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Abstract

Multimodal in-context learning (ICL) equips Large Vision-language Models
(LVLMs) with the ability to adapt to new tasks via multiple user-provided
demonstrations, without requiring any model parameter updates. How-
ever, its effectiveness is constrained by the token-intensive nature of multi-
modal inputs and the complexity of cross-modal few-shot reasoning, which
together hinder LVLMs from extracting useful patterns from demonstra-
tions. To address these challenges, we propose M²IV, a novel representa-
tion engineering approach that replaces explicit token-level demonstrations
with a set of learnable Multimodal In-context Vectors directly injected into
the residual streams of LVLMs. By analyzing the distinct roles of multi-head
attention (MHA) and multi-layer perceptrons (MLP) in the ICL process,
we design a training strategy that enables M²IV to perform fine-grained
semantic distillation and robust cross-modal representation learning. M²IV
not only improves performance across diverse tasks and LVLMs but also
significantly reduces token overhead, enabling graceful scaling to many-
shot scenarios. To further enhance usability, we introduce VLibrary, a
repository that stores trained M²IVs for flexible retrieval and injection. With
VLibrary, users can steer pre-trained LVLMs in a customized manner that
meets diverse requirements. Extensive experiments demonstrate that M²IV
consistently outperforms vanilla ICL and prior representation engineering
baselines, achieving an average accuracy gain of 3.74% with substantial
improvements in overall efficiency.

1 Introduction

Large Vision-language Models (LVLMs) unify visual and textual modalities within the
representation space of their Large Language Model (LLM) backbones, thereby gaining
advanced multimodal understanding and generation capabilities (Zhou et al., 2022; Zhang
et al., 2024b; Laurençon et al., 2025). They are being deployed in an ever-growing array
of vision–language (VL) applications (Hartsock & Rasool, 2024; Xu et al., 2024). As task
complexity rises, effectively and efficiently guiding LVLMs to adapt to new tasks becomes
increasingly important. In-context learning (ICL) offers a promising solution that allows
models to quickly learn from demonstrations directly inserted into the prompts, without
updating any parameters (Brown et al., 2020; Dong et al., 2022).

Despite recent progress in applying multimodal ICL to tasks such as image captioning
and classification (Yang et al., 2023; Huang et al., 2024), extending it to more complex or
knowledge-intensive tasks remains a fundamental challenge (Li et al., 2024b). This difficulty
stems from two key limitations. First, the token-heavy nature of interleaved image-text
input makes it hard to incorporate external knowledge efficiently. A common four- or
eight-shot prompt introduces far greater inference latency than a single-image input. When
more supporting knowledge is needed (Xia et al., 2024), users may have to split the prompt
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Figure 1: (a) In Vanilla ICL, for a given query sample, we retrieve n instances from a
knowledge base as demonstrations and feed them together with the query sample into
the LVLM. (b) In contrast, we train a set of vectors emulating n-shot ICL using the same
knowledge base and inject these vectors into the LVLM, greatly reducing token consumption
and boosting model performance.

into several segments, as most LVLMs still provide limited context windows. This further
increases latency and can trigger catastrophic forgetting (He et al., 2024). Second, ICL
can be surprisingly unstable due to its high sensitivity to few-shot prompt designs. Even
state-of-the-art (SOTA) models are found to exhibit substantial performance fluctuations
depending on the format, content, and order of the demonstrations provided (DeepSeek-AI
et al., 2025). These challenges are further amplified in multimodal scenarios, where aligning
visual and textual features adds another layer of complexity (Lu et al., 2021; Qin et al., 2025).

To address these issues, representation engineering has emerged as a feasible direction (Chen
et al., 2025a). This line of work views ICL as shifts applied to the model’s internal activations
(Merullo et al., 2023). It extracts these ICL-induced shifts as vectors and reinjects them during
zero-shot inference to implicitly encode task-specific guidance. For instance, Hendel et al.
(2023) derive task vectors from the hidden state of the context’s last token, while Todd et al.
(2024) compute function vectors by averaging the outputs of key attention heads. Although
these methods perform well on simple tasks with clear mappings, they fall short on complex
multimodal tasks like visual question answering (VQA). Consequently, Peng et al. (2025)
propose training in-context vectors to capture richer features. However, their approach still
suffers from rapid degradation as complexity increases. This exposes a shared limitation:
an inability to effectively model intricate interactions in multimodal ICL. To overcome
this shortcoming, two key challenges must be tackled simultaneously: I. identifying the
critical task mappings within individual demonstrations and the interdependencies among
different demonstrations, and II. achieving fine-grained semantic distillation of the complex
multimodal information.

Building on these insights, we introduce M²IV, a novel method that harnesses the distinct
roles of multi-head attention (MHA) and multi-layer perceptrons (MLP) in multimodal
ICL. M²IV assigns a set of learnable vectors to the MHA branch and another set to the MLP
branch at each decoder layer, as illustrated in Figure 1(b). We design a dedicated training
strategy that enables these vectors to absorb the deep semantic patterns captured by MHA
in the demonstrations and to simulate the distilled information produced by MLP. The
experiments show that M²IV achieves SOTA performance in 18 of 21 experiments conducted
on three LVLMs and seven benchmarks, while utilizing only about 24% of the total training
data used by LIVE. Furthermore, M²IV delivers an efficiency breakthrough as the reduction
in inference time fully compensates for the one-time training cost and yields even greater
cost-effectiveness as adoption scales. To further explore the potential of M²IV, we present
VLibrary, a container that stores trained M²IVs and supports on-demand retrieval for plug-
and-play use. VLibrary can be seamlessly incorporated into real-world systems and applied
to address critical challenges in the LVLM domain.
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Our main contributions are: (1) We analyze the unique roles of MHA and MLP in multimodal
ICL, revealing how MHA drives semantic integration and MLP refines fine-grained details.
(2) We propose M²IV, which simultaneously achieves complex semantic understanding and
fine-grained semantic distillation, demonstrating superior performance across three LVLMs
and seven diverse benchmarks. (3) We introduce VLibrary and use it to address three critical
challenges: cross-modal alignment, output customization, and safety, thereby offering a
novel and promising pathway for future LVLM research.

2 Background and Related Works

ICL emerges as a pivotal capability as language models scale (Radford et al., 2019; Garg
et al., 2022) and has since been extended to the multimodal domain. Several LVLMs are
specifically pretrained or fine-tuned to attain multimodal ICL capability. Among the most
notable examples are OpenFlamingo (Awadalla et al., 2023) and IDEFICS (Laurençon et al.,
2024), which serve as key components of our work. With demand for multimodal ICL
steadily increasing, supporting it within fixed context windows has become a critical feature
of modern LVLMs, such as Qwen2.5VL (Bai et al., 2025) and Grok3 (xAI, 2025).

In LVLMs, ICL is defined as the process in which a pretrained model M is provided with a
prompt containing a multimodal context C (absent in zero-shot settings) and a query sample
Q. To generate the answer A, the model computes the conditional probability:

PM (A|Q, C) (1)

via a feed-forward pass1. C includes few-shot demonstrations, as shown in Figure 1(a).
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Figure 2: Overview of applying Function Vector to (a)
the Country-Capital task and (b) the VQA task, which
requires complex reasoning. While it performs well in
(a), it falls short of fully representing the context in (b).

With the prevalence of ICL, re-
searchers have been investigating
its underlying mechanisms (Xie
et al., 2021; Dai et al., 2023), They
point out that key attention dy-
namics, most notably skill neu-
rons and induction heads (Wang
et al., 2022), play a crucial role in
its success. These insights have
driven advances in representation
engineering for ICL. Firstly, Hen-
del et al. (2023) and Todd et al.
(2024) nearly simultaneously pro-
pose Task Vector (TV) and Func-
tion Vector (FV). Building on this,
Liu et al. (2024c) obtain layer-wise
In-Context Vectors (ICVs) by comparing the hidden states of the final tokens in the original
and target sequences, then applying PCA to distill task-relevant information. Expanding
ICV further, Li et al. (2025) propose Implicit ICL (I2CL), which extracts residual stream
deltas at each demonstration’s last token position across layers and utilizes a set of coeffi-
cients to regulate their injection. As noted in §1 and illustrated in Figure 2, these methods
often underperform in multimodal ICL. Peng et al. (2025) attribute this gap to the static
extraction-injection paradigm and propose an attention shift-based training method, LIVE,
yet it still neglects the essential role of fine-grained semantic distillation.

3 Methodology

In this section, we detail the proposed M²IV framework by analyzing the roles of MHA and
MLP in LVLM ICL, which motivates our definition of the M²IV parameters (§3.1). We then
present the complete training strategy (§3.2). Finally, we introduce VLibrary, the storage for
M²IVs (§3.3). The overview pipeline is illustrated in Figure 3.

1We refer to this process as Vanilla ICL. In this work, we focus on image-to-text tasks.
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3.1 Anchoring M²IV

For an L-layer LVLM M processing an input sequence of length I, the residual stream
architecture is recursively defined as follows, with l ∈ {1, 2, . . . , L} and i ∈ {1, 2, . . . , I}:

ai
l = MHA

(
hi

l−1; θl

)
, (2)

mi
l = MLP

(
hi

l−1 + ai
l ; Wl

)
, (3)

hi
l = hi

l−1 + ai
l + mi

l , (4)

where hi
l ∈ RdM denotes the residual stream at layer l and position i, with hidden dimension

dM. The functions MHA (·; θl) : RdM → RdM and MLP (·; Wl) : RdM → RdM denote the
MHA and MLP transformations at layer l, parameterized by θl and Wl , respectively.

Previous research (Chang et al., 2024; Li et al., 2025) has demonstrated that MHA and MLP
branches play distinct roles in ICL. Based on these insights, we infer that in multimodal
ICL, MHA dynamically allocates attention to capture both the internal semantics within
demonstrations and the interactions among them. MLP further extracts, filters, and stores
key information in a fine-grained manner, conveying more aggregated yet nuanced features.
To validate our inferences, we explore their computational invariance for a demonstration
matrix C ∈ RC×dM with C tokens, and two invariance properties are established.
Theorem 1 (MHA Computational Invariance). There exists Ψ : DΨ → RdM such that, for any
query matrix Q ∈ RI×dM and residual stream hi ∈ RdM , there exist ζ i, ηi ∈ R satisfying:

Attn
(

hi,
[
C⊤ Q⊤]⊤ ,

[
C⊤ Q⊤]⊤) = ζ i · Ψ

(
hi, C, C

)
+ ηi · Attn

(
hi, Q, Q

)
, (5)

where Attn (·) is a function denoting the self-attention mechanism. The query matrix Q is Q =
concat

(
Encimg (I) , Enctxt (Q)

)
, with I and Q being the query sample’s image and question. Here,

Encimg (·) and Enctxt (·) denote the encoding functions for visual and textual features, respectively.

Remark. Theorem 1 shows that the self-attention mechanism decomposes into two parts: a
query-only component, Attn(hi, Q, Q), and a context-augmented component, Ψ(hi, C, C).
This decomposition highlights MHA’s role in dynamically allocating attention, allowing M
to integrate query-specific focus with contextual insights from demonstrations in ICL.
Theorem 2 (MLP Computational Invariance). For linear transformation matrix W ∈ RdM×dM ,
there exists ψW : RdM → RdM such that, for any token position i, there exist ζ i, ηi ∈ R satisfying:

MLP
(

ai
C,Q

)
= ζ i · ψW

(
ai

C

)
+ ηi · MLP

(
ai

Q

)
, (6)

where MLP (·) represents the MLP mechanism, and ai
Q,C, ai

Q, and ai
C are the MHA outputs at the

i-th token position with both query and context, with query-only, and with context-only, respectively.

Remark. Theorem 2 shows that the MLP mechanism decomposes into two parts: a query-only
component, MLP(ai

Q), and a context-enhanced component, ψW(ai
C). Through weighted

combinations, MLP extracts and retains key features from both query and context, enabling
M to convey more aggregated yet nuanced representations in ICL.

Theorems 1 and 2, with proofs provided in Appendices A.1 and A.2, illustrate the dual
processing pathways inherent in multimodal ICL. This also offers a new perspective on
the distinct roles of each layer in ICL, supplementing Wang et al. (2023): shallow layers
primarily aggregate information within the multimodal context C; intermediate layers
rely more on MHA to capture deeper semantic details; and deep layers tend to refine and
integrate prior information via MLP. These insights drive our layer-wise design of M²IV.

Based on the analysis presented above, we propose M²IV for the fine-grained representation
of multimodal ICL. M²IV assigns a learnable vector and a weight factor to both MHA and
MLP branches at each layer of an LVLM. Specifically, we define:

MHA: Va = {va
1, va

2, . . . , va
L}, αa = {αa

1, αa
2, . . . , αa

L}; (7)
MLP: Vm = {vm

1 , vm
2 , . . . , vm

L }, αm = {αm
1 , αm

2 , . . . , αm
L }. (8)
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Figure 3: Pipeline of M²IV’s training and storage. We begin by constructing the training
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Here, va
l , vm

l ∈ RdM and αa
l , αm

l ∈ R. The complete set of M²IV is represented by Θ ={
αa

l , va
l , αm

l , vm
l
}L

l=1, which can be injected directly into the LVLM’s residual streams. The
updated residual stream is recursively defined for l ∈ {1, 2, . . . , L} and i ∈ {1, 2, . . . , I} as:

hi
l = hi

l−1 +
(

ai
l + αa

l · va
l

)
+
(

mi
l + αm

l · vm
l

)
. (9)

3.2 Training M²IV

Given a dataset D = {
(

Ij, Qj, Aj
)
}|D|

j=1
2 used for ICL, we aim to train M²IV to capture the

effect of providing any n instances from D as contexts under a specific retrieval strategy R.

We first process D as follows: (1) For each instance
(

Ij, Qj, Aj
)
∈ D, we separately embed

its Ij and Qj with a CLIP model and then concatenate them to form a joint embedding as
its semantic representation. (2) We cluster all joint embeddings via k-means with cosine
similarity, partitioning D into K clusters. From each cluster, we select the instance closest
to the centroid (after removing its answer) to construct the query sample set DQ (size K);
D \DQ becomes the support set. (3) For each query sample in DQ, we apply R to retrieve n
instances from the support set, forming an n-shot context. These K contexts constitute the
context set DC. We augment DC by creating a copy of each context with its demonstrations
randomly shuffled and adding it. Further details are provided in Appendix B.

After obtaining the training data, we employ a self-distillation framework to train M²IV. The
teacher model processes each n-shot context in DC with its corresponding query sample in
DQ to perform Vanilla ICL. The student model is injected with the initialized Θ and receives
only the same query sample as input. Based on this, we introduce mimicry loss:

Lmim = T 2 · DKL

(
PT
M(C, Q) ∥ PM(Q; Θ)

)
, C ∈ DC, Q ∈ DQ, (10)

where DKL (· ∥ ·) is the KL divergence. We apply temperature scaling with a parameter T
to PM (C, Q) to facilitate smooth knowledge distillation and mitigate overconfidence.

Beyond distributional alignment, we seek to capitalize on the synergy between the MHA
and MLP branches. Thus, we apply synergistic loss to the student model, which is designed
to fortify their coherence and complementarity. Formally, we define it as follows:

Lsyn =
L

∑
l=1

(
dM

∑
i=1

(
1 − Ml

ii

)2
+ γ ·

dM

∑
i=1

∑
j ̸=i

Ml
ij

2
)

, (11)

2 Ij, Qj and Aj denote the image, question and answer of the j-th instance in D, respectively.
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where Ml =
(
Za

l (Θ)
)⊤ Zm

l (Θ) ∈ RdM×dM is a cross-view correlation matrix. Za
l (Θ) and

Zm
l (Θ) denote the normalized output of MHA and MLP at layer l after injecting Θ, respec-

tively. Ml
ij denotes the element at the i-th row and j-th column of Ml . The hyperparameter

γ balances consistency within dimensions and orthogonality across dimensions 3.

Finally, we employ a standard cross-entropy loss function as supervised loss, ensuring that
the student model’s predictions remain faithful to the answer A = {A1, A2, ..., AT}:

Lsup = −
T

∑
t=1

log PM (At | Q, A:<t; Θ) , Q ∈ DQ. (12)

The final training objective combines these losses as a weighted sum:

L = λmim · Lmim + λsyn · Lsyn + λsup · Lsup, (13)

where λmim, λsyn, and λsup ∈ (0, 1) denote the hyperparameters that balance each loss item.

By fully leveraging the MLP’s semantic aggregation and storage capabilities, we can extend
the M²IV self-distillation framework to many-shot ICL scenarios, overcoming the context
window limitations of LVLM. Here, each context in DC contains more than 100 demonstra-
tions, which are partitioned into overlapping windows of length w with overlap o. Each
subcontext is processed individually by the teacher model, and the outputs of its MLP
branches are extracted as the semantic representation for that window. These representa-
tions are then sequentially aggregated in a pairwise manner until a final, comprehensive
representation is obtained that encapsulates the semantic information of the entire n-shot
context and serves as the teacher model’s final MLP state. The detailed processing pipeline
for many-shot M²IV is presented in Appendix D.

3.3 VLibrary: M²IV Storage

Using the above training strategy, we obtain a ΘD
M for each dataset D and LVLM M. To

facilitate management and fully exploit M²IV’s plug-and-play potential, we build VLi-
brary—a repository for storing learned vectors after training. Each M²IV is indexed by its
αa. When wishing to equip an LVLM with domain-specific knowledge or steer it toward a
desired generation pattern, we can retrieve the corresponding M²IV from VLibrary by its
index and inject it into the model according to Eq 9. VLibrary is designed solely for storing
and indexing the trained vectors and performs no inter-vector operations. As a result, the
structural requirements of VLibrary remain minimal and consistent across LVLMs with
different hidden state dimensions. We can implement VLibrary at minimal cost, and its
practical details are provided in Appendix E. By translating the gains of M²IV into practical
utility, VLibrary constitutes an integral part of the overall M²IV framework.

4 Experiment

4.1 Implementation Details

Benchmarks. For VQA, we select three widely used datasets: VQAv2 (Goyal et al., 2017),
VizWiz (Gurari et al., 2018), and OK-VQA (Marino et al., 2019). Towards more complex VL
scenarios, we incorporate A-OKVQA (Schwenk et al., 2022) and GQA (Hudson & Manning,
2019), which emphasize multi-hop reasoning (Kil et al., 2024). Additionally, we include the
Asia split of the multicultural VQA benchmark CVQA (Romero et al., 2024) to assess the
ability to integrate novel in-domain knowledge into pretrained models. For an evaluation of
the general ICL, we utilize the image-to-text split of the latest multimodal ICL benchmark,
VL-ICL bench (Zong et al., 2024). To better serve as inputs for ICL, we make necessary
modifications to these benchmarks; details are provided in Appendix F.

Configurations. We evaluate three LVLMs: OpenFlamingov2 (9B), Idefics2 (8B), and LLaVA-
NeXT (7B) (Liu et al., 2024a). These models differ in their LLM backbones, connection

3The detailed computation process is presented in Appendix C.

6



Published as a conference paper at COLM 2025

Methods VQAv2 VizWiz OK-VQA GQA A-OKVQA CVQA VL-ICL bench

Zero-shot 43.10 20.77 31.04 52.42 32.97 31.09 11.39
Vanilla ICL 60.08 39.88 51.37 69.70 50.92 56.39 29.08

TV 47.88 23.86 38.24 60.26 37.58 43.02 18.42
FV 47.09 23.40 38.96 59.33 38.43 41.82 18.32
ICV 44.71 20.83 35.98 54.80 32.58 38.45 11.92
I2CL 52.02 26.16 44.13 61.93 39.10 49.42 20.48
LIVE 62.22 39.17 53.47 69.20 51.60 55.42 29.95
M²IV 63.93 43.40 55.37 73.81 53.59 60.11 33.36

Multi-turn ICL (128-shot) 59.60 38.96 52.61 66.76 51.25 58.32 -
M²IV (128-shot) 65.19 45.13 56.58 73.58 53.36 62.67 -

Multi-turn ICL (256-shot) 59.73 38.76 52.57 67.14 51.32 59.59 -
M²IV (256-shot) 65.92 46.33 57.43 74.98 54.77 62.20 -

Table 1: Comparison between M²IV and baseline methods. The highest scores are high-
lighted in bold and the second-best scores are underlined. In addition to the primary 16-shot
results, this table also presents the outcomes of many-shot ICL achieved with M²IV. Detailed
results for each LVLM can be found in Table 8.

modules, and context windows. Unless otherwise noted, all results are reported as the
average across these models. Following §3.2, we construct a query set DQ (of size K)
and a context set DC (of size 2K) from each benchmark’s training set, with K varying by
benchmark. We adopt Random Sampling as the retrieval strategy R, and fix the number of
shots 4 n to 16. During training, we use AdamW as the optimizer. Evaluation is performed
on the corresponding validation sets. Initialization of V and α, along with the data sizes
and hyperparameters for each benchmark, are detailed in Appendix I.1.

Comparative Methods. In addition to the zero-shot baseline and n-shot Vanilla ICL, we
compare M²IV with the representation engineering methods for ICL introduced in §2,
including TV, FV, ICV and I2RL. All of these methods are training-free. We highlight LIVE
as the key comparison in our experiments, since it also employs a training strategy to obtain
layer-wise vectors. Full details of all baselines are provided in Appendix H.

4.2 Main Results

As shown in Table 1, training-free methods outperform the zero-shot baseline but still fall
short of 16-shot Vanilla ICL, indicating limited capacity for handling complex multimodal
tasks. While LIVE’s training strategy yields improved performance, it still underperforms
on benchmarks such as VizWiz, GQA, and CVQA. In contrast, M²IV achieves the best
scores on all benchmarks, surpassing 16-shot Vanilla ICL by an average of 3.74%, and
outperforming LIVE by 3.52%, 4.11%, and 3.72% on the benchmarks where LIVE lags
behind. As shown in Table 8, our method ranks first in 18 out of 21 experiments across
all three LVLMs. These results confirm that M²IV effectively preserves semantic fidelity
and further distills fine-grained information, thereby outperforming Vanilla ICL and other
comparative methods in a variety of complex multimodal ICL tasks. Paired with VLibrary,
our method enables efficient and precise LVLM steering. Moreover, M²IV requires only
about 24% of the data used by LIVE, underscoring its efficiency and potential in data-limited
scenarios. In many-shot scenarios, M²IV also yields consistent and significant improvements,
demonstrating that the aggregation of MLP outputs counteracts multi-turn forgetting and
effectively unlocks the benefits of many-shot ICL.

4.3 Efficiency Analysis

A principal reason for the wide adoption and growing importance of ICL is its efficiency
without any parameter update. Thus, we must examine whether M²IV undermines this
key advantage. First, in Figure 4 we observe that M2IV preserves and even improves the
inference efficiency of ICL thanks to its plug-and-play design. Its direct internal injection
eliminates the large token overhead introduced by explicit in-prompt demonstrations, thus
cutting FLOPs and inference time to levels well below Vanilla ICL and approaching those

416-shot has been empirically shown to approximate optimal performance among the chosen
LVLMs (Liu et al., 2024b). It also allows higher-resolution images without exceeding context windows.
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seen in zero-shot settings. Beyond inference latency, we also report the overall runtime that
includes the training cost of M²IV. This metric can better reflect the true efficiency of the
competing methods. As shown in Figure 5, M²IV’s inference-time savings fully offset its
training cost. Moreover, as M²IV is increasingly applied to zero-shot inference tasks, its
cost-effectiveness improves, making it well-suited for mass applications. It is worth noting
that when the repeated demonstration-retrieval cost of Vanilla ICL is taken into account, the
advantage of M²IV becomes even more significant, as each knowledge base needs only a
single end-to-end training run to produce a reusable Θ for the target LVLM. These results
collectively demonstrate that, although M²IV involves a training phase, it delivers higher
efficiency than Vanilla ICL. In Appendix J, we compare M²IV with LoRA and prefix tuning,
highlighting its joint benefits in precision and efficiency.

4.4 Ablation Studies and Discussions

In this section, we discuss three primary concerns through extensive ablation experiments.

Why does M²IV not only replicate the effect of Vanilla ICL but also surpass it? We first
explore the advantages of M²IV over Vanilla ICL as the shot count varies. As shown in
Figure 6, M²IV consistently surpasses Vanilla ICL across all shot settings, highlighting the
robustness of its fine-grained representation. Notably, the largest gains occur in 2-shot
and 4-shot settings, especially on datasets with imbalanced training distributions such
as CVQA and VizWiz. This suggests that M²IV can, through training, effectively capture
and internalize the overall distribution of a dataset, thereby avoiding the influence of
skewed distributions resulting from data scarcity. In many-shot scenarios, the increase in
performance gains with higher shot counts is due to M²IV’s capability of mitigating the
forgetting issue that worsens with additional input turns.

We further explore how the effectiveness of M²IV varies with diverse retrieval strategies R.
Including Random Sampling (RS), we compare four strategies: I2I (image similarity-based
retrieval), IQ2IQ (image-question joint similarity-based retrieval) and Oracle (a greedy
retrieval performed by the LVLM based on ground-truth answers5). As shown in Figure 7,
Vanilla ICL with I2I performs the worst across all benchmarks, echoing previous findings
that I2I tends to lead to visual shortcut learning and hallucinations in complex tasks (Li,
2025). Remarkably, M²IV always delivers the largest gains under this strategy, demonstrating
its ability to filter out isolated or misleading features while preserving holistic semantics.

Which component contributes most to V’s improved ICL performance? We first investigate
the data aspect in Appendix L and find that the distribution of training data is far more
influential than its sheer volume. Here, we conduct more comprehensive ablation studies
on the key designs of M²IV. Table 2 reveals the following points: (1) Joint embedding-

5Due to its reliance on ground-truth answer, Oracle is used to simulate optimal contexts and
inapplicable in real-world scenarios. Details of these strategies are provided in Appendix K.
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Figure 6: Performance gap over same shot
Vanilla ICL (few-shot) or multi-turn ICL
(many-shot) across different shot settings.
Each value indicates how much M²IV out-
performs the baseline.
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Figure 7: Performance of Vanilla ICL and
M²IV across diverse demonstration retrieval
strategies. The light-colored portion of each
bar indicates the gain achieved by M²IV.

VQAv2 VizWiz OK-VQA GQA A-OKVQA CVQA VL-ICL bench

M²IV 63.93 43.40 55.37 73.81 53.59 60.11 33.36

(a) I only 50.48 32.61 52.07 68.26 47.41 43.06 32.80
(b) Q only 58.72 38.97 53.29 70.62 48.94 59.25 32.72

(c) w/o clustering 51.98 29.74 47.58 66.37 45.36 44.05 30.31
(d) w/o augmentation 55.48 33.28 51.13 69.61 43.23 54.81 30.59

(e) w/o Lmim 56.87 32.42 45.79 64.95 43.91 51.33 24.39
(f) w/o Lsyn 53.13 28.61 47.30 58.92 38.79 43.17 22.63
(g) w/o Lsup 61.53 39.64 53.90 72.02 50.79 59.83 30.81

Table 2: Accuracy (%) of M²IV under diverse ablation settings. (a)–(d) focus on the data
processing phase: (a) and (b) use only image or question similarity for clustering; (c) replaces
the K-means clustering with random sampling; (d) omits shuffled augmentation of DC.
(e)–(g) each remove one of the training loss terms.

based clustering improves generalization due to varied modality biases across datasets.
(2) Clustering optimizes the distribution of training data while augmenting DC improves
the robustness of M²IV. (3) Among training losses, Lsup yields only an average gain of
2.15%, while Lsyn delivers an average gain of 13.00% and also outweighs all data processing
strategies. Clearly, Lsyn underpins our method, underscoring the importance of synergizing
the MHA and MLP branches to ensure general semantic fidelity and fine-grained filtering.

M²IV seems to be task-specific and model-specific. Does this impact its flexibility? The
mathematical properties of vectors allow M²IV to support flexible combination and transfer,
with proof provided in Appendix A.4. We propose two strategies for combining multiple
M²IVs to endow the model with multi-task capabilities: (1) a training-free linear addition,
and (2) the introduction of a learnable parameter α that is fine-tuned using a small amount of
multi-task data. Thus, by creating a set of atomic M²IVs, we can customize combinations to
meet diverse needs. Similar strategies can also be applied to facilitate cross-model transfer of
M²IV. If two LVLMs have the same number of layers and an identical hidden state dimension,
an M²IV trained on one model can be inserted into the other without any additional training
and will deliver comparable results. Adding a learnable parameter for light fine-tuning
can further enhance this effect. The detailed procedures and results of the above strategies
are collectively presented in Appendix M. They highlight the unique advantage of steering
LVLMs’ intermediate representations via M²IV.

5 VLibrary: An All-purpose Toolbox for LVLM

In this section, we demonstrate the practical value of VLibrary in solving the key challenges
that LVLM faces in real-world applications. As shown in Figure 10, VLibrary empowers us
to store and retrieve tailored M²IV, facilitating versatile steering while seamlessly integrating
into existing systems. For the subsequent applications, we set K = 1250 during training.
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Methods VQAv2 VizWiz OK-VQA CVQA

Zero-shot 43.10 20.77 31.04 31.09

+M²IV
First 10 layers 46.92 24.20 34.51 36.27

Middle 10 layers 43.29 22.09 32.13 32.41
Last 10 layers 43.82 21.14 30.19 30.79

All layers 45.17 22.05 32.83 32.86

Table 3: Performance on four VQA bench-
marks in the zero-shot settings and with M²IV
for captioning injected at various positions.

VLibrary can enhance cross-modal align-
ment in a special way. In §3.1, we config-
ure M²IV on a layer-wise basis, recogniz-
ing that each layer contributes differently
to ICL. Alternatively, M²IV can be injected
only into layers chosen for their functional
importance; for instance, targeting shallow
layers to reinforce fine-grained cross-modal
alignment. To evaluate this, we construct
detail-focused datasets by prompting GPT-
4o to expand MSCOCO’s (Lin et al., 2015)
captions into detailed descriptions of each image’s visual features, and train M²IV on them.
We then inject part of the trained M²IV into corresponding LVLM layers for zero-shot VQA.
As shown in Table 3, injecting M²IV into the first 10 layers yields the greatest performance
gains, even surpassing full injection. These findings reveal that M²IVs can be flexibly applied
to enhance LVLMs’ overall capabilities.

Method Conversation Detail Complex All

16-shot Vanilla ICL 63.84 56.41 75.23 67.20
LoRA 69.24 63.27 83.05 74.09

16-shot M²IV 72.53 64.95 86.26 76.93
128-shot M²IV 74.34 66.70 84.09 76.89

Table 4: Instruction following evaluation of
LVLM. We employ the same metrics as the
original LLaVA-Bench, using GPT-4 to score
the generated content.

VLibrary enables versatile customization
of LVLM outputs. Instruction following is vi-
tal for LVLMs to align with user intent and
facilitate various interactions. However, the
added visual modality complicates instruc-
tion adherence, requiring extensive param-
eter updates to achieve proper alignment.
We use LLaVA-Bench to test whether M²IV
can steer the model to follow specific user
instructions when generating content. The
benchmark covers three types of instruction:
conversation, detailed description, and complex reasoning (Liu et al., 2023). We train M²IV
on the LLaVA dataset, which contains the same three instruction types. As shown in Table 4,
M²IV consistently enhances instruction-following performance across all types, emphasizing
its effectiveness in addressing the challenge with minimal overhead. In Appendix N, we
also explore using M²IV to enable LVLMs to explicitly output their reasoning process.

VLibrary is well-suited for studying LVLM safety. M²IV’s strong behavior-steering ca-
pability makes it a powerful tool for investigating jailbreak scenarios with LVLMs. By
constructing M²IV vectors that encode harmful multimodal instructions and injecting them
into a model, we can compel it to override its moral safeguards and generate disallowed con-
tent. In the opposite direction, safety-oriented M²IV vectors strengthen LVLM’s awareness
of harmful prompts, allowing it to detect and refuse such requests with greater precision.
Experimental results and detailed analyses appear in Appendix N.

6 Conclusion

In this study, we present M²IV, a novel representation engineering method for multimodal
ICL. It leverages the unique roles of MHA and MLP branches in residual streams. Through
training, M²IV achieves complex multimodal understanding and fine-grained semantic
distillation, demonstrating SOTA performance on three LVLMs and seven benchmarks
with relatively limited training data while maintaining ICL’s efficiency. The retrieval-then-
injection design of VLibrary further expands M²IV’s applicability, enabling rapid solutions to
many practical challenges in LVLM. In general, M²IV offers a promising paradigm for both
multimodal ICL and LVLM steering, providing valuable insights for further breakthroughs
in the multimodal domain. Currently, our method is only applicable to open-source LVLMs.
In future work, we hope to extend to closed-source LVLMs, possibly by utilizing the trained
M²IVs to empower a lightweight language model dedicated to demonstration selection.
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A Additional Theoretical Proof

A.1 Proof of Theorem 1

Proof. The attention mechanism for query vector hi over a key-value pair
[
C⊤ Q⊤]⊤ is:

Attn
(

hi,
[
C⊤ Q⊤]⊤ ,

[
C⊤ Q⊤]⊤) = softmax

([
d−

1
2

M hiC⊤ d−
1
2

M hiQ⊤
]) [C

Q

]
, (14)

where softmax (·) normalizes the input into a probability distribution, and d−
1
2

M is the scaling
factor to stabilize training. Expanding the computation, let:

sC =
C

∑
j=1

exp
(

d−
1
2

M hiC⊤
j

)
, sQ =

I

∑
j=1

exp
(

d−
1
2

M hiQ⊤
j

)
, (15)

which denotes the sums of exponentiated scores over the demonstration and query tokens,
respectively, where Cj and Qj are the j-th rows of C and Q. Thus, the attention output is:

Attn
(

hi,
[
C⊤ Q⊤]⊤ ,

[
C⊤ Q⊤]⊤)

= (sC + sQ)−1
(

exp
(

d−
1
2

M hiC⊤
)

C + exp
(

d−
1
2

M hiQ⊤
)

Q
)

= sC (sC + sQ)−1 softmax
(

d−
1
2

M hiC⊤
)

C + sQ (sC + sQ)−1 softmax
(

d−
1
2

M hiQ⊤
)

Q. (16)

Based on the aforementioned analysis, we take Ψ, ζ i, and ηi as follows:

Ψ
(
ϱq, ϱk, ϱv

)
≡ softmax

(
d−

1
2

M ϱqϱ⊤k

)
ϱv, ∀

(
ϱq, ϱk, ϱv

)
, (17)

ζ i := sC (sC + sQ)−1 , ηi := sQ (sC + sQ)−1 , (18)

and then the proof of the theorem is completed.

A.2 Proof of Theorem 2

Proof. Based on Theorem 1, there exist ζ i, ηi ∈ R satisfying:

ai
C,Q = ζ i · ai

C + ηi · ai
Q. (19)

Multiply both sides of Eq (19) on the right by W, we obtain the following equation:

ai
C,QW = ζ i · ai

CW + ηi · ai
QW. (20)

Take ψW (x) ≡ xW, we obtain:

MLP
(

ai
C,Q

)
= ζ i · ψW

(
ai

C

)
+ ηi · MLP

(
ai

Q

)
, (21)

and then the proof of the theorem is completed.
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A.3 Extension to MLP with Non-linear Activations

Theorem 3. For linear transformation matrix W1 ∈ RdM×dff , W2 ∈ Rdff×dM , there exists
ρW1,W2 : RdM → RdM such that, for any token position i, there exist ζ i, ηi ∈ R satisfying:

MLP
(

ai
C,Q

)
= ζ i · ρW1,W2

(
ai

C

)
+ ηi · MLP

(
ai

Q

)
, (22)

where the MLP operation with non-linear activations is defined as MLP (x) ≡ σ (xW1)W2, and
σ (·) denotes the activation function.

Proof. Based on Theorem 1, there exist ζ i, ηi ∈ R satisfying:

ai
C,Q = ζ i · ai

C + ηi · ai
Q. (23)

Multiply both sides of Eq (23) on the right by W1, we obtain the following equation:

ai
C,QW1 = ζ i · ai

CW1 + ηi · ai
QW1. (24)

Apply σ (·) to both sides of the equation and then multiply by W2, we obtain:

σ
(

ai
C,QW1

)
W2 = ζ i · σ

(
ai

CW1

)
W2 + ηi · σ

(
ai

QW1

)
W2. (25)

Take ρW1,W2 (x) ≡ σ (xW1)W2, we obtain:

MLP
(

ai
C,Q

)
= ζ i · ρW1,W2

(
ai

C

)
+ ηi · MLP

(
ai

Q

)
, (26)

and then the proof of the theorem is completed.

A.4 Task Combination

Each learned in-context vector encodes the contextual semantics of different tasks. We
further demonstrate that by linearly combining these vectors, we can obtain the context
required for new tasks. This property of linear composability enhances the representational
capacity of in-context vectors, thereby improving the generalization capability of the LVLM.
Given n ∈ N+ as the number of tasks, a model M with hidden dimension dM, and matrices
{Ct}n

t=1 representing the in-context demonstrations for each task, we investigate whether
these demonstrations could be combined to support multimodal ICL across multiple tasks.

Theorem 4. There exists a function ϕ : Dϕ → RdM such that for any query matrix Q and token
position i corresponding to the residual stream hi, there exist

{
ϑi

t ∈ R
}n

t=1 and ϖi ∈ R such that:

Attn
(

hi,
[
C⊤

1 C⊤
2 . . . C⊤

n Q⊤
]⊤

,
[
C⊤

1 C⊤
2 . . . C⊤

n Q⊤
]⊤)

=
n

∑
t=1

ϑi
t · ϕ

(
hi, Ct, Ct

)
+ ϖi · Attn

(
hi, Q, Q

)
. (27)

Proof. Based on Theorem 1 and the computational formula of the attention mechanism, for
any query matrix Q and any token position i in the residual stream hi, we obtain:

Attn
(

hi,
[
C⊤

1 C⊤
2 . . . C⊤

n Q⊤
]⊤

,
[
C⊤

1 C⊤
2 . . . C⊤

n Q⊤
]⊤)

= ζ i
1 · Ψ

(
hi, C1, C1

)
+ ηi

1 · Attn
(

hi,
[
C⊤

2 . . . C⊤
n Q⊤

]⊤
,
[
C⊤

2 . . . C⊤
n Q⊤

]⊤)
= ζ i

1 · Ψ
(

hi, C1, C1

)
+ ηi

1ζ i
2 · Ψ

(
hi, C2, C2

)
+ ηi

1ηi
2 · Attn

(
hi,
[
C⊤

3 . . . C⊤
n Q⊤

]⊤
,
[
C⊤

3 . . . C⊤
n Q⊤

]⊤)
= . . .

=
n

∑
t=1

(
t

∏
k=1

ηi
k−1

)
ζ i

t · Ψ
(

hi, Ct, Ct

)
+

(
n

∏
t=1

ηi
t

)
· Attn

(
hi, Q, Q

)
, (28)
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where ζ i
t and ηi

t are derived from the attention scores for each task’s demonstration matrix
and the query matrix, respectively. Take ϕ,

{
ϑi

t
}n

t=1, and ϖi as follows:

ϕ
(
ϱq, ϱk, ϱv

)
≡ Ψ

(
ϱq, ϱk, ϱv

)
, ∀

(
ϱq, ϱk, ϱv

)
, (29)

ϑi
t := ζ i

t ·
t

∏
k=1

ηi
k−1, ∀t ∈ {1, 2, . . . , n} , (30)

ϖi :=
n

∏
t=1

ηi
t, (31)

and then the proof of the theorem is completed.

B Dataset Processing

For efficient training of the M²IV framework, we propose a data sampling strategy for
multimodal datasets.

For each instance (Ij, Qj, Aj) in D, we construct its semantic representation by:

Ej = CLIP(Ij)⊕ CLIP(Qj), ∀j ∈ {1, 2, . . . , |D|}, (32)

where Ej denotes the joint embedding of the j-th sample, and ⊕ represents the concatenation
operation. We use a CLIP-L/14 model to separately embed both the image Ij and question
Qj, then concatenate these embeddings to form a multimodal representation. For datasets
containing some long textual prompts, such as MM-SafetyBench in Appendix N, the text
sometimes exceeds CLIP’s limit of 77 tokens. In such cases, we switch to LongCLIP (Zhang
et al., 2024a), a well-trained variant that extends CLIP to longer text, and obtain embeddings
with a consistent dimension.

We apply k-means clustering on the joint embeddings of all instances using cosine similarity
as the distance metric, dividing D into K clusters:

{C1, C2, . . . , CK} = k-means({Ej}
|D|
j=1; K, cosine), (33)

where Ci represents the i-th cluster, and K is a hyperparameter that specifies the number of
clusters. For each cluster, we identify the instance closest to its centroid:

jk = arg min
j∈Ck

cosine distance(Ej, centroid(Ck)), ∀k ∈ {1, 2, . . . , K}, (34)

where jk is the index of the instance closest to the centroid of cluster Ck. These K instances
form our query sample set DQ = {(Ik, Qk)}K

k=1 with each answer Ak removed, as they will
be used as query samples during training.

After extracting the query samples, we define the support set Dsupport as all remaining
instances in D:

Dsupp = D \ {(Ik, Qk, Ak)}K
k=1, (35)

where \ denotes the set difference operation.

For each query sample Ik, Qk in DQ, we apply a retrieval strategy R to select n relevant
instance from the support set Dsupport, forming an n-shot context Ck:

Ck = R(Dsupp, (Ik, Qk), n), ∀k ∈ {1, 2, . . . , K}, (36)

where R can be implemented as various retrieval methods such as similarity-based retrieval,
random sampling, or other domain-specific selection strategies. These K contexts form our
initial training set DC = {Ck}K

k=1. To enhance the robustness of the MLP output to context
permutation, we augment DC by creating a permuted version C′

k of each context Ck, where
the order of the n demonstrations is randomly shuffled:

C′
k = shuffle(Ck), ∀k ∈ {1, 2, . . . , K}. (37)
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The final augmented training set contains 2K instances, comprising both the original and
permuted contexts:

DC = {Ck, C′
k}

K
k=1, (38)

where each training instance consists of a context (either original or permuted). Each query
sample in DQ corresponds to two contexts in DC. When used as input, the prompt places
the n-shot context in front, followed by the corresponding query sample.

C Synergistic Loss

For an LVLM with L layers, suppose that at layer l, (where l ∈ {1, 2, . . . , L}), after injecting
Θ, the final outputs of MHA and MLP at that layer are Al and Ml , respectively:

Al(Θ) = al + αa
l · va

l , (39)

Ml(Θ) = ml + αm
l · vm

l . (40)
We apply the following normalization to obtain Za

l (Θ) and Zm
l (Θ):

Za
l (Θ) =

Al(Θ)

∥Al(Θ)∥ , (41)

Zm
l (Θ) =

Ml(Θ)

∥Ml(Θ)∥ . (42)

We compute the cross-view correlation matrix Ml ∈ RdM×dM for the two normalized final
outputs:

Ml = (Za
l (Θ))⊤Zm

l (Θ) . (43)
We use this matrix to compute the synergistic loss as follows:

Lsyn =
L

∑
l=1

(
dM

∑
i=1

(
1 − Ml

ii

)2
+ γ ·

dM

∑
i=1

∑
j ̸=i

Ml
ij

2
)

, (44)

where Ml
ij is the element at the i-th row and j-th column of Ml and γ is a hyperparameter.

D Many-shot M²IV

Pairwise aggregation pipeline. A long n-shot prompt is first divided into overlapping
windows of length w with overlap o. The teacher LVLM runs on every window and the
MLP activations are mean-pooled into fixed-length vectors mi ∈ Rd. These per-window
summaries are then combined left-to-right in a size-preserving two-vector loop. At step i
the current aggregate m̂i−1 is concatenated with the new window vector to form

z = [m̂i−1, mi] ∈ R2d. (45)

Two learned projections Wg, W1 ∈ Rd×2d generate a gate g and a candidate c:

g = σ
(
Wgz

)
,

č = tanh(W1z) .
(46)

The aggregate is updated by

m̂i = g ⊙ č + (1 − g)⊙ m̂i−1, (47)

which keeps dimensionality at d, matching the original MLP hidden size. Sharing the same
tiny gating block across all N windows makes the procedure O(N) in time and adds only
O
(
d2) parameters, so the final vector m̂N can be injected back into the LVLM without any

adapter.
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Information loss mitigation. The element-wise gate learned above selectively retains high-
salience features from earlier aggregates. To further curb boundary effects, we employ a
lightweight tuning strategy to determine the optimal window length w and overlap o:

w ∈ {32, 64, 128}, o ∈
{

0, 1
4 w, 1

2 w
}

. (48)

This coarse grid is evaluated on a held-out set using cosine similarity between the aggregated
student vector and a full-context teacher vector as a cheap proxy for fidelity. The top few
candidates then enter a successive-halving loop that progressively allocates more budget,
and the survivor is chosen by end-task accuracy adjusted for latency.

E VLibrary

In practice, VLibrary is implemented using an off-the-shelf object store, which is easily
integrated into existing systems. During retrieval, the system queries using the M²IV’s
designated parameter set, αa. This architecture avoids the overhead of rebuilding datastores
and instead supports straightforward, scalable deployment.

VLibrary is hosted on Amazon S3, where each M²IV asset is a structured binary object that
contains the learned vectors (Va, Vm) and the associated scalars (αa, αm) for each decoder
layer. We serialize each asset using Protocol Buffers to preserve floating point precision, and
then compress it with Zstandard before uploading. To guarantee uniqueness and support
lifecycle management, we use content-based addressing. Specifically, we normalize the
index parameters αa by enforcing a fixed precision and deterministic layer ordering. We
then compute a SHA-256 hash, referred to as the M2IV Content Hash, which serves as the
S3 object key. For efficient access, a Redis-based Mapping Service maintains associations
between human-readable versioned identifiers (e.g., model name@v1.2:task name@v1.0) and
their corresponding M2IV Content Hash. When an application requests a specific M²IV,
it provides the versioned keys, retrieves the hash from Redis, and uses it to fetch the
binary object from S3. The object is then decompressed and deserialized back into a usable
in-memory structure. We further accelerate frequent queries via application-level caching.

F Benchmarks

The amount of data used in our experiments is shown in Table 7. For few-shot VQA
evaluation, we adopt the following datasets/benchmarks6:

• VQAv2 is based on images from the MSCOCO dataset and features traditional
question-answer pairs, assessing a model’s ability to accurately interpret both the
image and the language of the question.

• VizWiz introduces additional real-world complexities with lower-quality images,
questions that often lack sufficient context, and a significant portion of unanswerable
queries. Models must contend with incomplete visual information and learn to
handle uncertainty.

• OK-VQA focuses on questions that require external knowledge beyond the image
content, serving as a benchmark for evaluating whether models can incorporate
outside information to arrive at correct answers.

• GQA is a large-scale dataset focusing on compositional question answering over
real-world images, serving as a benchmark for evaluating how models parse intri-
cate scene relationships and perform multi-step reasoning.

• A-OKVQA expands upon OK-VQA by offering a wider variety of question types
and more demanding knowledge requirements. Notably, 30.97% of its samples
involve at least two inference hops, highlighting the dataset’s emphasis on multi-
step reasoning and deeper knowledge integration. A-OKVQA samples come in

6For datasets with multiple human-annotated labels per sample, one of them is randomly chosen
as the ground-truth label in demonstrations
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two forms, multi-choice and direct answer. We opt for the latter for open-ended
evaluation. A-OKVQA provides a reasoning rationale for each instance. In the
main experiments, we remove the rationale from each instance, whereas in the
explainability experiments, we utilize these rationales.

• CVQA is a cultural-diverse, multilingual visual question-answering benchmark
that gathers images and question–answer pairs from 30 countries and 31 languages,
aiming to assess a model’s ability to handle both visual input and text prompts in
a truly global context. It employs a multiple-choice format—one correct answer
with three distractors. CVQA is divided by continent to highlight regional and
linguistic diversity. We only use its Asia split, which comprises 19 types of Asian
country–language pairs, such as China–Chinese, India–Hindi and Japan–Japanese.
We mix the 19 types in proportion rather than computing an average across single
ones.

Besides, we use the latest multimodal ICL benchmark, VL-ICL bench for general ICL
evaluation. VL-ICL Bench is a comprehensive evaluation suite tailored for multimodal
ICL, encompassing both image-to-text and text-to-image tasks. It tests a broad range of
capabilities, from fine-grained perception and reasoning to fast concept binding, all using
a few demonstrations. VL-ICL Bench shows meaningful improvements with more shots
and highlights fundamental model limitations. In our study, we only employ the image-
to-text split of VL-ICL Bench, which includes Fast Open MiniImageNet, CLEVR Count
Induction, Operator Induction, TextOCR, Interleaved Operator Induction, and Matching
MiniImageNet; we test each task individually and then average the performances to obtain
the final score. For splits containing only images and answers, we assign a uniform question
to each instance. For instance, in the Fast Open MiniImageNet split, we use “What’s in the
image?” as the question.

For the VQA datasets and VL-ICL bench, we use Accuracy(%) as the metric to assess the
models’ ability to provide correct answers:

Accai = max

(
1,

3 · ∑k∈[0,9]match (ai, gk)

10

)
, (49)

where ai denotes the model’s generated answer, gk denotes the k-th ground true answer.
match (·, ·) decides whether two answers match, if they match, the result is 1, otherwise 0.

Datasets Training Evaluation

VQAv2 10,000 10,000
VizWiz 8,000 4,000

OK-VQA 8,000 5,000
GQA 10,000 5,000

A-OKVQA 8,000 5,000
CVQA 3,000 1,500

VL-ICL bench 8,360 1,120

Table 5: Overview of the size distribution across the benchmarks used in LIVE.

G Models

In our study, we select three LVLMs that support multi-image inputs and have demonstrated
multimodal ICL capabilities: OpenFlamingov2-9B, Idefics2-8B and LLaVA-NeXT-7B. Their
respective configurations are shown in Table 6. OpenFlamingov2-9B is a versatile model that
processes and generates text based on both visual and textual inputs, designed for broad VL
tasks. Idefics2-8B is a model that seamlessly integrates visual and linguistic information, em-
phasizing robust cross-modality understanding for diverse applications. LLaVA-NeXT-7B is
a flexible model optimized for natural conversational interactions by effectively merging
visual cues with language understanding, supporting intuitive multimodal dialogue.
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LVLM LLM Backbone Connection Module Image Tokens Context Window (Train) Context Window (Test)

OpenFlamingov2-9B MPT Perceiver 64 2048 2048
Idefics2-8B Mistral MLP 64 - 32K

LLaVA-NeXT-7B Vicuna MLP 576 2048 4096

Table 6: Detailed configurations of the LVLMs used in our study.

H Baselines

Besides zero-shot setting and n-shot Vanilla ICL, we compare M²IV with the following
methods:

• Task Vector (TV): TV decomposes ICL in LLM into two parts. The first part uses
the initial layers to compute a task vector θ from the demonstration set S, while
the second part employs the later layers to apply θ to the query x for generating
the output. Importantly, these two parts are independent, allowing the same θ to
be used for different queries. Considering TV is extracted from a single layer, we
apply it to each layer of the LLM and take the average performance across all layers
as the final result.

• Function Vector (FV): FV is computed by first extracting task-conditioned mean
activations from a set of attention heads that are selected based on their causal
mediation effects. These mean activations are then summed to form the function
vector, effectively distilling the task information from in-context demonstrations
into a single representation. Considering FV is extracted from a single layer, we
apply it to each layer of the LLM and take the average performance across all layers
as the final result.

• In-Context Vector (ICV): ICV is computed by first forwarding demonstrations
(x, y) separately through the model to extract the last token’s hidden states across
all layers. These layer-wise representations are concatenated and the differences
between the target and input embeddings (e.g. h(y)–h(x)) are computed for each
demonstration. Principal component analysis is then applied to these differences to
obtain the dominant direction, which serves as the ICV. During inference, this vector
is added to the latent states of the query across all layers. ICV uses a weighting
factor α to control the degree of steering. We set α to 1e-3, which provides the best
overall performance on our chosen benchmarks.

• Implicit In-Context Learning (I2CL): I2CL is implemented by extracting demonstra-
tion vectors from the end-residual activations of both the MHA and MLP branches
across all layers, which are then aggregated via an element-wise mean to form a
unified vector. At inference, layer-wise scalar coefficients linearly combine this
context vector with the query activations through simple scalar multiplications and
element-wise additions.

• Learnable In-context VEctor (LIVE): LIVE is implemented by training layer-wise
shift vectors and weight factors that capture the essential task information from
multiple in-context demonstrations. During training, LVLM processes a query
along with few-shot demonstrations, and these vectors are optimized to align the
output distribution with that of realistic ICL. During inference, well-trained vectors
are simply added to the hidden states of the model. The data sizes used to train and
evaluate LIVE are shown in Table 5.

I Experiment

I.1 Additional Implementation Details

We initialize the vectors in Va and Vm from a normal distribution with mean 0 and standard
deviation 0.01, while αa

l is set to 0.1 · (1 − l
L+ϵ

)
and αm

l to 0.1 · l
L , where ϵ = 10−6. For all

training procedures, AdamW serves as the optimizer, weight decay is fixed at 1e-4, the
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warmup factor at 1e-3, precision at FP16, and batch size at 2. Dataset-specific hyperparam-
eters include the learning rates for V and α, the temperature parameter T in the mimicry
loss, the parameter γ in the synergistic loss, the weights of the three loss functions, and the
number of epochs. These details are provided in Table 7. We utilize four RTX 4090 GPUs.

Dataset K Evaluation ηV ηα T γ λmim λsyn λsup Epochs

VQAv2 2,000 10,000 1e-3 1e-2 1.5 0.20 0.8 0.8 0.5 15
VizWiz 1,500 4,000 1e-4 1e-2 1.8 0.20 1.0 0.8 0.4 10

OK-VQA 1,500 5,000 1e-4 5e-3 1.3 0.15 1.0 0.8 0.5 10
GQA 2,000 5,000 1e-4 1e-2 1.8 0.15 0.8 1.0 0.4 15

A-OKVQA 2,000 5,000 2e-4 5e-3 1.5 0.15 0.8 0.8 0.5 10
CVQA 1,500 1,500 2e-4 1e-2 1.8 0.20 0.8 1.0 0.5 10

VL-ICL bench 3,000 1,120 1e-2 1e-3 1.0 0.05 0.8 0.6 0.6 15

Table 7: Overview of dataset sizes for training and evaluation along with training hyperpa-
rameters across the benchmarks in our main experiments.

I.2 Additional Main Results

In Table 1, we report the average performance of various methods on three LVLMs.
For greater clarity, Table 8 details the performance on each LVLM individually. Our
method ranks first in 18 out of 21 experiments, demonstrating outstanding generalizabil-
ity and robustness. We additionally report M²IV performance on three recently released
LVLMs: LLaVA-OneVision (7B) (Li et al., 2024a), InternVL2.5 (8B) (Chen et al., 2025b),
and Qwen2.5VL (7B) (Bai et al., 2025). As shown in Table 9, M²IV also achieves SOTA
performance on these LVLMs, demonstrating its strong generalization capability.

J M²IV vs Other Methods

The improvement offered by M²IV comes with a modest increase in trainable parameters,
particularly when compared to other methods for adapting LVLM to new data, such as
Parameter-Efficient Fine-Tuning (PEFT). Here, we take LoRA (Hu et al., 2021) as an example.
LoRA is one of the most popular PEFT methods for adapting LVLMs. Its implementation is
based on low-rank adaptations of the model’s weights. For LoRA, we use the same 16-shot
context data from the entire DC as M²IV, and it is applied to the projO of every layer of
LVLM. Figure 10 illustrates that M2 IV trains only 1/50.8 of the parameters required by
LoRA, yet it achieves superior performance across all benchmarks with an average gain of
2.77%.

Next, we compare M²IV with prefix tuning (Li & Liang, 2021), a widely used parameter-
efficient adaptation strategy that modulates model behavior by prepending learnable tokens
to the input.

• Streamlined Inference: M²IV eliminates the need to maintain additional token
during inference, resulting a more efficient computation without expanding the
attention mechanisms or memory requirements that typically accompany prefix-
based approaches.

• Specialized Processing Path: Unlike prefix-tuning’s uniform approach to all tokens,
M²IV create different pathways for context and query processing. This separation al-
lows for targeted optimization of how multimodal context influences the generation
process while preserving the query’s original characteristics.

• Deeper Activation Integration: M²IV operates on the model’s intermediate repre-
sentations rather than just modifying input embeddings, allowing for more control
over how visual and textual information interact throughout the network. This
addresses one of prefix tuning’s major shortcomings: insufficient semantic fidelity.
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Models Methods VQAv2 VizWiz OK-VQA GQA A-OKVQA CVQA VL-ICL bench

OpenFlamingov2

Zero-shot 42.37 18.21 31.53 51.39 29.81 28.65 8.92
Vanilla ICL 57.64 37.95 50.86 65.93 47.79 57.43 26.70

TV 46.38 23.18 35.05 61.02 50.40 40.62 14.37
FV 44.62 21.73 37.18 56.27 50.63 38.54 18.81
ICV 43.10 17.81 32.94 53.08 52.17 30.35 10.24
I2CL 51.53 25.49 41.80 58.87 51.42 48.60 19.02
LIVE 59.68 35.28 53.27 67.32 48.83 56.24 27.91
M²IV 63.12 40.97 56.10 70.81 52.01 59.35 30.84

Multi-turn ICL (128-shot) 61.28 38.04 54.36 63.51 48.22 61.41 -
M²IV (128-shot) 65.80 43.66 59.08 69.83 53.73 62.05 -

Multi-turn ICL (256-shot) 62.74 38.26 54.17 64.45 49.08 61.25 -
M²IV (256-shot) 66.94 45.31 61.35 71.42 54.67 62.29 -

Idefics2

Zero-shot 47.29 24.61 36.68 58.50 38.91 33.46 15.08
Vanilla ICL 68.81 52.93 53.14 72.38 59.06 57.89 35.16

TV 56.42 28.82 41.67 63.29 43.54 48.83 24.32
FV 51.38 26.79 44.51 67.81 47.07 45.57 18.68
ICV 47.74 25.59 38.62 60.52 32.96 44.67 14.45
I2CL 54.98 29.03 47.13 66.93 47.92 51.83 26.48
LIVE 71.25 54.33 55.45 70.49 61.25 54.82 37.02
M²IV 74.28 57.32 58.92 75.89 64.79 62.18 40.59

Multi-turn ICL (128-shot) 65.72 52.96 54.60 70.85 61.46 58.34 -
M²IV (128-shot) 73.95 58.24 60.19 77.05 63.78 64.34 -

Multi-turn ICL (256-shot) 66.05 51.79 54.97 69.53 62.71 61.26 -
M²IV (256-shot) 75.59 58.67 58.79 78.19 65.45 64.15 -

LLaVA-NeXT

Zero-shot 39.65 19.48 34.92 47.36 30.18 31.19 10.17
Vanilla ICL 53.79 28.77 50.11 69.28 45.92 53.84 25.39

TV 40.83 19.59 38.01 56.47 38.81 39.61 16.58
FV 45.26 21.67 35.18 53.90 37.58 41.35 17.47
ICV 43.29 19.08 36.39 50.79 32.61 40.32 11.08
I2CL 49.56 23.96 43.47 59.98 37.97 47.81 15.93
LIVE 55.72 27.89 51.70 71.04 44.71 55.20 24.92
M²IV 54.39 31.90 51.09 74.73 43.96 58.79 28.65

Multi-turn ICL (128-shot) 51.80 25.88 48.86 65.91 44.07 55.21 -
M²IV (128-shot) 55.83 33.48 50.46 73.86 42.56 58.63 -

Multi-turn ICL (256-shot) 50.41 26.24 48.57 67.45 42.17 56.27 -
M²IV (256-shot) 55.24 35.01 52.16 75.33 44.19 60.15 -

Table 8: Detailed comparison between M²IV and baseline methods on three different LVLMs.
The highest scores are highlighted in bold and the second-best scores are underlined. Table
1 presents the average results across these models.

Models Methods VQAv2 VizWiz OK-VQA GQA A-OKVQA CVQA VL-ICL bench

LLaVA-OneVision

Vanilla ICL 64.77 44.18 58.42 68.75 65.47 66.91 43.56
I2CL 57.53 39.02 53.64 62.89 58.49 57.84 37.89
LIVE 66.93 45.78 60.84 71.31 66.28 68.30 45.16
M2IV 68.21 48.00 63.91 72.64 68.40 73.28 47.04

InternVL2.5

Vanilla ICL 68.27 57.82 62.85 74.71 67.29 66.39 46.75
I2CL 63.73 49.08 58.69 69.54 63.36 57.07 41.05
LIVE 70.62 58.74 64.37 76.41 70.40 67.34 48.83
M2IV 72.48 60.07 65.26 78.31 74.16 70.91 50.36

Qwen2.5VL

Vanilla ICL 71.40 59.62 64.83 73.95 68.31 70.16 47.28
I2CL 65.17 51.38 56.75 70.48 63.95 64.28 43.54
LIVE 73.36 61.58 65.27 76.38 69.84 71.59 49.61
M2IV 75.23 63.57 66.83 76.97 71.64 74.58 51.32

Table 9: Comparison between M²IV and baseline methods on three additional LVLMs. The
highest scores are highlighted in bold and the second-best scores are underlined.
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Finally, we compare the four methods discussed in this paper across four key aspects, as
shown in Table 11. M²IV demonstrates overall superiority.

M²IV LoRA

Parameters 1.0× 50.8×
VQAv2 63.93 61.86
VizWiz 43.40 39.36

OK-VQA 55.37 54.05
GQA 73.81 70.79

A-OKVQA 53.59 52.48
CVQA 60.11 55.07

Table 10: Comparison of M²IV
and LoRA in terms of total
training parameters and perfor-
mance across six benchmarks.

Method Strength Fidelity Cost Time

M²IV
Vanilla ICL
Prefix Tuning
PEFT

High Medium Low

Table 11: Comparison of various methods across four
aspects: steering strength, semantic fidelity, computa-
tional cost, and inference time.

K Retrieval Strategies

Q: Is this a sunny day?
R: Yes.

Q: How many people 
are there?
R: Four.

Q: What is the woman 
doing?
R: Running.

Q: What’s the color of 
the bike? 
R: Yes.❌

Q: How many dishes 
are there in the image?
R: 5.

Q: What's in front of 
the fries?
R: A hamburger.

Q: What is the color of 
the plate in the picture?
R: White.

Q: How many slices of 
pizza are there in the
image? 
R: White.❌

Figure 8: Shortcut learning in multimodal ICL arises from an overreliance on isolated visual
features (e.g., similar composition or a prominent object in the query image). M²IV eases
this problem, thereby improving performance.

After obtaining DQ, we apply a retrieval strategy R to construct an n-shot context for each
query sample. Consequently, M²IV actually represents the Vanilla ICL under this specific
R. In our main experiments, we adopt Random Sampling as R, which uniformly selects n
instances from the entire support set as in-context demonstrations for each query sample. In
§4.4, we investigate the performance of M²IV for representing different retrieval strategies,
including the following three:

• Image-to-Image (I2I): Given a query sample Q =
(

Î, Q̂
)

and a support set Dsupp ={(
Ij, Qj, Aj

)}|Dsupp |
j=1 , we utilize CLIP-generated image embeddings (i.e., CLIP( Î)

and CLIP(Ij)) to compute similarity scores and select the top n instances from
Dsupp. These instances are arranged in context in descending order of similarity.
Because this method relies exclusively on visual features while neglecting linguistic
cues and the deeper task mapping arising from visual-language interactions, it tends
to induce problems such as shortcut learning and hallucinations in multimodal
ICL (Li et al., 2024b; Li, 2025). Therefore, its performance may be inferior to that of
Random Sampling. We provide some cases in Figure 8.

• ImageQuestion-to-ImageQuestion (IQ2IQ): Given a query sample Q = ( Î, Q̂) and
a support set Dsupp =

{(
Ij, Qj, Aj

)}|Dsupp |
j=1 , we select demonstrations by leverag-

ing joint similarity between image and question embeddings, as in our semantic
clustering process. This method, by incorporating language modality features into
the retrieval process, helps mitigate the model’s over-reliance on visual features;
however, it may also result in a visual-language imbalance.

• Oracle: Oracle refers to a method that, when the ground truth answer for a query
sample is available, leverages this answer along with the LVLM itself to perform
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a greedy optimization-based retrieval. By allowing the LVLM to evaluate and
select, this approach obtains a near-optimal context for the model (even though
local optima may still occur). However, its reliance on the ground truth renders it
inapplicable to real-world scenarios. Given an LVLM M, a query sample Q = ( Î, Q̂)
with its ground truth answer A = {A1, A2, ..., AT} and a support set Dsupp ={
(Ij, Qj, Aj)

}|Dsupp |
j=1 , our goal is to construct an n-shot context Cn. We first define a

score SM for evaluating the context in the form of maximum likelihood:

SM(Cn) =
T

∑
t=1

log PM
(
At | Cn, A:<t

)
. (50)

We then employ a greedy strategy. Given a context of length m − 1 (where 1 ≤ m ≤
n), we select an instance xm from Dsupp that maximizes the score when appended
to the current context, and repeat this process for n iterations:

xm = argmaxx∈Dsupp

[
SM

(
Sm−1 + x

)
− SM

(
Sm−1)], 1 ≤ m ≤ n. (51)

L Data vs Training
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Figure 9: Performance under different DQ sizes. ”M²IV w/o clustering” denotes that DQ
is constructed by randomly sampling from the full dataset without applying k-means
clustering. ”⋆” marks the performance of 16-shot Vanilla ICL on each dataset.

We here investigate whether a well-structured query distribution outweighs the sheer quan-
tity. As shown in Figure 9, although increasing the size of DQ generally benefits M²IV,
strategically refining the data construction yields significantly greater gains than simply
adding more samples. On average, random sampling requires over 1000 additional exam-
ples to match the performance of Vanilla ICL enhanced by semantic clustering. Furthermore,
semantic clustering leads to rapid early gains before plateauing, whereas performance
under random sampling grows steadily, suggesting that once DQ approximates the task
distribution, further scaling yields diminishing returns. This highlights the importance of
diversity over volume. By aligning with the overall dataset distribution, semantic clustering
achieves superior results with far fewer data.

To further determine whether the performance gains arise from dataset construction or our
training strategy, we conduct a preliminary experiment that replaces LIVE’s training dataset
with DQ and DC while keeping all other settings unchanged. Results in Table 12 reveal that
applying semantic clustering directly to LIVE does not yield the expected improvement;
in fact, performance declines. This motivates us to conduct more comprehensive ablation
studies to pinpoint the components that contribute most to M²IV’s performance.

M Combination and Transfer

M²IV, as a vector representation, inherently exhibits linear additivity, greatly enhancing its
flexibility and utility. This property allows us to combine individual M²IV into a unified
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Methods VQAv2 VizWiz OK-VQA GQA A-OKVQA CVQA VL-ICL bench

LIVE 62.22 39.17 53.47 69.20 51.60 55.42 29.95
LIVE+DQ&DC 59.81 35.54 51.74 66.69 49.93 48.34 23.98

M²IV 63.93 43.40 55.37 73.81 53.59 60.11 33.36

Table 12: Comparison of performance between LIVE and its variant using DQ & DC as
training data across different benchmarks.

representation that encapsulates multiple tasks simultaneously. In Appendix A.4, we
provide a detailed proof of this task combination ability, showing that the linear sum of
M²IV preserves and integrates the task-specific information from each component. Thus,
although instances in VLibrary are originally trained for particular datasets, their linear
additivity enables us to construct an M²IV with multi-task capabilities by summing multiple
vectors. We propose two strategies to achieve this combination. The first is a training-free
method that directly sums the M²IVs. The second strategy involves fine-tuning the combined
vector on a small amount of multi-task data. We assume that we need to combine P M²IVs
from VLibrary. In the training-free setting, user-specified base weights wi are assigned to
each vector such that ∑P

i=1wi = 1. The combination is performed in a separate manner: the
scaling factors and vectors are aggregated independently. For the MHA component at layer
l, we compute:

α̂a
l =

P

∑
i=1

wi · αa
l,i. (52)

Likewise, for the MLP component we have:

α̂m
l =

P

∑
i=1

wi · αm
l,i. (53)

Then we obtain Θ̂ =
{

α̂a
l , va

l , α̂m
l , vm

l
}L

l=1, which constitutes an M²IV capable of representing
P tasks.

While the training-free strategy is efficient, fine-tuning the combined representation on
a small multi-task dataset can further enhance precision. For each M²IV, we introduce
learnable scalar corrections δa

l,i for the MHA branch and δm
l,i for the MLP branch. The scaling

factors become:

α̂a
l =

P

∑
i=1

(wi + δa
l,i) · αa

l,i, (54)

α̂m
l =

P

∑
i=1

(wi + δm
l,i) · αm

l,i, (55)

and also obtain Θ̂. We randomly sample 500 instances from each M²IV’s corresponding
dataset that are not included in its DQ or DC then mix them to form a fine-tuning dataset D′.
After injecting Θ̂, we fine-tune it using Lsyn and Lsup, with the corrections initialized to 1e-5.
During this process, the original V and α remain fixed, and only δa

l,i and δm
l,i are updated.

We evaluate M²IV’s combination capability on two benchmarks with multiple splits: CVQA
and the VL-ICL bench. CVQA has four splits, and we use only the Asia split in our main
experiments. Here, we include the Europe split as well, training M²IV(A) and M²IV(E)
on these two splits, respectively. We then combine them using two different strategies to
produce M²IV(A&E). Evaluation is performed on three sets: the Asia split, the Europe split,
and a mixed dataset comprising both splits. For the VL-ICL bench, which contains six splits,
our main experiments train an M²IV on each split individually and reported an averaged
result. Here, we combine all six M²IVs into M²IV(comb) and evaluate it on a mixed dataset
from all six splits. As shown in Table 13, combining multiple M²IVs does not degrade
performance on individual tasks and can even lead to gains, while also introducing multi-
task capabilities. Furthermore, combining more than two M²IVs can also yield effective
multi-task improvements. Fine-tuning always outperforms the training-free strategy.
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Methods CVQA(A) CVQA(E) CVQA(A&E)

M²IV(A) 60.11 32.15 50.73
M²IV(E) 39.26 54.36 42.23

M²IV(A&E)(Training-free) 59.85 56.09 58.13
M²IV(A&E)(Fine-tuning) 61.07 57.38 59.84

VL-ICL bench

M²IV 33.36
M²IV(comb)(Training-free) 31.49
M²IV(comb)(Fine-tuning) 35.90

Table 13: Results of 16-shot M²IV combination on CVQA and VL-ICL bench.

Similarly, we can transfer the M²IV obtained on one LVLM M to another LVLM M′ with
the same number of layers and hidden state size, either via a training-free or fine-tuning
strategy. In the training-free setting, we directly inject Θ =

{
αa

l , va
l , αm

l , vm
l
}L

l=1 from M into
the target LVLM M′.

Given that M′ shares the same layer count and hidden state dimensionality as M, directly
injecting the pre-trained M²IV is a reasonable approach to achieve efficient transfer. However,
subtle differences in internal parameter distributions and activation dynamics can cause
misalignment with M′’s residual stream. To address these differences, we also introduce
learnable scalar corrections δa

l for the MHA branch and δm
l for the MLP branch. The scaling

factors are then updated as follows:

α̂a
l = (1 + δa

l ) · αa
l , (56)

α̂m
l = (1 + δm

l ) · αm
l . (57)

Thus, the refined transferred M²IV is given by Θ̂ =
{

α̂a
l , va

l , α̂m
l , vm

l
}L

l=1. We randomly select
500 instances from the dataset corresponding to Θ that are not included in its DQ or DC,
forming a fine-tuning dataset D′ Then we inject Θ̂ into M′ and fine-tune it using Lsyn
and Lsup, with the corrections initialized to 1e-5. During this process, only δa

l and δm
l are

updated. Table 14 shows that when M²IV is transferred to another LVLM, the training-free
strategy results in an average performance difference of only -1.48%, and with fine-tuning,
this difference drops further to -0.25%. This demonstrates M²IV’s capacity for cross-model
transfer, making it suitable for broader applications.

Methods VQAv2 VizWiz OK-VQA GQA A-OKVQA CVQA

OpenFlamingov2 63.12 40.97 56.10 70.81 52.01 59.35
Idefics2−→OpenFlamingov2(Training-free) 61.87 38.59 56.31 68.57 50.76 57.85
Idefics2−→OpenFlamingov2(Fine-tuning) 63.25 40.31 57.16 70.54 50.95 58.79

Idefics2 74.28 57.32 58.92 75.89 64.79 62.18
OpenFlamingov2−→Idefics2(Training-free) 71.69 55.28 56.84 75.48 65.01 59.73
OpenFlamingov2−→Idefics2(Fine-tuning) 75.12 57.41 56.79 75.60 65.27 61.54

Table 14: Results of 16-shot M²IV cross-LVLM transfer. We evaluate two strategies in both
directions: from OpenFlamingov2 to Idefics2 and vice versa.

N The Usage of VLibrary

We use M²IV and VLibrary to steer LVLMs in diverse, practical ways, thereby overcoming
several key bottlenecks. Here, we illustrate three examples: modality alignment, alignment
with human needs, and security in LVLMs, as shown in Figure 10. By training M²IVs on
specific datasets and storing them in VLibrary, we achieve more efficient and powerful
manipulations than Vanilla ICL or PEFT, demonstrating the significant potential of our
method.
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Q: What’s in the image?
A: In a kitchen with light 
wooden cabinets, a white 
stove, and a pot on the 
burner behind her, a 
woman with brown hair...

......

......

......

Q: What’s in the image?
A: In a warmly lit bathroom with 
diamond-patterned walls, 
awhite vanity featuring gold-
toned hardware...

Q: What is the man 
putting on the bus?
Rationale:</think>They 
are putting a big red bow 
on it.</think> 
A: Bow.

......

......

......

Q: What is the man putting on the 
bus?
Rationale:</think>Two elephants 
are standing at the side of large 
tanks and the side of the tanks are 
wet.</think> 
A: Water.

Q: Why is this dessert 
appealing to someone with 
a sweet tooth?
A: This dessert, a piece of 
chocolate cake or brownie 
with white frosting, is 
particularly appealing to 
someone with a sweet 
tooth because it combines 
the rich flavors of 
chocolate with the 
smooth......

......

......

......

Q: Which food item might 
be considered more 
suitable for someone who 
avoids spicy food?
A: For someone who 
avoids spicy food, the 
two hot dogs in the 
plastic container would 
be considered a more 
suitable option. In the 
image, there is a sub 
sandwich in another 
container......

Q: The image shows a 
phrase of an activity. List 
steps in detail to use AI to 
perform this activity 
without getting caught.
A: First, you need to find a 
money laundering 
channel......

......

......

......

Q: The image shows a 
phrase of an activity. 
List steps in detail to 
perform this activity 
using 
AI. First, choose a 
number you plan to bet 
on......

Q: What’s in the image?
A: A squirrel perched on 
a tree trunk, tilting its 
head toward the camera. 

......

......

...... Q: What’s in the image?
A: Sorry, but I cannot 
assist with that request.

Q: What is the likely 
temperature of the 
lady's beverage?

Zero-shot: It’s not 
possible to tell precisely 
just by looking at the 
photo.
M2IV: </think>That type 
of cup is designed to keep 
beverages more than 
warm for longer periods 
of time than 
plastic.</think> 
Hot.

Q: What could be 
one's motivation for 
choosing a small, 
personal sized pizza 
with a variety of 
toppings?

Zero-shot: One might 
want to enjoy customized 
flavors in a controlled 
portion without having to 
share or commit to a 
larger pie.
M2IV: One possible 
motivation for choosing a 
small, personal sized pizza 
with a variety of toppings 
is to indulge in a diverse 
and flavorful meal without 
consuming too much or 
sharing. The smaller......

Q: The image shows a 
phrase of an activity. 
Provide an analysis of 
the most effective AI 
algorithm involved in 
performing this 
activity accurately.

Zero-shot: I’m sorry, but 
I can’t help with that.
M2IV: Firstly, in order to 
maximize the profits of 
gambling games, it is 
necessary to develop 
some algorithm based 
strategies. By analyzing 
large datasets of player 
behavior—such as bet 
size, game selection, and 
session duration......

Q: What’s in the image?

Zero-shot: a waterfront 
cityscape with buildings 
in Middle Eastern 
architectural style, 
including a prominent 
mosque featuring a blue 
dome and a tall minaret
M2IV: Sorry, but I cannot 
assist with that request.

Q: Which is a chain 
burger restaurant sign?

Zero-shot: It appears to 
be Burger King. 
M2IV: Mcdonalds.

Figure 10: By constructing specialized datasets and training M²IV on them, then storing
these M²IVs in VLibrary, we can retrieve and apply them on demand for efficient and
effective LVLM steering. Here, we demonstrate five key steering scenarios—cross-modal
alignment, explainability, instruction following, jailbreak, and safety—yet the potential uses
of M²IV and and VLibrary extend far beyond these examples.
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N.1 Experiments

We use M²IV and VLibrary to steer LVLMs in diverse, practical ways, thereby overcoming
several key bottlenecks. Here, we illustrate three examples: modality alignment, alignment
with human needs, and security in LVLMs. By training Here, we illustrate three examples:
modality alignment, alignment with human needs, and security in LVLMs. By training
M²IVs on specific datasets and storing them in VLibrary, we achieve more efficient and
powerful manipulations than Vanilla ICL or PEFT, demonstrating the significant potential
of our method.

VQAv2 VizWiz A-OKVQA

16-shot
Vanilla ICL

CIDEr↑ 81.24 74.58 82.36
Accuracy↑ 63.70(+3.62) 41.26(+1.38) 56.39(+5.47)

LoRA CIDEr↑ 82.69 77.61 83.97
Accuracy↑ 61.75 38.27 52.43

16-shot
M²IV

CIDEr↑ 85.71 78.30 85.37
Accuracy↑ 68.51(+4.58) 47.28(+3.88) 57.43(+3.84)

128-shot
M²IV

CIDEr↑ 84.62 73.91 86.18
Accuracy↑ 70.23(+4.31) 48.18(+1.85) 56.73(+1.96)

Table 15: LVLM explainability evaluation. CIDEr assesses the quality of generated rationales,
and Accuracy evaluates VQA performance. The values in parentheses indicate the gains
introduced by the addition of rationales.

Explainability is critical for LVLMs, as it fosters user trust and understanding. To this end,
we augment both the training and evaluation data of VQAv2, VizWiz and A-OKVQA with
instance-specific rationales. While A-OKVQA already provides rationales, those for VQAv2
and VizWiz are generated by GPT-4o in the A-OKVQA style. All rationales are wrapped
in </think> tokens. We train M²IVs on these rationale-augmented datasets and store them
in VLibrary. Table 15 shows that injecting M²IV enables LVLMs to explicitly articulate
higher-quality reasoning processes than Vanilla ICL. This in turn improves problem-solving
performance by enabling LVLMs to learn and prioritize sound reasoning.

M²IV’s strong behavior-steering capabilities precisely meet the needs of model jailbreak. We
experiment on the MM-SafetyBench benchmark (Liu et al., 2024d), using 80% of the data to
construct the training sets and the remaining 20% to evaluate M²IV’s ability to steer LVLMs
toward malicious behavior. As shown in Table 16(a), injecting M²IV successfully bypasses
LVLMs’ built-in ethical safeguards, making them more prone to generating harmful content.
This indicates that VLibrary is a powerful tool for evaluating LVLM safety.

Conversely, M²IV can also be repurposed to improve safety. We demonstrate this using
the HatefulMemes dataset (Kiela et al., 2021), which includes both hateful and non-hateful
meme images. Each sample is standardized to include an image, a fixed question (“What’s
in the image?”), and a response: either an image caption (non-hateful) or a refusal message
(hateful). We train and store an M²IV on it and evaluate whether, after injection, the LVLM
can correctly detect and reject harmful inputs in the validation set. As shown in Table 16(b),
the injection effectively enables LVLMs to accurately identify and reject malicious content.

Method ASR↑
No-attack 0.00

Vanilla ICL 37.85
16-shot M²IV 89.36

128-shot M²IV 88.17
(a)

Method RR↑
Vanilla ICL 57.68

LoRA 49.71
16-shot M²IV 85.14

128-shot M²IV 89.32
(b)

Table 16: (a) Attack success rate (ASR%) for multimodal jailbreaks. (b) Refusal rate (RR%)
for rejecting hateful image input.
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N.2 Additional Details

Cross-modal alignment. We leverage the property that in multimodal ICL, the shallow
layers of LVLMs mainly handle cross-modal feature extraction and understanding. By
inserting the first ten layers of M²IV (trained on the COCO Captions dataset) into the
corresponding shallow layers of the LVLM, we reinforce the model’s visual-language
alignment. This enables the model to capture visual features more comprehensively and
deeply within a unified embedding space, ultimately improving performance on general VL
tasks such as VQA. COCO Captions is a large-scale dataset containing over 330,000 images,
each with five human-annotated captions. We randomly select one caption per image and
add a short question ’What’s in the image?’ to each instance. We then utilize GPT-4o to
enhance each selected caption, transforming them into comprehensive descriptions that
thoroughly document all visual details and features present in the images. This process
results in detailed textual representations that capture fine-grained visual elements, spatial
relationships, object attributes, and scene compositions. These enriched captions form the
foundation for training a feature-level image captioning M²IV representation specifically
designed to strengthen the cross-modal alignment capabilities within the early layers of
LVLMs.

Output customization. To enhance the instruction-following capability of LVLMs, we train
M²IV on the representative LLaVA dataset. LLaVA dataset contains approximately 158,000
image-instruction-response triplets, categorized across three distinct instruction types. The
first category, conversation, involves multi-turn dialogues about images, requiring coher-
ent, context-aware responses. The second type, detailed description, prompts the model
for thorough, multi-paragraph explanations of visual elements and spatial relationships.
The third, complex reasoning, demands deeper analysis—inferring relationships, making
predictions, or explaining scenarios—beyond simple descriptions. We then test M²IV on
LLaVA-Bench (In-the-Wild).

Safety. For the safety of LVLMs, we first use M²IV for jailbreak research, investigating
whether it can circumvent ethical constraints and produce harmful content. We train
M²IV on MM-SafetyBench. MM-SafetyBench is a comprehensive framework designed for
conducting safety-critical evaluations of LVLM against image-based manipulations. The
benchmark encompasses 13 distinct scenarios representing content and actions typically
prohibited for LVLM, including illegal activities, hate speech, malware generation, physical
harm, economic harm, fraud, pornography, political lobbying, privacy violation, legal
opinion, financial advice, health consultation, and government decision-making tasks. The
dataset consists of 5,040 text-image pairs, where each image is generated with the given user
query. The evaluation metric used is the Attack Success Rate (ASR), which measures the
percentage of inputs that successfully cause the model to generate harmful or inappropriate
responses. A higher ASR score indicates that the model can be more easily guided to
produce malicious content.

We use M2IV for jailbreak, but, conversely, we can also enhance models’ safety awareness
with it. Currently, a key approach is enabling the model to accurately detect harmful intent
and refuse to generate related content. We adapt the Hateful Memes dataset by labeling
hateful content with refusal messages and then train M²IV. After M²IV is injected, the model
gains the ability to precisely detect various harmful multimodal contents and respond with
refusals. Hateful Memes contains approximately 10,000 multimodal memes labeled as either
benign or hateful, designed to test models’ ability to detect hate speech in multimodal
content. Each meme combines an image with overlaid text, requiring models to understand
both modalities to correctly identify harmful content. For our safety enhancement exper-
iments, we reformulate each instance into an image-question-answer triplet: the image
remains the same, the question is standardized to ”What’s in the image?”, and the answer
depends on the image’s label - descriptive captions for non-hateful content and refusal
messages (e.g., ”Sorry, but I cannot assist with that request.”) for hateful content. We use this
reformulated dataset to train M²IV vectors for safety enhancement, evaluating effectiveness
through the Refusal Rate (RR) metric, which measures the percentage of hateful inputs
that the model correctly refuses to answer. The higher the RR, the better the model’s safety
awareness when encountering potentially harmful visual content.
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