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ABSTRACT

The rapid growth of Large Language Models has driven demand for effective
model compression techniques to reduce memory and computation costs. Low-rank
pruning has gained attention for its tensor coherence and GPU compatibility across
all densities. However, low-rank pruning has struggled to match the performance
of semi-structured pruning, often doubling perplexity (PPL) at similar densities.
In this paper, we propose Pivoting Factorization (PIFA), a novel lossless meta
low-rank representation that unsupervisedly learns a compact form of any low-
rank representation, effectively eliminating redundant information. PIFA identifies
pivot rows (linearly independent rows) and expresses non-pivot rows as linear
combinations, achieving an additional 24.2% memory savings and 24.6% faster
inference over low-rank layers at r/d = 0.5, thereby significantly enhancing
performance at the same density. To mitigate the performance degradation caused
by low-rank pruning, we introduce a novel, retraining-free low-rank reconstruction
method that minimizes error accumulation (M). MPIFA, combining M and PIFA
into an end-to-end framework, significantly outperforms existing low-rank pruning
methods and, for the first time, achieves performance comparable to semi-structured
pruning, while surpassing it in GPU efficiency and compatibility.

1 INTRODUCTION

The rapid growth of Large Language Models (LLMs) (Radford, 2018; Radford et al., 2019; Mann et al.,
2020; Touvron et al., 2023a) has driven demand for efficient model compression to address memory
and computation costs (Wan et al., 2023; Zhu et al., 2024). Among these techniques, semi-structured
pruning, specifically N:M sparsity, enables hardware-friendly acceleration on NVIDIA’s Ampere
GPUs (Mishra et al., 2021; nvi, 2020) but lacks flexibility in adjusting density, and restricted to specific
hardware architectures. Conversely, low-rank pruning, based on Singular Value Decomposition
(SVD), maintains GPU compatibility at any density (Hsu et al., 2022; Yuan et al., 2023; Wang et al.,
2024). However, it struggles to match semi-structured pruning in performance, often resulting in a 2x
increase in perplexity at the same densities due to (1) information redundancy in decomposed
weight matrices and (2) error accumulation across layers.

To address challenge (1), we propose Pivoting Factorization (PIFA), a lossless meta low-rank
representation that compresses existing low-rank decompositions. PIFA selects r pivot rows (linearly
independent rows) and expresses all others as their linear combinations, achieving 24.2% memory
savings and 24.6% faster inference over low-rank layers at r/d = 0.5, without inducing any loss.

To address challenge (2), we propose an Online Error-Accumulation-Minimization Reconstruc-
tion (M) algorithm, which mitigates errors propagated through reconstruction in low-rank (Wang
et al., 2024) and semi-structured pruning (Frantar & Alistarh, 2023; Li et al., 2024). Existing methods
rely on degraded data flow, leading to suboptimal performance. M corrects accumulated errors by
integrating dense and low-rank data flows as reconstruction targets.

∗Correspondence to: Jialin Zhao <jialin.zhao97@gmail.com>, Carlo Vittorio Cannistraci <kaloka-
gathos.agon@gmail.com>.
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Table 1: Comparison of PIFA with other sparsity.

Method
CPU

Speedup
GPU

Speedup
GPU Mem
Reduction

Any
Sparsity

GPU
Support Performance

Unstructured Sparsity ✓ ✗ ✗ ✓ ✗ ✓✓✓
Semi-Structured Sparsity ✓ ✓ ✓ ✗ Ampere GPU ✓✓
Structured Sparsity ✓ ✓ ✓ ✓ General ✓
SVD-Based Low-Rank Sparsity ✓ ✓ ✓ ✓ General ✓
PIFA Low-Rank Sparsity ✓ ✓ ✓ ✓ General ✓✓

Figure 1: Comparison
of parameter ratios.
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Figure 2: Illustration of the low-rank pruning method MPIFA (Algorithm 3), which consists of: (a)
Online Error-Accumulation-Minimization Reconstruction (M). Block R solves the least-squares
optimization problem. The improvements upon SVD-LLM’s full-batch reconstruction, highlighted in
red, include using the dense data flow to minimize error accumulation, and processing each sample
sequentially to avoid GPU memory overflow. (b) Pivoting Factorization (PIFA). For any singular
matrix with rank r, Pivoting Factorization further reduces r2 − r parameters, with no additional loss
induced.

Combining M and PIFA, we introduce MPIFA, an end-to-end, retraining-free low-rank pruning
framework that reduces the perplexity gap by 40%-70% on LLaMA2 and LLaMA3, compared with
existing low-rank pruning methods. MPIFA achieves superior speedup and memory savings over
semi-structured pruning while maintaining comparable or better perplexity. At d = 32768, PIFA
with 55% density achieves a 2.1× speedup, whereas semi-sparse implementations are slower or fail
to execute (Table 4). Related work is included in Appendix J.

2 LOSSLESS LOW-RANK COMPRESSION

2.1 MOTIVATION: INFORMATION REDUNDANCY IN SINGULAR VALUE DECOMPOSITION

Low-rank pruning (Hsu et al., 2022; Yuan et al., 2023; Wang et al., 2024) approximates a weight
matrix W ∈ Rm×n as W ≈ UVT, where U ∈ Rm×r and VT ∈ Rr×n.

This representation has r(m+n) parameters. When r exceeds half of the matrix dimensions, low-rank
compression fails to achieve compression (Figure 1). But orthogonality constraints among singular
vectors reduce the effective degrees of freedom by r(r − 1), leading to redundancy.

Question: Can we design a matrix factorization method that reduces parameters to r(m+
n)− (r2 − r) without losing representational power?

2.2 PIVOTING FACTORIZATION

To address the redundancy in low-rank decompositions, we propose Pivoting Factorization (PIFA), a
novel matrix factorization method that further reduces parameters without additional loss.

As illustrated in Figure 2(b), given a low-rank decomposition U ∈ Rm×r and VT ∈ Rr×n, we
first reconstruct W′ = UVT. Since W′ has rank r, it contains r linearly independent pivot rows,
identified via LU or QR decomposition with pivoting (Businger & Golub, 1971). Let I denote their
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indices, and Ic the remaining non-pivot rows. Then, we define:

Wp = W′[I, :], Wnp = W′[Ic, :] (1)

where Wp ∈ Rr×n is the pivot-row matrix, and Wnp ∈ R(m−r)×n is the non-pivot-row matrix.
Non-pivot-row matrix can be expressed as a linear combination of pivot rows:

Wnp = CWp (2)

where C ∈ R(m−r)×r is the coefficient matrix. Algorithm 1 details the PIFA process, which generates
the components of a PIFA layer: pivot-row indices I, the pivot-row matrix Wp, and the coefficient
matrix C. This further losslessly reduces r2−r parameters, compared with low-rank layer. Algorithm
2 describes the inference procedure for the PIFA layer, which leverages Wp, C and I to compute the
output. The analysis of memory and computational cost of PIFA is included in Appendix A, in which
we demonstrate that PIFA consistently requires less memory and computational cost than low-rank
layer and dense linear layer.

3 ONLINE ERROR-ACCUMULATION-MINIMIZATION RECONSTRUCTION

SVD-LLM (Wang et al., 2024) introduced low-rank matrix reconstruction by updating U via a
closed-form least squares solution:

Ur = argmin
U
∥WX−UVTX∥F (3)

where X is the calibration data. We propose Online Error-Accumulation-Minimization Re-
construction (M), addressing error accumulation in low-rank pruning (Wang et al., 2024) and
semi-structured pruning (Frantar & Alistarh, 2023; Li et al., 2024). These methods rely solely on one
data flow, i.e. low-rank data flow in Figure 2. This approach allows accumulated errors from previous
modules to propagate through the reconstruction process, potentially degrading performance, as each
subsequent module is optimized based on an already-degraded data flow.

To mitigate this, our method corrects accumulated errors at each module by aligning reconstruction
with the dense data flow:

min ∥WXo −UVTXu∥F (4)
where Xo and Xu represent inputs from dense and low-rank weights, respectively. This realignment
ensures that each module’s output remains aligned with the output of original model, recovering the
accumulated error in Xu.

However, solely relying on the dense data flow risks overfitting to calibration data. Instead, we use a
weighted mix of dense and low-rank data flow:

Yt = λWXo + (1− λ)WXu (5)

where λ is the mix ratio. The optimization target becomes min ∥Yt −UVTXu∥F. The low-rank
output acts as a regularization term, improving generalization and preventing overfitting. Empirically,
λ = 0.25 provides the best balance (see Appendix G).

Further improvements, including the online least squares formulation and reconstruction of VT, are
detailed in Appendices B and C.

4 EXPERIMENTS

4.1 MAIN RESULT

Experimental details are provided in Appendix E, with fine-tuning results in Appendix E.6 and
ablation studies in Appendix G.

Comparison with other low-rank pruning. Table 2 displays the test perplexity (PPL) of each low-
rank pruning method on WikiText2 under 0.4-0.9 density. The results show that MPIFA significantly
outperforms other low-rank pruning method, reducing the perplexity gap by 66.4% (LLaMA2-7B),
53.8% (LLaMA2-13B), 40.7% (LLaMA2-70B), and 72.7% (LLaMA3-8B) on average.
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Table 2: Perplexity (↓) at different parameter density (proportion of remaining parameters relative
to the original model) on WikiText2. The best-performing method is highlighted in bold.

Density

Model Method 100% 90% 80% 70% 60% 50% 40%

LLaMA2-7B

SVD

5.47

16063 18236 30588 39632 53179 65072
ASVD 5.91 9.53 221.6 5401 26040 24178

SVD-LLM 7.27 8.38 10.66 16.11 27.19 54.20
MPIFA 5.69 6.16 7.05 8.81 12.77 21.25

LLaMA2-13B

SVD

4.88

2168 6177 37827 24149 14349 41758
ASVD 5.12 6.67 17.03 587.1 3103 4197

SVD-LLM 5.94 6.66 8.00 10.79 18.38 42.79
MPIFA 5.03 5.39 7.12 7.41 10.30 16.72

LLaMA2-70B

SVD

3.32

6.77 17.70 203.7 2218 6803 15856
ASVD OOM OOM OOM OOM OOM OOM

SVD-LLM 4.12 4.58 5.31 6.60 9.09 14.82
MPIFA 3.54 3.96 4.58 5.54 7.40 12.01

LLaMA3-8B

SVD

6.14

463461 626967 154679 62640 144064 216552
ASVD 9.37 275.6 12553 21756 185265 13504

SVD-LLM 9.83 13.62 23.66 42.60 83.46 163.5
MPIFA 6.93 8.31 10.83 16.41 28.90 47.02

Table 3: Perplexity (↓) comparison with semi-
structured pruning under the same memory re-
duction on WikiText2. MPIFANS means MPIFA
using non-uniform sparsity.

Method LLaMA2-7B LLaMA2-13B

Dense 5.47 4.88

Magnitude 2:4 37.77 8.89
Wanda 2:4 11.40 8.33
RIA 2:4 10.85 8.03

SVD 55% 69128 24947
ASVD 55% 9370 2039
SVD-LLM 55% 20.43 13.69
MPIFANS 55% 9.68 7.93

Figure 3: Layerwise speedup of PIFA and
semi-sparse layers in FP16 (FP32 unsupported
for 2:4 sparsity in torch.sparse). PIFA’s
speedup increases with dimension.
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Comparison with semi-structured pruning. Table 3 shows that MPIFANS outperforms 2:4 pruning
methods, reducing the perplexity gap by 21.7% for LLaMA2-7B and 3.2% for LLaMA2-13B.

4.2 INFERENCE SPEEDUP AND MEMORY REDUCTION

PIFA layer vs low-rank layer. The PIFA layer achieves significant savings in both memory and
computation time, as shown in Figure 4, PIFA losslessly compresses the memory of the low-rank
layer by 24.2% and reduces inference time by 24.6%.

PIFA layer vs semi-sparse layer. Figure 3 and Table 4 compare the speedup and memory usage of
PIFA and 2:4 semi-sparse layers (cuSPARSELt and CUTLASS) across various dimensions on A6000
and A100 GPUs. PIFA demonstrates consistently superior efficiency, achieving the highest speedup
and lowest memory usage in all cases except d = 4096. Notably, PIFA’s acceleration increases
with matrix dimensions, reflecting its scalability and computational effectiveness. End-to-end LLM
inference comparison is provided in Appendix F.

5 CONCLUSION

We propose MPIFA, a retraining-free low-rank pruning framework that integrates Pivoting Fac-
torization (PIFA) and Online Error-Accumulation-Minimization Reconstruction (M). PIFA
enhances memory savings and inference speedup, while M mitigates error accumulation for improved
performance. Future work could explore integrating PIFA into pretraining to further enhance model
efficiency.
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Algorithm 1 Pivoting Factorization

input Low-rank matrix W′ ∈ Rm×n with rank r
1: Use QR (or LU) decomposition with pivoting to find pivot-row indices: I ← QRpivot(W

′)
2: Define Ic = {1, 2, . . . ,m} \ I, the complement of I, representing non-pivot row indices
3: Compute pivot-row matrix: Wp ←W′[I, :]
4: Compute non-pivot-row matrix: Wnp ←W′[Ic, :]
5: Compute coefficient matrix C by solving matrix equation: C← linsolve(Wnp = CWp)

output PIFA layer P : 1) Pivot-row indices I ∈ Rr; 2) pivot-row matrix Wp ∈ Rr×n; 3) coefficient
matrix C ∈ R(m−r)×r for non-pivot rows

Algorithm 2 PIFA Layer

input Input X ∈ Rn×b, where b is batch size; pivot-row indices I ∈ Rr; pivot-row matrix Wp ∈
Rr×n; coefficient matrix C ∈ R(m−r)×r for non-pivot rows

1: Define Ic = {1, 2, . . . ,m} \ I representing non-pivot row indices
2: Compute output of pivot channels: Yp ←WpX
3: Compute output of non-pivot channels: Ynp ← CYp

4: Assign pivot channels to output: Y[I, :]← Yp

5: Assign non-pivot channels to output: Y[Ic, :]← Ynp

output Y
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Figure 4: Efficiency of PIFA layer under various ranks, with sequence length = 2048, batch size =
32, and dimension = 8192 on FP32 and FP16 on A6000 GPU. At 50% density, PIFA achieves 47.6%
memory savings and 1.95× speedup on FP32. These results guarantee that the overhead of both time
and memory of the PIFA layer is quite low.
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Table 4: Efficiency of PIFA layer and semi-sparse layer across different dimensions, compared to
dense linear at same dimension on same GPU, with sequence length of 2048 and batch size of 32,
using FP16 (FP32 is not supported by 2:4 sparsity in torch.sparse). The highest speedup and
lowest memory are indicated in bold. PIFA shows increasing speedup as the dimension grows. †For
matrix multiplication with weight matrix shape 32768×32768, cuSPARSELt raises CUDA error.

Dimension

GPU Kernel 32768 16384 8192 4096

Speedup

A6000
2:4 (cuSPARSELt) Error† 0.94× 0.97× 1.09×
2:4 (CUTLASS) 0.79× 0.92× 1.15× 1.18×

PIFA 55% 2.10× 1.88× 1.70× 1.43×

A100
2:4 (cuSPARSELt) Error† 1.19× 1.31× 1.68×
2:4 (CUTLASS) 1.19× 1.12× 1.09× 1.52×

PIFA 55% 1.98× 1.70× 1.54× 1.37×

Memory 2:4 (cuSPARSELt / CUTLASS) 0.564 0.569 0.589 0.651
PIFA 55% 0.552 0.558 0.578 0.645
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Figure 5: Pivoting Factorization vs. LU and QR decompositions. Applied to the permuted
matrix (pivot rows at the top), Pivoting Factorization avoids the trapezoidal distribution of non-trivial
parameters in LU decomposition, instead reorganizing them into a rectangular pattern. This structure
optimizes GPU memory usage and reduces computation overhead.
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A MEMORY AND COMPUTATIONAL COST OF PIFA

Memory cost of PIFA. For each low-rank weight matrix W′, PIFA needs to store I, Wp and C,
totaling r(m+ n)− r2 + r. Figure 1 illustrates the relationship between the number of parameters
in PIFA, traditional low-rank decomposition, and a dense weight matrix (square).

Since r(m + n) > r(m + n) − r2 + r for any rank r, PIFA consistently requires less memory
than traditional low-rank decomposition. For the comparison with dense weight matrix, because
r < min(m,n), we have:

(m− r)(n− r) > 0 ⇒ mn > r(m+ n)− r2 (6)

Neglecting the pivot-row index I , which has negligible memory overhead compared to other variables,
PIFA could consistently consumes less memory than a dense weight matrix. In contrast, traditional
low-rank decomposition may exceed the memory cost of dense matrices when r > mn

m+n .

Computational cost of PIFA. We analyze the computational cost of each linear layer for an input
batch size b, where X ∈ Rn×b. We compute the FLOPs for each method as follows:

• For the dense linear layer Y = WX, where W ∈ Rm×n and X ∈ Rn×b, the computational
cost is 2mnb FLOPs.

• For the traditional low-rank layer Y = UVTX, where U ∈ Rm×r and VT ∈ Rr×n,
the computational cost includes: VTX (2rnb) and U(VTX) (2mrb). The total cost is
2rnb+ 2mrb = 2br(m+ n) FLOPs.

• For the PIFA layer (Algorithm 2), the computational cost includes: Yp ←WpX (2rnb)
and Ynp ← CYp 2br(m − r). The total cost is 2rnb + 2br(m − r) = 2br(m + n − r)
FLOPs.

PIFA’s computational cost is proportional to its memory cost, differing only by a factor of 2b. As
a result, PIFA consistently outperforms both dense linear layers and traditional low-rank layers in
computational efficiency.

Comparison with LU and QR decomposition. Figure 5 compares the structure of LU and QR
decomposition with Pivoting Factorization on a permuted weight matrix, where pivot rows have
already been moved to the top. LU decomposition retains the same number of non-trivial parameters
(i.e., those not preset as zero or one) as Pivoting Factorization. However, the trapezoidal distribution
of non-trivial parameters in LU decomposition complicates efficient storage and computation on the
GPU. In contrast, PIFA reorganizes all non-trivial parameters into a rectangular distribution, which is
more GPU-friendly for storage and computation. Thus, Pivoting Factorization is more efficient for
GPU computation.

B ONLINE REFORMULATION OF THE LEAST SQUARE SOLUTION

Equation 3 requires loading the entire calibration dataset X into GPU memory to compute the least
squares solution. As a result, the number of calibration samples is limited to a maximum of 16 on
LLaMA2-7B (4 on LLaMA2-70B) with a 48GB A6000 GPU, leading to overfitting to the calibration
data (see Section G).

Applying the associative property of matrix multiplication, we reformulate Equation 3 into its online
version:

Ur = W(XXT)V(VT(XXT)V)−1 (7)

The term XXT can be computed incrementally as XXT =
∑b

i=1 xix
T
i , where xi represents the

input of sample i. As XXT ∈ Rn×n, the memory consumption of the online least squares solution
remains constant, regardless of the number of calibration samples.
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C RECONSTRUCTING VT

Equation 3 reconstructs only U. We find it beneficial to also update VTand provide the closed-form
solution:

VT
r = argmin

VT
∥Yt −UVTX∥F

= (UTU)−1UTYtX
T(XXT)−1

(8)

The proof is provided in Appendix D. Updating VT can also be performed online by incrementally
computing YXT and XXT.

D CLOSED-FORM SOLUTION OF VT

We aim to prove that minimizing the Frobenius norm ∥Y − UVTX∥F with respect to VT is
equivalent to performing the following two-step optimization:

1. First, minimize ∥Y −WX∥F with respect to W.

2. Then, minimize ∥W −UVT∥F with respect to VT.

We begin by directly minimizing ∥Y −UVTX∥2F with respect to VT.

D.1 DIRECT OPTIMIZATION

f(V) = ∥Y −UVTX∥2F
= Tr

(
(Y −UVTX)T(Y −UVTX)

)
= Tr

(
YTY −YTUVTX−XTVUTY +XTVUTUVTX

)
= Tr(YTY)− 2Tr(VTXYTU) + Tr(VTXXTVUTU)

Let us define intermediate matrices:

A = XYTU

B = XXT

C = UTU

The objective function becomes:

f(V) = const− 2Tr(VTA) + Tr(VTBVC)

where ”const” denotes terms independent of V.

Compute the gradient of f(V) with respect to V:

∂f

∂V
= −2A+ 2BVC

Set the gradient to zero:

−2A+ 2BVC = 0 =⇒ BVC = A

Assuming B and C are invertible, we solve for V:

V = B−1AC−1

Substituting back the definitions of A,B,C:
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V = (XXT)−1
(
XYTU

)
(UTU)−1

Simplify:

VT = (UTU)−1UTYXT(XXT)−1

D.2 TWO-STEP OPTIMIZATION

Now, we perform the two-step optimization and show it leads to the same result.

First, minimize ∥Y −WX∥2F with respect to W.

Compute the gradient:

∂

∂W
∥Y −WX∥2F = −2(Y −WX)XT

Set the gradient to zero:

(Y −WX)XT = 0 =⇒ YXT = WXXT

Assuming XXT is invertible:

W = YXT(XXT)−1

Next, minimize ∥W −UVT∥2F with respect to VT.

Compute the gradient:

∂

∂V
∥W −UVT∥2F = −2UT(W −UVT)

Set the gradient to zero:

UTW = UTUVT

Assuming UTU is invertible:

VT = (UTU)−1UTW

Substitute W:

VT = (UTU)−1UT
(
YXT(XXT)−1

)
Simplify:

VT = (UTU)−1UTYXT(XXT)−1

D.3 CONCLUSION

The solution for VT obtained through both the direct optimization and the two-step optimization is:

VT = (UTU)−1UTYXT(XXT)−1

Therefore, minimizing ∥Y −UVTX∥F with respect to VT is equivalent to first optimizing ∥Y −
WX∥F with respect to W, and then optimizing ∥W −UVT∥F with respect to VT.
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E EXPERIMENT DETAILS

E.1 MODELS AND DATASETS

We apply MPIFA to pre-trained LLMs: LLaMA2 (7B, 13B, 70B) (Touvron et al., 2023b) and
LLaMA3 (8B) (Dubey et al., 2024). Both the calibration data and perplexity (PPL) evaluation are
based on the WikiText2 dataset (Merity et al., 2022).

E.2 COMPARISON WITH LOW-RANK PRUNING

We evaluate MPIFA against state-of-the-art low-rank pruning methods: ASVD (Yuan et al., 2023)
and SVD-LLM (Wang et al., 2024). Vanilla SVD is also included for reference. SVD-LLM has two
versions, as detailed in their original paper. Following their approach, we select the best-performing
version for each density. Results for both versions of SVD-LLM are provided in Table 7. MPIFA
utilizes 128 calibration samples and sets λ = 0.25. For all models except LLaMA-2-70B, MPIFA
reconstructs both U and VT. For LLaMA-2-70B, MPIFA reconstructs only U.

E.3 COMPARISON WITH SEMI-STRUCTURED PRUNING

We further compare MPIFA with 2:4 semi-structured pruning methods: magnitude pruning (Zhu &
Gupta, 2017), and two recent state-of-the-art works Wanda (Sun et al., 2024), and RIA (Zhang et al.,
2024). According to (Mishra et al., 2021), for 16-bit operands, 2:4 sparse leads to ∼44% savings in
GPU memory. Therefore, we compare 2:4 sparse method with MPIFA at 0.55 density to ensure that
all methods achieve the same memory reduction (see Table 4 for memory comparison).

E.4 MPIFA

We combine Online Error-Accumulation-Minimization Reconstruction with Pivoting Factorization
into an end-to-end low-rank compression method, MPIFA (illustrated in Figure 2). MPIFA proceeds
as follows: ① First, Online Error-Accumulation-Minimization Reconstruction iis applied to obtain
and refine the low-rank matrices Ur and VT

r ; ② Then, PIFA decomposes the singular matrix
W′ = UrV

T
r into I,Wp,C ← PIFA(W′), which are stored in a PIFA layer that replaces the

original linear layer.

The full method of MPIFA is outlined in Algorithm 3.

Algorithm 3 MPIFA

input Original weight matrix W ∈ Rm×n; calibration input from dense Xo ∈ Rn×b; calibration
input from low rank Xu ∈ Rn×b; target rank r; original output ratio λ

Part 1: Online Error-Accumulation-Minimization Reconstruction
1: Compute dense output as dense input of next module: Yo = WXo

2: Use SVD-LLM’s pruning (truncation-aware data whitening) to convert to low-rank matrix:
U,VT ← SVD-LLM(W)

3: Compute XXT accumulatively: XXT ←
∑b

i=1 x
i
ux

i
u
T

4: Compute YtX
T accumulatively: YtX

T ←
∑b

i=1(λWxi
o + (1− λ)Wxi

u)x
i
u
T

5: Reconstruct U as Ur: Ur ← (YtX
T)V(VT(XXT)V)−1

6: Reconstruct V as Vr: VT
r ← (UT

r Ur)
−1UT

r (YtX
T)(XXT)−1

7: Compute low-rank output as low-rank input of next module: Yu = WXu

Part 2: PIFA
8: Compute low-rank matrix W′: W′ ← UrV

T
r

9: Use Algorithm 1 to build the PIFA layer P using low-rank matrix W′

output PIFA layer P

A potential issue is that XXT can be singular in some cases, leading to NaN values when calculating
the inverse matrix during V reconstruction. To address this, we leverage prior knowledge that UVT
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should approximate W by adding a regularization term to the original optimization target, modifying
Equation 8 as follows:

VT
r = argmin

VT
∥Yt −UVTX∥F + α∥W −UVT∥F

= (UTU)−1UT(YtX
T + αW)(XXT + αI)−1

(9)

where α is the regularization coefficient, set to 0.001 in all experiments. Regularization is unnecessary
for reconstructing U, as no singularity issues were observed for VT(XXT)V.

E.5 MPIFANS

MPIFANS is the non-uniform sparsity variant of MPIFA, designed to leverage different sparsity
distributions across model layers and module types for improved performance. It employs 512
calibration samples. This approach incorporates two key components to define module densities:
Type Density and Layer Density, which are combined multiplicatively to determine the final density
for each module.

Type Density. Type Density introduces non-uniform sparsity between attention and MLP modules.
Based on insights from prior literature (Yuan et al., 2023), MLP modules exhibit higher sensitivity to
pruning compared to attention modules. To account for this, we search for the density of attention
modules within {Global Density,Global Density− 1}, optimizing for performance. The density of
MLP modules is then calculated to ensure that the model’s global density remains unchanged.

Layer Density. Layer Density accounts for non-uniform sparsity across layers. For this, MPIFANS
adopts the layerwise density distribution from OWL (Yin et al.), which identifies layer-wise densities
based on outlier distribution. By directly utilizing these precomputed layer densities, MPIFANS
ensures that density is allocated more effectively across layers, balancing pruning across regions of
varying importance.

Final Module Density. The final density for each module in MPIFANS is calculated as:

Module Density =
Type Density× Layer Density

Global Density
.

This formulation ensures that the final density for each module accounts for both type- and layer-
specific sparsity requirements, leading to a more effective pruning configuration optimizing perfor-
mance while maintains the global density same.

In summary, MPIFANS combines the benefits of non-uniform sparsity across both types of modules
and individual layers, achieving better performance while ensuring the global density of the model
remains unchanged.

E.6 MPIFANS FINE-TUNING

We investigate how fine-tuning helps recover the performance loss caused by low-rank pruning. Fine-
tuning is performed using a mixed dataset comprising the training set of WikiText2 and one shard
(1/1024) of the training set of C4 (Raffel et al., 2020). WikiText2’s training set is more aligned with
the evaluation dataset but contains a limited number of tokens, whereas the C4 dataset is significantly
larger but less aligned with the test set. To balance these characteristics, the datasets are mixed at a
ratio of 2% WikiText2 to 98% C4.

We limit fine-tuning to a single epoch, which requires approximately one day on a single GPU (around
1000 steps). The fine-tuning process updates all pruned parameters, including low-rank matrices and
semi-sparse matrices, while keeping other parameters, such as embeddings, fixed.

The learning rate is set to 3×10−6, with a warmup phase covering the first 5% of total steps, followed
by a linear decay to zero. The sequence length is fixed at 1024, with a batch size of 1 and gradient
accumulation steps of 128.
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As shown in Table 5, fine-tuned MPIFANS achieves the best performance among all fine-tuned pruning
methods, bringing its perplexity close to the dense baseline at 55% density. Unlike semi-structured
methods, which cannot accelerate the backward pass due to transposed weight tensors violating the
2:4 constraint (Mishra et al., 2021), PIFA and other low-rank methods enable acceleration in both the
forward and backward passes.

Table 5: Perplexity (↓) of pruned models after fine-tuning on WikiText2 (LLaMA2-7B). The
best-performance pruning method is indicated in bold.

Method LLaMA2-7B

Dense 5.47

Magnitude 2:4 6.63
Wanda 2:4 6.40
RIA 2:4 6.37

SVD 55% 9.24
ASVD 55% 8.64
SVD-LLM 55% 7.36
MPIFANS 55% 6.34

Table 6: End-to-end efficiency of MPIFANS on LLaMA2 models, on FP16 (FP32
isn’t supported by semi-sparse). The highest throughput and lowest memory are in-
dicated in bold. MPIFANS consistently outperforms semi-sparse in both throughput
and memory with 55% density. †Enabling KV cache for semi-sparse model will
cause SparseSemiStructuredTensorCUSPARSELT only supports a specific
set of operations, can’t perform requested op (expand.default)

Model Metrics GPU Use KV Cache Dense 2:4 (cuSPARSELt) 2:4 (CUTLASS) MPIFANS 55%

llama2-7b Throughput (token/s)
A6000 No 354.9 306.6 327.5 472.6

Yes 3409 Error† Error 4840

A100 No 614.8 636.2 582.3 822.2
Yes 6918 Error Error 7324

Memory (GB) 12.55 7.274 7.290 7.174

llama2-13b Throughput (token/s)
A6000 No 190.0 163.2 180.0 268.7

Yes 2156 Error Error 2721

A100 No 345.4 362.4 321.5 473.3
Yes 4217 Error Error 4532

Memory (GB) 24.36 13.90 13.99 13.69

F END-TO-END LLM INFERENCE.

Table 6 compares the end-to-end inference throughput and memory usage of MPIFANS with semi-
sparsity (2:4 cuSPARSELt and CUTLASS) on LLaMA2-7B and LLaMA2-13B models in FP16.
MPIFANS consistently outperforms semi-sparsity in both throughput and memory efficiency at 55%
density. Furthermore, the operations supported by semi-sparsity are limited in torch.sparse,
resulting in errors when the KV cache is enabled, which further limits the application of semi-sparse
for LLM inference.

G ABLATION STUDY

Impact of PIFA and M Table 7 presents an ablation study that evaluates the impact of our Online
Error-Accumulation-Minimization Reconstruction (denoted as M) and Pivoting Factorization (PIFA)
on perplexity across varying parameter densities. The methods compared include:

• W: Using only the pruning step of SVD-LLM (truncation-aware data whitening).
• W + U: Applying SVD-LLM’s pruning followed by full-batch reconstruction.
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Table 7: Ablation: Impact of PIFA and M on perplexity (↓) across parameter densities. (the
proportion of parameters remaining compared with the original model) on WikiText2. W denotes
using SVD-LLM’s pruning (truncation-aware data whitening) only; W + U denotes using SVD-
LLM’s pruning and full-batch reconstruction; W + M denotes using our Online Error-Accumulation-
Minimization Reconstruction, which incorporates SVD-LLM’s pruning as the initial step; W + M +
PIFA denotes using Online Error-Accumulation-Minimization Reconstruction followed by PIFA, i.e.,
MPIFA. The best performance method is indicated in bold.

Density

Model Method 100% 90% 80% 70% 60% 50% 40%

LLaMA2-7B

W

5.47

7.27 8.38 10.66 16.14 33.27 89.98
W + U 7.60 8.84 11.15 16.11 27.19 54.20
W + M 6.71 7.50 8.86 11.45 16.55 25.26

W + M + PIFA (MPIFA) 5.69 6.16 7.05 8.81 12.77 21.25

LLaMA2-13B

W

4.88

5.94 6.66 8.00 10.79 18.38 43.92
W + U 6.45 7.37 9.07 12.52 20.95 42.79
W + M 5.80 6.41 7.42 9.31 13.09 19.93

W + M + PIFA (MPIFA) 5.03 5.39 7.12 7.41 10.30 16.72

LLaMA2-70B

W

3.32

4.12 4.58 5.31 6.60 9.09 14.82
W + U 8.23 8.33 8.66 10.02 13.41 22.39
W + M 4.15 4.63 5.31 6.46 8.72 14.11

W + M + PIFA (MPIFA) 3.54 3.96 4.58 5.54 7.40 12.01

LLaMA3-8B

W

6.14

9.83 13.62 25.43 76.86 290.3 676.7
W + U 10.63 14.66 23.66 42.60 83.46 163.5
W + M 9.16 11.25 15.27 23.55 36.14 53.85

W + M + PIFA (MPIFA) 6.93 8.31 10.83 16.41 28.90 47.02

• W + M: Employing our Online Error-Accumulation-Minimization Reconstruction, which
incorporates SVD-LLM’s pruning as the initial step.

• W + M + PIFA: Combining Online Error-Accumulation-Minimization Reconstruction with
PIFA (denoted as MPIFA).

The results reveal several key findings:

1. Full-batch reconstruction (W + U) occasionally worsens perplexity compared to using
only the pruning step (W). This highlights the drawbacks of full-batch methods, as
overfitting to the limited calibration data can degrade performance.

2. Our reconstruction method (W + M) consistently outperforms full-batch reconstruction
(W + U) and pruning alone (W) across all models and densities. This demonstrates the
effectiveness of Online Error-Accumulation-Minimization Reconstruction in reducing error
accumulation and improving the compression of low-rank matrices.

3. PIFA further improves performance when combined with M. The W + M + PIFA
configuration achieves the best perplexity across all settings, validating the advantage of
applying PIFA for additional parameter reduction without inducing any additional loss.

These findings emphasize the significance of M and PIFA in achieving superior low-rank pruning
performance.

Impact of mix ratio λ in M. The mix ratio λ in Equation 5 determines the proportion of the dense
data flow in the reconstruction target. As shown in Figure 6, using a moderate ratio λ = 0.25, MPIFA
achieves significantly lower PPL compared to λ = 0, where the reconstruction target relies solely
on the low-rank data flow, as in previous studies (Wang et al., 2024; Frantar & Alistarh, 2023) did.
This demonstrates the effectiveness of our error-accumulation-corrected strategy, in which the dense
data flow output is beneficial as part of the reconstruction target. In Figure 6, we also observe that an
excessively large λ increases PPL, indicating overfitting to the calibration data.

Impact of Calibration Sample Size. M depends on calibration data to accurately estimate U and
VT. As shown in Figure 7, the perplexity of MPIFA decreases as the number of calibration samples
increases. We hypothesize that increasing the number of calibration samples reduces the condition
number of the least squares solution, improving numerical stability.
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Figure 6: Impact of mix ratio. With 0.5 density, MPIFA achieves lowest PPL when the mix ratio λ
in Equation 5 is around 0.25.

Table 8: C4 Perplexity (↓) at different parameter density (proportion of remaining parameters
relative to the original model). The best-performing method is highlighted in bold.

Density

Model Method 100% 90% 80% 70% 60% 50% 40%

LLaMA2-7B

SVD

7.29

18931 27154 37208 56751 58451 70567
ASVD 7.98 12.46 201.0 9167 25441 24290

SVD-LLM 13.95 19.89 33.02 61.97 129.8 262.9
MPIFA 8.15 10.20 14.68 25.43 52.01 97.71

LLaMA2-13B

SVD

6.74

1994 6301 37250 22783 18196 84680
ASVD 7.15 9.30 23.54 468.5 3537 3703

SVD-LLM 10.93 14.99 24.44 46.65 110.4 267.8
MPIFA 7.27 8.79 21.00 21.33 42.03 80.47

LLaMA2-70B

SVD

5.74

10.16 23.28 121.4 1659 7045 12039
ASVD OOM OOM OOM OOM OOM OOM

SVD-LLM 7.12 8.71 12.21 21.40 44.10 103.3
MPIFA 6.00 6.76 8.67 13.60 29.04 63.38

LLaMA3-8B

SVD

9.47

323597 461991 172968 70896 143573 271176
ASVD 14.43 272.1 8511 18701 108117 9466

SVD-LLM 38.54 98.65 223.5 460.0 784.8 1416
MPIFA 14.76 22.45 44.62 123.0 257.4 429.2

To investigate this, we calculate the condition numbers of VTXXTV in Equation 7 and XXT

in Equation 8, as their inverses are required for reconstructing U and VT. Figure 8 presents the
condition numbers for these matrices in the first layer of LLaMA2-7B. The observed reduction in
condition number indicates that the matrices become less singular as the calibration sample size
increases, thereby improving numerical stability when solving the least squares equations. This
increased stability ultimately results in lower perplexity in the reconstructed model.

Impact of reconstructing U and VT. Figures 7a and 7b compare the effects of reconstructing
only U, only VT, and both U and VT across different calibration sizes. The results indicate that
with sufficient calibration samples, reconstructing both U and VT achieves lower perplexity than
reconstructing only U or only VT.

H C4 PERPLEXITY EVALUATION

To expand beyond WikiText2, we evaluate all methods on the C4 dataset (Raffel et al., 2020). Table 8
demonstrates that MPIFA significantly outperforms other low-rank pruning methods across all model
sizes and compression densities.
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Figure 7: Impact of calibration sample size. On MPIFA with 0.5 density, reconstructing both U
and VT is more sensitive to the number of calibration samples than reconstructing only U.

I ZERO-SHOT EVALUATION

We also evaluate MPIFA on downstream LLM tasks using the SuperGLUE benchmark at Table
9. We report zero-shot accuracy across multiple compression ratios on LLaMA2-7B. We run the
experiments with the public GitHub benchmark EleutherAI/lm-evaluation-harness (Gao et al., 2021).
Results show that MPIFA achieves the best mean accuracy across all densities.

J RELATED WORK

J.1 CONNECTION-WISE PRUNING

Pruning methods We define connection-wise pruning as removing certain connections between
neurons in the network that are deemed less important. To achieve this, a series of methods have been
proposed. Optimal Brain Damage (OBD) (Le Cun et al., 1990) and Optimal Brain Surgeon (OBS)
(Hassibi et al., 1993) were proposed to identify the weight saliency by computing the Hessian matrix
using calibration data. Recent methods such as SparseGPT (Frantar & Alistarh, 2023), Wanda (Sun
et al., 2024), RIA (Zhang et al., 2024), along with other works (Fang et al., 2024; Dong et al., 2024;
Das et al., 2024), have advanced these ideas. Wanda prunes weights with the smallest magnitudes
multiplied by input activations. Relative Importance and Activations (RIA) jointly considers both the
input and output channels of weights along with activation information. Furthermore, OWL (Yin
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Figure 8: Condition number. Condition numbers of VTXXTV (Equation 7) and XXT (Equation
8) for the first layer of LLaMA2-7B, whose inverses are used in reconstructing U and VT. Larger
calibration sizes reduce condition numbers, enhancing numerical stability and lowering perplexity.

Table 9: Zero-shot evaluations on SuperGLUE datasets at different parameter density on LLaMA2-
7B. All tasks are evaluated using accuracy (↑). The best-performing method is highlighted in bold.

Density Method BoolQ CB COPA MultiRC ReCoRD RTE WIC WSC Mean

100% Dense 77.7 42.9 87.0 57.0 91.6 63.2 49.7 36.5 63.2

90%

SVD 42.6 39.3 67.0 51.0 16.4 55.6 49.8 62.5 48.0
ASVD 55.9 37.5 69.0 47.1 42.5 53.4 49.8 41.3 49.6

SVD-LLM 49.1 41.1 79.0 57.1 87.8 52.7 48.0 48.1 57.8
MPIFA 74.4 64.3 86.0 56.7 91.2 58.5 49.7 36.5 64.7

80%

SVD 45.9 57.1 59.0 48.9 12.5 47.3 50.0 58.7 47.4
ASVD 41.6 33.9 58.0 46.8 24.6 55.2 50.0 60.6 46.3

SVD-LLM 44.2 41.1 79.0 55.7 84.7 53.1 50.6 57.7 58.3
MPIFA 69.4 41.1 83.0 55.8 90.3 53.4 48.7 36.5 59.8

70%

SVD 40.2 46.4 62.0 43.1 12.4 53.8 48.9 63.5 46.3
ASVD 39.2 46.4 59.0 48.2 14.0 49.1 50.3 63.5 46.2

SVD-LLM 44.4 39.3 82.0 44.6 79.8 53.8 48.9 60.6 56.7
MPIFA 64.8 41.1 80.0 57.2 87.5 53.8 49.1 42.3 59.5

60%

SVD 45.5 41.1 61.0 49.4 11.4 51.6 50.0 60.6 46.3
ASVD 48.9 37.5 59.0 46.6 15.2 50.2 50.0 40.4 43.5

SVD-LLM 38.5 39.3 71.0 44.9 66.4 53.4 50.2 59.6 52.9
MPIFA 56.6 35.7 79.0 44.5 82.8 57.8 52.0 63.5 59.0

50%

SVD 38.6 44.6 63.0 43.0 10.1 52.7 50.2 63.5 45.7
ASVD 42.2 39.3 63.0 45.7 14.4 52.7 50.0 63.5 46.3

SVD-LLM 37.9 41.1 66.0 42.8 50.5 52.7 50.0 63.5 50.5
MPIFA 38.0 35.7 70.0 42.8 71.1 52.4 50.0 63.5 52.9

40%

SVD 49.5 42.9 61.0 48.1 11.3 52.0 50.0 49.0 45.5
ASVD 42.6 42.9 59.0 47.7 14.5 53.1 50.0 64.4 46.8

SVD-LLM 37.8 41.1 67.0 42.8 37.0 52.7 50.0 63.5 49.0
MPIFA 37.8 37.5 68.0 42.8 54.7 53.8 50.0 63.5 51.0

et al.) explores non-uniform sparsity by pruning based on the distribution of outlier activations, while
other works (Lu et al., 2024; Mocanu et al., 2018; Ye et al., 2020; Zhuang et al., 2018) investigate
alternative criteria for non-uniform sparsity.

Pruning granularity (compared in Table 1):

1. Unstructured pruning removes individual weights based on specific criteria. Today,
unstructured pruning is a critical technique for compressing large language models (LLMs)
to balance performance and computational efficiency. However, unstructured pruning can
only accelerate computations on CPUs due to its unstructured sparsity pattern.

2. Semi-structured pruning, i.e., N:M sparsity, enforces that in every group of M consecutive
elements, N must be zeroed out. This constraint is hardware-friendly and enables optimized
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acceleration on GPUs like NVIDIA’s Ampere architecture (Mishra et al., 2021). However,
semi-structured pruning is constrained by its sparsity pattern, preventing flexible density
adjustments and making it inapplicable for acceleration on general GPUs.

3. Structured pruning (Ma et al., 2023; van der Ouderaa et al., 2024; Ashkboos et al., 2024;
Lin et al., 2024) removes entire components of the model, such as neurons, channels, or
attention heads, rather than individual weights. This method preserves tensor alignment
and coherence, ensuring compatibility with all GPUs and enabling significant acceleration
on both CPUs and GPUs. However, in LLMs, structured pruning can lead to greater loss
compared to unstructured or semi-structured pruning.

J.2 LOW-RANK PRUNING

Low-rank pruning applies matrix decomposition techniques, such as Singular Value Decomposition
(SVD), to approximate weight matrices with lower-rank representations, thereby reducing both
storage and computational demands. This approach, compatible with any GPU, represents large
matrices as products of smaller ones, improving computational efficiency. Recent studies (Hsu
et al., 2022; Yuan et al., 2023; Wang et al., 2024; jai, 2024) highlight the effectiveness of low-rank
decomposition in compressing LLMs. However, despite their flexibility, these methods lag behind
semi-structured pruning in performance, often leading to a 2× increase in perplexity (PPL) at the
same densities.
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