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Abstract

Parkinson’s disease significantly impacts speech, particularly affecting phonemic groups like stop-plosives, fricatives, and af-
fricates. However, its objective impact on the different phonemic groups has been briefly addressed in the past.

This study introduces a new model, called MARTA, built upon a Gaussian Mixture Variational AutoEncoder with metric
learning to measure the disease’s impact on the phonemic grouping automatically and objectively. MARTA was trained on
normophonic speech before adapting it to parkinsonian speech. The model effectively clusters phonemic groups unsupervised
and demonstrates enhanced discriminative power when supervised using forced-aligned labels. Our findings reveal that beyond
the traditionally affected phonemes, Parkinson’s disease not only affects stop-plosives, voiced-plosives, and nasals, but also
significantly impacts liquids, vowels, and fricatives, with the model achieving a benchmarking 91% ± 9 discrimination capability.
An in-depth evaluation of the impact of the disease on the different phonemic groups represents an advance in the current
knowledge of its effects on the speech, and has clear implications in the speech therapy of people with Parkinson’s disease.

Moreover, regardless of the specific application domain presented, the model introduced has potential downstream utility in

assessing the manner of articulation, whether influenced by other medical conditions or certain dialectal variations.
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MARTA: a model for the automatic phonemic
grouping of the parkinsonian speech
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Shattuck-Hufnagel ID , and Juan I. Godino-Llorente ID , Senior Member, IEEE

Abstract—Parkinson’s disease significantly impacts speech, particularly affecting phonemic groups like stop-plosives, fricatives, and
affricates. However, its objective impact on the different phonemic groups has been briefly addressed in the past.
This study introduces a new model, called MARTA, built upon a Gaussian Mixture Variational AutoEncoder with metric learning to
measure the disease’s impact on the phonemic grouping automatically and objectively. MARTA was trained on normophonic speech
before adapting it to parkinsonian speech. The model effectively clusters phonemic groups unsupervised and demonstrates enhanced
discriminative power when supervised using forced-aligned labels. Our findings reveal that beyond the traditionally affected phonemes,
Parkinson’s disease not only affects stop-plosives, voiced-plosives, and nasals, but also significantly impacts liquids, vowels, and
fricatives, with the model achieving a benchmarking 91%± 9 discrimination capability. An in-depth evaluation of the impact of the
disease on the different phonemic groups represents an advance in the current knowledge of its effects on the speech, and has clear
implications in the speech therapy of people with Parkinson’s disease.
Moreover, regardless of the specific application domain presented, the model introduced has potential downstream utility in assessing
the manner of articulation, whether influenced by other medical conditions or certain dialectal variations.

Index Terms—Speech, Gaussian Mixture Variational Autoencoder, Parkinson’s Disease, Phonemic Grouping, Manner of articulation,
Manner classes, Unsupervised clustering, Supervised clustering, Downstream, Parkinson’s discrimination

✦

1 INTRODUCTION

PARKINSON’s disease is a chronic condition resulting
from the gradual death of brain cells, particularly those

in the substantia nigra responsible for dopamine produc-
tion [1]. The decrease in dopamine levels in Parkinson’s
Disease (PD) patients leads to noticeable motor symptoms
such as lack of coordination, muscle rigidity, and slowed
movements [2].

Diagnostic criteria for PD are mainly based on the ob-
servation of motor signs and non-motor indicators, with
neuropathological diagnosis during autopsy considered the
gold standard [3]. Studies suggest that standard clinical cri-
teria can produce 90% precision in diagnosis in an average
of 2.9 years [4]. Yet, recent evaluations have underscored the
complexities associated with PD diagnosis, highlighting the
need for innovative approaches, including genetic analysis,
machine learning techniques, and biomarker identification,
to improve diagnostic precision and accelerate the process
[5]. Consequently, the development of novel diagnostic tools
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is essential to improve early detection and intervention
strategies [6].

In this context, the automatic analysis of the speech
emerges as an efficient and timely alternative for the diag-
nosis and evaluation of PD [7]. Since the speech production
requires precise and complex movements, it is sensitive to
the early effects of neurodegenerative processes associated
with PD, resulting in dysphonia, dysarthria, and disprosody
[8]. Empirical evidence supports these findings, reporting
articulatory deficits in PD patients, manifested as lower
precision, amplitude, velocity, and variability in the opening
of the tongue, jaw, and lower lip during articulation, leading
to imprecise consonant or vowel production [9]–[11].

Acoustic analyses have identified several key indicators
of PD in speech patterns. The variation in voice onset time
for voiced and voiceless stops is one of such markers,
suggesting the potential presence of PD [12]. Spirantisation
is also a characteristic effect present in the speech of patients
with PD [13], [14]. Moreover, certain studies suggest differ-
ences in the slopes and variability of the formant frequencies
between patients and controls [15], and also in the vowel
space area of both groups [16]. There is also evidence of
significant alterations in speech rate [17]. A comprehensive
overview of these and other articulatory deficits in PD is
provided in [18].

Previous research has examined the perceptual impact
of various phonemes in different languages on the detection
of PD. Distinct phonemic groups are affected differently by
PD, with notable impacts on stop-plosives, fricatives, and
affricates. This claim aligns with previous studies that con-
ducted perceptual analyses of Parkinsonian speech, high-
lighting these specific phonemic irregularities [19]–[21].
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Recent research has further advanced our understanding
of PD detection through speech analysis. The study in [22]
highlights the potential of fricative sounds —parameterised
by duration, intensity, and/or spectral moments— to assess
co-articulation capabilities and to evaluate the patient’s
ability to perform complex movements that are impaired
in PD. This finding is also supported by [23], suggesting
that fricatives are more discriminative than vowels for the
detection of PD. In addition, the study in [24] explores
the use of occlusive consonants for the detection of PD,
achieving a classification accuracy of 94.4% with the plo-
sive /k/, being particularly discriminative in a dataset of
Spanish speakers. On the same line, [14] reports that voiced
consonants and consonants in the word medial position
are prone to distortion in PD, also concluding that these
distortions contribute strongly to the perceived intelligibility
of the PD group. The importance of individual fricatives
and stop-plosives is further confirmed in additional cross-
language experiments [25], using Spanish and Czech speak-
ers, leading to accuracies of 79% and 94%, respectively.
Subsequent work [26] introduces features extracted from rel-
evant articulation moments, highlighting the importance of
studying transitions between specific phonemes to evaluate
the speech of patients with PD.

Automatic systems are also proposed for the detection
of PD using articulatory and phonatory features extracted
with signal processing techniques, reporting accuracies —in
the most robust cases, methodologically speaking— below
90% [27], [28]. These systems aim for a binary categorisation
of PD vs. controls, with no detailed analysis of the discrim-
ination capabilities of the distinct Manner Classes (MC) of
phonemes (i.e., categories with the same manner of articu-
lation), a crucial aspect for future system developments, to
adequately select the speech tasks to be employed, and to
design appropriate speech rehabilitation techniques.

To our knowledge, only the preliminary study in [29]
has addressed an automatic analysis of different phonemic
groups in the context of PD speech. The results suggest
that the plosive segments tend to provide a better accuracy
for the detection of PD, followed by vowels and fricative
segments. Nevertheless, despite its findings, the methodol-
ogy outlined in [29] does not follow current methodological
trends in the design of AI systems, so it has limitations in
codifying the phonemic information in a way that can be
used for downstream tasks associated with treatment as-
sessment or integrated into current proposals of multimodal
systems for PD detection and evaluation [30].

In a broader context, not dedicated to the analysis of
the speech of PD patients, a recent work [31] proposed
a CLIP-like [32] model architecture called SCRAPS. This
model codifies phonetic and acoustic information into a
unified latent space. SCRAPS employs distinct encoders for
phonetics and acoustics, minimising the distance between
these modalities to establish a cohesive phonetic-audio
representation. This approach provides flexibility, allowing
potential downstream applications to be built upon it and to
develop other models/solutions across a spectrum of speech
and audio tasks, such as speech recognition and mispro-
nunciation detection. However, SCRAPS focusses mainly on
a generic phonetic and acoustic analysis of normophonic
speakers without ensuring the discriminative power of

each phonemic group or MC, hindering the applicability
to biomedical contexts where characterising the effects of
a certain pathology on each phonemic group is crucial for
the detection and assessment of the disease. SCRAPS allows
the mapping of a particular utterance to a latent space
aligned with phonetic characteristics, but the information
about to what extent a particular manner class deviates
from its theoretical (or canonical) phonemic structure is lost.
This limitation hinders its direct applicability to PD speech
research, where the analysis of MC could provide critical
insights.

In this context, this study introduces Manner of ARTicu-
lation Analysis (MARTA), an innovative tool powered by a
Gaussian Mixture Variational AutoEncoder (GMVAE) [33],
which seeks to bridge these gaps by focussing on a class-
driven approach to map the latent acoustic space, without
the need for a separate encoder for each MC. Consequently,
the study aims to pinpoint the speech segments holding
greater relevance for the automatic detection of PD. The
underlying hypothesis posits that the relevance of acoustic
segments varies, as each one stems from distinct vocal tract
narrowing, configuration, and articulation. By focussing
on MC, MARTA aims not only to improve discrimination
between normophonic and parkinosnian speech, but also
to create a latent space that could support a variety of
speech-related applications. This approach extends beyond
the scope of SCRAPS, offering specificity for PD research
through a MC analysis, and going beyond the limitations of
[29] by providing a versatile framework for further explo-
ration to develop downstream applications in speech pro-
cessing, multimodal models, speech therapy, and dialectal
evaluation of the speech.

MARTA is initially trained using the Albayzin dataset,
which is a phonetically balanced dataset of Castillian Span-
ish normophonic (i.e., Healthy Controls (HC)) speakers.
MARTA effectively clustered various MC, such as vowels,
fricatives, stop-plosives, liquids, and nasals. Extending the
research, the model was adapted to the NeuroVoz dataset.
This new domain contains different acoustic materials from
parkinsonian patients and controls, and was used to eval-
uate the quality and discrimination capabilities of the MC
clustering in presence of PD.

The experimental approach was twofold. Initially,
MARTA was trained in a non-supervised way with nor-
mophonic speakers from both datasets, with the aim of
validating its clustering capability for different phonemic
groups. The effectiveness of this approach was quantified
using Jensen-Shannon Distance (JSD) between the clusters
formed by the different phonemic groups in the latent space.
The results are visualised in two-dimensional (2D), three-
dimensional (3D), and 32-dimensional (32D) spaces.

In the subsequent phase, MARTA was tailored to dis-
criminate between PD and HC speech. The methodology
encompasses two analysis angles: first, an unsupervised
examination of the JSD within parkinsonian MC; and sec-
ond, a supervised classification technique, named Manner
of ARTiculation Analysis with Supervision (MARTA-S), for
detecting PD from the speech. Despite the application field,
the techniques and the model presented in this paper could
be used to evaluate the manners of articulation due to the
presence of other diseases or due to dialectical differences.
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The rest of the paper is organised as follows. Section 2
is dedicated to introducing the materials and methods used
to develop the system; Section 3 presents the results; and
Section 4 is dedicated to a discussion and drawing the main
conclusions.

2 MATERIALS AND METHODS

This section describes the corpora used for the experiments
and presents in detail the architecture of MARTA and meth-
ods used for processing the audio recordings.

2.1 Materials: Speech corpora
In this work, we have used two different speech corpora,
namely: Albayzin and NeuroVoz. The first is a widely used
corpus of normophonic speakers that is used to warm-up
the model, and the second is a corpus of parkinsonian
speech which is used to adjust it to the specific field of
application. Both corpora are presented next.

2.1.1 Albayzin corpus
The Albayzin corpus [34] is a phonetically balanced dataset
consisting of recordings from 200 Text-Dependent Utter-
ances (TDU) sampled at 16 kHz and quantised with 16 bits.
The corpus contains audio recordings from four individuals
who uttered all 200 TDU, in addition to recordings from
160 speakers, each articulating a subset of 25 sentences of
the total. The complete dataset contains 4.800 recordings,
equivalent to approximately 4.1 hours of speech, along with
their corresponding transcriptions.

The sentences recorded were chosen to follow the typical
distribution of the different phonemes in Castilian Spanish.
To ensure a comprehensive representation of less common
sounds, a minimum requirement of 40 occurrences was
set, resulting in a minimum of 960 appearances across the
subcorpus. In terms of contextual relevance, the sentences
were chosen to ensure that every phoneme is accompanied
by its most relevant contexts at least four times. Generally,
a context is considered relevant if it occurs in at least
10% of the appearances. Additionally, contexts that may
lead to significant phonetic modifications were also deemed
relevant. Regarding syllabic proportions, the distribution
of each sound in stressed and unstressed syllables was
intentionally crafted to reflect the natural proportions found
in Castilian Spanish.

All speakers in this corpus are considered normophonic
and, therefore, are associated with the HC group.

2.1.2 NeuroVoz corpus
The NeuroVoz corpus [35], [36] comprises speech samples
from 57 individuals with PD and 44 HC subjects, all native
Castilian Spanish speakers. Speech signals were recorded
using an AKG C420 headset microphone connected to a
phantom power preamplifier and recorded with the Medi-
voz software [37] with a total of 3.77 hours of audio data.
The sampling rate was 44.1 kHz, and quantisation was
performed with 16 bits.

The corpus contains different speech materials, includ-
ing sustained vowel phonations, twelve TDU, and a mono-
logue. Our focus was narrowed to the TDU of the dataset,

allowing a controlled analysis of the speech patterns. The
utterances were produced in a natural, comfortable tone and
intensity of speech. Detailed transcriptions of these utter-
ances, along with their corresponding representations in the
International Phonetic Alphabet (IPA) [38], are provided in
Table 1.

All speakers with PD were under pharmacological treat-
ment and took the medication between 2 and 5 hours before
the recordings. The research protocol, including the speech
recording process, was approved by the Ethics Committee
of Hospital General Universitario Gregorio Marañón. The
protocol was in accordance with the Declaration of Helsinki
as formulated by the World Medical Association, as well
as the relevant European Directives. Informed consent was
duly obtained from every participant.

2.2 Methods

This section presents the pre-processing methods applied to
audio recordings, the methods used to label speech frames
into their phonemic class (MC), and a detailed view of the
architecture used for processing the audio signals.

2.2.1 Pre-processing

The pre-processing consists on three different steps, namely:
phonetic alignment, audio pre-processing, and phonemic
grouping. The specificities of each of these steps are pre-
sented next.

2.2.1.1 Phonetic alignment across datasets: The au-
dio data were pre-processed to estimate the time instants
corresponding to the beginning of each acoustic segment
following a forced alignment phonetic procedure. This was
carried out automatically using ’faseAlign’ [39], a Python®
tool that automates the forced alignment of Spanish speech
from their text transcriptions, producing a phonetic la-
bel for each timestamp. This tool is integrated into the
Hidden Markov Model Speech Recognition Toolkit (HTK)
[40]. ’faseAlign’ inherently includes acoustic models and
dictionaries suited for a wide range of Latin American
Spanish dialects, ensuring precise phonetic mappings and
timing. Although the Albayzin corpus contains a manual
alignment of the audio recordings, this tool was used in the
search for a completely automated procedure and to ensure
that the same processing is applied to both corpora used.
This step was crucial in introducing a uniform alignment
error across both datasets, thereby standardising the pre-
processing pipeline.

2.2.1.2 Audio pre-processing: The pre-processing of
the audio files followed a uniform pipeline applicable to
both Albayzin and NeuroVoz corpora. Initially, audio files
were processed using the librosa Python library [41], where
they were downsampled to a standard rate of 16 kHz.
Subsequently, each audio file underwent a normalisation
procedure that divided the amplitude by its maximum ab-
solute value. Following normalisation, the audio files were
segmented into 400 ms frames with 50% of overlap. Audio
files shorter than 400 ms were excluded to maintain consis-
tency in frame length. Correspondingly, HTK TextGrids were
also segmented following the same procedure, ensuring that
they matched their respective audio segments.
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TABLE 1: Transcriptions and translations of selected sentences

Sent.
#

Spanish transcription IPA transcription English translation

1 La patata no está bien ablandada [la pa"ta ta no es "ta Bjen a Blan "da
Da]

“The potato is not soft enough”

2 Mañana vamos de acampada [ma "ña na "Ba moz De a kam "pa
Da]

”Tomorrow we are going camping”

3 Cuando las barbas de tu vecino veas
pelar pon las tuyas a remojar

["kwan do laz "Bar Baz De tu Be "Ti
no "Be as pe "lar pon las "tu yas a
re mo "xar]

”When your neighbor’s beard you
see peeling, put yours to soak”

4 Burro grande ande o no ande ["bu řo "Gran de "an de o no "an de] ”Big donkey walk or not walk”
5 De la calle vendrá quien de tu casa te

echará
[de la "ka Le Ben "dra kjen de tu "ca
sa te e tSa "ra]

”From outside will come that who
will kick you out from your house”

6 Carmen baila el mambo ["kar men "baj la el "mam bo] ”Carmen dances the mambo”
7 Cuando el diablo no sabe qué hacer con

el rabo mata moscas
["kwan do el "dja Blo no "sa Be "ke a
"Ter kon el "̌ra Bo ma ta "mos kas]

”When the devil does not know
what to do, it kills flies with its tail”

8 Esto es una ganga ["es to es "u na "GaN ga ”This is a bargain”
9 Juan tira de la manga [xwan "ti ra De la "maN ga] ”Juan pulls the sleeve”
10 Dame pan y llámame perro ["da me pan i La ma me "pe řo] ”Give me bread and call me dog”
11 No pidas a quien pidió, ni sirvas a quien

sirvió
[no "pi Das a kjem pi "Djo ni "sir Bas
a kjen sir "Bjo]

”Do not beg the one who begged,
nor serve the person who served”

12 Tomás tira de la manta [to "mas "ti ra De la "man ta] ”Tomás pulls the blanket”

Further pre-processing was conducted on a per-frame
basis. For each frame, a spectrogram was generated us-
ing the following parameters: a window length of 30 ms
with 50% overlapping, Fast Fourier Transform (FFT) of
512 points, and a resolution of 65 mel frequency bands.
The amplitude of the spectrogram was then converted to
decibels (dB) and normalised relative to itself. This process
resulted in a dataset comprising 400 ms spectrogram seg-
ments, each featuring 65 mel bands. Moreover, each 30 ms
window within these spectrograms was associated with its
corresponding phoneme.

2.2.1.3 Phonemic grouping: Building upon the pre-
processing steps outlined earlier, the study also involved a
phonemic grouping phase. In this process, each phoneme
identified was labelled as one of eight distinct MC [29], i.e.,
a one-hot vector representation mc ∈ {0, 1}8 was assigned
to each 30 ms window in the spectrogram according to its
corresponding phoneme, as defined in Table 2. To do so,
the label assigned to each window corresponds to the most
represented phoneme (previously proposed by the forced
alignment procedure).

This process resulted in a dual-layered labelling system:
one label identifying the speaker’s condition (HC or PD),
consistent across all spectrograms for a given patient; and
the other label denoting the MC for each acoustic feature
for every window of the spectrogram. This dual labelling
approach was crucial to link the phonetic details with the
corresponding health condition of the patient.

For the purpose of this study, affricates and si-
lences/short pauses were excluded from the experimental
analysis and results. The reason for excluding affricates is
their under-representation in the TDU from the NeuroVoz
dataset. This under-representation is mainly attributed to
the natural composition of the Spanish language, where
affricates constitute the least common phonemic group, ac-
counting for less than 3% of all phonemes [42]. By focussing
on the six remaining MC, the analysis provides a more
robust understanding of the speech characteristics prevalent
in the studied datasets, particularly those relevant to the
speech patterns of individuals with PD.

2.2.2 Manner of ARTiculation Analysis (MARTA)

This study introduces MARTA, a tailored Gaussian Mixture
(GM) Variational AutoEncoder (VAE) combined with metric
learning, specifically designed to cluster spectrogram fea-
tures into distinct MC for analysing misarticulations. This
approach, drawing inspiration from [43], [44] and integrat-
ing metric learning techniques from [45], allows the effec-
tive clustering of MC. The functionality and architecture of
MARTA are illustrated in Figure 1. This integration aims to
improve the identification and analysis of speech patterns,
focussing particularly on the nuances of pronunciation cor-
responding to patients with PD.

In MARTA’s framework, the initial step involves a
characterisation of the speech by means of spectrograms,
denoted as X ∈ RM,Ws (see details of the mathematical
notation in the Appendix). Here, M corresponds to the
number of mel-frequency bands, and Ws to the number
of temporal windows, each spanning 30 ms with 50% of
overlap. For this study, these parameters are set as follows:
M=65 mel bands, and Ws=25 windows.

A convolutional block acts as a bottleneck, transforming
input spectrograms, X, into a compact encoded representa-
tion, denoted as Xe ∈ RWs,H where the temporal window
dimension is kept to ensure the correspondence between
each window and their associated MC. Here, H represents
the flattened dimension of the output of the convolutional
block (channels × rows).

The core of the GMVAE architecture is the processing
of encoded data (Xe), with the objective of reconstructing
it (X̃e) following the principles of an autoencoder. This
generative mechanism incorporates two distinct latent cate-
gorical discrete random variables Y ∈ {0, . . . , G}, where G
represents the maximum number of Gaussian components
in the mixture. The probability distribution p(Y) is defined
by a categorical distribution:

p(Y) = Cat(Y|π), (1)

where the parameter π is a vector specifying the probability
associated with each potential category within Y.
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TABLE 2: Categorisation of phonemes into MC (IPA)

mc codification Manner Class Phonemes (IPA)

[0, 0, 0, 0, 0, 0, 0, 1] Plosives /p/, /t/, /k/
[0, 0, 0, 0, 0, 0, 1, 0] Voiced Plosives /b/, /B/, /d/, /D/, /g/, /G/
[0, 0, 0, 0, 0, 1, 0, 0] Nasals /n/, /N/, /m/, /ñ/, /J/
[0, 0, 0, 0, 1, 0, 0, 0] Fricatives /f/, /s/, /z/, /S/, /h/, /T/
[0, 0, 0, 1, 0, 0, 0, 0] Liquids /R/, /r/, /4/, /l/, /j/, /Z/, /L/
[0, 0, 1, 0, 0, 0, 0, 0] Vowels /a/, /e/, /i/, /o/, /u/, /w/, /e:/
[0, 1, 0, 0, 0, 0, 0, 0] Affricates /tS/, /ts/
[1, 0, 0, 0, 0, 0, 0, 0] Silences and Short Pauses [silence], [short pause]

vo
we
l . .

per frame

Audio signal Frames of
400ms

MelSpectrogram

"La patata está
ablandada"

Metric Loss

KL Div

Rec Loss
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ce .

liq
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. .
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l

Conv Conv Flatten

Convolutional Block
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MelSpectrogram

MARTA
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each spectrogram

GMVAE
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Alignment

HTK

per spectrogram

Layer connections

Loss inputs

TextGrid transcription

Fig. 1: Overview of MARTA. Green blocks are Neural Network (NN)s used to characterise the probabilistic processes. Red
blocks denote terms of the loss function L.

The continuous random variable Z ∈ RWs,Ldim encap-
sulates the information of each 30 ms window (ws) of the
encoded spectrogram (Xe) in an embedded latent space
(zi) characterised by the dimension Ldim. Where each zi,
corresponding to a specific MC (mc, that is, a one-hot vector
of size 8), is designed to retain essential audio reconstruction
data while simultaneously embodying information perti-
nent to the MC.

The joint probability distribution of the data and latent
variables is given by pΘ(Xe,Z,Y), which is decomposed
into the likelihood of the data given the latent continuous
state, i.e., pθ2(Xe|Z), the distribution of the latent contin-
uous variable given the latent discrete state, i.e., pθ1(Z|Y),
and the prior distribution of the latent discrete variable, i.e.,

p(Y). The generative model is formally defined as:

pΘ(Xe,Z,Y) = pθ2
(Xe|Z)pθ1

(Z|Y)p(Y) (2)

where each term is expressed as:

pθ1
(Z|Y) = N (Z|µθ1

(y), σ2
θ1
(y)),

pθ2
(Xe|Z) = N (Z|µθ2

(z), σ2
θ2
(z)).

(3)

Following the GMVAE [33], the distributions pθ1(Z|Y)
and pθ2(Xe|Z) are represented by dense layers whose
size is set according to the dimension of the latent space.
Specifically, in the generative phase, the decoder network
pθ2(Xe|Z) is tasked with generating Xe samples from their
latent continuous representation Z. The last step of the
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MARTA architecture is the transpose convolutional block,
which mirrors the bottleneck in its structure and learns to re-
construct the original spectrograms, X̃ ∈ RM,Ws , from their
encoded reconstructed states, X̃e ∈ RWs,H . In summary,
MARTA serves both to reconstruct input spectrograms and
to infer the corresponding MC for each window, all within
an unsupervised learning context with respect to the health
condition.

In the inference stage, the true posterior distribution
pη(Z,Y|Xe) is intractable [43]. Consequently, an approxi-
mation with a tractable variational posterior qΦ(Z,Y|Xe)
is proposed. This is achieved through variational inference
[46], where the inference model is defined as:

qΦ(Z,Y|Xe) = qϕ2
(Z|Xe,Y)qϕ1

(Y|Xe) (4)

with qϕ1
(Y|Xe) = Cat(Y|πϕ1

(Xe)) being a categorical
distribution represented by a Gumbel-Softmax [47] and
qϕ2

(Z|Xe,Y) = N (Z|µϕ2
(xe+ye), σ

2
ϕ2
(xe+ye)) a Gaussian

distribution. The term ye = h(y) is an expanded version of
y where h(·) is a dense layer that transforms y to align it
with the dimensionality of xe for proper summation.

The optimisation of the model is driven by the maximi-
sation of the Evidence Lower Bound (ELBO):

log pΘ(Xe) ≥ Eqϕ1
(Y|Xe)

[
Eqϕ2

(Z|Xe,Y) [log pθ2
(Xe|Z)]−

KL
(
qϕ2

(Z|Xe,Y)||pθ1
(Z|Y)

) ]
−

KL
(
qϕ1

(Y|Xe)||p(Y)
)

(5)

which comprises a reconstruction loss for Xe, a Gaussian
mixture loss, and a categorical loss term.

To enhance the clustering of the MC, we introduce an
auxiliary metric learning loss inspired by [44], specifically
the Lifted Structured loss as detailed in [45]. This loss
function is defined as:

J̃ =
1

2|P|
∑

(i,j)∈P

max(0, J̃zi,zj
)2, (6)

where J̃zi,zj
is computed using the log-sum-exp trick over

distances between points in the latent space, enforcing the
model to learn a discriminative latent space where distances
reflect the distinction among MC:

J̃zi,zj = log

( ∑
∀k∈N

exp{α−Dzi,zk
}+

∑
∀l∈N

exp{α−Dzj ,zl
}
)

=+Dzi,zj

(7)

Dzi,zj is the Euclidean distances between latent representa-
tions, with P and N representing sets of positive (they share
same mc label) and negative pairs (they do not share the mc

label) respectively, and the margin α set to 1, to separate the
distributions in the latent space as per the referenced article.

Consequently, the loss to optimise within MARTA
framework comprises four distinct components. Each of
these components serves a specific role in the learning
process: the reconstruction loss LRec ensures the model’s
output fidelity to the original input; the Gaussian mixture
loss LGM facilitates the learning of a continuous latent space

structured by the underlying Gaussian mixture model; the
categorical loss LCat enables the model to utilise the dis-
crete latent variable effectively; and the metric learning
loss LMetric imposes a structured similarity measure in the
latent space, helping the clustering of the MC. Collectively,
these components form the comprehensive loss function L,
which is formally expressed as:

L = LRec + LGM + LCat + LMetric (8)

This loss function defines the optimisation strategy for
our model, guiding the learning process toward a represen-
tation that is both generative and discriminative, aligning
with our goal of accurate and meaningful clustering of
phonemes inside the spectrograms.

2.2.3 MARTA with Supervision
Building upon our initial unsupervised approach, we pro-
pose a supervised variant that we termed Manner of AR-
Ticulation Analysis with Supervision (MARTA-S). The su-
pervised version (MARTA-S) requires two different steps:
clustering, and classification. These steps are presented next.

2.2.3.1 MARTA-S Clustering: Manner of ARTicula-
tion Analysis with Supervision (MARTA-S) clustering re-
tains the original structure of MARTA but increased the MC
from eight to sixteen (Mc = 16), splitting each of the eight
MC into two, corresponding to the PD and HC clusters. The
primary objective of this clustering was to push the cluster
boundaries further, thereby increasing the model’s ability to
detect misarticulations associated with the health condition.

2.2.3.2 MARTA-S Classifier: Taking advantage of
the latent space learnt by MARTA-S, a classifier was trained
to categorise the speech into two classes: PD or HC. To
do so, the parameters of MARTA-S clustering were frozen,
and only those layers corresponding to the classifier were
modified in the training stage. This progression aimed to
evaluate the categorisation accuracy of the clusters defined
by MARTA-S’ latent space to separate PD and HC speech
traits. The design and functionality of this classifier are
shown in Figure 2, which highlights its integral role.

The inputs to the MARTA-S classifier are samples from
the latent space representation, Z ∈ RWs,Ldim , augmented
with the label corresponding to the MC. We explored three
NN architectures for classification, namely: a Convolutional
Neural Network (CNN), a Multilayer Perceptron (MLP),
and a time-distributed CNN combined with a Time-CNN
Long Short-Term Memory (LSTM) network, following [48].
In the CNN-based approaches, the kernel size was tailored
to {Ldim, 3} to capture the entire latent space considering
adjacent windows. On the other hand, the MLP used a
simple flattening operation, applying a direct multiplication
of Ldim × Ws. For the time-distributed approach, all con-
secutive frames of the mel spectrograms are used as input
to the network, including a zero padding to ensure a fixed
sequence length.

Different strategies were tested to combine the latent
space representation Z from the static MARTA-S with the
MC label: (i) utilising the latent encoding directly Z; (ii)
using a static torch embedding layer to transform the one-
hot encoding (mc ∈ {0, 1}8) into a matrix Mc = d(mc)
representation where Mc ∈ RWs,Ldim ; and, (iii) allowing
the embedding layer to learn an optimal transformation
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Mc = dθ(mc). Consequently, the input of the classifier
was formed as one of the following: (i) Z = Z, (ii)
Z = Z+ d(mc), or (iii) Z = Z+ dθ(mc), depending on the
embedding method chosen. The classifier was trained using
a weighted cross-entropy loss to balance the representation
of PD and HC samples into the training partition. In the
inference phase, the model assigns a label to each 400 ms
audio segment, categorising them as either PD or HC. To
determine an overall diagnosis for each subject, we imple-
mented a post-processing stage. This stage calculates the
joint probability across all spectrograms for an individual
patient and assigns a definitive class based on the highest
aggregated probability. This approach ensures a coherent
and probabilistically justified classification for each subject.

2.3 Experimental setup
An experimental methodology was designed to evaluate
the capabilities of the MARTA model in processing and
classifying speech, particularly focussing on the distinction
between PD and HC speech patterns.

2.3.1 Unsupervised experiments
Initially, we performed an unsupervised MARTA warm-up
using the Albayzin corpus. The precise articulation of the
normophonic speakers recorded in this data set make it

perfect for initialising a model designed to detect misarticu-
lations.

Subsequently, a domain adaptation MARTA was per-
formed using utterances from NeuroVoz HC patients. For
this purpose, ten folds of the HC subjects were randomly
selected for training while one fold was kept for testing. This
step was crucial in adapting the model to a more realistic
and varied dataset, which, as described in Section 2.1.2,
differs in the quality of the recordings and the equipment
used. For validation and to implement early stopping, we
used a combined set comprising Albayzin and NeuroVoz
HC data.

The efficacy of the unsupervised model was evaluated
on unseen portions of Albayzin and NeuroVoz datasets,
encompassing both HC and PD speakers. We used two pri-
mary evaluation metrics: the reconstruction Mean Squared
Error (MSE) of the spectrograms and the JSD [49], [50] for
various comparative analyses. These analyses included a
comparison of the healthy speech from Albayzin with the
HC and PD speech from NeuroVoz; as well as a comparison
of the speech belonging to the HC and PD groups within
NeuroVoz itself. For these comparisons, we implemented
a non-parametric Kernel Density Estimation (KDE) for each
MC cluster, differentiating by health condition. This resulted
in eight KDEs for the Albayzin dataset (one for each MC)
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and sixteen KDEs for NeuroVoz (one for each MC and health
condition). Subsequently, JSD calculations were performed
between these KDEs. These analyses are showcased for
three different values of Ldim. The initial pair seeks to illus-
trate the alignment between the model’s internal mapping
and the MC clusters, while the final one aims to leverage the
model’s ability to enhance the separation among these clus-
ters. For clarity, this experiment will henceforth be referred
to as Exp_Unsup_LdimD, where Ldim denotes the specific
dimension evaluated.

This approach was designed to evaluate the model’s
ability to group healthy speech and its ability to detect the
eight MC.

2.3.2 Supervised experiments
Afterwards, a supervised study was performed to explore
the potential of MARTA to differentiate between PD and
HC speech. This phase required a new training with an ex-
panded number of MC: from eight to sixteen. The expansion
was due to a subdivision of each MC into two subgroups:
PD and HC. This retraining aims to increase the distance
(measured with the JSD) between both classes.

Subsequent evaluations mirrored those of the unsuper-
vised phase. We specifically focused on how the increase
in the number of groups affected the JSD, and the overall
distinction between the healthy and pathological categories.
Similar to the former case, this experiment will henceforth
be referred to as Exp Sup LdimD, where Ldim again de-
notes the specific dimension evaluated.

The final stage aimed to assess the efficacy of these
clusters for the screening of PD. For this purpose, NeuroVoz
data were used exclusively. For a more robust approach,
data augmentation techniques were used, such as frequency
masking on the spectrograms, and a balanced dataset is
ensured through stratification. With this dataset, various
classifiers were trained to determine the effectiveness of
MARTA-S for the screening of PD. This stage was crucial
to validate whether the supervised clustering had practical
applications for the screening of PD. This experiment will
henceforth be referred to as Exp_Classif.

3 RESULTS

3.1 Unsupervised analysis of the manner of articula-
tion
3.1.1 Constrained interpretable latent spaces: 2D and 3D
spaces
Figure 3 displays the latent space distribution of the dif-
ferent phonemic groups from test patients, with distinct
colours representing the different MC. This plot evidences
MARTA’s ability to cluster several classes —namely vowels
(in cyan), stop-plosives (in blue), and fricatives (in purple)—
according to the setup defined for Exp_Unsup_2D. How-
ever, the overlap of nasals (in green), liquids (in orange), and
voiced-plosives (in red) with the vowels cluster indicates a
potential limitation.

This observation suggests that while the model demon-
strates competence in distinguishing three out of the six MC
in the constrained 2D space, an increase in the dimensional-
ity of the latent space might be necessary to differentiate the
remaining classes effectively.

Figure 4 provides a rendering of the latent space
obtained by applying the Exp_Unsup_3D configuration,
which shows the dispersion of the different MC. Expansion
to a 3D domain significantly improves the separation of
vowels clusters. Notably, distinct clusters corresponding to
liquids (in orange) and voiced-plosives (in red) are dis-
covered from the expanded latent space. This enhanced
visualisation indicates that the capacity of the model to
differentiate the different MC has improved, with five out
of six classes now clearly distinguishable, leaving only the
nasals (in green) less clustered.

To complement this visual interpretation, Figure 5
presents a quantitative measure of class separation, de-
picting the JSD calculated among the KDEs estimated for
each MC. Since, in this case, the MC clusters are defined
according to the Exp_Unsup_3D setup, several comparisons
among clusters from Albayzing and HC/PD NeuroVoz sam-
ples were performed independently. This metric provides an
additional layer of analysis, quantifying the distinctness of
clusters within the three-dimensional latent space.

Figure 5a illustrates the JSD matrix for the MC between
Albayzin and the NeuroVoz HC cluster. The lowest JSD
values are found along the matrix diagonal, suggesting a
high degree of similarity between corresponding MC in
the training and test datasets for HC patients. Despite this,
a significant overlap is observed between voiced-plosives,
liquids, and nasals, as they exhibit comparable JSD values,
which is consistent with the clustering patterns observed in
Figure 4. Furthermore, the matrix indicates that the frica-
tives in the NeuroVoz data exhibit the greatest dissimilarity
relative to the Albayzin training samples, with a JSD value
of 0.31, which means that the discrepancy between the
datasets is predominantly manifested within the cluster of
fricatives.

Figure 5b displays the JSD matrix for MC comparing the
Albayzin and NeuroVoz PD datasets. The matrix reveals the
lowest JSD values along its diagonal, indicating a stronger
correspondence between each MC in the test set with its
counterpart in the training set. The overlap among nasals,
voiced-plosives, and liquids remains, consistent with previ-
ous observations in the latent space (Figure 4).

Additionally, Figure 5c compares the JSD values between
the HC and PD clusters in the NeuroVoz dataset. This
comparison shows a negligible distinction between both,
suggesting that unsupervised analysis alone is not enough
to differentiate parkinsonian from normophonic subjects.

3.1.2 Optimal model configuration
To ascertain the optimal clusterisation, we undertook a
systematic cross-validation, focussing on the latent dimen-
sion (Ldim), the number of Gaussian components G), and
the configuration of the hidden layers within the encoder
(f(X)) and decoder (g(X̃e)) networks. The top ten config-
urations, as delineated in Table 3, were selected based on
their reconstruction and metric loss performance.

A Pearson correlation analysis was performed to evalu-
ate the relationship between the number of Gaussians, the
latent dimensions, and the observed loss metrics. The latent
dimension exhibited a slight negative correlation with the
reconstruction and metric losses, with coefficients of −0.15
and −0.13, respectively. This suggests a modest inverse
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Fig. 3: Unsupervised MARTA. 2D representation of the different MC in the latent space obtained according to the
Exp_Unsup_2D experiment.

(a) 3D latent space. First point-of-view

(b) 3D latent space. Second point-of-view

Fig. 4: Unsupervised MARTA. Visualisations of the different
MC in the latent space of Exp_Unsup_3D, from different
points-of-view.

relationship, indicating that larger latent dimensions could
potentially contribute to a reduction of the loss. On the
contrary, the number of Gaussian components (G) showed
negligible correlations, with coefficients of −0.04 for re-
construction loss and −0.03 for metric loss, suggesting a

TABLE 3: The ten best models measured by reconstruction
and metric losses in the validation set.

G Ldim Encoder/Decoder Reconstruction loss Metric loss
128 32 [64, 1024, 64] 219.21 1315.42
128 32 [64, 1024, 64] 218.04 1315.79
1024 32 [64, 256, 64] 210.95 1315.31
512 32 [64, 256, 64] 209.05 1315.80
32 64 [64, 1024, 64] 226.16 1316.28
64 32 [64, 1024, 64] 225.91 1316.34
512 64 [64, 1024, 64] 222.84 1316.37
512 32 [64, 256, 64] 215.37 1316.38
512 64 [64, 256, 64] 216.25 1316.48
32 128 [64, 512, 64] 225.07 1316.48
16 32 [64, 128, 64] 228.38 1317.40

minimal impact on performance.
Given these insights, we opted for a configuration of

G = 16 Gaussian components, which is equivalent to
one Gaussian per MC and condition. This maintains a
simple model while ensuring an adequate representational
capacity. In addition, a Ldim = 32 was chosen to bal-
ance the trade-off between achieving satisfactory metric
scores and keeping the simplicity of the model. Such a
configuration defines the Exp_Unsup_32D setup. Finally,
the encoder/decoder architecture was set to [64, 1024, 64] in
order to limit the complexity of the model and to place the
focus on feature extraction. Following the previous results,
the subsequent analysis aims to quantitatively compare the
performance of the model chosen (Ldim = 32) against
the variant previously evaluated (Ldim = 3), employing
distance metrics to study the degree of improvement in
unsupervised learning tasks and their difference in absolute
and Mean Absolute Percentage Error (MAPE) value.

TABLE 4: Comparison of 3D and 32D models in terms of
reconstruction power measured in MSE.

Metric 3D Model 32D Model
MSE 0.14± 0.02 0.11± 0.01
MSE decrease MAPE – 19.35

The comparison between the 32D and 3D models reveals
notable differences. As indicated in Table 4, the 32D model
shows a marked improvement in spectrogram reconstruc-
tion, evidenced by a reduction of 19.35 points in MAPE for
MSE. Distance analysis, as illustrated in Figure 6, highlights
the improved ability of the 32D model to separate the
voiced-plosives cluster from the nasals cluster. While in the
3D model, these clusters were closely associated, with a JSD
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(a) JSD between the canonical normo-
phonic clusters (columns) and the test
clusters of HC from NeuroVoz (rows).

(b) JSD between the canonical normo-
phonic clusters (columns) and the test
clusters of PD from NeuroVoz (rows).

(c) JSD between the HC test clusters
of NeuroVoz (columns) and PD test
clusters of NeuroVoz (rows).

Fig. 5: JSD of all clusters (HC and PD) in the 3D latent space following the training scheme in Exp_Unsup_3D.

of 0.14 (as seen in Figure 5a), the 32D model distinguishes
them with a JSD of 0.61, which represents a substantial
increase in MAPE pf 335.71 points. Despite these improve-
ments, the distinction between voiced-plosives and liquids
persists as a challenge, with a JSD of 0.1, still indicating close
proximity.

Regarding PD speech, the 32D model reveals a slight
increase in the separation of voiced-plosives, nasals, and
liquids, as shown in Figure 6b. Furthermore, the contrast
between HC and PD speech within the NeuroVoz dataset
reinforces the previous observations seen in the 3D analysis:
the Exp_Unsup_32D setup alone may not be sufficient for
the direct identification of parkinsonian manners of articu-
lation.

3.2 Supervised analysis of the parkinsonian manner of
articulation
In this section, the model used before, characterised by a
32D latent space (Ldim = 32), an encoder/decoder con-
figuration of [64, 1024, 64] and 16 Gaussian components
(G = 16), was adapted following the Exp_Sup_32D train-
ing scheme. This adaptation aims to optimise the model
to distinguish between 16 MC, 8 MC per health condition
(i.e., HC and PD). The efficacy of the model was further
assessed through the analysis of distances between HC and
PD clusters within the NeuroVoz dataset.

Subsequently, the discriminative power of the model
was assessed using a classification task (Exp_Classif).
For this purpose, a 10-fold cross-validation method was
implemented. An ablation study was conducted to ascertain
the optimal input for the classifier, ultimately guiding the
determination of the most effective training approach for a
classifier tasked with differentiating HC and PD pronuncia-
tions of MC.

3.2.1 Effects in the distance between clusters
This analysis focuses on the spatial separation of speech
clusters belonging to PD and HC. This distance is quanti-
tatively evaluated using JSD metrics. The analysis also in-
cludes an evaluation of the absolute differences and MAPE

values, providing a detailed evaluation of the dispersion of
the groups within the latent space.

Figure 7a presents a JSD distance matrix which re-
ports the lowest values along its diagonal, which means
that each healthy MC cluster of the NeuroVoz dataset is
proximal to its canonical counterpart in Albayzin. This
clustering suggests a successful grouping of the different
MC when following the Exp_Sup_32D setup. Compared
to the Exp_Unsup_32D (Figure 6a), there is an increase
in the diagonal values from 0.15 ± 0.06 to 0.21 ± 0.06,
which is equivalent to an MAPE of 58.07%. This change
suggests more difficulties in differentiating HC clusters in
the supervised framework.

In contrast, the Exp_Sup_32D setup shows a notable
increase in the distances of the main diagonal for the PD
clusters, as shown in Figure 7b. This increase suggests
a clearer distinction between the parkinsonian MCs of
NeuroVoz and those normophonic of the Albayzin cor-
pus. Specifically, the diagonal values have increased from
0.17 ± 0.05 (in the unsupervised analysis) to 0.40 ± 0.06
(using the supervised model), which represents an MAPE of
159.75%. This significant increase underscores the feasibility
of identifying differences in a supervised setting between
the MC corresponding to the PD and HC clusters.

The potential for domain shift, given that the analyses
involve different datasets, is addressed in Figure 7c, which
delineates the separation of PD and HC clusters within the
NeuroVoz data set. This figure reveals an increase in the
values of the main diagonal from 0.07± 0.02 to 0.36± 0.07
(for unsupervised and supervised models, respectively),
which represents an MAPE of 450.69 points. This increase
(particularly in the context of stop-plosives (0.45), voiced-
plosives (0.40), and nasals (0.40)), confirms that parkinso-
nian clusters are distinctly separable from healthy ones.

3.2.2 Discrimination of parkinsonian and healthy speech
using the NeuroVoz dataset
Once the clusterisation efficacy has been established, the
subsequent analysis assesses the capability of the model
for the automatic screening of PD. Results are calculated
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(a) JSD between the canonical healthy
clusters (columns) and the HC test
clusters of NeuroVoz (rows).

(b) JSD between the canonical healthy
clusters (columns) and the PD test clus-
ters of NeuroVoz (rows).

(c) JSD between the HC test clusters
of NeuroVoz (columns) and PD test
clusters of NeuroVoz (rows).

Fig. 6: JSD between clusters in the 32D latent space following the Exp_Unsup_32D training scheme.

(a) JSD between the canonical healthy
clusters (columns) and the HC test
clusters of NeuroVoz (rows.

(b) JSD between the canonical healthy
clusters (columns) and the PD test clus-
ters of NeuroVoz (rows).

(c) JSD between the HC test clusters
of NeuroVoz (columns) and PD test
clusters of NeuroVoz (rows).

Fig. 7: JSD between clusters in the 32D latent space following the Exp_Sup_32D training scheme.

at a patient-level, i.e., the joint probability across all manner
class latent representation for an individual patient is calcu-
lated assigning then a definitive class based on the highest
aggregated probability. This approach ensures a coherent
and probabilistically justified classification for each subject.

Table 5 displays the Balanced Accuracy (BACC) and
Area under the ROC curve (AUC) scores derived from a 10-
fold cross-validation test used to identify patients as PD or
HC. During the Exp_Classif setup, various architectures,
as referenced in Section 2.2.3, were explored. The CNN
architecture that incorporated the latent space (Z) along-
side a learnable embedding of the MC (dθ(mc)) and Data
Augmentation (DA) achieved a BACC of 0.91± 0.09.

3.2.3 Accuracy analysis masking the different MC
On the other hand, Table 6 illustrates the impact on classi-
fication performance when each MC is selectively omitted
from the inference phase. Notably, the exclusion of vowels
reports the most significant decrease in MARTA-S’s classifi-
cation performance, dropping from 0.91±0.09 to 0.70±0.12.

TABLE 5: Discrimination capabilities of the model to sepa-
rate PD and HC. Test metrics are given for different config-
urations in terms of mean and standard deviation obtained
following a 10-fold cross-validation.

Classifier Input Metric Mean ± Std

CNN Z+ dθ(mc) + DA BACC 0.91 ± 0.09
AUC 0.86 ± 0.13

TimeCNN-LSTM Z+ dθ(mc) + DA BACC 0.83 ± 0.11
AUC 0.88 ± 0.12

MLP Z+ dθ(mc) + DA BACC 0.88 ± 0.11
AUC 0.85 ± 0.15

CNN Z+ dθ(mc)
BACC 0.86 ± 0.10
AUC 0.85 ± 0.15

CNN Z+ d(mc)
BACC 0.84± 0.12
AUC 0.83 ± 0.14

CNN Z
BACC 0.81 ± 0.01
AUC 0.84 ± 0.11

Similarly, the removal of stop-plosives, voiced-plosives, liq-
uids and fricatives results in a uniform reduction in model
performance to an average 0.79 in across these cases. The
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TABLE 6: Discrimination downgrading of the model by
masking one manner class. Note: % indicates the percentage
of each manner class in the test set. Affricates (1.2%) and
silences (22.4%) were omitted.

Classifier Masked % Metric Mean ± Std

CNN Plosives 14.0 BACC 0.79 ± 0.15
AUC 0.86 ± 0.14

CNN Plosives voiced 6.0 BACC 0.79 ± 0.14
AUC 0.86 ± 0.14

CNN Nasals 11.0 BACC 0.80 ± 0.12
AUC 0.85 ± 0.16

CNN Fricatives 6.5 BACC 0.79 ± 0.14
AUC 0.86 ± 0.14

CNN Liquids 5.9 BACC 0.79 ± 0.14
AUC 0.86 ± 0.14

CNN Vowels 33.0 BACC 0.70 ± 0.12
AUC 0.85 ± 0.15

impact of omitting liquids, voiced-plosives, and fricatives is
particularly notable, given their minor representation in the
test spectrograms, comprising only 6% of the sounds.

4 DISCUSSION AND CONCLUSIONS

The paper introduces MARTA, a novel tool powered by a
GMVAE aimed at improving the automatic detection of PD
through speech analysis. MARTA creates a latent acoustic
space, which allows the discrimination between the differ-
ent MC, but also between normophonic and parkinsonian
speech segments without the need for different encoders.
MARTA also opens the door to evaluate the effect of the
disease on different MC, which is considered crucial for fur-
ther detection of parkinsonian speech and for determining
appropriate rehabilitation methods. The analysis presented
underscores the contribution of each MC for the screening
of PD, with vowels, stop-plosives, and nasals emerging
as particularly influential in distinguishing HC and PD
manners of articulation.

The model automatically processes the audio signal to
clusterise 30 ms windows based on their MC, providing
embedding vectors that codify phonetic and acoustic infor-
mation able to characterise differences between PD patients
and HC.

MARTA was initially trained using the Albayzin dataset,
which is composed of 4800 utterances belonging to Castil-
ian Spanish normophonic speakers. This canonical model
can effectively cluster the different normophonic MC in an
unsupervised way, such as vowels, fricatives, stop-plosives,
liquids, and nasals. This capability was further validated
through its application to the normophonic recordings of
the NeuroVoz dataset, and is evidenced by a small average
JSD along the diagonal between both healthy clusters.

Extending the research, the model was then adapted
to the domain represented by the NeuroVoz dataset, en-
compassing both PD and HC speakers. The goal was to
assess its discriminative power across the different MC for
the detection of PD. MARTA showed an interesting ability
to cluster the PD and HC manners of articulation in a
non-supervised way, achieving an average Jensen-Shannon
distance of 0.15± 0.06 between the same phonemic groups
(but with different health conditions).

The experimental approach involved a second phase of
supervised classification. The results in this second phase

(using MARTA-S) suggest that the supervised scheme is ca-
pable of detecting the speakers with PD with high accuracy
(91%±9). In terms of JSD the supervised model reports a
significant increase of 0.36 ± 0.07 for the same phonemic
groups but different health conditions. This represents an
improvement of 450.69 points in terms of MAPE with re-
spect to the unsupervised scenario.

The supervised and unsupervised results also suggest
that PD not only affects the manner of articulation of stop-
plosives, voiced-plosives, and nasals, but also significantly
affects liquids, vowels and fricatives.

In terms of comparison, the overall discrimination re-
sults obtained are aligned with those reported in [29] using
the same corpus of speakers, and using different models for
each MC. Notably, MARTA-S’ approach registers a modest
improvement in BACC, escalating from 89% to 91%, with
the additional advantage of using a single integrated model
(instead of one per MC). However, a direct comparison
of the unsupervised performance of MARTA with that of
SCRAPS [31] was not feasible, due to the inaccessibility of
SCRAPS as an open source model. A recent work published
in [51], evaluated some speech-based self-supervised em-
bedding methods, such as Wav2Vec [52] or HuBERT [53],
in the context of parkinsonian speech. However, those ap-
proaches are intended for more general speech recognition
tasks and are not driven by a phonemic perspective, and
therefore, they do not provide an interpretable latent space
as MARTA does.

The high accuracy obtained opens the door to the devel-
opment of new downstream applications in speech process-
ing. As an example, it could improve the accuracy of speech
recognition in patients with Parkinson’s disease and help
develop novel comprehensive multimodal PD assessment
tools. Furthermore, it opens the door to better and more
sophisticated methods for speech therapy of patients with
PD. In this sense MARTA is expected to mark a significant
breakthrough by offering a sophisticated, data-driven ap-
proach to identify and understand the effect of PD in the
speech and the degree of affection, thus providing speech
therapists with precise information to effectively address
these challenges.

Regardless of the specific application domain presented
in this paper, the methods and models outlined have po-
tential utility in generically discerning the manner of ar-
ticulation, whether influenced by other medical conditions
or dialectal variations. The application to other domains of
application remains as a future work.

CODE AVAILABILITY

The source code supporting the findings of this study
is openly available. The interested reader can access the
models and scripts used in this research in the following
repository: https://github.com/BYO-UPM/MARTA.
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S. Guardiola, E. Giralt, X. Salvatella, J. Sancho, M. Sodupe, T. F.
Outeiro, E. Dalfo, and S. Ventura, “Small molecule inhibits α-
synuclein aggregation, disrupts amyloid fibrils, and prevents de-
generation of dopaminergic neurons,” Proceedings of the National
Academy of Sciences, vol. 115, pp. 10 481 – 10 486, 2018.

[7] Q. C. Ngo, M. A. Motin, N. D. Pah, P. Drotár, P. Kempster,
and D. Kumar, “Computerized analysis of speech and voice for
parkinson’s disease: A systematic review,” Computer Methods and
Programs in Biomedicine, p. 107133, 2022.

[8] J. R. Duffy, Motor Speech Disorders: Substrates, Differential Diagnosis,
and Management, third ed. ed. St. Louis Mo: Elsevier Mosby, 2013.

[9] B. Walsh and A. Smith, “Basic parameters of articulatory move-
ments and acoustics in individuals with parkinson’s disease,”
Movement Disorders, vol. 27, 2012.

[10] K. Forrest and G. Weismer, “Dynamic aspects of lower lip move-
ment in parkinsonian and neurologically normal geriatric speak-
ers’ production of stress.” Journal of Speech and Hearing Research,
vol. 38 2, pp. 260–72, 1995.

[11] P. Svensson, C. Henningson, and S. Karlsson, “Speech motor
control in parkinson’s disease: a comparison between a clinical
assessment protocol and a quantitative analysis of mandibular
movements.” Folia Phoniatrica, vol. 45 4, pp. 157–64, 1993.

[12] K. V. Chenausky, J. MacAuslan, and R. S. Goldhor, “Acoustic
analysis of pd speech,” Parkinson’s Disease, vol. 2011, 2011.

[13] J. I. Godino-Llorente, S. Shattuck-Hufnagel, J.-Y. Choi, L. Moro-
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