91 | 70.06 | 91.38 | 76.27 | 81.89 | 81.09 — — — — — —

LSTM | 73.207 | 67.467 | 79.127 | 68.077 | 80.067 | 59.617 | 87.807 | 65.33T [ 59.217 | 59.58T || 85.837 | 85.83T [ 45.937 [ 43.59T | 88.45 | 88.16

BERT | 80.101 | 76.48T | 86.34T | 79.99" | 86.12F | 73.791 | 91.95T | 79.121 | 84.011 | 83.44" || 92.331 | 92.33 | 53.941 | 52,801 | 92.48 | 92.25

BoosTAUG DeBERTa | 84.567 | 81.777 | 89.02" | 83.357 | 88.33" | 76.777 | 93.58" | 81.937 | 84.517 | 83.97" || 96.097 | 96.097 | 57.78" | 56.157 | 92.95 | 92.76
FastLCF | 85.117 | 82.187 | 90.387 | 85.041 | 89.817 | 77.92 | 94.37" | 82.67" | 84.13" | 82.97" — — — — — —

None indicates the vanilla version without using a text augmentation. T indicates the best method is significantly better than the underlying peeri according to

the Wilcoxon’s rank sum test at a 0.05 significance level.

Table 3: Performance comparison of different ablation
variants of BOOSTAUG.

Variants Model MAMS SST2 SST5 AGNews

Acc | F1 Acc | F1 Acc | F1 Acc | F1
LSTM 59.21 | 59.58 | 85.77 | 85.77 | 45.79 | 43.84 | 88.45 | 88.16
BoosTAUG BERT 84.01 | 83.44 | 92.33 | 9233 | 52.38 | 51.70 | 92.48 | 92.25
DeBERTa | 84.51 | 83.97 | 96.09 | 96.09 | 57.52 | 56.48 | 92.95 | 92.76
LSTM 57.26 | 55.70 | 84.62 | 84.62 | 45.25 | 42.91 | 87.55 | 87.32
MonoAug BERT 83.68 | 83.04 | 91.16 | 91.16 | 52.90 | 52.12 | 92.40 | 92.19
DeBERTa | 83.38 | 82.87 | 94.18 | 94.18 | 56.92 | 55.81 | 92.32 | 92.09
LSTM 56.19 [ 55.94 | 85.08 | 85.08 | 45.48 | 44.89 | 86.98 | 86.61
w/o Confidence BERT 83.26 | 82.62 | 91.16 | 91.16 | 53.21 | 52.27 | 92.20 | 92.00
DeBERTa | 83.47 | 82.08 | 95.22 | 95.22 | 57.1 | 55.97 | 92.93 | 92.75
LSTM 55.54 | 55.46 | 85.67 | 85.67 | 46.47 | 43.25 | 87.40 | 86.99
w/o Perplexity BERT 83.16 | 82.58 | 92.04 | 92.04 | 52.67 | 51.02 | 92.50 | 92.30
DeBERTa | 83.53 | 83.04 | 95.39 | 95.39 | 58.1 | 56.78 | 92.60 | 92.36
LSTM 56.06 | 55.00 | 84.90 | 84.88 | 44.75 | 43.44 | 86.55 | 86.23
w/o Label Constraint BERT 83.01 | 82.57 | 92.04 | 92.03 | 52.58 | 51.33 | 91.80 | 91.60
DeBERTa | 82.41 | 82.01 | 95.06 | 95.06 | 56.70 | 54.91 | 92.85 | 92.60

worst for LSTM because its augmentation instances
suffer from a severe feature space bias due to its
word split transformation. The performance of
SpellingAug is comparable with EDA. This can
be understood as the PLMs capture some frequent
misspellings during the pre-training process. Note
that the PLM-based augmentation methods, includ-
ing WordsEmbsAug, tend to generate instances
with unknown words for the original data. This
further aggregates the feature space shift of the
augmented data.

4.2 Ablation study for BoosTAuGc

To better understand the working mechanism of
BoosTAuUG, we develop a couple of variants to
evaluate the effectiveness of the cross-boosting, the
predicted label constraint, the confidence ranking
and the perplexity filtering in this subsection. As
the results shown in Table 3, it is clear to see a per-
formance degradation of MonoAug which takes

out the cross-boosting of Boos TAUG. Since the en-
tire training set is used to train a surrogate language
model in MonoAug, the augmentation instances
are thus very similar to the original data. This is the
data overlapping problem discussed in Section 2.1
that leads to a biased instance filtering and makes
the filtered instances overfit the data distribution
of training folds. The variant without using the
perplexity filtering strategy is the worst as shown
in Table 3. This is because the perplexity filtering
strategy can help remove the instances with syntac-
tical and grammar errors. The performance of the
variants without using the predicted label constraint
and the confidence ranking is similar. In particular,
without using the label constraint, the features of
the augmented samples can always mutate to an
adverse meaning. As for the confidence ranking,
it helps eliminate many out of domain words that
lead to the feature space shift.

4.3 Investigation of the feature space shift

This subsection empirically investigates the fea-
ture space shift problem mentioned in Section 2.1.
To this end, we apply ¢t-SNE (Hinton and Roweis,
2002) to visualize the distribution of the features of
the testing set versus different augmented variants.
Furthermore, we evaluate the convex hull (Graham,
1972) overlapping rate and the distribution skew-
ness (Kokoska and Zwillinger, 2000) between the
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Figure 2: The ¢-SNE visualization of feature space of
the Laptop14 dataset.

augmentation instances and the testing set®. In par-
ticular, the larger the overlapping rate is (or the
smaller the skewness is), the smaller feature space
shift achieved. The ¢-SNE plots of Laptopl4
are given in Figure 2 while the full results are
available in Figure 6 of the appendix. From the
experiment results, it is clear to see that the aug-
mentation instances generated by Boos TAUG have
the mildest feature space shift. In particular, the
overlapping rate and the skewness w.r.t. the testing
set are consistently better than the training set. This
explains the performance improvement achieved
by using BoosTAUG as discussed in Section 4.1.
In contrast, the augmentation instances generated
by EDA, the best peer text augmentation methods
as observed in Section 4.1, have a worse overlap-
ping rate even compared to the training set. This
explains the performance degradation when using
EDA on the baseline classification models observed
in Section 4.1. It is also interesting to note that the
quality of the augmentation instances generated by
MonoAug is better than EDA.

4.4 Comparison of using BoosTAUG on
different back ends

To investigate the generalization ability of
BoosTAuUG, we evaluate its performance based
on the existing augmentation backends. From the
results shown in Table 4, we find that the perfor-
mance of these text augmentation back ends can
be improved by using our proposed BoosTAUG.
Especially by cross-referencing the results shown
in Table 2, we find that the conventional text aug-

The implementations of overlapping rate and skewness
calcualation are introduced in Section A.

Table 4: Performance comparison of BoosTAuUG based
on different augment back ends.

MAMS SST2 SSTS AGNews10K
Augment Method | Model Acc FL Acc F1 Acc F1 Acc | F1

ISTM | 5696 | 56.18 | 8237 | 8237 | 4439 | 43.60 | 8760 | 8736

None BERT | 8278 | 8204 | 9077 | 9076 | 5290 | 53.02 | 9247 | 9226

DeBERTa 83.31 82.87 95.28 95.28 56.47 55.58 92.30 92.13

LSTM 58.83 5742 85.77 85.77 4525 43.84 88.45 88.16
EDA BERT 83.38 82.97 9233 92.33 51.21 50.09 92.48 9225
DeBERTa 83.68 83.00 | 96.09 96.09 | 58.51 57.06 | 92.88 92.70

LSTM 58.50 57.65 85.23 85.23 4339 4245 87.93 87.63
SpellingAug BERT 83.23 82.70 | 92.01 92.01 5226 51.03 91.82 91.59
DeBERTa 83.98 83.44 | 9522 95.22 5791 55.88 92.77 92.54

LSTM 58.65 5723 85.64 85.64 | 46.04 43.97 87.65 87.42

Splithug BERT 8305 | 8249 | 9220 | 9220 | 51.86 | 5139 | 91.92 | 91.69
DeBERTa | 82.67 | 82.26 | 9476 | 9476 | 57.67 | 5590 | 92.70 | 92.51

LSTM 59.54 | 5758 | 86.30 | 8630 | 46.47 | 44.15 | 8838 | 88.10
WordEmdsAug BERT 8331 | 8272 | 9176 | 9176 | 5249 | 5027 | 9243 | 92.24

DeBERTa 83.35 82.87 95.33 95.33 57.22 56.08 93.88 93.70

Figure 3: Trajectories of the accuracy and the F1 values
with error bars versus the number of augmentation in-
stances generated for an example by using BooSTAUG.

er example of au ns per example

Figure 4: The visualization of MonoAug’s performance
based on different numbers of augmentation per exam-
ple.

mentation methods can be enhanced if appropriate
instance filtering strategies are applied.

Another interesting observation is that PLMs
are not effective for text augmentation, e.g.,
WordEmdsAug is outperformed by EDA in most
comparisons’. Moreover, PLMs are resource-
intense and usually cause a biased feature space.
This is because PLMs can generate some unknown
words, which are outside the testing set, during the
pre-training stage. Our experiments indicate that
using PLM as an augmentation instance filter, in-
stead of a text augmentation tool directly, can help
alleviate the feature space shift.

4.5 How many augmentation instances do we
actually need?

Although BoosTAuG alleviate the feature space
shift compared to existing text augmentation meth-
ods, we find that merely increasing the augmenta-

In fact, we also tried some other PLM-based augmenta-

tion back ends, e.g., BackTranslationAug, and we come
up with same observation.
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Figure 5: The visualization of EDA’s performance based
on different numbers of augmentation per example.

tion instances will ultimately amplify the feature
space shift problem. In this subsection, we plan
to empirically investigate the number of augmen-
tation instances required for an original example
under different circumstances. Figure 3 to 5 plot
the trajectories of the accuracy and F1 with error
bars versus the number of augmentation instances
generated for each example by using BoosTAUG,
MonoAug and EDA.

From these plots, we find that the performance
of EDA and MonoAug can be improved with the
increase of the number of augmentation instances
until N > 3. This can be attributed to the fea-
ture space shift caused by a deviation from the
ground truth data distribution or a biased instance
filtering. As for BoosTAUG, we can see that gen-
erating more augmentation instances can help im-
prove the performance (until N >8).In particular,
the F1 metric obtained by BoosTAUG is consis-
tently better than that of EDA and MonoAug. Itis
also interesting to note that text augmentation is
not always helpful, given that the performance can
be better in case no text augmentation is involved
when N = 1.

5 Related Works

Text augmentation has attracted more and more
researchers. Although recent works on text aug-
mentation primarily focus on the generation-only
augmentation methods (Bi et al., 2021; Ren et al.,
2021; Chang et al., 2021; Haralabopoulos et al.,
2021; Body et al., 2021), the significance of
augmentation instance filtering has been under-
estimated. Our work reformulates the text aug-
mentation as an augment-to-filter problem, and
Bo0oSTAUG accepts varieties of augmentation gen-
eration backends, e.g., EDA (Wei and Zou, 2019),
SpellingAug (Coulombe, 2018; Li et al., 2019).
Apart from these generation-only methods, recent
works (Sennrich et al., 2016; Kumar et al., 2020)
recognize the significance of PLM for text aug-
mentation, but their performance is limited on non-

small datasets. Our work leverages the PLM as a
non-exclusive filter that can improve generation-
only methods. We apply crossing augmentation to
mitigate overfitting problems while training the
surrogate language model, and there is rare re-
search working on augmentation quality measure-
ment. We note the Lim et al. (2019) adopts crossing
augmentation in image classification. However, it
is used for improving augmentation efficiency in-
stead of keeping feature space. Our work indicates
that augmentation quality is more significant than
quantity for prompting text classification.

6 Conclusion

We find existing text augmentation methods usu-
ally lead to performance degeneration in public
datasets due to numerous low-quality augmenta-
tion instances. Hence, we reformulate the text aug-
mentation problem as an augment-to-filter problem
and propose BooSTAUG to promote text classifi-
cation tasks. Differing from existing text augmen-
tation studies, Boos TAUG emphasizes the impor-
tance of augmentation instance quality control. To
eliminate low-quality augmentation instances, we
apply a PLM-based surrogate language model as
the filter to discriminate unnecessary instances ac-
cording to perplexity filtering, confidence ranking,
and predicted label constraint. Experimental re-
sults on three text classification datasets and five
aspect-based sentiment classification datasets show
that BoosTAuUG reclaim the state-of-the-art per-
formance. Our research proves that augmentation
instance filtering is as important as instance gener-
ation.

7 Limitations

We propose and solve the feature space shift prob-
lem in text augmentation. However, there is a
limitation that remains. BoosTAUG cannot pre-
serve the grammar and syntax to a certain extent.
We apply the perplexity filtering strategy, but it
is an implicit constraint and cannot ensure the
syntax quality of the augmentation instances due
to some breaking transformations, such as key-
word deletions and modifications. However, we
do not need precise grammar and syntax informa-
tion in most classification tasks, especially in PLM-
based classification. For some syntax-sensitive
tasks, e.g., syntax parsing and the syntax-based
ABSC (Zhang et al., 2019; Phan and Ogunbona,
2020; Dai et al., 2021), ensuring the syntax qual-



ity of the augmented instances is an urgent prob-
lem. Therefore, BoosTAuc may not be an op-
timal choice for some tasks or models requiring
syntax as an essential modeling objective (Zhang
et al., 2019). In addition, once a text augmentation
generation method considers syntax quality con-
trol, Boos TAuG would be useful in these syntax-
sensitive tasks.
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A Maetrics for feature space shift

A.1 Convex hull overlapping calculation

To calculate the convex hull overlapping rate, we
use the Graham Scan algorithm® (Graham, 1972)
to find the convex hulls for the test set and target
dataset in the £-SNE visualization, respectively.

Let P; and P, represent the convex hulls of two
datasets in the ¢-SNE visualization; we calculate
the overlapping rate as follows:
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where M and N denote convex hull intersection and
union operation, respectively. O is the overlapping
rate between P; and Ps.

A.2 Distribution skewness calculation

The skewness of a example distribution is com-
puted as following:
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where N is the number of instance in the distribu-
tion; sk is the skewness of an example distribution.
m; and x are the ¢-th central moment and mean
of the example distribution, respectively. Because
the £-SNE have two dimensions(namely = and y
axes), we measure the global skewness of the tar-
get dataset (e.g., training set, augmentation set) by
summarizing the absolute value of skewness on the
x and y axes in t-SNE:

sk? = |sk”| + |skY|, (7)

where sk9 is the global skewness of the target
dataset; sk® and skY are the skewness on the x
and y axes, respectively.

B Visualization of feature space

Figure 6 shows the feature space shift of the ABSC
datasets, where the augmentation back end of
Bo0STAUGIS EDA.

$https://github.com/shapely/shapely.
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Figure 6: The ¢-SNE visualization of feature space of the ABSC datasets.
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