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Abstract

Text augmentation is one of the most effec-001
tive techniques to solve the critical problem of002
insufficient data in text classification. Exist-003
ing text augmentation methods achieve hopeful004
performance in few-shot text data augmenta-005
tion. However, these methods usually lead to006
performance degeneration on public datasets007
due to poor quality augmentation instances.008
Our study shows that even employing pre-009
trained language models, existing text augmen-010
tation methods generate numerous low-quality011
instances and lead to the feature space shift012
problem in augmentation instances. However,013
we note that the pre-trained language model014
is good at finding low-quality instances pro-015
vided that it has been fine-tuned on the target016
dataset. To alleviate the feature space shift and017
performance degeneration in existing text aug-018
mentation methods, we propose BOOSTAUG,019
which reconsiders the role of the language020
model in text augmentation and emphasizes021
the augmentation instance filtering rather than022
generation. We evaluate BOOSTAUG on both023
sentence-level text classification and aspect-024
based sentiment classification. The experimen-025
tal results on seven commonly used text clas-026
sification datasets show that our augmentation027
method obtains state-of-the-art performance.028
Moreover, BOOSTAUG is a flexible framework;029
we release the code which can help improve030
existing augmentation methods.031

1 Introduction032

Due to the progress of pre-training techniques in033

natural language processing, the pretrained lan-034

guage models (Devlin et al., 2019; He et al.,035

2021)(PLM) has been capable of learning large-036

scale data. As a result, data insufficiency has been037

an urgent problem in many low-resource NLP tasks.038

To mitigate the above problem, many text aug-039

mentation works (Sennrich et al., 2016; Coulombe,040

2018; Li et al., 2019; Wei and Zou, 2019; Kumar041

et al., 2020) that aim at improving text classification042

have been proposed in recent studies. These works 043

achieve hopeful improvement in few-shot augmen- 044

tation experiments, while most of them encounter a 045

failure mode (Zhou et al., 2021) in relatively large 046

public datasets. Recent works (Body et al., 2021; 047

Chang et al., 2021; Luo et al., 2021) expect to lever- 048

age the language modeling ability of PLMs in text 049

augmentation, but these methods can degenerate 050

the performance as well. 051

To explore the crux of the augmentation failure 052

mode, we conduct experiments to prove that the 053

existing text augmentation methods generate plenty 054

of unnecessary augmentation instances. These 055

low-quality augmentation cause the feature space 056

shift problem and degrade the performance. Un- 057

fortunately, these unnecessary augmentation in- 058

stances can be introduced in both text edit-based 059

and text generation-based augmentation methods. 060

For the edit-based methods, the low-quality in- 061

stances mainly come from some breaking text trans- 062

formation (e.g., changing a word ‘greatest’ 063

to ‘worst’ in a sentence leads to an adverse 064

meaning in a sentiment analysis task.), while 065

generation-based methods usually introduce out-of- 066

distribution words due to synonym replacement and 067

word insertion. To solve the performance degener- 068

ation of existing augmentation methods, we intend 069

to alleviate the feature space shift caused by low- 070

quality instances. According to our preliminary 071

research, we notice that the PLMs fine-tuned on 072

the targeted dataset will be familiar with the identi- 073

cal distribution data. In other words, the fine-tuned 074

PLMs always have high confidence and lower per- 075

plexity for identical distribution text. Motivated by 076

this finding, we reconsider the role of PLMs in text 077

augmentation and propose an instance-filter frame- 078

work, BOOSTAUG, based on DeBERTa (He et al., 079

2021). BOOSTAUG adopts the existing text aug- 080

mentation methods (Wei and Zou, 2019; Coulombe, 081

2018; Li et al., 2019; Kumar et al., 2019) as back- 082

ends and consists of three instance filtering strate- 083
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gies(which will be discussed in Section 2.3): per-084

plexity filtering, confidence ranking and predicted085

label constraint. Moreover, we introduce a cross-086

boosting strategy for BOOSTAUG to alleviate bi-087

ased filter training in Section 2.1. According to088

our experimental results on four aspect-based sen-089

timent classification and two sentence-level text090

classification datasets, we find BOOSTAUG signifi-091

cantly alleviates the feature space shift problem in092

existing augmentation methods. Moreover, due to093

the mitigation of feature space shift, BOOSTAUG094

can generate more augmentation instances and im-095

prove the performance; on the contrary, more aug-096

mentation instances trigger performance degenera-097

tion in other methods.098

To the best of our knowledge, BOOSTAUG is the099

first text augmentation method that emphasizes the100

instance-quality control and applies the PLMs as fil-101

ters instead of augmentor. The experiment results1102

show that BOOSTAUG outperforms existing text103

augmentation methods and achieves state-of-the-104

art performance on ABSC and TC tasks. Therefore,105

our main contribution concludes:106

• We explore the crux for performance degenera-107

tion in existing text augmentation methods and108

emphasize the importance of augmentation in-109

stance quality control.110

• We propose a PLM-based augmentation instance111

filter BOOSTAUG to mitigate feature space shift112

and significantly improve the performance on the113

ABSC and TC tasks according to the experimen-114

tal results.115

• Our experiments show that the existing text aug-116

mentation methods can be improved by employ-117

ing an instance filter, indicating BOOSTAUG is118

available for improving existing text augmenta-119

tion methods.120

2 Proposed Method121

The workflow of our proposed BOOSTAUG for text122

classification tasks is shown in Figure 1 and the123

pseudo code is given in Algorithm 1. Different124

from most existing studies, which focus on an unsu-125

pervised instance generation, BOOSTAUG mainly126

works on the selection of high-quality augmenta-127

tion instances. Generally speaking, it consists of128

two major phases: one is to build a surrogate lan-129

guage model; while the other is to use the surrogate130

1We release the source code and experiment scripts of
BOOSTAUG in the supplementary materials to help reproduce
the experimental results.

Algorithm 1: The pseudo code of
BOOSTAUG

1 Split D into k folds, D := {F i}ki=1;
2 Daug := ∅;
3 for i← 1 to k do
4 Di

aug := ∅, Di
boost := F i;

5 Randomly pick up k − 2 folds except F i to
constitute Di

train;
6 Di

valid := F \ (F i ⋃Di
train);

7 Use the DeBERTa on Di
train and Di

valid to build
the surrogate language model;

8 forall dorg ∈ Di
boost do

9 Di
aug := F (diorg, Ñ ,Θ);

10 forall daug ∈ Di
aug do

11 Use the surrogate language model to
predict P(daug), C(daug), and the
ℓ̃aug of daug;

12 if P(daug) ≥ α ∥ C(daug) ≤
β ∥ ℓ̃daug ̸= ℓ̃dorg then

13 Di
aug := Di

aug \ {daug};

14 Daug := Daug

⋃
Di

aug;

15 Daug := Daug

⋃
Di

boost;

16 return Daug

language model as the driver to guide the augmen- 131

tation instance generation. In the following para- 132

graphs, we will delineate their implementations 133

step by step. 134

2.1 Building a surrogate language model 135

At the beginning of the Phase #1, the original 136

training dataset is divided into k > 3 folds where 137

the k − 2 ones are used for the training purpose 138

(denoted as the training fold) while the other two 139

are used for the validation and augmentation pur- 140

poses, denoted as the validation and boosting fold, 141

respectively2 (lines 4-6). Note that the generated 142

augmentation instances, which will be introduced 143

in Section 2.2, can be identical to the data used 144

for training the surrogate language model. This is 145

called a data overlapping problem that leads to a 146

feature space shift thus overfit the surrogate lan- 147

guage model. We argue that the proposed k-fold 148

augmentation approach, a.k.a. cross-boosting, can 149

alleviate the feature space shift of the augmentation 150

instances which will be validated and discussed in 151

detail in Section 4.3. The main crux of the Phase 152

#1 is to build a surrogate language model as a filter 153

2Note that we iteratively select the i-th fold, i ∈
{1, · · · , k}, as the boosting fold (line 3 in Algorithm 1).
Meanwhile, we randomly pick up the other k − 2 folds to
constitute the training folds and the remaining one as the vali-
dation fold. In particular, the validation fold is used to select
the best checkpoint of the surrogate language model.
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Phase 2: Augmentation instance generation & 
filtering

Augmentation 
Backend

Surrogate LM

Phase 1: Fine-tuning & build surrogate LM

Pretrained LM

Classification Layer

Text Classifier

Surrogate LM

Build
Surrogate LM

Figure 1: The workflow of BOOSTAUG. In Phase #1, we fine-tune the DeBERTa-based classification model
using the re-split training and validation sets and extract the fine-tuned DeBERTa to build a surrogate language
model. In Phase #2, BOOSTAUG employs a text augmentation backend to generate raw augmentations and filter
the low-quality instance identified by the surrogate language model. BOOSTAUG performs k-fold cross-boosting to
avoid boosting, so Phase #1 and Phase #2 repeat k times.

to guide the elimination of harmful and poor aug-154

mentation instances. This is different from the ex-155

isting works that use a pre-trained language model156

to directly generate augmentation instances. We157

clarify our motivation for this from the following158

two aspects.159

• In addition to modeling the semantic feature, the160

surrogate language model can provide more infor-161

mation such as the text perplexity, classification162

confidence and predicted labels that can be use-163

ful for the quality control of the augmentation164

instances.165

• Comparing to the instance generation, we argue166

that the instance filtering approach can be readily167

integrated with any existing text augmentation168

approach.169

In practice, we first build a temporary classifica-170

tion model based on DeBERTa (He et al., 2021).171

Thereafter, it is fine-tuned based on the data in172

the k − 2 training folds and the validation fold to173

learn the semantic features therein (line 7). Note174

that we do not use the original training dataset175

to carry out this fine-tuning. At the end, the lan-176

guage model built from the DeBERTa classifica-177

tion model is thus used as the surrogate language178

model for the instance filtering step in the Phase179

#2 of BOOSTAUG.180

2.2 Augmentation instance generation181

As a building block of the Phase #2, we apply182

some prevalent data augmentation approaches as183

the back end to generate the augmentation instances184

in BOOSTAUG (line 9). More specifically, let 185

Dorg := {diorg}Ni=1 be the original training dataset. 186

diorg := ⟨si, ℓi⟩ is a data instance where si indi- 187

cates a sentence and ℓi is the corresponding label, 188

i ∈ {1, · · · , N}. By applying the transformation 189

function F (·, ·, ·) upon diorg as follows, we expect 190

to obtain a set of augmentation instances Di
aug for 191

diorg: 192

Di
aug := F (diorg, Ñ ,Θ), (1) 193

where Ñ ≥ 1 is used to control the maximum num- 194

ber of generated augmentation instances. At the 195

end, the final augmentation set is constituted as 196

Daug :=
⋃N

i=1Di
aug (line 14). Note that depend- 197

ing on the specific augmentation back end, there 198

can be more than one strategies to constitute the 199

transformation function. For example, the EDA 200

developed in (Wei and Zou, 2019) has four transfor- 201

mation strategies including synonym replacement, 202

random insertion, random swap, random deletion. 203

Θ consists of the parameters associated with the 204

transformation strategies of the augmentation back 205

end, e.g., the percentage of words to be modified 206

and the mutation probability of a word. 207

2.3 Instance filtering 208

Our preliminary experiments have shown that 209

merely using the data augmentation can be detri- 210

mental to the modeling performance no matter how 211

many augmentation instances are applied in the 212

training process. In addition, our experiments 213

in Section 4.3 have shown a surprising feature 214
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space shift between the original data and the aug-215

mented instances in the feature space. To miti-216

gate this issue, BOOSTAUG proposes an instance217

filtering approach to control the quality of the aug-218

mentation instances. It consists of three filtering219

strategies including the perplexity filtering, the con-220

fidence ranking, and the predicted label constraint221

which will be delineated in the following para-222

graphs, respectively. Note that all these filtering223

strategies are built up the surrogate language model224

developed in the Phase #1 of BOOSTAUG (lines225

12 and 13).226

2.3.1 Perplexity filtering227

Text perplexity is a widely used metric to evaluate228

the modeling capability of a language model (Chen229

and Goodman, 1999; Sennrich, 2012). Our prelim-230

inary experiments have shown that the low-quality231

instances have a relatively high perplexity. This in-232

dicates that the perplexity information can be used233

to evaluate the quality of an augmentation instance.234

Since the surrogate language model built in the235

Phase #1 is bidirectional, the text perplexity of an236

augmentation instance daug is calculated as:237

P(daug) =
s∏

i=1

p (wi | w1, · · · , wi−1, wi+1, · · · , ws) ,

(2)238

where wi represents the token in the con-239

text, s is the number of tokens in daug, and240

p (wi | w1, · · · , wi−1, wi+1, · · · , ws) is the prob-241

ability of wi conditioned on the preceding to-242

kens, according to the surrogate language model,243

i ∈ {1, · · · , s}. Note that daug is treated as an244

low-quality instance and is dumped if P(daug) ≥ α245

while α ≥ 0 is a predefined threshold.246

2.3.2 Confidence ranking247

Our preliminary experiments have shown that the248

fine-tuned surrogate language model is always con-249

fident about the data in the training folds (or those250

having the identical distribution) where the con-251

fidence level is larger than 99%. However, we252

observe a significant feature space shift in the aug-253

mentation instances when there exist fatal errors254

in the grammars, syntaxes and words of the aug-255

mentation instances generated by the augmentation256

back ends. These instances will be allocated with257

a low confidence by the surrogate language model.258

In this case, we can leverage the classification con-259

fidence as a driver to control the quality of the260

augmentation instances. Note that since the classi-261

fication confidence of most augmentation instances 262

are larger than 95%, it can lead to an unbalanced 263

distribution if we simply use the classification con- 264

fidence as the criterion for instance filtering. In 265

particular, such unbalanced distribution can be at- 266

tributed to the following two aspects. 267

• The surrogate language model is difficult to cap- 268

ture the change of several words for the long texts 269

whereas it can be sensitive to deleting or adding 270

words for the short texts. 271

• There can be various transformations leading to 272

valid augmentation instances whereas the alter- 273

natives for the short texts are limited. 274

Therefore, it is natural that the long texts can have 275

way more augmentation instances than the short 276

texts, thus leading to the so called unbalanced dis- 277

tribution. In BOOSTAUG, to mitigate the side effect 278

brought by the unbalanced distribution, we develop 279

a confidence ranking strategy to eliminate the re- 280

dundant augmentation instances generated from the 281

long texts while retain the rare instances having a 282

relatively low confidence. More specifically, we ap- 283

ply a softmax operation on the output hidden state 284

learned by the surrogate language model, denoted 285

as H(daug)), to evaluate the confidence of daug as: 286

C(daug) = argmax

(
exp(Hdaug)∑c
1 exp(Hdaug)

)
, (3) 287

where c is the number of classes of the original 288

training dataset. To conduct the confidence rank- 289

ing, 2×Ñ instances are generated at first while only 290

the top Ñ instance are selected to carry out the con- 291

fidence ranking. By doing so, we expect to obtain 292

a balanced augmentation dataset even when there 293

exists a large variance on the confidence predicted 294

by the surrogate language model. After the confi- 295

dence ranking, the augmentation instances whose 296

Cdaug ≤ β are dumped while β ≥ 0 is a predefined 297

threshold. 298

2.3.3 Predicted label constraint 299

Due to some breaking text transformation, the text 300

augmentation can lead to noisy data, e.g., chang- 301

ing a word ‘greatest’ to ‘worst’ in a sentence 302

leads to an adverse label in a sentiment analysis 303

task. Since the surrogate language model can pre- 304

dict the label of an augmentation instance based 305

on its confidence distribution, we develop another 306

filtering strategy that eliminates the augmentation 307

instances whose predicted label ℓ̃daug is different 308

from the ground truth. By doing so, we expect to 309

mitigate the feature space bias. 310
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Table 1: The split of different datasets.

Dataset Training Set Validation Set Testing Set
Laptop14 2328 0 638

Restaurant14 3608 0 1120
Restaurant15 1120 0 540
Restaurant16 1746 0 615

MAMS 11186 1332 1336
SST2 6920 872 1821
SST5 8544 1101 2210

AGNews10K 7000 1000 2000

3 Experimental Setup311

3.1 Datasets312

Our experiments are conducted on two classifica-313

tion tasks including the sentence-level text clas-314

sification (TC) and the aspect-based sentiment315

classification (ABSC). SST-2, SST-5 (Socher316

et al., 2013) from the Stanford Sentiment Tree-317

bank and AGNews10K3 (Zhang et al., 2015)are318

used to constitute the datasets for the TC319

task; while the datasets for the ABSC task are320

Laptop14, Restaurant14 (Pontiki et al.,321

2014), Restaurant15 (Pontiki et al., 2015),322

Restaurant16 (Pontiki et al., 2016), and323

MAMS (Jiang et al., 2019). The split of these324

datasets are summarized in Table 1. The widely325

used accuracy (Acc) and macro F1 as used as the326

metric for evaluating the performance of differ-327

ent algorithms following existing research (Wang328

et al., 2016; Zhou et al., 2021). In particular, all329

experiments are repeated five times with a different330

random seed.331

3.2 Augment Backends332

The performance of BOOSTAUG is compared with333

four state-of-the-art (SOTA) word-level text aug-334

mentation methods, all of which are used as the335

text augmentation back end of BOOSTAUG.336

• EDA (Wei and Zou, 2019) (TextAttack4): it per-337

forms augmentation via random word insertions,338

substitutions and deletions.339

• SpellingAug (Coulombe, 2018) (NLPAug5):340

it substitutes words according to spelling mistake341

dictionary.342

• SplitAug (Li et al., 2019) (NLPAug): it splits343

some words in the sentence into two words ran-344

domly.345

3We collect first 10K examples to build the AGNews10K
dataset (7K for training set, 1K for validation set and 2K for
testing), and it is large enough compared to other datasets.

4https://github.com/QData/TextAttack
5https://github.com/makcedward/nlpaug

• WordEmbsAug (Kumar et al., 2020) (NLPAug): 346

it substitutes similar words according to the PLM, 347

Roberta-base (Liu et al., 2019) in particular, 348

given the context. 349

In our experiments, LSTM, BERT-BASE (De- 350

vlin et al., 2019), and DeBERTa-BASE (He et al., 351

2021) are used as the classification models for the 352

TC task while FastLCF is used as the additional 353

model for the ABSC task. 354

3.3 Parameter Settings 355

Some important parameters are set as follows. 356

• k is set to 5 for the k-fold cross-boosting on all 357

datasets. 358

• The number of augmentation instances per exam- 359

ple Ñ is 8. 360

• The transformation probability of each token in a 361

sentence is set to 0.1 for all augmentation meth- 362

ods. 363

• The fixed confidence and perplexity thresholds 364

are set as α = 0.99 and β = 5. 365

• The learning rates of LSTM and 366

DeBERTa-BASE are set as 10−3 and 10−5, 367

respectively. 368

• The batch size and maximum sequence modeling 369

length are 16 and 80, respectively. 370

• The L2 regularization parameter λ is 10−8; we 371

use Adam as the optimizer for all models during 372

the training process. 373

4 Experimental Results 374

4.1 Comparison with Four Selected Text 375

Augmentation Methods 376

From the comparison results shown in Table 2, it is 377

clear to see that the overall performance improve- 378

ment of using BOOSTAUG is consistently better 379

than the other four peer text augmentation methods. 380

It is also worth noting that the performance of some 381

classification models can be degraded by using a 382

conventional text augmentation methods. Another 383

interesting observation is the performance improve- 384

ment is relatively marginal for a large dataset like 385

SST2, SST5 and MAMS. Furthermore, the perfor- 386

mance of LSTM is more sensitive to the data aug- 387

mentation because it lacks knowledge learned from 388

a large-scale corpus compared to the PLMs. 389

As for the selected peer text augmentation meth- 390

ods, the best one is EDA, even though it is the 391

simplest, given that its augmentation strategies 392

are more resilient to the distribution of the fea- 393

ture space. In contrast, SplitAug is almost the 394

5
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Table 2: Performance comparison of BOOSTAUG w.r.t. four selected text augmentation methods. The best metric
values are highlighted in bold face.

Method Model Laptop Restaurant14 Restaurant15 Restaurant16 MAMS SST2 SST5 AGNews10K
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

None

LSTM 71.32 65.45 77.54 66.89 78.61 58.54 87.40 64.41 56.96 56.18 84.36 84.36 45.29 44.61 87.60 87.36
BERT 79.47 75.70 85.18 78.31 83.61 69.73 91.3 77.16 82.78 82.04 90.88 90.88 53.53 52.06 92.47 92.26

DeBERTa 83.31 80.02 87.72 81.73 86.58 74.22 93.01 81.93 83.31 82.87 95.07 95.07 56.47 55.58 92.30 92.13
FastLCF 83.23 79.68 88.5 82.7 87.74 73.69 93.69 81.66 83.46 82.88 — — — — — —

EDA

LSTM 68.65 62.09 76.18 62.41 76.30 56.88 85.59 61.78 56.59 55.33 84.79 84.79 43.85 43.85 87.72 87.46
BERT 78.37 74.23 83.75 75.38 81.85 65.63 91.38 77.27 81.81 81.10 91.16 91.16 51.58 50.49 92.50 92.28

DeBERTa 80.96 78.65 86.79 79.82 84.44 70.40 93.01 77.59 81.96 81.96 94.07 94.07 56.43 53.88 92.55 92.33
FastLCF 81.97 79.57 87.68 81.52 86.39 72.51 93.17 78.96 82.19 81.63 — — — — — —

SpellingAug

LSTM 67.24 60.30 75.36 63.01 73.52 49.04 84.72 53.92 55.99 55.16 83.14 83.14 41.45 40.40 87.25 86.96
BERT 73.59 69.11 82.54 73.18 79.63 62.32 89.76 74.74 81.89 81.42 91.00 91.00 52.26 50.90 92.42 92.22

DeBERTa 80.17 76.01 85.13 76.67 85.83 71.54 92.76 78.33 81.89 81.24 93.68 93.68 55.95 53.78 92.68 92.50
FastLCF 79.62 74.81 86.03 78.73 87.41 75.14 92.60 75.27 82.19 81.66 — — — — — —

SplitAug

LSTM 62.98 56.53 73.43 58.57 70.19 45.71 83.93 54.41 56.74 55.34 84.29 84.29 44.00 42.10 87.23 87.01
BERT 75.47 70.56 82.86 74.48 82.87 65.19 90.98 77.51 81.74 81.35 90.88 90.88 51.99 50.95 92.45 92.16

DeBERTa 79.15 75.72 86.03 79.28 85.46 70.43 92.76 79.79 81.59 81.09 94.29 94.29 55.51 49.77 92.52 92.29
FastLCF 81.82 78.46 86.34 78.36 86.67 70.87 93.09 76.50 82.07 81.53 — — — — — —

WordEmbsAug

LSTM 67.40 61.57 75.62 62.13 74.44 51.67 84.98 58.67 56.06 55.10 83.14 83.14 44.07 42.03 87.53 87.24
BERT 75.63 70.79 83.26 75.11 78.61 61.48 90.24 72.37 81.29 80.50 91.02 91.02 51.27 50.27 92.10 91.86

DeBERTa 76.88 71.98 85.49 77.22 84.63 70.50 92.28 77.42 81.66 81.32 94.12 94.12 55.48 53.60 92.80 92.62
FastLCF 79.08 74.61 85.62 76.88 84.91 70.06 91.38 76.27 81.89 81.09 — — — — — —

BOOSTAUG

LSTM 73.20† 67.46† 79.12† 68.07† 80.06† 59.61† 87.80† 65.33† 59.21† 59.58† 85.83† 85.83† 45.93† 43.59† 88.45 88.16
BERT 80.10† 76.48† 86.34† 79.99† 86.12† 73.79† 91.95† 79.12† 84.01† 83.44† 92.33† 92.33† 53.94† 52.80† 92.48 92.25

DeBERTa 84.56† 81.77† 89.02† 83.35† 88.33† 76.77† 93.58† 81.93† 84.51† 83.97† 96.09† 96.09† 57.78† 56.15† 92.95 92.76
FastLCF 85.11† 82.18† 90.38† 85.04† 89.81† 77.92† 94.37† 82.67† 84.13† 82.97† — — — — — —

None indicates the vanilla version without using a text augmentation. † indicates the best method is significantly better than the underlying peeri according to
the Wilcoxon’s rank sum test at a 0.05 significance level.

Table 3: Performance comparison of different ablation
variants of BOOSTAUG.

Variants Model MAMS SST2 SST5 AGNews
Acc F1 Acc F1 Acc F1 Acc F1

BOOSTAUG
LSTM 59.21 59.58 85.77 85.77 45.79 43.84 88.45 88.16
BERT 84.01 83.44 92.33 92.33 52.38 51.70 92.48 92.25

DeBERTa 84.51 83.97 96.09 96.09 57.52 56.48 92.95 92.76

MonoAug
LSTM 57.26 55.70 84.62 84.62 45.25 42.91 87.55 87.32
BERT 83.68 83.04 91.16 91.16 52.90 52.12 92.40 92.19

DeBERTa 83.38 82.87 94.18 94.18 56.92 55.81 92.32 92.09

w/o Confidence
LSTM 56.19 55.94 85.08 85.08 45.48 44.89 86.98 86.61
BERT 83.26 82.62 91.16 91.16 53.21 52.27 92.20 92.00

DeBERTa 83.47 82.08 95.22 95.22 57.1 55.97 92.93 92.75

w/o Perplexity
LSTM 55.54 55.46 85.67 85.67 46.47 43.25 87.40 86.99
BERT 83.16 82.58 92.04 92.04 52.67 51.02 92.50 92.30

DeBERTa 83.53 83.04 95.39 95.39 58.1 56.78 92.60 92.36

w/o Label Constraint
LSTM 56.06 55.00 84.90 84.88 44.75 43.44 86.55 86.23
BERT 83.01 82.57 92.04 92.03 52.58 51.33 91.80 91.60

DeBERTa 82.41 82.01 95.06 95.06 56.70 54.91 92.85 92.60

worst for LSTM because its augmentation instances395

suffer from a severe feature space bias due to its396

word split transformation. The performance of397

SpellingAug is comparable with EDA. This can398

be understood as the PLMs capture some frequent399

misspellings during the pre-training process. Note400

that the PLM-based augmentation methods, includ-401

ing WordsEmbsAug, tend to generate instances402

with unknown words for the original data. This403

further aggregates the feature space shift of the404

augmented data.405

4.2 Ablation study for BOOSTAUG406

To better understand the working mechanism of407

BOOSTAUG, we develop a couple of variants to408

evaluate the effectiveness of the cross-boosting, the409

predicted label constraint, the confidence ranking410

and the perplexity filtering in this subsection. As411

the results shown in Table 3, it is clear to see a per-412

formance degradation of MonoAug which takes413

out the cross-boosting of BOOSTAUG. Since the en- 414

tire training set is used to train a surrogate language 415

model in MonoAug, the augmentation instances 416

are thus very similar to the original data. This is the 417

data overlapping problem discussed in Section 2.1 418

that leads to a biased instance filtering and makes 419

the filtered instances overfit the data distribution 420

of training folds. The variant without using the 421

perplexity filtering strategy is the worst as shown 422

in Table 3. This is because the perplexity filtering 423

strategy can help remove the instances with syntac- 424

tical and grammar errors. The performance of the 425

variants without using the predicted label constraint 426

and the confidence ranking is similar. In particular, 427

without using the label constraint, the features of 428

the augmented samples can always mutate to an 429

adverse meaning. As for the confidence ranking, 430

it helps eliminate many out of domain words that 431

lead to the feature space shift. 432

4.3 Investigation of the feature space shift 433

This subsection empirically investigates the fea- 434

ture space shift problem mentioned in Section 2.1. 435

To this end, we apply t-SNE (Hinton and Roweis, 436

2002) to visualize the distribution of the features of 437

the testing set versus different augmented variants. 438

Furthermore, we evaluate the convex hull (Graham, 439

1972) overlapping rate and the distribution skew- 440

ness (Kokoska and Zwillinger, 2000) between the 441
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Figure 2: The t-SNE visualization of feature space of
the Laptop14 dataset.

augmentation instances and the testing set6. In par-442

ticular, the larger the overlapping rate is (or the443

smaller the skewness is), the smaller feature space444

shift achieved. The t-SNE plots of Laptop14445

are given in Figure 2 while the full results are446

available in Figure 6 of the appendix. From the447

experiment results, it is clear to see that the aug-448

mentation instances generated by BOOSTAUG have449

the mildest feature space shift. In particular, the450

overlapping rate and the skewness w.r.t. the testing451

set are consistently better than the training set. This452

explains the performance improvement achieved453

by using BOOSTAUG as discussed in Section 4.1.454

In contrast, the augmentation instances generated455

by EDA, the best peer text augmentation methods456

as observed in Section 4.1, have a worse overlap-457

ping rate even compared to the training set. This458

explains the performance degradation when using459

EDA on the baseline classification models observed460

in Section 4.1. It is also interesting to note that the461

quality of the augmentation instances generated by462

MonoAug is better than EDA.463

4.4 Comparison of using BOOSTAUG on464

different back ends465

To investigate the generalization ability of466

BOOSTAUG, we evaluate its performance based467

on the existing augmentation backends. From the468

results shown in Table 4, we find that the perfor-469

mance of these text augmentation back ends can470

be improved by using our proposed BOOSTAUG.471

Especially by cross-referencing the results shown472

in Table 2, we find that the conventional text aug-473

6The implementations of overlapping rate and skewness
calcualation are introduced in Section A.

Table 4: Performance comparison of BOOSTAUG based
on different augment back ends.

Augment Method Model
MAMS SST2 SST5 AGNews10K

Acc F1 Acc F1 Acc F1 Acc F1

None
LSTM 56.96 56.18 82.37 82.37 44.39 43.60 87.60 87.36
BERT 82.78 82.04 90.77 90.76 52.90 53.02 92.47 92.26

DeBERTa 83.31 82.87 95.28 95.28 56.47 55.58 92.30 92.13

EDA
LSTM 58.83 57.42 85.77 85.77 45.25 43.84 88.45 88.16
BERT 83.38 82.97 92.33 92.33 51.21 50.09 92.48 92.25

DeBERTa 83.68 83.00 96.09 96.09 58.51 57.06 92.88 92.70

SpellingAug
LSTM 58.50 57.65 85.23 85.23 43.39 42.45 87.93 87.63
BERT 83.23 82.70 92.01 92.01 52.26 51.03 91.82 91.59

DeBERTa 83.98 83.44 95.22 95.22 57.91 55.88 92.77 92.54

SplitAug
LSTM 58.65 57.23 85.64 85.64 46.04 43.97 87.65 87.42
BERT 83.05 82.49 92.20 92.20 51.86 51.39 91.92 91.69

DeBERTa 82.67 82.26 94.76 94.76 57.67 55.90 92.70 92.51

WordEmdsAug
LSTM 59.54 57.58 86.30 86.30 46.47 44.15 88.38 88.10
BERT 83.31 82.72 91.76 91.76 52.49 50.27 92.43 92.24

DeBERTa 83.35 82.87 95.33 95.33 57.22 56.08 93.88 93.70

Figure 3: Trajectories of the accuracy and the F1 values
with error bars versus the number of augmentation in-
stances generated for an example by using BOOSTAUG.

Figure 4: The visualization of MonoAug’s performance
based on different numbers of augmentation per exam-
ple.

mentation methods can be enhanced if appropriate 474

instance filtering strategies are applied. 475

Another interesting observation is that PLMs 476

are not effective for text augmentation, e.g., 477

WordEmdsAug is outperformed by EDA in most 478

comparisons7. Moreover, PLMs are resource- 479

intense and usually cause a biased feature space. 480

This is because PLMs can generate some unknown 481

words, which are outside the testing set, during the 482

pre-training stage. Our experiments indicate that 483

using PLM as an augmentation instance filter, in- 484

stead of a text augmentation tool directly, can help 485

alleviate the feature space shift. 486

4.5 How many augmentation instances do we 487

actually need? 488

Although BOOSTAUG alleviate the feature space 489

shift compared to existing text augmentation meth- 490

ods, we find that merely increasing the augmenta- 491

7In fact, we also tried some other PLM-based augmenta-
tion back ends, e.g., BackTranslationAug, and we come
up with same observation.
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Figure 5: The visualization of EDA’s performance based
on different numbers of augmentation per example.

tion instances will ultimately amplify the feature492

space shift problem. In this subsection, we plan493

to empirically investigate the number of augmen-494

tation instances required for an original example495

under different circumstances. Figure 3 to 5 plot496

the trajectories of the accuracy and F1 with error497

bars versus the number of augmentation instances498

generated for each example by using BOOSTAUG,499

MonoAug and EDA.500

From these plots, we find that the performance501

of EDA and MonoAug can be improved with the502

increase of the number of augmentation instances503

until Ñ ≥ 3. This can be attributed to the fea-504

ture space shift caused by a deviation from the505

ground truth data distribution or a biased instance506

filtering. As for BOOSTAUG, we can see that gen-507

erating more augmentation instances can help im-508

prove the performance (until Ñ ≥ 8). In particular,509

the F1 metric obtained by BOOSTAUG is consis-510

tently better than that of EDA and MonoAug. It is511

also interesting to note that text augmentation is512

not always helpful, given that the performance can513

be better in case no text augmentation is involved514

when Ñ = 1.515

5 Related Works516

Text augmentation has attracted more and more517

researchers. Although recent works on text aug-518

mentation primarily focus on the generation-only519

augmentation methods (Bi et al., 2021; Ren et al.,520

2021; Chang et al., 2021; Haralabopoulos et al.,521

2021; Body et al., 2021), the significance of522

augmentation instance filtering has been under-523

estimated. Our work reformulates the text aug-524

mentation as an augment-to-filter problem, and525

BOOSTAUG accepts varieties of augmentation gen-526

eration backends, e.g., EDA (Wei and Zou, 2019),527

SpellingAug (Coulombe, 2018; Li et al., 2019).528

Apart from these generation-only methods, recent529

works (Sennrich et al., 2016; Kumar et al., 2020)530

recognize the significance of PLM for text aug-531

mentation, but their performance is limited on non-532

small datasets. Our work leverages the PLM as a 533

non-exclusive filter that can improve generation- 534

only methods. We apply crossing augmentation to 535

mitigate overfitting problems while training the 536

surrogate language model, and there is rare re- 537

search working on augmentation quality measure- 538

ment. We note the Lim et al. (2019) adopts crossing 539

augmentation in image classification. However, it 540

is used for improving augmentation efficiency in- 541

stead of keeping feature space. Our work indicates 542

that augmentation quality is more significant than 543

quantity for prompting text classification. 544

6 Conclusion 545

We find existing text augmentation methods usu- 546

ally lead to performance degeneration in public 547

datasets due to numerous low-quality augmenta- 548

tion instances. Hence, we reformulate the text aug- 549

mentation problem as an augment-to-filter problem 550

and propose BOOSTAUG to promote text classifi- 551

cation tasks. Differing from existing text augmen- 552

tation studies, BOOSTAUG emphasizes the impor- 553

tance of augmentation instance quality control. To 554

eliminate low-quality augmentation instances, we 555

apply a PLM-based surrogate language model as 556

the filter to discriminate unnecessary instances ac- 557

cording to perplexity filtering, confidence ranking, 558

and predicted label constraint. Experimental re- 559

sults on three text classification datasets and five 560

aspect-based sentiment classification datasets show 561

that BOOSTAUG reclaim the state-of-the-art per- 562

formance. Our research proves that augmentation 563

instance filtering is as important as instance gener- 564

ation. 565

7 Limitations 566

We propose and solve the feature space shift prob- 567

lem in text augmentation. However, there is a 568

limitation that remains. BOOSTAUG cannot pre- 569

serve the grammar and syntax to a certain extent. 570

We apply the perplexity filtering strategy, but it 571

is an implicit constraint and cannot ensure the 572

syntax quality of the augmentation instances due 573

to some breaking transformations, such as key- 574

word deletions and modifications. However, we 575

do not need precise grammar and syntax informa- 576

tion in most classification tasks, especially in PLM- 577

based classification. For some syntax-sensitive 578

tasks, e.g., syntax parsing and the syntax-based 579

ABSC (Zhang et al., 2019; Phan and Ogunbona, 580

2020; Dai et al., 2021), ensuring the syntax qual- 581

8



ity of the augmented instances is an urgent prob-582

lem. Therefore, BOOSTAUG may not be an op-583

timal choice for some tasks or models requiring584

syntax as an essential modeling objective (Zhang585

et al., 2019). In addition, once a text augmentation586

generation method considers syntax quality con-587

trol, BOOSTAUG would be useful in these syntax-588

sensitive tasks.589
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A Metrics for feature space shift807

A.1 Convex hull overlapping calculation808

To calculate the convex hull overlapping rate, we809

use the Graham Scan algorithm8 (Graham, 1972)810

to find the convex hulls for the test set and target811

dataset in the t-SNE visualization, respectively.812

Let P1 and P2 represent the convex hulls of two813

datasets in the t-SNE visualization; we calculate814

the overlapping rate as follows:815

O =
P1 ∩ P2

P1 ∪ P2
, (4)816

where ∩ and ∩ denote convex hull intersection and817

union operation, respectively. O is the overlapping818

rate between P1 and P2.819

A.2 Distribution skewness calculation820

The skewness of a example distribution is com-821

puted as following:822

sk =
m3

m
3/2
2

, (5)823

824

mi =
1

N

N∑
n=1

(xn − x̄)i, (6)825

where N is the number of instance in the distribu-826

tion; sk is the skewness of an example distribution.827

mi and x̄ are the i-th central moment and mean828

of the example distribution, respectively. Because829

the t-SNE have two dimensions(namely x and y830

axes), we measure the global skewness of the tar-831

get dataset (e.g., training set, augmentation set) by832

summarizing the absolute value of skewness on the833

x and y axes in t-SNE:834

skg = |skx|+ |sky|, (7)835

where skg is the global skewness of the target836

dataset; skx and sky are the skewness on the x837

and y axes, respectively.838

B Visualization of feature space839

Figure 6 shows the feature space shift of the ABSC840

datasets, where the augmentation back end of841

BOOSTAUGis EDA.842

8https://github.com/shapely/shapely.
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Figure 6: The t-SNE visualization of feature space of the ABSC datasets.
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