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Abstract

Retrieval of polygon geometries with similar shapes from maps is a challenging geographic
information task. Existing approaches can not process geometry polygons with complex
shapes, (multiple) holes and are sensitive to geometric transformations (e.g., rotations). We
propose Contrastive Graph Autoencoder (CGAE), a robust and effective graph representa-
tion autoencoder for extracting polygon geometries of similar shapes from real-world building
maps based on template queries. By leveraging graph message-passing layers, graph feature
augmentation and contrastive learning, the proposed CGAE embeds highly discriminative
latent embeddings by reconstructing graph features w.r.t. the graph representations of input
polygons, outperforming existing graph-based autoencoders (GAEs) in geometry retrieval of
similar polygons. Experimentally, we demonstrate this capability based on template query
shapes on real-world datasets and show its high robustness to geometric transformations in
contrast to existing GAEs, indicating the strong generalizability and versatility of CGAE,
including on complex real-world building footprints.

1 Introduction

Geometric shape matching and retrieval is a non-trivial task in geographic information systems especially
challenging when handling complex geometries. Queries describing the geometric shapes of objects to be
matched (templates) are encoded and models then retrieve objects with shapes that are visually similar.
Traditional approaches encode query shapes into vector representations to search for similar geometries in
databases. Statistically, Goodall (1991) presented a model-based Procrustes approach to analysing sets of
shapes. Conceptually, Egenhofer (1997) first proposed a system that converts sketched queries into topolog-
ical scene descriptions. Walter & Fritsch (1999) proposed a statistical approach to compute the geometric
distributions (i.e., length, angle and distance) of road networks for data matching. Shape recognition meth-
ods approached shape matching and identification through shape contexts (Belongie et al., 2002), turning
functions (Arkin et al., 1991), shape compactness (Li et al., 2013) or Fourier-transform methods (Ai et al.,
2013). Specifically, Xu et al. (2017) proposed a shape-similarity measurement model, which adopts position
graphs to describe geometric properties of polygons and applies Fourier descriptors to measure the shape
similarity of spatial polygons with holes. While such methods statistically characterize the geometric infor-
mation of polygons for shape matching and retrieval, they are often limited in applications to simple polygon
geometries and do not generalize well to large-scale polygon databases.

Recently, learning-based methods have been developed to encode polygon geometric features for geospatial
applications. van ’t Veer et al. (2018) proposed deep neural networks for the semantic classifications of
polygons that vectorize vertices of simple polygon boundaries as vertex sequences. A 1D convolutional
neural network is applied to learn discriminative geometric features (i.e., building types). The classification
accuracy of deep convolutional approaches outperformed traditional “shallow” machine learning methods
(i.e., logistic regression, support vector machine (SVM) and decision tree), as shown in their study.
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More recently, Mai et al. (2023) have developed a polygon encoding model that leverages non-uniform Fourier
transform (NUFT) (Jiang et al., 2019) and multilayer perceptron (MLP) to generate latent embeddings of
simplex-based signals from spectral feature domains. The latent embeddings of polygons in form of 2D
geometric grid frequency maps, capturing global geometric features of polygons, are applied for classifying
geometric shapes and predicting spatial relations of polygons. Yan et al. (2021) proposed a graph-based
convolution autoencoder to learn the compact embeddings of simple polygons for shape coding and retrieval
tasks on a building footprint dataset. They represented simple polygons as graphs, with boundary vertices
as nodes and the adjacency of the vertices along the outer polygon boundary as edges. They then devised
a graph convolution autoencoder (GAE) to learn the normalized Laplacian features of graphs in spectral
domain (Kipf & Welling, 2017), which implicitly reflect the convolutional features of k-hop neighboring
nodes in graphs. While the GAE is effective on certain polygon retrieval tasks, it is not robust to geometric
transformations (e.g., rotations) of polygon shapes and has not been tested on geometries with holes. Hence,
a robust method for retrieving complex polygons with holes from spatial databases (e.g., polygonal building
maps) operating on graph representations of polygons is worth investigating. We hypothesize that the model
robustness to geometric transformations and model generalisability supporting retrieval of complex polygons
(with holes) from large-scale spatial geometry databases can be achieved by a graph autoencoder leveraging
the structural information and connectivity of graph representation of polygons with contrastive learning.

We thus propose an unsupervised Contrastive GAE for polygon shape matching and retrieval on large-scale
geometry (e.g., building polygon) databases. In contrast to traditional models and state-of-art learning-based
graph autoencoders, our Contrastive Graph Autoencoder (CGAE) is independent of polygonal vertex
counts; capable of retrieving polygons with or without holes; robust to polygon rotations; and can
effectively generalizes to large polygon datasets.

2 Graph Autoencoder

Autoencoders (Hinton & Zemel, 1993) are unsupervised learning models designed to reconstruct input data
from compact embeddings in latent space. A range of autoencoders has been proposed for graph data:
in particular, the variational graph autoencoder (VGAE) (Kipf & Welling, 2016) applies graph convolution
layers (Kipf & Welling, 2017) as encoders to learn graph topology embeddings for link predictions. Following
VGAE, the adversarially regularized graph autoencoder (Pan et al., 2018) introduced an adversarial training
scheme to enforce latent embeddings of graph encoders to match a prior normal distribution and reinforce
the robustness of latent embeddings. For unsupervised learning of universal latent embeddings across data
domains, contrastive learning (Chen et al., 2020) has been combined with graph autoencoders (You et al.,
2020; Hou et al., 2022). Graph autoencoders are thus far mainly applied on relatively small graph datasets
for link prediction and unsupervised graph clustering. The applications of graph autoencoders to spatial
geometries (e.g., large-scale building footprints) with contrastive learning has not been fully investigated.

Conceptually, the objective of a graph autoencoder is to learn compact latent embeddings Z for input graph
G = {A, X}, where X ∈ Rd denotes a node feature matrix of graph G, and A is a square adjacency matrix
that encodes the topological information of graph G, where ai,j ∈ A = 1 if there exists an edge between
nodes ni, nj ∈ X, otherwise ai,j = 0. Typically, GAEs consist of: (1). graph encoder that takes graph
G = {A, X} as input and generates compact latent embeddings Z via differential neural network layers
f(A, X; Θ) → Z ∈ Rd; (2). graph decoder that reconstructs the graph embeddings G′ = {A′, X ′} from
latent embeddings Z; (3). an optimization component, with reconstruction loss LRec, that minimizes the
reconstruction error between input graph and reconstructed graph embeddings.

Our Contrastive Graph Autoencoder (CGAE) introduces a contrastive component LC to GAE, minimizing
the contrastive error between the compact graph embeddings ZG and the contrastive graph counterparts
ZG

∗ . Fig. 1 demonstrates the overall architecture of proposed CGAE. We first outline the novel contributions
of CGAE, and introduce the graph contrastive component next.
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Figure 1: Model architecture of CGAE. Inputs: vertex coordinates of T-shape polygon are encoded into a
node feature matrix X, and the connectivity of vertices into the adjacency matrix A. We produce contrastive
pairs of X and A by graph augmentations, obtaining a removed node feature matrix X∗ and a perturbed
adjacency matrix, A∗. CGAE learns robust and discriminative latent embeddings by the computation of the
graph reconstruction loss LRec and contrastive loss LC .

2.1 Graph Representation of 2D Polygons

A polygon is defined as a simple geometry (i.e., no self-intersections) consisting of a collection of sequences
of vertices encoding a single exterior ring defining the exterior boundary, and zero or multiple interior rings
defining the internal holes of the geometry (Open Geospatial Consortium, 2003). The polygon geometry
is converted into graph representation G = {A, X} as input to the graph autoencoder, where X captures
the vertex positions and the adjacency matrix A captures the adjacency of the vertices in the boundary
linear ring of vertices (Fig. 1). The graph representation enables describing the geometric and connectivity
information of polygons as matrices, which are computationally efficient for graph representation learning.

2.2 Message-passing Graph Encoder

Graph encoder then embeds G into a latent space. Typical graph encoders use graph convolutional networks
(GCN) from Kipf & Welling (2017) and its variants to learn node-wise convolution features of X with the
normalized graph Laplacian matrix Â = D̃−1/2ÃD̃−1/2, where Ã = A + I is the adjacency matrix with an
identity matrix (i.e., self-connections of nodes), and D̃ is the diagonal degree matrix. The latent embeddings
Z of graph G are hence learned by a differentiable neural network layer f(, ; Θ) (Eq. 1). Subsequently, we
can express how GCN learns the latent node-wise embeddings z of graph G as per Eq. 2:

f(X, A; Θ) = D̃−1/2ÃD̃−1/2XΘ
= ÂXΘ.

(1)

zi = Θ⊤
∑

ai,j∈A=1
x′

j , where x′
j = ãi,j√

d̃i × d̃j

xj . (2)

ãi,j√
d̃i×d̃j

corresponds to the edge weight between nodes xi and xj of the normalized graph Laplacian matrix

Â. We observe that a typical GCN encoder is limited to encoding polygon’s boundary information and does
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not generalize to polygons with holes. Eq. 2 suggest that the edge weights between the node pair (xi, xj)
are constants defined by a fixed adjacency and node degree matrix, A and D of input graph. This largely
limits the capability of graph encoders to learn expressive latent embeddings Z for complex polygons with
holes. Previous studies (Qi et al., 2017a;b; Wang et al., 2019) have demonstrated the importance of encoding
and learning local geometric features for point sets, in particular, 3D point clouds. These learning-based
models construct local kNN graphs from 3D point clouds and aggregate local geometric features of points
in local kNN sub-graphs per point. These studies also show that learning local geometric features as node
features of point sets extensively increases the performance of point cloud classification and segmentation.
Analogically, we hypothesize that polygon boundaries can be learned as local geometric node features via
graph-based neural networks in an unsupervised graph autoencoder, leading to robust and highly expressive
latent embeddings z for polygon geometries with holes. We thus propose a graph-based autoencoder with a
message-passing neural network as encoder (Gilmer et al., 2017) (Eq. 3):

zi = max
ai,j∈A=1

Θ⊤(xi ∥ (xj − xi)), (3)

where the message between nodes xi and xj is (xj − xi), defined as the relative feature positions between
the two nodes, or “node centralization” (Tailor et al., 2021). We observe that in Eq. 3 the latent embedding
zi updated for node xi in a single message-passing layer encodes the maximum of the concatenation ∥ of the
positional feature xi ∈ X of a vertex and its boundary information defined by the relative positions between
its neighboring nodes. A multi-layer perceptron (MLP) with trainable weights Θ linearly projects the local
geometric information to a latent space and the non-linearity of the message-passing layer is then carried
out by a non-linear activation function applied to the layer output zi.

Compared to GCN, the message-passing layers leverage the local geometric features (i.e., relative positional
features), which are previously demonstrated to be effective on 3D point sets, to learn expressive and robust
node-wise embeddings for polygons. Noted that in typical graph autoencoder, the GCN layers apply the
summation pooling to aggregate neighboring convolution features x′

j , instead in the message-passing layers,
we propose to use the maximum pooling to aggregate the local geometric features. Here, the use of maximum
aggregation/pooling aims to generate output features that outline representative elements and capture the
skeleton of point sets (Xu et al., 2019; Qi et al., 2017a;b; Wang et al., 2019).

2.3 Graph Reconstruction

Graph decoder targets to reconstruct the graph data G from latent embeddings Z, such that the reconstructed
graph G′ to be as close as to the input graph G. In CGAE, we propose two kinds of decoder to reconstruct
the node features X ′ and edge features A′ of graph G′, respectively.

Node Feature Reconstruction We apply a symmetric message-passing network architecture (Park et al.,
2019) in CGAE’s decoders to reconstruct the node feature matrix X ′ from the latent embeddings Z. Con-
cretely, given embeddings Z, a single-layer node decoder is defined in Eq.4 as:

x′
i = max

ai,j∈A=1
Θ⊤(zi ∥ (zj − zi)), (4)

where the MLP eventually projects latent node-wise embedding zi ∈ Z to input node-wise embedding,
x′

i ∈ X ′. Similar to the node decoder in GAE (Yan et al., 2021), the node reconstruction loss of CGAE is
based on the mean squared error (MSE) (Eq. 5):

LN = 1
n

n∑
i=1

(x′
i − xi)2. (5)

Edge Reconstruction We add an additional edge decoder, the inner product decoder from Kipf & Welling
(2016), to reconstruct the topological structure A′ of graph. The edge decoder leverages the latent node-wise
embeddings Z, with σ being a sigmoid activation function and p(y|x) a conditional probability, mapping
ai,j ∈ A′ to (0, 1) (Eq. 6):

A′ = p(A′|Z) = σ(ZZ⊤), (6)
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To compute the reconstruction loss between the graph adjacency A and reconstructed adjacency A′, we
produce binary labels for edges based on the ground-truth adjacency A. For matrix A values indexed by
{i, j}, values where ai,j = 1 are positive, and values where ai,j = 0 are negative. The indexes of positive
ground-truths are then pos{i,j} and negative ground-truths neg{i,j}. For balanced binary label representation
feeding to edge reconstruction, we randomly sample equal amounts of negative and positive ground-truths
from adjacency A. We compute the edge reconstruction loss with the binary cross entropy error between
the positive and negative edge labels (Eq. 7):

LE = − log(A′
pos{i,j}

) − log(1 − A′
neg{i,j}

) (7)

where A′
pos{i,j}

denotes the reconstructed edge value with ground-truth positive edge indexes and A′
neg{i,j}

denotes the reconstructed edge value with ground-truth negative edge indexes.

Incorporating edge reconstruction to CGAE is necessary as the topological structure captures non-trivial
connectivity information of the polygon graphs, to expressively outline the shape of the geometry. The
decoders and edge reconstruction loss thus inherently force the graph encoder to learn latent embeddings
that encode salient topological information of input graphs.

3 Contrastive Graph Autoencoder

The key contribution of CGAE is the contrastive learning of latent graph embeddings ZG. At its core,
contrastive learning maximizes the mutual information agreement between the positive contrastive pairs and
push the negative contrastive pairs apart in training batches (Hjelm et al., 2019; Belghazi et al., 2018). It
thus forces similar features to be closer in latent space.

Graph Augmentation As a desirable property, if graph embeddings are robust to node corruptions
(i.e., if random node elimination/addition does not drastically change the semantic representation of the
polygon boundary graph (You et al., 2020)), a trained CGAE should enable reconstructing uncorrupted
node features from corrupted latent embeddings Z∗. We apply graph-level augmentations to input data
in graph G = {A, X} and generate contrastive pairs for learning by perturbing edge information of G
by randomly adding an r percentage of new edges to the adjacency matrix A, resulting in the perturbed
adjacency matrix A∗ (Fig. 1). For node features of G, we randomly drop an r percentage of nodes along with
corresponding edges, resulting in the corrupted node feature matrix X∗. We define a graph augmentation
function ϕ(A, X|r) on G = {A, X}, and r as a hyper-parameter augmentation ratio. By defining r, ϕ(A, X|r)
returns a corrupted node matrix X∗ ∼ ϕ(A, X|r) and a perturbed edge matrix A∗ ∼ ϕ(A, X|r), respectively.

Corrupted Node and Perturbed Edge Reconstruction The message-passing graph encoder (Eq. 3)
now takes a corrupted node feature x∗

i ∈ X∗ and returns a latent node-wise embedding z∗
i ∈ Z∗

N , with Z∗
N

representing the corrupted latent node-wise embeddings generated based on the corrupted node feature X∗.
We then reconstruct the node-wise embeddings as proposed in Eq. 4 (applied to z∗

i ) and compute the node
reconstruction loss LN as proposed in Eq. 5 (applied to x∗′

i ).

Similarly, the principal prior of edge perturbation is that randomly adding edges as noise to graph con-
nectivity should not alter its semantic information. We therefore reconstruct G’s connectivity from latent
embeddings Z∗ with perturbed edge information. Correspondingly, the message-passing graph encoder in
Eq. 3 takes perturbed edge connection a∗

i,j ∈ A∗ as inputs and returns a latent node-wise embedding z∗
i ∈ Z∗

E ,
where Z∗

E represents the latent node-wise embeddings generated based on the perturbed edge matrix A∗.

We then reconstruct the graph connectivity A∗′ by applying Eq. 6 and compute the edge reconstruction loss
LE as proposed in Eq. 7, applied on A∗′

pos{i,j}
and A∗′

neg{i,j}
. The resulting latent embeddings should thus

be less sensitive to arbitrary variations of boundary edges of polygon geometries, thus robustly capturing
significant shape and semantic information.

Contrastive Learning The main objective of contrastive learning with graph autoencoders is to maximize
the mutual information between the global latent graph embeddings and their augmented counterparts.
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Graph encoders thus learn to encode compact graph and node-wise embeddings tolerant to node corruptions
(i.e., random node dropping) and edge perturbation (i.e., random edge addition). The latent embedding
representing polygon shapes thus become more robust to geometric transformations and minor variations of
boundary information.

We thus compute three kinds of latent graph embeddings ZG, ZG
N and ZG

E ∈ Rd from the latent node-
wise embeddings Z, Z∗

N and Z∗
E ∈ Rn×d with a graph readout function: ZG = Readoutmean(Z), where

Readoutmean(·) is a global average pooling to compute graph-wise representations from node-wise embed-
dings. We put latent graph embeddings in training batches with pre-defined batch size b (b = 32), giving:
BZG = [ZG

1 , ZG
2 , ..., ZG

b ]⊤, BZG
N

= [ZG
N1

, ZG
N2

, ..., ZG
Nb

]⊤, BZG
E

= [ZG
E1

, ZG
E2

, ..., ZG
Ei

]⊤, where BZG , BZG
N

and
BZG

E
∈ Rb×d are training batches of latent graph embeddings ZG, ZG

N and ZG
E . A contrastive loss function is

then defined to maximize the mutual information agreement of positive contrastive pairs and push negative
contrastive pairs apart in batches. Here, we apply the normalized temperature-scaled cross-entropy loss
(NT-Xent) from Sohn (2016) and Chen et al. (2020) to compute the contrastive loss of contrastive pairs
LCN (ZG

i , ZG
Ni

) and LCE(ZG
i , ZG

Ei
) as in Eq. 8:

LCN (ZG
i , ZG

Ni
) = − log

exp(sim(ZG
i , ZG

Ni
)/τ)∑b

i

∑b
j,i ̸=j exp(sim(ZG

i , ZG
Nj

)/τ)
, (8)

where τ is a temperature-scaled value that controls the impact of positive (i.e., (ZG
i , ZG

Ni
)) vs. negative (i.e.,

(ZG
i , ZG

Nj
)) contrastive pairs, and sim(·) is a similarity function that measures the similarity of embeddings,

which is defined as the cosine similarity. Following Eq. 8, the average NT-Xent loss on batches (BZG , BZG
N

)
and (BZG , BZG

E
) is defined as (Eq. 9):

LCN (BZG , BZG
N

) = 1
b

b∑
i=1

LCN (ZG
i , ZG

Ni
). (9)

We optimize the CGAE with the reconstruction loss LRec and contrastive loss LC . According to Eq. 5 and
7, LRec is defined as LRec = LN +LE , and based on Eq. 8 and Eq. 9, LC is defined as LC = LCN +LCE . We
then optimize the CGAE by minimizing the sum of losses L = LRec +LC . CGAE is designed to cluster graph
embeddings of complex shapes using latent node-wise embeddings Z generated from the message-passing
encoder in CGAE. The global graph embeddings ZG are pooled by a readout layer (i.e., Readoutmean)
from Z. Since graph embeddings ZG encode the geometric and boundary information of polygons in latent
space, polygons with geometrically similar shapes are clustered, and hence retrieved by finding the k nearest
neighbours (kNN) of latent graph embeddings of query shapes.

4 Experiments

We evaluate the performances of proposed CGAE against two baselines: GAE (Yan et al., 2021) and NUFT
(Mai et al., 2023; Jiang et al., 2019) on polygon retrieval from the Glyph, Open Street Map (OSM) and
Melbourne datasets (Appendix A). We conduct an ablation study to demonstrate the effectiveness of the
proposed message-passing encoder-decoder structure and the contrastive components of CGAE. Stepwise, we
first replace the GCN backbone in GAE with a message-passing backbone, and enrich the baseline GAE (i.e.,
GAE (LN )) by adding the edge reconstruction loss LE (i.e., GAE (LN +LE)), and the proposed contrastive
loss LC , resulting in CGAE and evaluate performance gains. The progressively refined GAEs are applied on
three distinct backbone networks: (1). the GCN by Kipf & Welling (2017), (2). the message-passing neural
network: EdgeConv (Wang et al., 2019), to test the benefit of learning local geometric features (i.e., the
relative positions between nodes), and (3). the graph isomorphic network (GIN (Xu et al., 2019)). Model
training and parameters for experiments are described in Appendix B.

Model Discriminability (Glyph Dataset) A robust and effective autoencoder generates highly discrim-
inative latent embeddings for geometrically transformed polygons. We train a CGAE (EdgeConv backbone)
and a baseline GAE on the synthetic Glyph-O dataset, and visualize the respective latent embeddings in
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(a) t-SNE plot of GAE. (b) t-SNE plot of CGAE.

Figure 2: t-SNE plot of latent feature embeddings (auto learning rate, perplexity=50, iterations=1000) of
the feature embeddings of models tested on dataset Glyph-O.

2D space via a t-SNE plot (Van der Maaten & Hinton, 2008) (Fig. 2). The latent embeddings of CGAE
are highly discriminative and less noisy than in GAE. This qualitatively indicates the effectiveness of in-
corporating graph augmentation, contrastive learning, and message-passing layers into graph autoencoder
architectures. To investigate the gains brought by these components individually, we quantitatively evaluate
the performance on a retrieval task with geometrically transformed (rotated, skewed and scaled) shapes
(Glyph dataset).

Table 1 reports the polygon retrieval performance and standard deviations of GAEs and NUFT on the
Glyph dataset using shape similarity (Hausdorff distance, Appendix D) between the query shape and its k
nearest neighbors (for k 1 to 6). The CGAE-EdgeConv achieves the best performance on Glyph-O, Glyph-
R, Glyph-SC and Glyph-SK datasets for all k neighbors. By ablation we identify the performance gains of
CGAE brought by edge reconstruction loss LE over the baseline GAE. Reconstructing the edge connectivity
generates latent embeddings that encode information enabling the effective discovery of similar shapes. By
comparing models with different backbones, EdgeConv achieves the best performance on both GAE and
CGAE. This suggests that message-passing graph encoders learning of local geometric information (i.e.,
node centralization and relative positions) is key for superior performance on shape retrieval w.r.t geometric
transformations. While the CGAE performs best on all Glyph datasets, contrastive learning has the highest
impact on encoding skewed polygons, where in Glyph-SK CGAE-EdgeConv leads to largest improvement
compared to GAE-EdgeConv.

Building Polygon Retrieval (OSM Dataset) Table 2 reports the polygon retrieval performances and
standard deviations of models on two variants of the OSM building dataset: (1) original polygons (OSM-O)
and (2) rotated and mirrored polygons (OSM-R). The CGAE performs best among all models on both. By
ablation, we find that GAE with edge reconstruction loss LE generalizes better on both OSM-O and OSM-R
building footprints compared to baseline GAE but with limited performance gains (OSM-O: 1-NN (0.218 →
0.208) to 6-NN (0.271 → 0.267) and OSM-R: 1-NN (0.323 → 0.308) to 6-NN (0.400 → 0.396)). Message-
passing backbone networks (either GIN or EdgeConv) bring significant model generalizability (Table 2).
Extracting shapes from geometrically transformed datasets is challenging, yet CGAE with contrastive loss
and edge reconstruction loss LE + LC is robust to polygon rotations. Typically, CGAE-EdgeConv shows
large improvements on OSM-R compared with GAE-EdgeConv (i.e., 1-NN (0.235 → 0.225) to 6-NN (0.320 →
0.301)).
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Table 1: CGAE performance against baselines on the Glyph dataset. Hausdorff distance (± standard
deviation) – best in bold (the smaller the better).

Dataset Model Backbone 1-NN 2-NN 3-NN 4-NN 5-NN 6-NN

NUFT MLP 0.304
±0.230

0.338
±0.227

0.354
±0.225

0.365
±0.226

0.371
±0.0.224

0.379
±0.223

G
ly

p
h

-O

GAE
(LN ) GCN 0.193

±0.154
0.229

±0.157
0.245

±0.159
0.257

±0.161
0.264

±0.160
0.271

±0.161

GAE
(LN + LE )

GCN 0.183
±0.150

0.218
±0.156

0.236
±0.156

0.245
±0.159

0.252
±0.161

0.260
±0.161

GIN 0.159
±0.124

0.192
±0.128

0.207
±0.128

0.217
±0.133

0.224
±0.134

0.232
±0.136

EdgeConv 0.152
±0.114

0.183
±0.116

0.199
±0.121

0.211
±0.123

0.218
±0.125

0.225
±0.127

CGAE
(LN + LE + LC )

GCN 0.174
±0.140

0.207
±0.144

0.222
±0.147

0.232
±0.148

0.239
±0.147

0.245
±0.149

GIN 0.159
±0.125

0.189
±0.129

0.203
±0.130

0.213
±0.130

0.219
±0.133

0.226
±0.133

EdgeConv 0.150
±0.110

0.180
±0.112

0.193
±0.112

0.203
±0.112

0.209
±0.113

0.213
±0.116

NUFT MLP 0.417
±0.234

0.442
±0.229

0.456
±0.227

0.463
±0.226

0.470
±0.224

0.472
±0.220

G
ly

p
h

-R

GAE
(LN ) GCN 0.271

±0.154
0.302

±0.154
0.318

±0.155
0.328

±0.154
0.335

±0.154
0.343

±0.153

GAE
(LN + LE )

GCN 0.263
±0.156

0.295
±0.157

0.311
±0.161

0.321
±0.163

0.329
±0.163

0.340
±0.165

GIN 0.231
±0.131

0.261
±0.137

0.275
±0.140

0.287
±0.146

0.296
±0.148

0.304
±0.149

EdgeConv 0.219
±0.114

0.248
±0.118

0.263
±0.123

0.275
±0.127

0.285
±0.127

0.292
±0.131

CGAE
(LN + LE + LC )

GCN 0.245
±0.140

0.270
±0.142

0.285
±0.141

0.294
±0.143

0.304
±0.143

0.311
±0.144

GIN 0.222
±0.121

0.244
±0.125

0.257
±0.125

0.266
±0.128

0.272
±0.128

0.278
±0.130

EdgeConv 0.212
±0.103

0.235
±0.105

0.246
±0.106

0.256
±0.106

0.262
±0.109

0.269
±0.109

NUFT MLP 0.465
±0.245

0.488
±0.242

0.495
±0.239

0.501
±0.237

0.502
±0.236

0.505
±0.234

G
ly

p
h

-S
K

GAE
(LN ) GCN 0.284

±0.144
0.310

±0.146
0.321

±0.149
0.330

±0.146
0.337

±0.149
0.344

±0.150

GAE
(LN + LE )

GCN 0.272
±0.145

0.301
±0.148

0.313
±0.151

0.321
±0.151

0.330
±0.151

0.337
±0.154

GIN 0.246
±0.136

0.278
±0.145

0.294
±0.153

0.306
±0.160

0.314
±0.160

0.322
±0.165

EdgeConv 0.234
±0.114

0.261
±0.121

0.278
±0.127

0.290
±0.131

0.300
±0.133

0.307
±0.135

CGAE
(LN + LE + LC )

GCN 0.256
±0.130

0.279
±0.132

0.291
±0.134

0.300
±0.135

0.307
±0.137

0.312
±0.137

GIN 0.228
±0.113

0.249
±0.117

0.260
±0.117

0.268
±0.121

0.272
±0.121

0.278
±0.123

EdgeConv 0.219
±0.095

0.240
±0.097

0.252
±0.100

0.261
±0.101

0.266
±0.102

0.271
±0.104

NUFT MLP 0.336
±0.223

0.360
±0.223

0.374
±0.222

0.379
±0.221

0.390
±0.224

0.393
±0.220

G
ly

p
h

-S
C

GAE
(LN ) GCN 0.229

±0.153
0.257

±0.156
0.268

±0.161
0.278

±0.163
0.287

±0.165
0.293

±0.167

GAE
(LN + LE )

GCN 0.224
±0.158

0.253
±0.167

0.265
±0.168

0.279
±0.176

0.288
±0.179

0.293
±0.181

GIN 0.189
±0.126

0.215
±0.135

0.230
±0.141

0.240
±0.146

0.248
±0.149

0.257
±0.150

EdgeConv 0.181
±0.113

0.205
±0.123

0.221
±0.126

0.230
±0.132

0.239
±0.133

0.245
±0.138

CGAE
(LN + LE + LC )

GCN 0.208
±0.138

0.230
±0.140

0.243
±0.146

0.252
±0.148

0.260
±0.146

0.262
±0.149

GIN 0.182
±0.116

0.203
±0.120

0.213
±0.124

0.219
±0.124

0.225
±0.126

0.230
±0.129

EdgeConv 0.173
±0.100

0.194
±0.105

0.205
±0.104

0.213
±0.108

0.219
±0.110

0.223
±0.110

We emphasize that all models were only trained on the synthetic Glyph dataset, and evaluated on the OSM
building dataset to explore model generalizability. Compare the performance on Glyph-O and Glyph-R
(Table 1) with that on OSM-O and OSM-R (Table 2). The baseline GCN achieves comparable performances
on both Glyph-O and OSM-O datasets (from 1-NN (0.193 → 0.218) to 6-NN (0.271 → 0.271)) but the model
degrades when generalizing from Glyph-R to OSM-R: 1-NN (0.271 → 0.323) to 6-NN (0.343 → 0.400). In
contrast, the CGAE-EdgeConv only suffers limited degradation generalizing from Glyph-R to OSM-R: from
1-NN (0.212 → 0.225) to 6-NN (0.269 → 0.301).
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When comparing CGAE-EdgeConv to baseline GAE-EdgeConv the performance gain on OSM-O is small (1-
NN (0.174 → 0.172), 2-NN (0.191 → 0.190) and 3-NN (0.202 → 0.200)). This small performance difference
between CGAE-EdgeConv vs. GAE-EdgeConv is mainly because of the polygon geometries in OSM dataset
manifesting low variability (without any geometric transformation, i.e., rotations). The task is therefore
not challenging for the baselines, as shown in Fig. 7 (Appendix E) enabling GAE-GCN to achieve com-
parable retrieval performance. Despite the small performance gain, the smaller standard deviations of our
CGAE-EdgeConv in Table 2 (i.e., from 1-NN ±0.126 to 6-NN ±0.134) suggest a more stable and robust
model performance compared to GAE-EdgeConv (i.e., from 1-NN ±0.131 to 6-NN ±0.148), with reduced
performance uncertainty.

Table 2: CGAE performance against baselines on the OSM building dataset. Hausdorff distance (± standard
deviation) – best in bold (the smaller the better). Qualitative results are displayed in Appendix E.1.

Dataset Model Backbone 1-NN 2-NN 3-NN 4-NN 5-NN 6-NN

NUFT MLP 0.302
±0.238

0.327
±0.241

0.341
±0.245

0.352
±0.250

0.354
±0.246

0.363
±0.250

O
SM

-O

GAE
(LN ) GCN 0.218

±0.174
0.238

±0.178
0.250

±0.178
0.261

±0.184
0.265

±0.186
0.271

±0.187

GAE
(LN + LE)

GCN 0.208
±0.169

0.232
±0.175

0.245
±0.182

0.254
±0.184

0.259
±0.186

0.267
±0.189

GIN 0.187
±0.145

0.209
±0.154

0.221
±0.158

0.229
±0.158

0.237
±0.162

0.243
±0.164

EdgeConv 0.174
±0.131

0.191
±0.133

0.202
±0.134

0.212
±0.139

0.219
±0.142

0.228
±0.148

CGAE
(LN + LE + LC)

GCN 0.200
±0.159

0.220
±0.162

0.231
±0.163

0.238
±0.165

0.244
±0.166

0.251
±0.170

GIN 0.184
±0.144

0.203
±0.149

0.213
±0.150

0.221
±0.151

0.227
±0.154

0.231
±0.153

EdgeConv 0.172
±0.126

0.190
±0.129

0.200
±0.132

0.208
±0.134

0.214
±0.135

0.217
±0.134

NUFT MLP 0.431
±0.269

0.461
±0.260

0.481
±0.258

0.490
±0.253

0.502
±0.252

0.508
±0.251

O
SM

-R

GAE
(LN ) GCN 0.323

±0.211
0.353

±0.204
0.373

±0.204
0.384

±0.202
0.394

±0.200
0.400

±0.199

GAE
(LN + LE)

GCN 0.308
±0.208

0.344
±0.211

0.359
±0.208

0.379
±0.208

0.387
±0.207

0.396
±0.206

GIN 0.267
±0.181

0.302
±0.185

0.325
±0.188

0.340
±0.188

0.353
±0.191

0.362
±0.190

EdgeConv 0.235
±0.145

0.266
±0.152

0.285
±0.152

0.302
±0.155

0.311
±0.158

0.320
±0.156

CGAE
(LN + LE + LC)

GCN 0.292
±0.195

0.320
±0.192

0.338
±0.190

0.351
±0.191

0.359
±0.190

0.369
±0.189

GIN 0.245
±0.161

0.277
±0.166

0.296
±0.165

0.310
±0.170

0.317
±0.169

0.326
±0.167

EdgeConv 0.225
±0.133

0.255
±0.136

0.272
±0.135

0.286
±0.137

0.295
±0.137

0.301
±0.138

Building Polygon Retrieval (Melbourne Dataset) We finally test the large-scale real-world shape
retrieval performances of GAEs and NUFT on the Melbourne building dataset, with uncontrolled shapes,
where GAEs were trained on the synthetic Glyph dataset. Table 3 shows that CGAE-EdgeConv again
outperforms other models by a large margin, especially the baseline GAE that cannot handle multipart
polygons. Comparing CGAE-EdgeConv with GAE-EdgeConv implies that the incorporation of contrastive
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Table 3: CGAE performance against baselines on the Melbourne building dataset. Hausdorff distance (±
standard deviation) – best in bold (the smaller the better). Qualitative results are displayed in Appendix E.2.

Dataset Model Backbone 1-NN 2-NN 3-NN 4-NN 5-NN 6-NN

NUFT MLP 0.382
±0.230

0.401
±0.230

0.413
±0.232

0.418
±0.232

0.424
±0.232

0.429
±0.233

M
el

bo
ur

ne

GAE
(LN ) GCN 0.588

±0.251
0.597

±0.246
0.598

±0.246
0.604

±0.245
0.602

±0.242
0.608

±0.243

GAE
(LN + LE)

GCN 0.579
±0.254

0.588
±0.249

0.591
± 0.246

0.592
±0.246

0.596
±0.244

0.598
±0.245

GIN 0.566
±0.257

0.572
±0.251

0.577
±0.250

0.579
±0.249

0.581
±0.246

0.583
±0.247

EdgeConv 0.223
±0.148

0.255
±0.156

0.273
±0.159

0.283
±0.161

0.290
±0.162

0.297
±0.164

CGAE
(LN + LE + LC)

GCN 0.575
±0.255

0.584
±0.248

0.587
±0.246

0.590
±0.246

0.589
±0.245

0.593
±0.247

GIN 0.555
±0.260

0.562
±0.253

0.565
±0.252

0.568
±0.251

0.570
±0.251

0.572
±0.250

EdgeConv 0.214
±0.141

0.242
±0.146

0.257
±0.149

0.266
±0.150

0.273
±0.151

0.278
±0.151

loss brings positive effects to retrieval of multipart (incl. with holes) polygons (from 1-NN (0.223 → 0.214)
to 6-NN (0.297 → 0.278)). Overall, the proposed CGAE demonstrates a strong capability of latent feature
encoding even for complex shapes. The model can identify and retrieve similar shapes, even from large-scale
real-world geometry datasets and on shapes with nuanced geometries of the kind never seen in training.

5 Discussion

Node centralization in message-passing graph autoencoders is key for shape retrieval performance as shown
through ablation studies on synthetic (Glyph), controlled (OSM), and uncontrolled (Melbourne) datasets,
compared to graph (Laplacian) convolution layers. The relative node position message computed in Edge-
Conv (i.e., node centralization) and passed between nodes of local sub-graphs encodes highly expressive local
geometric information. While this has been previously shown effective on unstructured 3D point cloud learn-
ing (Qi et al., 2017a;b; Wang et al., 2019), our study documents the significance of learning local geometric
features on 2D vector polygons.

Joint reconstruction of edge and node features from latent node-wise embeddings enables GAEs to exploit
the structural and geometric information for finer feature encoding. Our ablation study shows that the
GAE with the reconstruction loss LN + LE overperforms baseline GAE with LN independently of network
backbones. This indicates the importance of learning graph connectivity and structural information for
graph feature encoding.

Graph augmentation and contrastive learning further improve latent feature generalization and robustness
as shown by CGAE’s performance on Glyph-R, Glyh-SK (Table 1) and OSM-R (Table 2). The CGAE-
EdgeConv combination achieves strong performance on geometrically transformed polygons over baseline
GAE-EdgeConv, as shown by consistently smaller standard deviations of Hausdorff distance on both Glyph
and OSM datasets. The information captured by the latent graph embedding is enhanced through con-
trastive learning and contrastive loss from augmented signals (i.e., based on random node dropping and edge
perturbation). This supports our hypothesis that the graph encoder is capable of learning compact graph
embeddings that are tolerant to node corruptions and edge perturbations.

CGAE’s superior performance (Table 3) demonstrates how contrastive learning aids in model generalisa-
tion. The polygons in Glyph and OSM datasets have comparatively simple boundaries (i.e., small vertex
counts) that encapsulate distinct geometric and semantic information (i.e., shapes of characters), whereas
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the boundaries of complex building footprints in Melbourne dataset may consist of many vertices. CGAE
generalizes effectively the geometric information learned from simple polygons to complex shapes, demon-
strating a desirable model property, i.e., decoupling of shape detail (i.e., polygon trivial vertex count) from
retrieval accuracy.

6 Conclusion

We present a novel unsupervised contrastive graph autoencoder (CGAE) for robust polygon retrieval of build-
ing polygons. We conduct ablation studies on multiple polygonal datasets to demonstrate the effectiveness
of proposed CGAE, and present empirical evidence that the proposed CGAE with graph message-passing
encoder-decoder, multiple reconstruction losses and contrastive learning outperforms a baseline graph au-
toencoder with a single node reconstruction loss, as well as baselines with GCN or MLP backbones. The
proposed CGAE exhibits desirable characteristics for retrieval of spatial geometries, such as building poly-
gons: is robust to variable geometry vertex counts; can retrieve complex polygons with or without
holes; is robust to polygon rotations; can effectively generalize to large-scale polygon maps without fur-
ther model fine-tuning. Note that the generalisation of CGAE to arbitrary graphs that only capture topology
( e.g., social networks) but not graph geometry or the application to ensembles of shapes defining semantics
(e.g., terrace houses (Lüscher et al., 2009)) are not addressed here.

Reproducibility Statement

Source code for method implementation and datasets for reproducing experiment results is available at
https://github.com/zexhuang/CGAE.
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Appendix

The appendix is organized into the following sections:

• Appendix A Details of Glyph polygons, OSM and Melbourne building footprint datasets

• Appendix B Model parameters & training setup

• Appendix C Listing of notations and learnable parameters in ML models

• Appendix D Details of Hausdorff distance metric

• Appendix E Qualitative results that support results in Section 4

• Appendix F Qualitative results of Non-ML based polygon shape retrieval methods

• Appendix G Persistent diagrams describing the topological features of query shapes tested in Mel-
bourne dataset

A Datasets

To evaluate the performance of CGAE, we conduct retrieval experiments on three polygon datasets and
compare model performance with the baseline model GAE of Yan et al. (2021). For consistent shape
performance on the three 2D polygon datasets noted below, we center and normalize the coordinates of
polygon vertices to the range [−1, 1].

Glyph polygons. Anonymous (2023) introduce a synthetic dataset of highly variable geometric shapes for
model training and evaluation. The synthetic Glyph dataset consists of 26 Latin alphabet glyph geometries of
alphabet letters (semantic class A to Z) of fonts gathered from an online source (Google, 2010). Anonymous
(2023) extract the boundaries of glyphs for 1,413 sans serif and 1,002 serif fonts, to produce 2D simple
polygon geometries compliant with Open Geospatial Consortium (2003). Geometric transformations (i.e.,
rotate, scale and skew) are applied to 2D simple polygons for data augmentations. Each glyph geometry
sample was rotated by a random angle in [−75◦, 75◦]; sheared by a random angle in [−45◦, 45◦] on the x and
y axes; and scaled by a random factor in [0.1, 2] on the x and y axes. After geometric transformations, four
categories of datasets are generated, including the original dataset: Glyph-O for original polygons, Glyph-R
for rotated polygons, Glyph-SC for scaled polygons, and Glyph-SK for skewed polygons. The four Glyph
datasets are combined and divided into a training/validation/test set (60 : 20 : 20). Examples of glyph
geometries are displayed in Fig. 3.

Figure 3: The top 10 samples from Glyph-O dataset in semantic class A to J .

OSM buildings. We further use the benchmark dataset by Yan et al. (2021) for mode evaluation. The
dataset contains 10,000 real-world building footprints extracted from OSM (OpenStreetMap contributors,
2023), labelled in 10 categories based on a template matching to letters (Yan et al., 2017). 50% of building
footprints are randomly rotated or reflected. We categorize the dataset into: OSM-O and OSM-R, where
OSM-O contains 5000 canonical building footprints, and OSM-R contains 5000 randomly rotated or reflected
buildings. The dataset includes additional standard polygons as query shapes, depicted in Fig. 4, to evaluate
how the performance of CGAE, trained on a synthetic polygonal dataset, generalizes to a real-world building
footprint dataset, in comparison to the GAE baseline.
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(a) 10 standard shapes of canonical building polygons.

(b) 10 standard shapes of rotated or reflected building polygons.

Figure 4: Standard shapes of dataset OSM in 10 categories: E, F, H, I, L O, T, U, Y, Z-shape polygons.

Melbourne footprints. While the synthetic Glyph dataset includes polygon geometries with holes (i.e.,
Latin alphabet letters with holes) and dataset OSM includes real-world building footprints without holes,
we further explore the capability of CGAE in encoding information of polygons with extremely variable
shapes and numerous holes for polygon retrieval. We use the open Melbourne building footprints dataset for
evaluation (CoM Open Data, 2021), comprising the footprints of all structures within the City of Melbourne
in Australia (Fig.5).

While these geometries are annotated with semantic labels such as Building structure, Tram stop, Bridge,
Jetty, Toilet, Train Platform or Ramp. We only investigate models’ performance on retrieving building
structures of similar shapes and exclude these semantic categories, as they do not directly map to footprint
shape.

B Model Training & Parameters

We train all models for 100 epochs with the Adam optimizer (Kingma & Ba, 2015) and an initial learning
rate of 0.0001. We reduce the scale of the learning rate with a cosine annealing schedule (Loshchilov &
Hutter, 2017) for better model convergence. We set the training batch size b = 32 and apply the same batch
size to contrastive loss in CGAE. We set the augmentation ratio r to 20% for both random node dropping
and edge perturbation in graph augmentation.

C Algorithm Statement

We depict the algorithmic sequence of CGAE and its relationship with the Equations noted in the main
paper in Fig. 6.

D Evaluation Metric

We use the Hausdorff distance metric (Rucklidge, 1996) to measure the similarity between the query and
extracted polygons. The Hausdorff distance has the advantage of taking the position, shape and orientation of
objects measured into account when computing the similarity of two geometries (i.e., point sets) (Veltkamp,
2001; Min et al., 2007). Let A and B represent two closed point sets, and pa, pb are two points ∈ A and
B, respectively. ∥ · ∥ is a distance metric, typically Euclidean distance. The Hausdorff distance H(A, B) ∈
[0.0, +∞] is the maximum of all the shortest distances from pa ∈ A to the closest point pb ∈ B, or formally
(Eq. 10):

H(A, B) = max{h(A, B), h(B, A)}, where

h(A, B) = max
pa∈A

{ min
pa∈B

∥pa − pb∥}

h(B, A) = max
pb∈B

{ min
pA∈A

∥pa − pb∥}.

(10)
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Figure 5: The map visualisation of Melbourne building footprint dataset (CoM Open Data, 2021), recorded
in May, 2020. Purple structures are bridges and green structures are buildings.
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Figure 6: Algorithm statement of CGAE, which includes a listing of learnable parameters and references to
equations Eq. 3 - 8.
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E Qualitative Results

E.1 OSM Dataset

We present the polygon retrieval performance of GAEs with ten standard polygons (Fig. 4) as queries, on
the OSM dataset (Yan et al., 2021), illustrating the qualitative performances of baseline GAE and CAGE on
the OSM dataset in Fig. 7 and 8 (OSM-O), Fig. 10 and 11 (OSM-R), respectively. We also add the results
of the benchmark NUFT method in Fig. 9 (OSM-O) and Fig. 12 (OSM-R).

CGAE handles both simple query shapes as well as more challenging query templates when retrieving
geometries from OSM-R, matching semantic categories and shapes. In contrast, the baseline GAE only
extracts visually similar polygons with correct semantic categories for simple query shapes, such as Y, U, I, O
and H, and fails to differentiate shapes with added boundary complexity, e.g., E, F and T (Fig. 10). Baseline
GAE incorrectly extracts multiple I and L-shaped polygons as matches for the query template E, and U
and I-shaped polygons for a F query shape, as reflected in the high Hausdorff distance indicating shape
dissimilarity between the extracted and query polygons.

The proposed CGAE performs more robustly on the rotated query shapes and extracts polygons with the
correct semantic category for E (Fig. 11). For the challenging F-shaped query, CGAE deteriorates only
from the 3rd position (with an H-shaped polygon) and on the 5th and 6-NN (extracting E-shaped polygons).
Note that overall, the incorrectly retrieved polygons are still geometrically more similar to the query shape,
as reflected by the low Hausdorff distance.

This further illustrates the desired qualities of the proposed model CGAE, i.e., robustness to polygon rota-
tions, and the ability to generalize to real-world shapes (e.g., building footprints from OSM).

We note that comparatively to GAE and CGAE, the NUFT-based method struggles, in the case of the shape
of L already at the 1-NN on OSM-O, and produces somewhat unrealiable results on OSM-R (e.g., E).

E.2 Melbourne Dataset

We present the polygon retrieval performance of GAEs on the Melbourne building footprint dataset qual-
itatively in Fig. 13 and 15 (Melbourne), Fig. 14 and 16 (Melbourne simplified), and add the results of the
benchmark NUFT method in Fig. 17 (Melbourne) and Fig. 18 (Melbourne simplified).

For simpler circular query polygons without internal holes, CGAE successfully retrieves geometrically similar
polygons for query geometries with low Hausdorff distances (< 0.5) while GAE identifies shapes with a
relatively higher Hausdorff distance (> 0.5). With more complex circular polygons with a single hole, both
GAE and CGAE successfully identify matching counterparts. CGAE finds highly similar geometries with
complex exteriors, while GAE returns polygons with over-simplified exteriors, less geometrically similar to
the query templates. This performance of GAE is deteriorating with more and more complex shapes, while
CGAE maintains robust performance.

Further, to qualitatively verify that the CGAE is independent of polygonal vertex counts, we present the
retrieval results with query shapes simplified by Douglas & Peucker (1973) for Melbourne dataset.

We note that compared to GAE and CGAE, the NUFT-based method underperforms. In particular, we note
a deterioration of performance when it comes to polygons with holes, where this significant characteristic of
the shapes is, inconsistently, neglected.
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Figure 7: Polygon retrievals of GAE-GCN (baseline) on OSM-O using ten standard shapes as queries.
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Figure 8: Polygon retrievals of CGAE-EdgeConv on OSM-O using ten standard shapes as queries.
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Figure 9: Polygon retrievals of NUFT on OSM-O using ten standard shapes as queries.
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Figure 10: Polygon retrievals of GAE-GCN (baseline) on OSM-R using ten standard shapes as queries.
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Figure 11: Polygon retrievals of CGAE-EdgeConv on OSM-R using ten standard shapes as queries.
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Figure 12: Polygon retrievals of NUFT on OSM-R using ten standard shapes as queries.
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Figure 13: GAE-GCN (baseline) polygon retrieval on Melbourne building footprint dataset.
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Figure 14: GAE-GCN (baseline) polygon retrieval on Melbourne building footprint dataset simplified by
Douglas-Peucker algorithm (Douglas & Peucker, 1973) with ϵ = 0.00002.
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Figure 15: CGAE-EdgeConv polygon retrieval on Melbourne building footprint dataset.
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Figure 16: CGAE-EdgeConv polygon retrieval on Melbourne building footprint dataset simplified by
Douglas-Peucker algorithm (Douglas & Peucker, 1973) with ϵ = 0.00002.
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Figure 17: NUFT polygon retrieval on Melbourne building footprint dataset.
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Figure 18: NUFT polygon retrieval on Melbourne building footprint dataset simplified by Douglas-Peucker
algorithm (Douglas & Peucker, 1973) with ϵ = 0.00002.
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F Non-ML based Benchmarks

For completeness, we present the qualitative polygon retrieval performance on the Melbourne dataset, using
the turning function (Arkin et al., 1991) in Fig. 19 (Melbourne) and 20 (Melbourne simplified); and using
the Procrustes method (Goodall, 1991) in Fig. 21 (Melbourne) and 22 (Melbourne simplified).

F.1 Turning Function

The Turning function (Arkin et al., 1991) (TF) measures the tangent angles of polygons with a monotone
function where function values increase for left-hand turns and decrease for right-hand turns on polygon
boundaries. The accumulated function values (i.e., arc length) are used to compute a distance function (i.e.,
Euclidean distance) for comparing two simple polygons. This method is typically robust under rotation,
translation and scaling but sensitive to non-uniform noise.

Qualitative results in Fig. 19 (Melbourne) and 20 (Melbourne simplified) suggest that TF performs poorly
on polygons without clear turning signals (Fig. 19, row 2 - 4) but performs relatively well on simplified
polygons with salient turning signals (Fig. 20, row 3 and row 5).

F.2 Procrustes Method

Procrustes analysis (Goodall, 1991) discovers optimal geometric transformations (i.e., rotation, scaling and
translation) that minimises the disparity (i.e., the sum of square of the point-wise differences) between two
geometries. The Procrustes method retrieves geometries based on finding the nearest neighbours of queries
with disparity as distance metric. The qualitative results of Procrustes are shown in Fig. 21 (Melbourne)
and 22 (Melbourne simplified). Experimental results suggest that Procrustes is not suitable for handling
complex polygons with holes in the retrieval task.

G Persistent Homology Diagrams

To quantitatively measure the topological signatures of polygons (i.e., 0D connected components and 1D
holes), we display the persistent homology diagram of the 10 query shapes of the Melbourne dataset in
Fig. 23. Sub-figures (a) - (e) show persistent 1D (H1) topological features, suggesting existence of holes in
queries. Sub-figures (f) - (j) show persistent topological features in both H0 and H1, suggesting polygons
with complex exterior boundaries and holes.

We refer the computation of persistent homology of data X ∈ Rd to Zomorodian & Carlsson (2004).
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Figure 19: Polygon retrieval of Turning Function on Melbourne building footprint dataset.

33



Published in Transactions on Machine Learning Research (06/2024)

Figure 20: Polygon retrieval of Turning Function on Melbourne building footprint dataset simplified by
Douglas-Peucker algorithm (Douglas & Peucker, 1973) with ϵ = 0.00002.
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Figure 21: Polygon retrieval of Procrustes method on Melbourne building footprint dataset.
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Figure 22: Polygon retrieval of Procrustes method on Melbourne building footprint dataset simplified by
Douglas-Peucker algorithm (Douglas & Peucker, 1973) with ϵ = 0.00002.
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Figure 23: Persistent diagrams (a) - (j) of query shapes (row 1 -10) of Melbourne dataset. Persistent
diagrams (Zomorodian & Carlsson, 2004) is a plotting of multi-set of points that summarise the topological
signatures of irregular data X ∈ Rd (i.e., 2D or 3D point sets). Birth (X-axis): time when data point P ∈ X
emerge. Death (Y-axis): time when data point P ∈ X disappear. H0: 0-th dimension topological feature
that summarizes the number of connected component of data. H1: 1-th dimension topological feature that
summarizes the number of hole/loop in data.
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