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ABSTRACT

Vision Foundation Models (VFMs) have achieved remarkable success when ap-
plied to various downstream 2D tasks. Despite their effectiveness, they often ex-
hibit a critical lack of 3D awareness. To this end, we introduce Splat and Dis-
till, a framework that instills robust 3D awareness into 2D VFMs by augmenting
the teacher model with a fast, feed-forward 3D reconstruction pipeline. Given
2D features produced by a teacher model, our method first lifts these features
into an explicit 3D Gaussian representation, in a feedforward manner. These
3D features are then “splatted” onto novel viewpoints, producing a set of novel
2D feature maps used to supervise the student model, “distilling” geometrically
grounded knowledge. By replacing slow per-scene optimization of prior work
with our feed-forward lifting approach, our framework avoids feature-averaging
artifacts, creating a dynamic learning process where the teacher’s consistency im-
proves alongside that of the student. We conduct a comprehensive evaluation on a
suite of downstream tasks, including monocular depth estimation, surface normal
estimation, multi-view correspondence, and semantic segmentation. Our method
significantly outperforms prior works, not only achieving substantial gains in 3D
awareness but also enhancing the underlying semantic richness of 2D features.

1 INTRODUCTION

Vision Foundation Models (VFMs) such as DINO Caron et al. (2021) and DINOv2 Oquab et al.
(2023) have achieved remarkable success by leveraging vast unlabeled 2D datasets via a student-
teacher self-distillation paradigm, yielding robust and generalizable features. These features enable
state-of-the-art results across a diverse array of downstream tasks such as semantic segmentation.
Despite these advances, the capabilities of VFMs remain limited for 3D-aware tasks, like depth
estimation, surface-normal reconstruction, and feature correspondence. Our work, therefore, aims
to enhance the 3D awareness of such vision foundation models.

While several works focus on distilling 2D features into 3D representations, FiT3D Yue et al. (2024)
takes the opposite approach: instilling 3D awareness into 2D VFMs by first lifting inconsistent
2D features into explicit 3D representations via per-scene optimization, then rendering views to
create a dataset of “consistent” 2D features for fine-tuning. This method is fundamentally limited,
as input features from different views are inconsistent El Banani et al. (2024), resulting in a least-
squares compromise across views. You et al. (2024) uses a different approach, enforcing multi-
view feature consistency through correspondences, bypassing explicit reconstruction. While this
improves correspondence understanding, its supervision relies on enforcing feature similarity at
corresponding points, which is insufficient for instilling the dense geometric understanding needed
for complex downstream tasks.

To this end, we propose a fast, scalable alternative that avoids the inefficiencies and inconsisten-
cies of optimization-based pipelines Yue et al. (2024), enabling complete, dense geometric scene
understanding. Our key insight is that 3D consistency can be enforced by directly augmenting the
teacher’s architecture in a student-teacher paradigm. We initialize both the student and teacher mod-
els using a VFM that we aim to enhance with improved 3D awareness, along with a pre-trained 3D
feed-forward reconstruction model, specifically DINOv2 for the former and MVSplat Chen et al.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Depth
ScanNet++

Depth
ScanNet

Depth
NYUv2

sNorm
NYUv2

Seg.
ScanNet++

Seg.
ScanNet

Seg.
NYUv2

Corres.
0-15°

Corres.
15-30°

Corres.
30-60°

Corres.
60-180°

DINOv2

Splat and Distill (Ours)

Image       PCA         Seg.        Depth      sNorm               Corres.

Figure 1: Splat and Distill (SnD) is a student-teacher distillation framework that augments the
teacher with a feed-forward 3D reconstruction pipeline during training, resulting in 3D-aware 2D
features. Left: Leveraging our approach on DINOv2, results in 2D features that enable state-of-the-
art performance on downstream tasks such as monocular depth estimation (Depth), surface normal
estimation (sNorm), semantic segmentation (Seg), and multiview correspondence (Corres). Shown
here is comparison of SnD (our method) to vanilla DINOv2, and state-of-the-art approaches for
improving 3D awarness, Fit3D (Yue et al., 2024), and MEF (You et al., 2024), based on a DINOv2
VIT-Small model, and considering the NYUv2 Silberman et al. (2012), ScanNet Dai et al. (2017)
and ScanNet++ Yeshwanth et al. (2023) datasets (see further results in Sec. 4). For visualization,
we provide normalized scores (min–max per metric, weakest baseline set to 0), using inverse RMSE
for depth and normal estimation, IoU for segmentation, and Recall for correspondence (higher is
better). See additional details in Sec. 4. Right: Visualization of our method compared to DINOv2.

(2024) for the latter. We reconstruct scene appearance from a few context views, and lift seman-
tics into it by extracting 2D feature maps from the context views using the teacher, upscaling them
with segmentation masks, and attaching them to 3D via pixel-to-Gaussian correspondences. This
allows efficient lifting of 2D features into 3D by attaching each feature to its corresponding Gaus-
sian, avoiding slow per-scene optimization as in (Yue et al., 2024). We render features from the
3D scene at novel viewpoints and blend them with semantic masks, producing 2D feature maps as
supervision for the student model. The student extracts features from these target views and learns
to match the teacher’s rendered augmented feature maps via gradient descent. The teacher and the
student share the same architecture; the teacher’s weights are updated using the exponential moving
average (EMA) of the student’s parameters, following the distillation objective of DINOv2.

This design confers numerous advantages over previous work. First, by iteratively adapting the
features fed into the 3D reconstruction model via EMA, our method avoids the static “averaging” of
inconsistent features that occurs in optimization-based approaches. Second, our framework learns
a generalizable model for enforcing 3D consistency from a multitude of diverse scenes. Finally, by
replacing this costly optimization with a feed-forward lifting mechanism, our method is significantly
faster, more efficient, and more scalable, using much fewer Gaussians than previous work.

To demonstrate the efficacy of our approach, we conduct a comprehensive evaluation on a suite of
downstream tasks. Following established protocols, we probe for 3D awareness through monoc-
ular depth estimation and surface normal prediction, which measures 3D awareness via a single
image, as well as zero-shot multi-view feature correspondence to measure multi-view consistency.
To ensure that these geometric gains do not come at the cost of semantic richness, we also evaluate
performance on semantic segmentation. Our method significantly improves on the entire suite of
tasks in comparison to state-of-the-art baselines, enabling enhanced single-view and multi-view 3D
consistency as well as greater semantic richness. An illustration is provided in Fig. 1.

2 RELATED WORK

Vision Foundation Models (VFMs). Recent advances in ViT-based VFMs Dosovitskiy et al.
(2020) have produced highly transferable visual representations that excel in a variety of 2D
tasks (Radford et al., 2021; Zhou et al., 2021; Touvron et al., 2022; He et al., 2022). Our work
builds upon DINO and DINOv2 Caron et al. (2021); Oquab et al. (2023), which are based on a
student-teacher self-distillation framework. In this framework, a student network learns to match
the teacher’s representations in different augmentations of the same image, resulting in embeddings
with excellent performance on downstream tasks. Despite their success, recent work has shown that
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Figure 2: Method Overview. Starting from the LHS, two context views Ictxj are passed through
a teacher network, producing two low-resolution 2D feature maps Fctx

j . Using corresponding se-
mantic masks, mask-aware upscaling (Sec. 3.3) produces 2D features Fhigh

j of the input resolu-
tion. In parallel, a pretrained feed-forward 3D reconstruction model predicts 3D Gaussian primitives
{µj ,Σj , αj} using the same context views Ictxj (Sec. 3.2). The upscaled 2D feature maps, Fhigh

j ,
are then lifted to these 3D Gaussian primitives, using 2D-3D correspondences, yielding a feature-
augmented GS scene Gj ← {µj ,Σj , αj} ∪ {fj} (Sec. 3.3). Next, the scene is splatted to a target
viewpoint, producing a 2D feature map, which is then blended with the semantic mask of the target
view, resulting in 2D features Ftgt

blend (Sec. 3.4). Concurrently, as shown on the RHS, the target image
Itgt (corresponding to the rendered viewpoint) is passed through the student network to obtain its
feature map Ftgt

s . Ftgt
blend is then downscaled (bilinearly) producing a lower resolution 2D feature map

which is compared to Ftgt
s to supervise the student via a distillation loss (Sec. 3.5). The teacher’s

weights are updated as an EMA of the student’s weights. Note that SnD is finetuned on ScanNet++.

they remain limited in effectiveness in the 3D domain (Wang et al., 2022; Huang et al., 2024).

3D Scene Representations. Neural Radiance Fields (NeRF) (Mildenhall et al., 2021) have be-
come a cornerstone for photorealistic Novel View Synthesis (NVS), but are hampered by slow ren-
dering speeds. Recently, 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has emerged as an
explicit scene representation offering significantly faster rendering, while also achieving strong re-
sults in NVS. While providing high-quality 3D representations, these methods require per-scene
optimization and numerous context views, making them unsuitable for our task.
Feed-forward 3D Reconstruction. To address these limits, recent methods use feed-forward
pipelines to directly predict volumetric fields Chen et al. (2021); Yu et al. (2021) or 3D Gaussians
Charatan et al. (2024); Wewer et al. (2024); Chen et al. (2024); Szymanowicz et al. (2024) from
images. For instance, PixelSplat Charatan et al. (2024) predicts 3D Gaussians using cross-view
attention and a Gaussian head, while MVSplat Chen et al. (2024) adds a cost-volume geometry en-
coder. These works focus on photometric reconstruction, lacking semantics and high-level features.
3D Feature Distillation. Building on these representations, several methods lift 2D features into
3D, enabling open-vocabulary understanding and editing capabilities (Kerr et al., 2023; Zhou et al.,
2024; Qin et al., 2024; Labe et al., 2024; Levy et al., 2025; Marrie et al., 2025). Most pipelines are
optimization-based, requiring slow per-scene fitting to align features with geometry. These methods
focus on distilling 2D features into a 3D representation. By contrast, we distill 3D knowledge into
2D features using 3D representations as teachers, enhancing the 3D awareness of 2D features.
Enhancing 3D Awareness Of VFMs. A complementary line of research seeks to enhance the 3D
awareness of pretrained 2D VFMs (Caron et al., 2021; Oquab et al., 2023). FiT3D Yue et al. (2024)
lifts 2D features into a 3D scene via optimization (Zhou et al., 2024), renders them from multiple
views, and fine-tunes the 2D VFM by supervising its feature maps with rendered features. However,
as input features from different views are inconsistent, optimization inevitably yields a least-squares
compromise—a semantic blur averaging the initial errors. MEF You et al. (2024) improves 3D cor-
respondence by enforcing feature similarity at corresponding points, but this relational constraint
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alone cannot instill the full, dense geometric scene understanding needed for complex downstream
tasks. Our approach instead introduces 3D awareness within a distillation-based training by aug-
menting teachers with a feed-forward 3D reconstruction model. Recently, DUNE (Sariyildiz et al.,
2025) proposed distilling a universal encoder from heterogeneous 2D and 3D teachers. Crucially,
however, DUNE distills features directly from the teacher (inheriting inherent 3D inconsistencies),
whereas our method explicitly corrects these inconsistencies via a feed-forward 3D reconstruction
pipeline prior to distillation.

3 METHOD

We now outline our approach, illustrated in Fig. 2. Finally, Sec.3.1 provides our student-teacher
distillation approach of our method. Sec.3.2 describes the feed-forward 3D reconstruction pipeline
augmenting the teacher. Sec.3.3 explains the process of lifting features into 3D, and Sec.3.4 de-
tails the mask-aware feature blending mechanism addressing sparse, irregular viewpoints. Sec.3.5
presents the overall loss formulation. Training and implementation details are in Appendix A.3.

3.1 STUDENT-TEACHER DISTILLATION FRAMEWORK

Our method is built upon the student-teacher self-distillation paradigm popularized by DINO and
DINOv2 (Caron et al., 2021; Oquab et al., 2023). The architecture consists of a student network, fs,
with parameters θs, and a teacher network, ft, with parameters θt, which share an identical network
structure. A key departure from prior work is our supervisory mechanism. Instead of using 2D data
augmentations, we leverage multi-view 3D scene data to instill geometric awareness. Our training
data consists of scenes, where each scene S is a collection of images and their corresponding camera
parameters. That is, S = {(Ii,Pi)}Ni=1, where Ii ∈ RH×W×3 is a given view and Pi ∈ R3×4 is the
corresponding camera projection matrix. For each training iteration, we sample a scene and draw
from it a pair of context views, {(Ictx

j ,Pctx
j )}2j=1, and a distinct target view, (Itgt,Ptgt).

3D-Aware Teacher Augmentation. The core of our method lies in augmenting the teacher’s out-
put to be 3D-aware. This is achieved by generating a supervisory feature map for the target view
through a 3D reconstruction and rendering pipeline. First, we use a pre-trained, feed-forward 3D
reconstruction model (Sec . 3.2) to generate an explicit 3D representation of the scene, modeled as a
set of 3D Gaussians, Ggeom, from the two context views. Concurrently, we process the same context
views with the teacher network ft to extract 2D feature maps, {Fctx

j ∈ Rh×w×C}2j=1, where h× w
is the feature maps’ spatial resolution. These features are then upscaled to H×W and lifted into 3D
space by associating them with 3D Gaussians, yielding a 3D feature scene Gfeat (Sec. 3.3). Finally,
this 3D feature scene is rendered from the perspective of the target view’s camera Ptgt, producing
the teacher’s supervisory feature map, Ftgt

t ∈ RH×W×C which goes through an additional blending
mechanism to further enhance feature map quality (Sec. 3.4).

Student Distillation. The student network fs only observes the 2D target image Itgt and produces
its own feature map, Ftgt

s ∈ Rh×w×C . The student is trained by minimizing the discrepancy between
its features and the teacher’s rendered features, using the distillation loss described in Sec. 3.5.

3.2 FEED-FORWARD 3D RECONSTRUCTION MODEL

To provide a geometric scaffold for lifting 2D features into 3D, our method employs a pre-trained,
feed-forward 3D reconstruction model based on the 3D Gaussian Splatting (3DGS) representa-
tion (Kerbl et al., 2023). 3DGS models a scene as a collection of anisotropic 3D Gaussians,
where each Gaussian Gi is parameterized by its geometric and appearance properties: a mean po-
sition µi ∈ R3, a covariance matrix Σi ∈ R3×3 (decomposed into scale and rotation), an opacity
αi ∈ [0, 1], and spherical harmonic (SH) coefficients ci for view-dependent color.

Instead of traditional per-scene optimization, we leverage a feed-forward network, Φgeom, which
directly predicts the 3DGS representation from a sparse set of K context views. Formally, given
the context views {(Ictx

j ,Pctx
j )}Kj=1 (we use K = 2), the model produces a set of M Gaussians that

represent the scene’s geometry and appearance:

Φgeom : {(Ictx
j ,Pctx

j )}Kj=1 7−→ {Gi}Mi=1 (1)
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Specifically, we instantiate Φgeom with a pre-trained MVSplat model (Chen et al., 2024). This model
first extracts multi-view features, builds a cost volume to estimate per-pixel depth via plane-sweep
stereo, and finally unprojects these depth maps to form the 3D Gaussian centers, while other Gaus-
sian parameters are extracted from multi-view features using a Gaussian head. This process provides
an explicit one-to-one correspondence between pixels in the context views and 3D Gaussians.

MVSplat is used as a frozen, off-the-shelf component. Since our objective is to construct a 3D
feature scene rather than to perform novel view synthesis, we only utilize the geometric parameters
(µi,Σi, αi) of the predicted Gaussians. The appearance parameters (the SH coefficients ci) are
disregarded in the subsequent feature lifting step, which is detailed in Sec. 3.3.

3.3 MASK-AWARE FEATURE LIFTING

Having constructed a 3D geometric scaffold from the context views, the next step is to lift the 2D
semantic features from the teacher network, ft, onto this 3D representation. As noted above, this is
achieved by processing the same context views {Ictx

j }2j=1 with the teacher to produce low-resolution
feature maps {Fctx

j ∈ Rh×w×C}2j=1. We then associate these features with the 3D Gaussians via the
pixel-to-Gaussian correspondence provided by the reconstruction model.

A key challenge is the significant resolution mismatch between the teacher’s patch-based feature
maps (h × w) and the full-resolution context images (H × W ) from which the Gaussians were
derived (a scale of ×14). Naively upscaling the feature maps using bilinear interpolation leads to
severe blurring and feature mixing across object boundaries, degrading the final quality.

To address this, we propose to utilize a mask-aware upscaling mechanism that leverages instance
semantic segmentation masks (available during training) to guide the interpolation. For each pixel
u in the target high-resolution grid, its feature value Fhigh

u is computed by interpolating only from
neighboring low-resolution feature points v that share the same semantic label. The interpolated
feature is:

Fhigh
u =

∑
v∈N (u)

wuv · Flow
v , (2)

whereN (u) is the set of neighboring low-resolution feature points, and weights wuv are defined as:

wuv =


w̃uv∑

v′∈N (u)∧mask(v′)=mask(u)

w̃uv′
if mask(v) = mask(u),

0 otherwise,

(3)

where w̃uv are the standard bilinear interpolation weights and mask(u) is the semantic label of pixel
u. This formulation ensures that feature upscaling respects semantic boundaries, producing sharp,
high-resolution feature maps Fhigh ∈ RH×W×C . We demonstrate a quantitative and qualitative
analysis of mask-aware upscaling in Sec. 4, and Fig.11 respectively. Our mask-aware lifting strategy
is inspired by the feature lifting approach employed in OccamLGS (Cheng et al., 2024), utilizing
semantic masks to guide interpolation and preserve object boundaries.

Finally, using the pixel-to-Gaussian correspondence from Φgeom, each feature vector in Fhigh is at-
tached to its corresponding 3D Gaussian, resulting in a 3D feature scene where each Gaussian Gj is
now endowed with a semantic feature vector fj : Gj ← {µj ,Σj , αj} ∪ {fj}.

3.4 SEMANTIC BLENDING FOR FEATURE REGULARIZATION

Building a 3D scene from sparse and irregularly spaced context views can introduce geometric
artifacts. When the 3D feature scene is rendered to a novel target view, these artifacts may manifest
as noise or minor misalignments in the resulting feature map, Ftgt

rendered. This noisy supervisory signal
can degrade the quality of the student’s learned representations.

To mitigate this, we introduce a semantic blending step that regularizes the rendered feature map by
enforcing local consistency within object regions. Inspired by Huang et al. (2025), this step smooths
the features spatially, guided by instance semantic segmentation masks. For each pixel location u in
the rendered feature map, the final blended feature Fblend(u) is computed as a weighted average of

5
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the original rendered feature Frendered(u) and the mean of all rendered features inMu, whereMu

denotes the set of all coordinates in the target view sharing the same semantic mask as u.

Fblend(u) = α · Frendered(u) + (1− α) · 1

|Mu|
∑

v∈Mu

Frendered(v), (4)

where α ∈ [0, 1] is a blending factor (we use α = 0.5). By confining the averaging to within
semantic boundaries, this process corrects for small geometric inconsistencies and produces a more
coherent supervisory signal, while preserving sharp details at object edges. Visualization of this
effect can be seen in the Appendix Fig. 12.

3.5 DISTILLATION OBJECTIVE

The final step is to distill the 3D-aware knowledge from the teacher into the student network. The
supervisory signal is the blended feature map, Ftgt

blend ∈ RH×W×C , which is the result of the full
teacher pipeline noted above. Concurrently, the student network, fs, processes the corresponding
2D target view Itgt to produce its own feature map, Ftgt

s ∈ Rh×w×C . We first downscale the teacher’s
high-resolution feature map to match the student’s output dimensions using bilinear interpolation.

Following the DINO framework (Caron et al., 2021; Oquab et al., 2023), both feature maps are
passed through a shared DINO head which consists of a small MLP. The student’s parameters θs are
optimized to minimize a distillation loss Ldistill:.

min
θs
Ldistill(head(Ftgt

s ), sg(head(Ftgt
blend))) (5)

where head(·) is the DINO head, Ftgt
blend is the rendered teacher features after blending and down-

scaling, sg(·) is the stop-gradient operator, and Ldistill is the cross-entropy loss between the teacher
and student’s output distributions. The student’s parameters θs are optimized via backpropagation,
while the teacher’s parameters are instead updated via EMA: θt ← λθt+(1−λ)θs, where λ ∈ [0, 1]
is the momentum coefficient. More details are in Appendix A.3.

4 EXPERIMENTS

We evaluate our ability to enhance the 3D awareness of DINOv2 features while improving their
semantic representation. Specifically, we assess the inference of 3D perceptual properties (surface
normal and depth estimation) from single-image features and multi-view feature correspondence.
For semantics, we evaluate semantic segmentation. Limitations are provided in Appendix A.7.

Baselines. Our first baseline is the vanilla pre-trained DINOv2 model. We conduct our experi-
ments on the small or base variants. We also consider Fit3D Yue et al. (2024), the work most closely
related to ours. Consequently, we conducted our finetuning (on pretrained DINOv2 student and
teacher) using the same subset of ScanNet++ data Yeshwanth et al. (2023) as is done by Fit3D, to
ensure a fair comparison. Fit3D first constructs a dataset of 3DGS scenes with DINOv2 features
by following established feature distillation approaches. It then fine-tunes DINOv2 to produce fea-
tures that match those rendered from the optimized 3D scenes. Lastly, we consider MEF You et al.
(2024), which fine-tunes a DINOv2 by enforcing multiview feature correspondence in their training
objective. However, we note that MEF requires correspondence annotation, which our method does
not use. Implementation details for evaluating the different baselines can be found in Appendix A.5.

Evaluation Protocol. For monocular depth estimation, surface normal estimation, and semantic
segmentation, we consider the linear probing protocol. We also evaluate multi-view consistency by
measuring the correspondence between multiple views, where the goal is to identify image patches
across views that depict the same 3D point. See evaluation details in Appendix A.4.

Evaluation Datasets. For depth estimation and semantic segmentation, we follow Fit3D and
consider indoor scenes from the ScanNet++ validation set Yeshwanth et al. (2023) as well as
ScanNet Dai et al. (2017) and NYUv2 Silberman et al. (2012) datasets. These datasets share
similar characteristics but employ different sensor modalities. For surface normal estimation, we
use the NYUv2 dataset where surface normal annotation is curated by GeoNet Ladickỳ et al.
(2014). For feature correspondence, we evaluate on the test set of SuperGlue Sarlin et al. (2020),

6
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Table 1: Quantitative comparison for monocular depth estimation, on ViT-Small/Base backbones.

Method ScanNet++ ScanNet NYUv2
Rel ↓ RMSE ↓ Rel ↓ RMSE ↓ Rel ↓ RMSE ↓

V
iT

s

DINOv2 0.2811 0.3777 0.1437 0.2817 0.1476 0.5210
Fit3D 0.2500 0.3506 0.1375 0.2713 0.1418 0.5075
MEF 0.3085 0.4000 0.1566 0.3042 0.1661 0.5656
Ours 0.2421 0.3299 0.1266 0.2555 0.1406 0.4912

V
iT

b

DINOv2 0.2539 0.3435 0.1169 0.2369 0.1375 0.4948
Fit3D 0.2420 0.3306 0.1166 0.2346 0.1359 0.4794
MEF 0.2849 0.3726 0.1269 0.2534 0.1537 0.5214
Ours 0.2169 0.2971 0.1113 0.2245 0.1261 0.4596

Image GT DINOv2 MEF Fit3D Ours

N
Y

U
v2

Figure 3: Qualitative comparison for monocular depth estimation using ViT-Small backbone
(GT=Ground Truth).

Image GT DINOv2 MEF Fit3D Ours

N
Y

U
v2

Figure 4: Qualitative comparison of surface normals estimation using ViT-Small backbone.

which includes image pairs from ScanNet. To further assess robustness and transferability, we in-
clude OOD benchmarks: ADE20k Zhou et al. (2017) and Pascal VOC Everingham et al. (2012)
for semantic segmentation, and the KITTI Geiger et al. (2013) dataset for depth estimation.

Table 2: Quanti-
tative comparison
for surface nor-
mal estimation
on ViT-Small/Base
backbones.

Method
NYUv2
RMSE ↓

V
iT

s DINOv2 30.99
Fit3D 30.57
MEF 33.05
Ours 28.93

V
iT

b DINOv2 31.40
Fit3D 30.57
MEF 32.60
Ours 29.37

For further information on datasets and specific training-test splits em-
ployed, please refer to Appendix A.6.

4.1 IN-DOMAIN EVALUATION

We evaluate our features on downstream tasks for in-domain datasets.

Monocular Depth Estimation. Tab.1 shows quantitative results for
monocular depth estimation using RMSE and Abs-Rel metrics. Our method
consistently outperforms baselines, with average relative gains on RMSE of
5.90%, 5.82%, and 3.21% on ScanNet++, ScanNet, and NYUv2 over the
closest baseline. Fig. 3 presents a visual comparison of our method to base-
lines on the NYUv2 dataset, where results on the ScanNet and ScanNet++
are shown in Appendix A.1 Fig. 8. Our depth maps exhibit more refined
structural details and smoother geometric surfaces than baselines.

Surface Normal Estimation. In Tab.2, we present the RMSE over dense
prediction of normal directions on single-view images on NYUv2 dataset.
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DINOv2 MEF Fit3D Ours
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Figure 5: Qualitative comparison of multi-view correspondences using ViT-Small backbone. Lines
connect matched points between the two views; color encodes the 2D Euclidean reprojection error
computed under the ground-truth pose, with green/red indicating small/large error, respectively.

Table 3: Quantitative comparison for semantic segmentation using ViT-Small/Base.

Method ScanNet++ ScanNet NYUv2
aAcc ↑ mIoU ↑ mAcc ↑ aAcc ↑ mIoU ↑ mAcc ↑ aAcc ↑ mIoU ↑ mAcc ↑

V
iT

s DINOv2 80.23 29.54 39.11 76.60 51.27 63.28 82.25 64.73 75.56
Fit3D 83.34 31.77 41.09 78.53 54.50 66.57 83.32 66.33 77.06
MEF 79.45 27.44 36.77 74.63 47.44 58.98 81.02 63.17 74.16
Ours 83.84 31.78 41.42 79.48 56.01 68.10 84.31 67.50 77.96

V
iT

b DINOv2 81.85 31.95 41.69 79.48 56.42 68.22 83.92 67.47 78.02
Fit3D 84.90 34.85 44.83 82.25 60.78 72.60 85.54 70.18 80.36
MEF 82.23 31.63 41.50 78.60 54.14 65.83 83.62 67.64 78.12
Ours 84.77 34.07 44.00 83.43 62.64 74.29 86.05 70.60 80.91

Our method yields an improvement of 5.37% over the closest baseline using DINOv2-Small and
3.93% using DINOv2-Base. Fig. 4 further highlights qualitatively the superior quality of our pre-
dictions. Our model produces smoother normal maps (e.g., second row) and demonstrates a more
accurate understanding of the 3D scene. For example, when viewing the couch, other methods in-
correctly predict normals, suggesting the couch faces the camera. Our model correctly infers the
visible surface is the back of the couch and assigns flat, consistent normals.

Image GT DINOv2 MEF Fit3D Ours

N
Y

U
v2

Figure 6: Qualitative comparison for semantic segmentation using ViT-Small backbone.

Multiview Correspondence. For multi-view correspondence, we fine-tune DINOv2 without se-
mantic blending of the splatted features, as blending tends to smooth out feature representations. We
consider the recall of the fraction of all proposed correspondences that satisfy an accuracy criterion
of ten pixels, see Appendix A.4.
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Figure 7: Quantitative comparison of multi-view
correspondence for varying viewpoint changes, us-
ing ViT-Small/Base backbones on ScanNet.

In Fig. 7, we observe our method consistently
improves recall over baselines across varying
viewpoint changes, In Fig. 5, we illustrate this
qualitatively.

Semantic Segmentation. In Tab. 3, we
provide a quantitative comparison for seman-
tic segmentation. We report average accuracy
(aAcc), mean intersection over union (mIoU),
and mean accuracy (mAcc). Compared to
the leading baseline of FiT3D when using
DINOv2-Small backbone, we achieve a rela-
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Table 4: Quantitative comparison on out-of-domain datasets, using a ViT-Base backbone.

Method ADE20k (seg.) Pascal VOC (seg.) KITTI (depth)
aAcc ↑ mIoU ↑ mAcc ↑ aAcc ↑ mIoU ↑ mAcc ↑ Rel ↓ RMSE ↓

DINOv2 77.39 40.78 53.31 96.20 83.00 89.36 0.0686 2.3558
Fit3D 82.21 48.29 60.03 96.77 85.08 90.72 0.0679 2.2485
MEF 80.16 45.14 56.15 95.73 80.82 87.67 0.0772 2.4160
Ours 83.24 50.01 61.61 96.96 85.75 91.63 0.0631 2.1741

Table 5: Ablation studies, on ScanNet++ dataset, using the VIT-Small variant.

Segmentation Depth
Ablation aAcc↑ mIoU↑ mAcc↑ Rel↓ RMSE↓
Without Blending (A) 82.83 30.99 40.80 0.2531 0.3435
Bilinear instead of Masked Upscaling (B) 83.66 31.46 41.01 0.2428 0.3309
Cosine Loss instead of Distillation Loss (C) 83.54 31.27 40.96 0.2421 0.3310
Frozen instead of Learnable Teacher (D) 83.34 31.90 41.88 0.2500 0.3444
Context instead of Novel Views (E) 84.02 32.08 41.74 0.2430 0.3332
SAM Masks instead of Manual Masks (F) 83.49 31.51 41.39 0.2436 0.3328
Feature Rendering Loss (G) 83.06 31.40 40.97 0.2484 0.3430
Basic Variant (H) 81.80 30.66 40.47 0.2741 0.3520
Ours (Full Model) 83.84 31.78 41.42 0.2421 0.3299

tive improvement of 0.03%, 2.77%, and 1.76% on ScanNet++, ScanNet, and NYUv2, considering
mIoU.

We observe a similar trend with DINOv2-Base, improving significantly on the ScanNet and NYUv2
datasets, with a slight decrease on the ScanNet++ dataset. In Fig. 6, we present a qualitative com-
parison of on the NYUv2 dataset. Our method produces cleaner object boundaries and avoids the
fragmented masks present in baselines, as seen in the partition wall in the first row. Additional
visualizations, for additional datasets, can be seen in Appendix A.1 in Fig. 9.

4.2 OUT OF DOMAIN EVALUATION

In Tab. 4, we assess our method using the DINOv2-base backbone on out-of-domain datasets. For
segmentation on ADE20K and Pascal VOC, we achieve relative mIoU improvements of 3.56%
and 0.79%, respectively over closest baseline. Notably, ADE20K contains many outdoor, highly
cluttered scenes distinct from our training data. For monocular depth estimation on KITTI Geiger
et al. (2013), we achieve a 3.31% improvement over Fit3D, demonstrating transfer of 3D spatial
awareness from indoor to outdoor scenarios. See Appendix A.1 Fig. 10 for visualizations.

4.3 ABLATION STUDIES AND FEATURE VISUALIZATION

In Tab. 5, we ablate our model on semantic segmentation and depth estimation. In Ablation A,
we consider the effect of removing blending (Sec. 3.4). We also provide a visual illustration in
Appendix A.1 Fig. 12. Next, in Ablation B, we consider the effect of replacing the mask-aware
upscaling with standard bilinear upscaling. Visually, the effect is shown in Appendix A.1 Fig. 11.
In Ablation C, we consider the effect of our distillation objective and compare it to using a cosine
loss on the patch embeddings (without DINO head) instead. In Ablation D, we consider the effect
of freezing the teacher, as opposed to updating it using EMA, demonstrating the effectiveness of
jointly updating the teacher and student. In Ablation E, we consider the effect of rendering features
to context views instead of a target view located between the two context views. As seen, this is
beneficial for depth estimation. Interestingly, segmentation performance improves when rendering
to the context views. In Ablation F, we use SAM-extracted masks Kirillov et al. (2023) instead of
manually annotated masks for mask-aware upscaling and semantic blending, showing that manual
annotation has only a minor advantage. Note, we don’t require consistent class labels across frames.
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In Ablation G, we replace our student-teacher distillation framework with a direct feature rendering
loss on a fixed teacher. While this improves over Vanilla DINOv2, it underperforms our Full SnD
(Depth RMSE 0.3430 vs. 0.3299), confirming that our soft distillation objective and iterative teacher
updates are essential for mitigating artifacts and maximizing geometric awareness. In Ablation H,
we evaluate the most basic configuration of our method (Fixed teacher, no mask-aware upscaling,
no blending). The performance drop relative to the full model (Depth RMSE 0.3520 vs. 0.3299)
validates that our architectural components—specifically the iterative EMA update and mask-aware
lifting—are integral to achieving state-of-the-art results.
Feature Visualization. In Appendix A.2, we visualize our features using PCA, further showcas-
ing our approach’s advantages. These reveal less noise and clearer semantic boundaries in feature
space. K-means further shows that semantically similar objects cluster together while retaining fine
details. We also analyze features from two views, in shared and per-view spaces.

4.4 ADDITIONAL COMPARISONS: TASK-SPECIFIC BACKBONES AND CONCURRENT WORK

Table 6: Left: Comparison of backbones within the VGGT pipeline (fine-tuning only the
head/projection). Right: Comparison against DUNE. Both evaluated on ScanNet++ (ViT-Small).

VGGT Backbone Comparison Comparison vs. DUNE
Method Depth Abs-Rel ↓ Depth RMSE ↓ Method Depth RMSE ↓ Seg. mIoU ↑
VGGT (DINOv2) 0.2220 0.3426 DUNE 0.3929 25.77
VGGT (SnD) 0.2117 0.3283 Ours (SnD) 0.3299 31.78

Task-Specific Backbones (VGGT). To evaluate SnD as a backbone within state-of-the-art pipelines,
we integrated our model into VGGT (Wang et al., 2025) for monocular depth estimation on Scan-
Net++. Since the pre-trained VGGT relies on ViT-Large (1024-dim) and our model is ViT-Small
(384-dim), we added a learnable linear projection (384 → 1024). Crucially, to isolate the qual-
ity of the backbone representations, we froze the entire VGGT architecture (transformer layers,
global/frame attention) and fine-tuned only the projection and depth head. As shown in Tab. 6
(Left), replacing the DINOv2 backbone with SnD yields improved performance.

Comparison to DUNE. We compare against DUNE (Sariyildiz et al., 2025) that distills a
universal encoder. We evaluated the official DUNE weights on ScanNet++, specifically the
dune vitsmall14 448.pth variant as it produced better results than the 336px version. As
shown in Tab. 6 (Right), SnD significantly outperforms DUNE on both depth estimation and seman-
tic segmentation. Unlike DUNE, which inherits 3D inconsistencies from DINOv2, SnD corrects
them via our feed-forward reconstruction pipeline.

5 CONCLUSION

We introduced Splat and Distill, a novel 3D-aware distillation framework to instill robust 3D aware-
ness into 2D VFMs. Our core contribution is the augmentation of the teacher network with a fast,
feed-forward 3D reconstruction pipeline within a distillation framework. This allows us to lift 2D
features from context views into an explicit 3D Gaussian representation, splat these features onto
novel viewpoints, and distill this geometrically grounded knowledge into a student model. Our
method significantly outperforms state-of-the-art baselines on a comprehensive suite of downstream
tasks, including monocular depth estimation, surface normal estimation, and multi-view correspon-
dence, while also enhancing the underlying semantic richness of the original 2D features.
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REPRODUCABILITY STATEMENT

We provide full implementation details of our method in Appendix A, including architecture spec-
ifications, hyperparameters, and training procedures. In addition, we include the source code as
supplementary as part of the submission, ensuring full reproducibility of experiments. All datasets
used in this work are publicly available online under their respective licenses, and we describe in
Appendix A.6 how they are accessed and preprocessed.
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Figure 8: Qualitative comparison on the task of monocular depth estimation, using a ViT-Small
backbone for the ScanNet++ and ScanNet datasets.
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Figure 9: Qualitative comparison on the task of semantic segmentation, using a ViT-Small back-
bone for the ScanNet++ and ScanNet datasets.

A APPENDIX

We present additional qualitative results in Appendix A.1. In Appendix A.2, we provide a qualita-
tive analysis of feature representations, comparing our method to DINOv2. Training implementa-
tion details are described in Appendix A.3, and evaluation protocols for all downstream tasks are
summarized in Appendix A.4. Appendix A.5 outlines the baseline evaluation procedures, while
Appendix A.6 details all datasets used for training and validation. In Appendix A.7 we discuss the
limitations of our method. Finally, Appendix A.8 clarifies the use of large language models for
literature review and manuscript preparation.

A.1 ADDITIONAL QUALITATIVE RESULTS

We provide additional qualitative results for the ScanNet and ScanNet++ dataset, on single-view
depth estimation, and semantic segmentation results on indoor scenes in Fig. 8, and Fig. 9, respec-
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Figure 10: Qualitative comparison on out-of-domain datasets for two tasks: monocular depth
estimation and semantic segmentation, using a ViT-Small backbone. Monocular depth estimation
is evaluated on the KITTI dataset, while semantic segmentation on ADE20K and Pascal VOC.

(a) Masks (b) Nearest Neighbor (c) Bilinear (d) Mask Aware Bilinear

Figure 11: Effect of mask-aware upscaling. PCA of upscaled features with different methods,
comparing nearest-neighbor vs. bilinear vs. mask-aware upscaling. Using mask-aware upscaling
enables clear boundaries between distinct objects.

tively. In addition, we visualize single-view depth estimation and semantic segmentation results on
out-of-domain datasets in Fig. 10.

Depth estimation qualitative results. Fig. 8 presents qualitative results for depth estimation on
the ScanNet++ and ScanNet datasets. Our method accurately captures fine details, such as the chair
in the second row, and produces smoother surfaces, as observed on the bed in the third row. Depth
estimation captures the global structure of a scene, while surface normal prediction provides local
orientation cues. Although their performance is often correlated, these tasks rely on distinct visual
signals and thus offer complementary evidence for 3D understanding (El Banani et al., 2024).

Semantic segmentation qualitative results. Figure 9 shows qualitative results for semantic seg-
mentation on ScanNet++ and ScanNet. Our method produces sharper, more coherent masks; for
instance, in the third row, it accurately segments chair legs in the dining table image, even under
low-light conditions. These results indicate that our model learns representations with enhanced
spatial and semantic consistency.
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(a) View (b) Mask (c) Rendered Image (d) Splatted Features (e) Blended Features

Figure 12: Semantic Blending for Feature Regularization Visualization. We visualize the impact
of semantic blending for feature regularization. (a) shows the input view, (b) displays its correspond-
ing semantic mask, available during training. (c) presents the reconstructed scene generated by our
pretrained feed-forward model, highlighting areas of poor reconstruction—such as the misaligned
desk. The splatted features (visualized via PCA) are shown in (d), illustrating the inaccuracies in-
troduced by flawed reconstruction. (e) demonstrates how semantic blending, guided by the mask,
refines these features and produces sharper object boundaries.

Out-of-domain qualitative results. Although our model was trained solely on the ScanNet++
dataset of indoor scenes, it demonstrates strong generalization to out-of-domain datasets. In Fig. 10,
we evaluate our method on the KITTI dataset for depth estimation, observing improved depth
smoothness. For semantic segmentation, comparisons on ADE20k and Pascal VOC show that our
approach captures fine details, such as the legs of chairs at the dining table (fourth row), and pro-
duces cleaner, less noisy outputs, as seen in the background of the dog image (fifth row).

Visualization of mask-aware upscaling. We visualize the impact of various upscaling methods
in comparison to the mask-aware bilinear upscaling (see Sec. 3.3) used by our method in Fig. 11.
Notably, using mask-aware upscaling produces sharp boundaries between objects by leveraging
semantic masks to guide interpolation around object boundaries.

Visualization of semantic blending for feature regularization. To analyze the impact of our
semantic blending (see Sec. 3.4), we demonstrate its effect on rendered features visually, using
PCA. In Fig. 12, we showcase an example where blending corrects a poorly reconstructed scene.
Notably, observe the initial poor reconstruction of the chair and its correction after the application
of blending.

A.2 FEATURES QUALITATIVE ANALYSIS

Multi-view features. We provide a qualitative analysis of our feature representations using principal
component analysis (PCA) and K-means clustering. In Fig.13, we compare results before and after
applying our distillation method. To assess multi-view consistency, we extract features from two
distinct views of the same scene from ScanNet++ (Yeshwanth et al., 2023). Both PCA and K-means
clustering are performed jointly on features from both views, ensuring a shared feature basis across
perspectives. Our results reveal clear and well-defined boundaries in the PCA plots, as well as more
compact clusters in the K-means visualizations. These findings indicate improvements in multi-view
consistency and feature semantics.

Single-view features. In Fig.14 we evaluate feature quality across a diverse range of datasets, includ-
ing both in-domain and out-of-domain samples. Our analysis reveals improved feature semantics, as
evidenced by reduced noise in the PCA projections and more compact clusters in the K-means visu-
alizations. Importantly, we find that distinct object semantics present before applying our distillation
method are also preserved afterward, across all datasets (for example, in the seventh row, K-means
consistently identifies chickens before and after distillation). These results increase the confidence
that the proposed approach maintains the semantic integrity of the original model’s features while
improving its quality via 3D awareness.

A.3 TRAINING IMPLEMENTATION DETAILS

For 3D scene reconstruction, we employ an off-the-shelf, pre-trained MVSplat model Chen et al.
(2024), originally trained on the RE10k dataset (Zhou et al., 2018). We further fine-tune this model
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Image DINOv2 PCA Ours PCA DINOv2 K-means Ours K-means

Figure 13: Qualitative visualization of DINOv2 features vs. ours on a ViT-Small backbone. Each
pair of rows corresponds to a scene from the ScanNet++ dataset. PCA and K-means are computed
per scene rather than per image.

on ScanNet++ Yeshwanth et al. (2023) to improve its 3D reconstruction for 40,000 iterations to
better adapt it to our specific task requirements.

We initialize both the student and the teacher with the pretrained DINOv2 weights available online.
In addition, we require a DINO head Oquab et al. (2023). The DINO head maps each backbone
feature to a probability distribution over a set of learnable prototypes, implemented as the weights
of a final linear layer. These prototypes act as latent surrogate classes, turning the distillation task
into a classification-like objective without labels. An EMA updated teacher network provides soft
targets, and the student is trained to match them via cross-entropy. This design encourages features
to organize around diverse prototype centroids, prevents collapse, and yields robust, transferable
representations, as refined in DINOv2 with additional stabilization techniques. The DINO head
design used in our experiments consists of a multi-layer perceptron (MLP) with 3 layers, where
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each hidden layer has a dimensionality of 2048. A bottleneck layer with a reduced dimension of 256
is placed before the output, which helps to control the capacity and regularize the representations.
The final output projects features onto 65,536 prototype vectors, which serve as anchor points for the
distillation objective. This architectural choice follows the standard DINO framework, facilitating
scalable clustering and robust representation learning.

Fine-tuning of the DINOv2 Oquab et al. (2023) backbone is performed using LoRA Hu et al. (2022)
with a rank of 8 to enable efficient adaptation while minimizing additional parameters. Optimization
is carried out with a batch size of 1 using the Adam optimizer Adam et al. (2014), starting from an
initial learning rate of 2× 10−5 and following a cosine annealing schedule.

The teacher network is updated every 10 training steps via EMA with a momentum coefficient of
0.999 (Tarvainen & Valpola, 2017). For simplicity, we do not incorporate DINOv2-specific compo-
nents such as temperature scheduling and momentum centering.

Training is conducted for 50,000 iterations on a single NVIDIA L40S GPU, requiring approximately
18 hours to complete. The primary computational bottleneck of our approach arises from the train-
able DINO head and the use of high-resolution input images. Note that the entire 3D reconstruction
process and feature extraction from the teacher network are performed with frozen weights, making
these steps highly efficient in resources.

A.4 EVALUATION DETAILS

Monocular Depth Estimation. We treat depth estimation as a classification problem by discretizing
the continuous depth range into 256 uniformly spaced bins, following the AdaBins approach Bhat
et al. (2021). The input to the classification head is constructed by concatenating the global [CLS]
token with each patch token from the Vision Transformer, and the resulting features are spatially
upscaled by a factor of four. A linear head is then applied to these upscaled features to produce,
for each pixel, logits corresponding to each depth bin. To map these logits to depth predictions, we
generate (n bins) linearly spaced depth values between (mindepth) and (maxdepth). The logits are
transformed into a probability distribution across bins by applying a ReLU activation, adding a small
epsilon for numerical stability, and normalizing so that the probabilities sum to one. The final depth
for each pixel is calculated as the weighted sum of the bin centers, with the weights given by the
normalized probabilities. This produces a continuous depth map, which is then interpolated back to
the spatial resolution of the original input image. The probing is done using a classification loss, for
307,200 iterations on a single GPU to predict the correct depth bin for each patch. We use AdamW
optimizer Adam et al. (2014) with a learning rate of 0.0001, betas (0.9, 0.999), weight decay of 0.01,
and a batch size of two.

Surface Normal Estimation. For surface normal estimation, we follow the protocol of Bae et al.Bae
et al. (2021) and employ an uncertainty-aware angular loss. We train a linear head to regress surface
normals from frozen features, which are upscaled by a factor of four. The output of the linear layer
is subsequently interpolated to the original input image resolution. Training is performed for ten
epochs with a batch size of eight, using the AdamW optimizer and a learning rate of 5 × 10−4.
The learning rate schedule consists of a linear warmup phase followed by cosine decay(Adam et al.,
2014; Loshchilov & Hutter, 2016). We report the root mean squared angular prediction error as our
evaluation metric.

Feature correspondence We follow the protocol established by Probe3D El Banani et al. (2024). To
find correspondences between two images, we first extract feature maps from each image using a
neural network. Pixel coordinates are projected into 3D space using depth maps and camera intrin-
sics, and features at these 3D locations form point clouds. We then match features from the two
point clouds by performing k-nearest neighbor search using cosine similarity. A ratio test is applied
to filter out ambiguous matches, and the remaining matches are selected as correspondences. For
evaluation, we use the ground-truth relative pose between the two views to transform the correspond-
ing 3D points from one view to the other. These transformed points are then projected back to 2D
image coordinates in the target image. We measure correspondence accuracy as the Euclidean dis-
tance between each projected match and its ground-truth location in the target image. Performance is
reported as recall at a 10-pixel error threshold, and further analyzed according to viewpoint changes.
This provides a rigorous assessment of correspondence quality across different scenes and camera
poses.
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Semantic Segmentation. A linear classifier is trained on top of the frozen patch tokens from the
backbone. This classifier produces class scores at a lower spatial resolution, which are then upscaled
to the original image dimensions to generate the final segmentation map. The linear layer is trained
for 320,000 iterations using a single GPU. We utilize a cross-entropy loss. For optimization, we use
AdamW optimizer Adam et al. (2014) with a learning rate of 0.001 and a batch size of two.

A.5 BASELINE EVALUATIONS DETAILS

In this paper, we compare our pipeline with DINOv2, FiT3D, and MEF. All methods are based on a
ViT architecture and provide publicly available weights for both ViT-S and ViT-B models. However,
FiT3D and MEF include additional components beyond the base architecture, necessitating certain
adjustments for a fair evaluation.

Unlike our approach, which utilizes features directly extracted from a finetuned DINOv2 ViT, FiT3D
computes its metrics using a concatenation of features from their model and the original DINOv2.
As a result, linear probing with FiT3D requires increasing the input dimension of the linear head by
the embedding dimension to accommodate the additional channels. Notably, our results for depth
estimation and semantic segmentation with FiT3D differ from those published in their paper. These
discrepancies can be attributed to variations in dataset splits (except for ScanNet++, where splits
are similar) and differences in training procedures—for instance, FiT3D trained probes for fewer
training steps but with 8 Nvidia A100 GPUs, resulting in a larger effective batch size.

Similarly, when comparing with MEF, we had to introduce an additional convolutional layer on top
of the patch tokens, as required by their pipeline. In contrast, our method does not require any such
modifications and only trains the weights of the original DINOv2 model.

A.6 DATASET DETAILS

Training. Our models are pretrained exclusively on the ScanNet++ Yeshwanth et al. (2023)
dataset, following a similar protocol to Yue et al. (2024). Specifically, we use a training split of
280 indoor scenes for representation learning. To ensure consistency with our baseline Yue et al.
(2024), we maintain the same input size at (584 × 876) for ScanNet++. Notably, this resolution is
significantly higher than (180× 320) used in MVSplat (Chen et al., 2024). The ScanNet++ dataset
provides 3D annotations of the different objects in the scene, which are rendered to 2D and provide
a weak supervision of semantic guidance during our training pipeline.

Evaluation. After finetuning, we assess the learned representations on various downstream tasks
using linear probing. This involves creating a train-test split to train and evaluate the linear probes,
while keeping the backbone model frozen throughout evaluation. For multi-view correspondence,
no split is needed, as it is performed without additional training.

ScanNet++: For linear probing experiments on ScanNet++, we use the split described in Yue et al.
(2024), with 230 scenes (140,451 views) for training, and report results on the validation set, which
consists of 50 scenes (30,638 images).

ScanNet: For depth estimation and semantic segmentation on ScanNet Dai et al. (2017), we use
the official scannet frames 25k subset. For efficiency, we downscale the images in ScanNet
by a factor of two, i.e., (484 × 968). This subset is randomly split into 80% for training and 20%
for validation. For multi-view correspondence, we utilize the ScanNet Pairs benchmark Sarlin et al.
(2020), which comprises 1,500 curated image pairs. As this task does not involve linear probing or
additional training, the entire set is used solely for evaluation.

NYUv2: For depth estimation and semantic segmentation, we use the train-test split provided by Su-
teu & neverix (2019) for training and evaluating the linear probes. For surface normal estimation,
we follow the original split of 1,449 labeled images with ground-truth surface normal annotations
Ladickỳ et al. (2014).

ADE20K: For semantic segmentation evaluation of the ADE20K dataset Zhou et al. (2017), we
follow the official train-validation split.

PASCAL VOC 2012: We further benchmark semantic segmentation on the PASCAL VOC 2012
dataset Everingham et al. (2012), adhering to the official train-test split.
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KITTI: For monocular depth estimation, we utilize the KITTI dataset Geiger et al. (2013). Due to
the absence of an official split for the depth selection subset, we generate one by randomly assigning
85% of the images to train and 15% to validation using a custom script, and use these splits for both
training and evaluating the linear probes.

A.7 LIMITATIONS

Our approach, while effective within its design scope, has two main limitations. First, the quality
of our supervisory signal depends directly on the performance of the feed-forward 3D Gaussian
Splatting (3DGS) model: when this reconstruction is suboptimal or inaccurate, the supervision is
degraded and overall performance can suffer. Second, our training currently relies on multiview
image datasets, which are relatively limited in availability and diversity. Enabling training on video
data would allow us to leverage substantially larger and more diverse data sources.

A.8 USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were utilized during the development of this work to assist with
the identification of related research and to provide support in the writing process, including drafting
and refining sections of the manuscript. All substantive scientific contributions, experimental design,
and analysis were performed by the authors.
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Figure 14: Qualitative visualization of DINOv2 features vs. ours on different datasets using a ViT-
Small backbone. We visualize single-image features using PCA and K-meansdavid: verify it’s
small. 21
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