

000 SPLAT AND DISTILL: AUGMENTING TEACHERS WITH 001 FEED-FORWARD 3D RECONSTRUCTION FOR 3D- 002 AWARE DISTILLATION 003

004 **Anonymous authors**
005
006

007 Paper under double-blind review
008
009

010 ABSTRACT 011

012 Vision Foundation Models (VFM)s have achieved remarkable success when applied to various downstream 2D tasks. Despite their effectiveness, they often exhibit a critical lack of 3D awareness. To this end, we introduce Splat and Distill, a framework that instills robust 3D awareness into 2D VFMs by augmenting the teacher model with a fast, feed-forward 3D reconstruction pipeline. Given 2D features produced by a teacher model, our method first lifts these features into an explicit 3D Gaussian representation, in a feedforward manner. These 3D features are then “splatted” onto novel viewpoints, producing a set of novel 2D feature maps used to supervise the student model, “distilling” geometrically grounded knowledge. By replacing slow per-scene optimization of prior work with our feed-forward lifting approach, our framework avoids feature-averaging artifacts, creating a dynamic learning process where the teacher’s consistency improves alongside that of the student. We conduct a comprehensive evaluation on a suite of downstream tasks, including monocular depth estimation, surface normal estimation, multi-view correspondence, and semantic segmentation. Our method significantly outperforms prior works, not only achieving substantial gains in 3D awareness but also enhancing the underlying semantic richness of 2D features.

030 1 INTRODUCTION 031

032 Vision Foundation Models (VFM)s such as DINO Caron et al. (2021) and DINOv2 Oquab et al. (2023) have achieved remarkable success by leveraging vast unlabeled 2D datasets via a student-teacher self-distillation paradigm, yielding robust and generalizable features. These features enable state-of-the-art results across a diverse array of downstream tasks such as semantic segmentation. Despite these advances, the capabilities of VFM remain limited for 3D-aware tasks, like depth estimation, surface-normal reconstruction, and feature correspondence. Our work, therefore, aims to enhance the 3D awareness of such vision foundation models.

039 While several works focus on distilling 2D features into 3D representations, FiT3D Yue et al. (2024)
040 takes the opposite approach: instilling 3D awareness into 2D VFM by first lifting inconsistent
041 2D features into explicit 3D representations via per-scene optimization, then rendering views to
042 create a dataset of “consistent” 2D features for fine-tuning. This method is fundamentally limited,
043 as input features from different views are inconsistent El Banani et al. (2024), resulting in a *least-squares*
044 compromise across views. You et al. (2024) uses a different approach, enforcing multi-
045 view feature consistency through correspondences, bypassing explicit reconstruction. While this
046 improves correspondence understanding, its supervision relies on enforcing feature similarity at
047 corresponding points, which is insufficient for instilling the dense geometric understanding needed
048 for complex downstream tasks.

049 To this end, we propose a fast, scalable alternative that avoids the inefficiencies and inconsisten-
050 cies of optimization-based pipelines Yue et al. (2024), enabling complete, dense geometric scene
051 understanding. Our key insight is that 3D consistency can be enforced by directly augmenting the
052 teacher’s architecture in a student-teacher paradigm. We initialize both the student and teacher mod-
053 els using a VFM that we aim to enhance with improved 3D awareness, along with a pre-trained 3D
feed-forward reconstruction model, specifically DINOv2 for the former and MVSplat Chen et al.

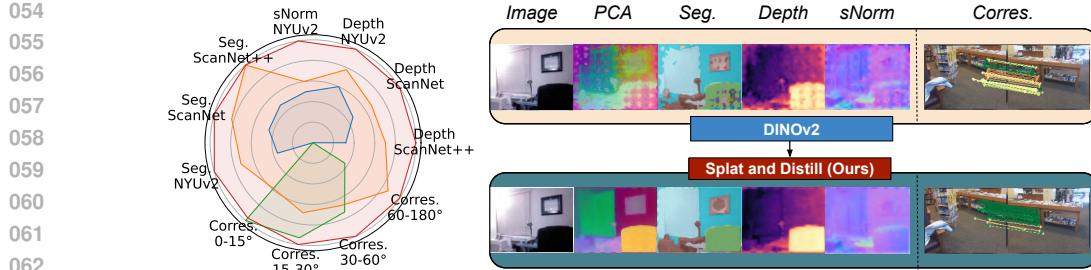


Figure 1: **Splat and Distill (SnD)** is a student-teacher distillation framework that augments the teacher with a feed-forward 3D reconstruction pipeline during training, resulting in 3D-aware 2D features. **Left:** Leveraging our approach on DINOv2, results in 2D features that enable state-of-the-art performance on downstream tasks such as monocular depth estimation (Depth), surface normal estimation (sNorm), semantic segmentation (Seg), and multiview correspondence (Corres). Shown here is comparison of **SnD (our method)** to vanilla **DINOv2**, and state-of-the-art approaches for improving 3D awarness, **Fit3D** (Yue et al., 2024), and **MEF** (You et al., 2024), based on a DINOv2 VIT-Small model, and considering the NYUv2 Silberman et al. (2012), ScanNet Dai et al. (2017) and ScanNet++ Yeshwanth et al. (2023) datasets (see further results in Sec. 4). For visualization, we provide normalized scores (min–max per metric, weakest baseline set to 0), using inverse RMSE for depth and normal estimation, IoU for segmentation, and Recall for correspondence (higher is better). See additional details in Sec. 4. **Right:** Visualization of our method compared to DINOv2.

(2024) for the latter. We reconstruct scene appearance from a few context views, and lift semantics into it by extracting 2D feature maps from the context views using the teacher, upscaling them with segmentation masks, and attaching them to 3D via pixel-to-Gaussian correspondences. This allows efficient lifting of 2D features into 3D by attaching each feature to its corresponding Gaussian, avoiding slow per-scene optimization as in (Yue et al., 2024). We render features from the 3D scene at novel viewpoints and blend them with semantic masks, producing 2D feature maps as supervision for the student model. The student extracts features from these target views and learns to match the teacher’s rendered augmented feature maps via gradient descent. The teacher and the student share the same architecture; the teacher’s weights are updated using the exponential moving average (EMA) of the student’s parameters, following the distillation objective of DINOv2.

This design confers numerous advantages over previous work. First, by iteratively adapting the features fed into the 3D reconstruction model via EMA, our method avoids the static “averaging” of inconsistent features that occurs in optimization-based approaches. Second, our framework learns a generalizable model for enforcing 3D consistency from a multitude of diverse scenes. Finally, by replacing this costly optimization with a feed-forward lifting mechanism, our method is significantly faster, more efficient, and more scalable, using much fewer Gaussians than previous work.

To demonstrate the efficacy of our approach, we conduct a comprehensive evaluation on a suite of downstream tasks. Following established protocols, we probe for 3D awareness through monocular depth estimation and surface normal prediction, which measures 3D awareness via a single image, as well as zero-shot multi-view feature correspondence to measure multi-view consistency. To ensure that these geometric gains do not come at the cost of semantic richness, we also evaluate performance on semantic segmentation. Our method significantly improves on the entire suite of tasks in comparison to state-of-the-art baselines, enabling enhanced single-view and multi-view 3D consistency as well as greater semantic richness. An illustration is provided in Fig. 1.

2 RELATED WORK

Vision Foundation Models (VFM). Recent advances in ViT-based VFM Dosovitskiy et al. (2020) have produced highly transferable visual representations that excel in a variety of 2D tasks (Radford et al., 2021; Zhou et al., 2021; Touvron et al., 2022; He et al., 2022). Our work builds upon DINO and DINOv2 Caron et al. (2021); Oquab et al. (2023), which are based on a student-teacher self-distillation framework. In this framework, a student network learns to match the teacher’s representations in different augmentations of the same image, resulting in embeddings with excellent performance on downstream tasks. Despite their success, recent work has shown that

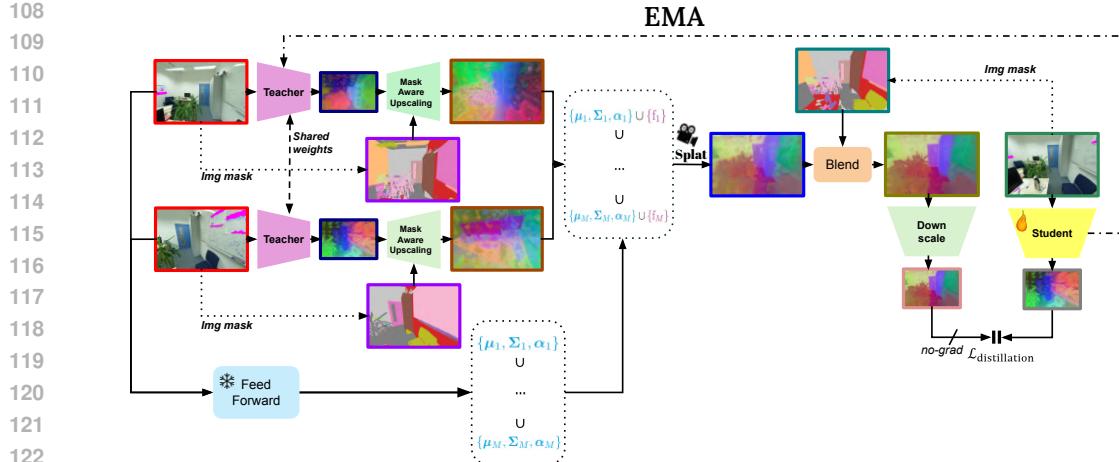


Figure 2: **Method Overview.** Starting from the LHS, **two context views** I_j^{ctx} are passed through a teacher network, producing **two low-resolution 2D feature maps** F_j^{ctx} . Using **corresponding semantic masks**, mask-aware upscaling (Sec. 3.3) produces **2D features** F_j^{high} of the input resolution. In parallel, a pretrained feed-forward 3D reconstruction model predicts 3D Gaussian primitives $\{\mu_j, \Sigma_j, \alpha_j\}$ using the same context views I_j^{ctx} (Sec. 3.2). The upscaled 2D feature maps, F_j^{high} , are then lifted to these 3D Gaussian primitives, using 2D-3D correspondences, yielding a feature-augmented GS scene $G_j \leftarrow \{\mu_j, \Sigma_j, \alpha_j\} \cup \{f_j\}$ (Sec. 3.3). Next, the scene is splatted to a target viewpoint, producing a **2D feature map**, which is then blended with the **semantic mask of the target view**, resulting in **2D features** F_j^{blend} (Sec. 3.4). Concurrently, as shown on the RHS, the **target image** I^{tgt} (corresponding to the rendered viewpoint) is passed through the student network to obtain its feature map F_s^{tgt} . F_s^{blend} is then downsampled (bilinearly) producing a **lower resolution 2D feature map** which is compared to F_s^{tgt} to supervise the student via a distillation loss (Sec. 3.5). The teacher’s weights are updated as an EMA of the student’s weights. *Note that SnD is finetuned on ScanNet++.*

they remain limited in effectiveness in the 3D domain (Wang et al., 2022; Huang et al., 2024).

3D Scene Representations. Neural Radiance Fields (NeRF) (Mildenhall et al., 2021) have become a cornerstone for photorealistic Novel View Synthesis (NVS), but are hampered by slow rendering speeds. Recently, 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has emerged as an explicit scene representation offering significantly faster rendering, while also achieving strong results in NVS. While providing high-quality 3D representations, these methods require per-scene optimization and numerous context views, making them unsuitable for our task.

Feed-forward 3D Reconstruction. To address these limits, recent methods use feed-forward pipelines to directly predict volumetric fields Chen et al. (2021); Yu et al. (2021) or 3D Gaussians Charatan et al. (2024); Wewer et al. (2024); Chen et al. (2024); Szymonowicz et al. (2024) from images. For instance, PixelSplat Charatan et al. (2024) predicts 3D Gaussians using cross-view attention and a Gaussian head, while MVSplat Chen et al. (2024) adds a cost-volume geometry encoder. These works focus on photometric reconstruction, lacking semantics and high-level features.

3D Feature Distillation. Building on these representations, several methods lift 2D features into 3D, enabling open-vocabulary understanding and editing capabilities (Kerr et al., 2023; Zhou et al., 2024; Qin et al., 2024; Labe et al., 2024; Levy et al., 2025; Marrie et al., 2025). Most pipelines are optimization-based, requiring slow per-scene fitting to align features with geometry. These methods focus on distilling 2D features into a 3D representation. By contrast, we distill 3D knowledge into 2D features using 3D representations as teachers, enhancing the 3D awareness of 2D features.

Enhancing 3D Awareness Of VFM. A complementary line of research seeks to enhance the 3D awareness of pretrained 2D VFM (Caron et al., 2021; Oquab et al., 2023). FiT3D Yue et al. (2024) lifts 2D features into a 3D scene via optimization (Zhou et al., 2024), renders them from multiple views, and fine-tunes the 2D VFM by supervising its feature maps with rendered features. However, as input features from different views are inconsistent, optimization inevitably yields a *least-squares* compromise—a semantic blur averaging the initial errors. MEF You et al. (2024) improves 3D correspondence by enforcing feature similarity at corresponding points, but this relational constraint

162 alone cannot instill the full, dense geometric scene understanding needed for complex downstream
 163 tasks. Our approach instead introduces 3D awareness within a distillation-based training by aug-
 164 menting teachers with a feed-forward 3D reconstruction model. Recently, DUNE (Sariyildiz et al.,
 165 2025) proposed distilling a universal encoder from heterogeneous 2D and 3D teachers. Crucially,
 166 however, DUNE distills features directly from the teacher (inheriting inherent 3D inconsistencies),
 167 whereas our method explicitly corrects these inconsistencies via a feed-forward 3D reconstruction
 168 pipeline prior to distillation.

169

170 3 METHOD

171

172 We now outline our approach, illustrated in Fig. 2. Finally, Sec.3.1 provides our student-teacher
 173 distillation approach of our method. Sec.3.2 describes the feed-forward 3D reconstruction pipeline
 174 augmenting the teacher. Sec.3.3 explains the process of lifting features into 3D, and Sec.3.4 de-
 175 tails the mask-aware feature blending mechanism addressing sparse, irregular viewpoints. Sec.3.5
 176 presents the overall loss formulation. Training and implementation details are in Appendix A.3.

177

178 3.1 STUDENT-TEACHER DISTILLATION FRAMEWORK

179

180 Our method is built upon the student-teacher self-distillation paradigm popularized by DINO and
 181 DINOv2 (Caron et al., 2021; Oquab et al., 2023). The architecture consists of a **student network**, f_s ,
 182 with parameters θ_s , and a **teacher network**, f_t , with parameters θ_t , which share an identical network
 183 structure. A key departure from prior work is our supervisory mechanism. Instead of using 2D data
 184 augmentations, we leverage multi-view 3D scene data to instill geometric awareness. Our training
 185 data consists of scenes, where each scene \mathcal{S} is a collection of images and their corresponding camera
 186 parameters. That is, $\mathcal{S} = \{(\mathbf{I}_i, \mathbf{P}_i)\}_{i=1}^N$, where $\mathbf{I}_i \in \mathbb{R}^{H \times W \times 3}$ is a given view and $\mathbf{P}_i \in \mathbb{R}^{3 \times 4}$ is the
 187 corresponding camera projection matrix. For each training iteration, we sample a scene and draw
 188 from it a pair of *context views*, $\{(\mathbf{I}_j^{\text{ctx}}, \mathbf{P}_j^{\text{ctx}})\}_{j=1}^2$, and a distinct *target view*, $(\mathbf{I}^{\text{tgt}}, \mathbf{P}^{\text{tgt}})$.

189

3D-Aware Teacher Augmentation. The core of our method lies in augmenting the teacher’s out-
 190 put to be 3D-aware. This is achieved by generating a supervisory feature map for the target view
 191 through a 3D reconstruction and rendering pipeline. First, we use a pre-trained, feed-forward 3D
 192 reconstruction model (Sec . 3.2) to generate an explicit 3D representation of the scene, modeled as a
 193 set of 3D Gaussians, $\mathcal{G}_{\text{geom}}$, from the two context views. Concurrently, we process the same context
 194 views with the teacher network f_t to extract 2D feature maps, $\{\mathbf{F}_j^{\text{ctx}} \in \mathbb{R}^{h \times w \times C}\}_{j=1}^2$, where $h \times w$
 195 is the feature maps’ spatial resolution. These features are then up-scaled to $H \times W$ and *lifted* into 3D
 196 space by associating them with 3D Gaussians, yielding a 3D feature scene $\mathcal{G}_{\text{feat}}$ (Sec. 3.3). Finally,
 197 this 3D feature scene is rendered from the perspective of the target view’s camera \mathbf{P}^{tgt} , producing
 198 the teacher’s supervisory feature map, $\mathbf{F}_t^{\text{tgt}} \in \mathbb{R}^{H \times W \times C}$ which goes through an additional blending
 199 mechanism to further enhance feature map quality (Sec. 3.4).

200

Student Distillation. The student network f_s only observes the 2D target image \mathbf{I}^{tgt} and produces
 201 its own feature map, $\mathbf{F}_s^{\text{tgt}} \in \mathbb{R}^{h \times w \times C}$. The student is trained by minimizing the discrepancy between
 202 its features and the teacher’s rendered features, using the distillation loss described in Sec. 3.5.

203

204

3.2 FEED-FORWARD 3D RECONSTRUCTION MODEL

205

To provide a geometric scaffold for lifting 2D features into 3D, our method employs a pre-trained,
 206 feed-forward 3D reconstruction model based on the 3D Gaussian Splatting (3DGS) representa-
 207 tion (Kerbl et al., 2023). 3DGS models a scene as a collection of anisotropic 3D Gaussians,
 208 where each Gaussian \mathcal{G}_i is parameterized by its geometric and appearance properties: a mean po-
 209 sition $\mu_i \in \mathbb{R}^3$, a covariance matrix $\Sigma_i \in \mathbb{R}^{3 \times 3}$ (decomposed into scale and rotation), an opacity
 210 $\alpha_i \in [0, 1]$, and spherical harmonic (SH) coefficients \mathbf{c}_i for view-dependent color.

211

Instead of traditional per-scene optimization, we leverage a feed-forward network, Φ_{geom} , which
 212 directly predicts the 3DGS representation from a sparse set of K context views. Formally, given
 213 the context views $\{(\mathbf{I}_j^{\text{ctx}}, \mathbf{P}_j^{\text{ctx}})\}_{j=1}^K$ (we use $K = 2$), the model produces a set of M Gaussians that
 214 represent the scene’s geometry and appearance:

215

$$\Phi_{\text{geom}} : \{(\mathbf{I}_j^{\text{ctx}}, \mathbf{P}_j^{\text{ctx}})\}_{j=1}^K \mapsto \{\mathcal{G}_i\}_{i=1}^M \quad (1)$$

216 Specifically, we instantiate Φ_{geom} with a pre-trained MVsplat model (Chen et al., 2024). This model
 217 first extracts multi-view features, builds a cost volume to estimate per-pixel depth via plane-sweep
 218 stereo, and finally unprojects these depth maps to form the 3D Gaussian centers, while other Gaus-
 219 sian parameters are extracted from multi-view features using a Gaussian head. This process provides
 220 an explicit one-to-one correspondence between pixels in the context views and 3D Gaussians.

221 MVsplat is used as a frozen, off-the-shelf component. Since our objective is to construct a 3D
 222 *feature* scene rather than to perform novel view synthesis, we only utilize the geometric parameters
 223 ($\mu_i, \Sigma_i, \alpha_i$) of the predicted Gaussians. The appearance parameters (the SH coefficients \mathbf{c}_i) are
 224 disregarded in the subsequent feature lifting step, which is detailed in Sec. 3.3.
 225

226 3.3 MASK-AWARE FEATURE LIFTING

227 Having constructed a 3D geometric scaffold from the context views, the next step is to lift the 2D
 228 semantic features from the teacher network, f_t , onto this 3D representation. As noted above, this is
 229 achieved by processing the same context views $\{\mathbf{I}_j^{\text{ctx}}\}_{j=1}^2$ with the teacher to produce low-resolution
 230 feature maps $\{\mathbf{F}_j^{\text{ctx}} \in \mathbb{R}^{h \times w \times C}\}_{j=1}^2$. We then associate these features with the 3D Gaussians via the
 231 pixel-to-Gaussian correspondence provided by the reconstruction model.

232 A key challenge is the significant resolution mismatch between the teacher’s patch-based feature
 233 maps ($h \times w$) and the full-resolution context images ($H \times W$) from which the Gaussians were
 234 derived (a scale of $\times 14$). Naively upscaling the feature maps using bilinear interpolation leads to
 235 severe blurring and feature mixing across object boundaries, degrading the final quality.
 236

237 To address this, we propose to utilize a mask-aware upscaling mechanism that leverages instance
 238 semantic segmentation masks (available during training) to guide the interpolation. For each pixel
 239 u in the target high-resolution grid, its feature value $\mathbf{F}_u^{\text{high}}$ is computed by interpolating only from
 240 neighboring low-resolution feature points v that share the same semantic label. The interpolated
 241 feature is:

$$242 \mathbf{F}_u^{\text{high}} = \sum_{v \in \mathcal{N}(u)} w_{uv} \cdot \mathbf{F}_v^{\text{low}}, \quad (2)$$

243 where $\mathcal{N}(u)$ is the set of neighboring low-resolution feature points, and weights w_{uv} are defined as:
 244

$$245 w_{uv} = \begin{cases} \frac{\tilde{w}_{uv}}{\sum\limits_{v' \in \mathcal{N}(u) \wedge \text{mask}(v') = \text{mask}(u)} \tilde{w}_{uv'}} & \text{if } \text{mask}(v) = \text{mask}(u), \\ 0 & \text{otherwise,} \end{cases} \quad (3)$$

246 where \tilde{w}_{uv} are the standard bilinear interpolation weights and $\text{mask}(u)$ is the semantic label of pixel
 247 u . This formulation ensures that feature upscaling respects semantic boundaries, producing sharp,
 248 high-resolution feature maps $\mathbf{F}^{\text{high}} \in \mathbb{R}^{H \times W \times C}$. We demonstrate a quantitative and qualitative
 249 analysis of mask-aware upscaling in Sec. 4, and Fig. 11 respectively. Our mask-aware lifting strategy
 250 is inspired by the feature lifting approach employed in OccamLGS (Cheng et al., 2024), utilizing
 251 semantic masks to guide interpolation and preserve object boundaries.

252 Finally, using the pixel-to-Gaussian correspondence from Φ_{geom} , each feature vector in \mathbf{F}^{high} is at-
 253 tached to its corresponding 3D Gaussian, resulting in a 3D feature scene where each Gaussian \mathcal{G}_j is
 254 now endowed with a semantic feature vector $\mathbf{f}_j: \mathcal{G}_j \leftarrow \{\mu_j, \Sigma_j, \alpha_j\} \cup \{\mathbf{f}_j\}$.
 255

256 3.4 SEMANTIC BLENDING FOR FEATURE REGULARIZATION

257 Building a 3D scene from sparse and irregularly spaced context views can introduce geometric
 258 artifacts. When the 3D feature scene is rendered to a novel target view, these artifacts may manifest
 259 as noise or minor misalignments in the resulting feature map, $\mathbf{F}_{\text{rendered}}^{\text{tgt}}$. This noisy supervisory signal
 260 can degrade the quality of the student’s learned representations.

261 To mitigate this, we introduce a semantic blending step that regularizes the rendered feature map by
 262 enforcing local consistency within object regions. Inspired by Huang et al. (2025), this step smooths
 263 the features spatially, guided by instance semantic segmentation masks. For each pixel location u in
 264 the rendered feature map, the final blended feature $\mathbf{F}_{\text{blend}}(u)$ is computed as a weighted average of
 265

270 the original rendered feature $\mathbf{F}_{\text{rendered}}(u)$ and the mean of all rendered features in \mathcal{M}_u , where \mathcal{M}_u
 271 denotes the set of all coordinates in the target view sharing the same semantic mask as u .
 272

$$273 \quad 274 \quad \mathbf{F}_{\text{blend}}(u) = \alpha \cdot \mathbf{F}_{\text{rendered}}(u) + (1 - \alpha) \cdot \frac{1}{|\mathcal{M}_u|} \sum_{v \in \mathcal{M}_u} \mathbf{F}_{\text{rendered}}(v), \quad 275$$

276 where $\alpha \in [0, 1]$ is a blending factor (we use $\alpha = 0.5$). By confining the averaging to within
 277 semantic boundaries, this process corrects for small geometric inconsistencies and produces a more
 278 coherent supervisory signal, while preserving sharp details at object edges. Visualization of this
 279 effect can be seen in the Appendix Fig. 12.

280 281 3.5 DISTILLATION OBJECTIVE

282 The final step is to distill the 3D-aware knowledge from the teacher into the student network. The
 283 supervisory signal is the blended feature map, $\mathbf{F}_{\text{blend}}^{\text{tgt}} \in \mathbb{R}^{H \times W \times C}$, which is the result of the full
 284 teacher pipeline noted above. Concurrently, the student network, f_s , processes the corresponding
 285 2D target view \mathbf{I}^{tgt} to produce its own feature map, $\mathbf{F}_s^{\text{tgt}} \in \mathbb{R}^{h \times w \times C}$. We first downscale the teacher’s
 286 high-resolution feature map to match the student’s output dimensions using bilinear interpolation.
 287

288 Following the DINO framework (Caron et al., 2021; Oquab et al., 2023), both feature maps are
 289 passed through a shared DINO head which consists of a small MLP. The student’s parameters θ_s are
 290 optimized to minimize a distillation loss $\mathcal{L}_{\text{distill}}$:

$$291 \quad \min_{\theta_s} \mathcal{L}_{\text{distill}}(\text{head}(\mathbf{F}_s^{\text{tgt}}), \text{sg}(\text{head}(\mathbf{F}_{\text{blend}}^{\text{tgt}}))) \quad 292$$

293 where $\text{head}(\cdot)$ is the DINO head, $\mathbf{F}_{\text{blend}}^{\text{tgt}}$ is the rendered teacher features after blending and down-
 294 scaling, $\text{sg}(\cdot)$ is the stop-gradient operator, and $\mathcal{L}_{\text{distill}}$ is the cross-entropy loss between the teacher
 295 and student’s output distributions. The student’s parameters θ_s are optimized via backpropagation,
 296 while the teacher’s parameters are instead updated via EMA: $\theta_t \leftarrow \lambda \theta_t + (1 - \lambda) \theta_s$, where $\lambda \in [0, 1]$
 297 is the momentum coefficient. More details are in Appendix A.3.

298 299 4 EXPERIMENTS

300 We evaluate our ability to enhance the 3D awareness of DINOv2 features while improving their
 301 semantic representation. Specifically, we assess the inference of 3D perceptual properties (surface
 302 normal and depth estimation) from single-image features and multi-view feature correspondence.
 303 For semantics, we evaluate semantic segmentation. Limitations are provided in Appendix A.7.

304 **Baselines.** Our first baseline is the vanilla pre-trained DINOv2 model. We conduct our experiments
 305 on the small or base variants. We also consider Fit3D Yue et al. (2024), the work most closely
 306 related to ours. Consequently, we conducted our finetuning (on pretrained DINOv2 student and
 307 teacher) using the same subset of ScanNet++ data Yeshwanth et al. (2023) as is done by Fit3D, to
 308 ensure a fair comparison. Fit3D first constructs a dataset of 3DGS scenes with DINOv2 features
 309 by following established feature distillation approaches. It then fine-tunes DINOv2 to produce features
 310 that match those rendered from the optimized 3D scenes. Lastly, we consider MEF You et al.
 311 (2024), which fine-tunes a DINOv2 by enforcing multiview feature correspondence in their training
 312 objective. However, we note that MEF requires correspondence annotation, which our method does
 313 not use. Implementation details for evaluating the different baselines can be found in Appendix A.5.
 314

315 **Evaluation Protocol.** For monocular depth estimation, surface normal estimation, and semantic
 316 segmentation, we consider the *linear probing* protocol. We also evaluate multi-view consistency by
 317 measuring the correspondence between multiple views, where the goal is to identify image patches
 318 across views that depict the same 3D point. See evaluation details in Appendix A.4.

319 **Evaluation Datasets.** For depth estimation and semantic segmentation, we follow Fit3D and
 320 consider indoor scenes from the ScanNet++ validation set Yeshwanth et al. (2023) as well as
 321 ScanNet Dai et al. (2017) and NYUv2 Silberman et al. (2012) datasets. These datasets share
 322 similar characteristics but employ different sensor modalities. For surface normal estimation, we
 323 use the NYUv2 dataset where surface normal annotation is curated by GeoNet Ladický et al.
 (2014). For feature correspondence, we evaluate on the test set of SuperGlue Sarlin et al. (2020),

324 Table 1: Quantitative comparison for **monocular depth estimation**, on ViT-Small/Base backbones.
325

	Method	ScanNet++		ScanNet		NYUv2	
		Rel \downarrow	RMSE \downarrow	Rel \downarrow	RMSE \downarrow	Rel \downarrow	RMSE \downarrow
ViTs	DINOv2	0.2811	0.3777	0.1437	0.2817	0.1476	0.5210
	Fit3D	0.2500	0.3506	0.1375	0.2713	0.1418	0.5075
	MEF	0.3085	0.4000	0.1566	0.3042	0.1661	0.5656
	Ours	0.2421	0.3299	0.1266	0.2555	0.1406	0.4912
ViTb	DINOv2	0.2539	0.3435	0.1169	0.2369	0.1375	0.4948
	Fit3D	0.2420	0.3306	0.1166	0.2346	0.1359	0.4794
	MEF	0.2849	0.3726	0.1269	0.2534	0.1537	0.5214
	Ours	0.2169	0.2971	0.1113	0.2245	0.1261	0.4596
	Image	GT	DINOv2	MEF	Fit3D	Ours	
NYUv2							

345 Figure 3: Qualitative comparison for **monocular depth estimation** using ViT-Small backbone
346 (GT=Ground Truth).

	Image	GT	DINOv2	MEF	Fit3D	Ours
NYUv2						

358 Figure 4: Qualitative comparison of **surface normals estimation** using ViT-Small backbone.
359360 which includes image pairs from ScanNet. To further assess robustness and transferability, we in-
361 clude OOD benchmarks: ADE20k Zhou et al. (2017) and Pascal VOC Everingham et al. (2012)
362 for semantic segmentation, and the KITTI Geiger et al. (2013) dataset for depth estimation.363 For further information on datasets and specific training-test splits em-
364 ployed, please refer to Appendix A.6.365

4.1 IN-DOMAIN EVALUATION

367 We evaluate our features on downstream tasks for in-domain datasets.
368369 **Monocular Depth Estimation.** Tab.1 shows quantitative results for
370 monocular depth estimation using RMSE and Abs-Rel metrics. Our method
371 consistently outperforms baselines, with average relative gains on RMSE of
372 **5.90%, 5.82%, and 3.21%** on ScanNet++, ScanNet, and NYUv2 over the
373 closest baseline. Fig. 3 presents a visual comparison of our method to base-
374 lines on the NYUv2 dataset, where results on the ScanNet and ScanNet++
375 are shown in Appendix A.1 Fig. 8. Our depth maps exhibit more refined
376 structural details and smoother geometric surfaces than baselines.
377378 **Surface Normal Estimation.** In Tab.2, we present the RMSE over dense
379 prediction of normal directions on single-view images on NYUv2 dataset.380 Table 2: Quantitative comparison for **surface normal estimation** on ViT-Small/Base
381 backbones.

	Method	NYUv2	
		RMSE \downarrow	
ViTs	DINOv2	30.99	
	Fit3D	30.57	
	MEF	33.05	
	Ours	28.93	
ViTb	DINOv2	31.40	
	Fit3D	30.57	
	MEF	32.60	
	Ours	29.37	

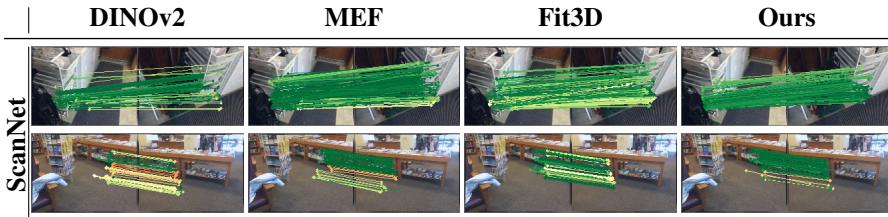


Figure 5: Qualitative comparison of **multi-view correspondences** using ViT-Small backbone. Lines connect matched points between the two views; color encodes the 2D Euclidean reprojection error computed under the ground-truth pose, with green/red indicating small/large error, respectively.

Table 3: Quantitative comparison for **semantic segmentation** using ViT-Small/Base.

	Method	ScanNet++			ScanNet			NYUv2		
		aAcc \uparrow	mIoU \uparrow	mAcc \uparrow	aAcc \uparrow	mIoU \uparrow	mAcc \uparrow	aAcc \uparrow	mIoU \uparrow	mAcc \uparrow
ViTs	DINOv2	80.23	29.54	39.11	76.60	51.27	63.28	82.25	64.73	75.56
	Fit3D	83.34	31.77	41.09	78.53	54.50	66.57	83.32	66.33	77.06
	MEF	79.45	27.44	36.77	74.63	47.44	58.98	81.02	63.17	74.16
	Ours	83.84	31.78	41.42	79.48	56.01	68.10	84.31	67.50	77.96
ViTb	DINOv2	81.85	31.95	41.69	79.48	56.42	68.22	83.92	67.47	78.02
	Fit3D	84.90	34.85	44.83	82.25	60.78	72.60	85.54	70.18	80.36
	MEF	82.23	31.63	41.50	78.60	54.14	65.83	83.62	67.64	78.12
	Ours	84.77	34.07	44.00	83.43	62.64	74.29	86.05	70.60	80.91

Our method yields an improvement of **5.37%** over the closest baseline using DINOv2-Small and **3.93%** using DINOv2-Base. Fig. 4 further highlights qualitatively the superior quality of our predictions. Our model produces smoother normal maps (e.g., second row) and demonstrates a more accurate understanding of the 3D scene. For example, when viewing the couch, other methods incorrectly predict normals, suggesting the couch faces the camera. Our model correctly infers the visible surface is the back of the couch and assigns flat, consistent normals.

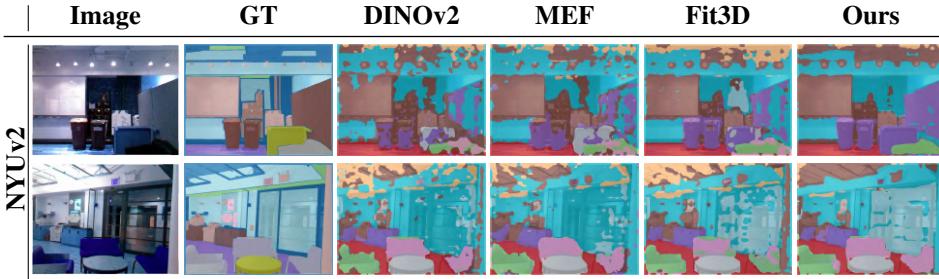


Figure 6: Qualitative comparison for **semantic segmentation** using ViT-Small backbone.

Multiview Correspondence. For multi-view correspondence, we fine-tune DINOv2 without semantic blending of the splatted features, as blending tends to smooth out feature representations. We consider the recall of the fraction of all proposed correspondences that satisfy an accuracy criterion of ten pixels, see Appendix A.4.

In Fig. 7, we observe our method consistently improves recall over baselines across varying viewpoint changes. In Fig. 5, we illustrate this qualitatively.

Semantic Segmentation. In Tab. 3, we provide a quantitative comparison for semantic segmentation. We report average accuracy (aAcc), mean intersection over union (mIoU), and mean accuracy (mAcc). Compared to the leading baseline of Fit3D when using DINOv2-Small backbone, we achieve a rela-

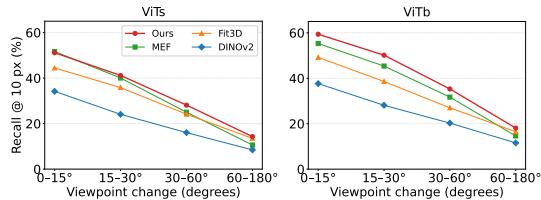


Figure 7: Quantitative comparison of **multi-view correspondence** for varying viewpoint changes, using ViT-Small/Base backbones on ScanNet.

432
433Table 4: Quantitative comparison on **out-of-domain datasets**, using a ViT-Base backbone.434
435
436
437
438
439

Method	ADE20k (seg.)			Pascal VOC (seg.)			KITTI (depth)	
	aAcc \uparrow	mIoU \uparrow	mAcc \uparrow	aAcc \uparrow	mIoU \uparrow	mAcc \uparrow	Rel \downarrow	RMSE \downarrow
DINOv2	77.39	40.78	53.31	96.20	83.00	89.36	0.0686	2.3558
Fit3D	82.21	48.29	60.03	96.77	85.08	90.72	0.0679	2.2485
MEF	80.16	45.14	56.15	95.73	80.82	87.67	0.0772	2.4160
Ours	83.24	50.01	61.61	96.96	85.75	91.63	0.0631	2.1741

440
441Table 5: **Ablation studies**, on ScanNet++ dataset, using the VIT-Small variant.442
443
444
445
446
447
448
449
450
451
452
453
454
455

Ablation	Segmentation			Depth	
	aAcc \uparrow	mIoU \uparrow	mAcc \uparrow	Rel \downarrow	RMSE \downarrow
Without Blending (A)	82.83	30.99	40.80	0.2531	0.3435
Bilinear instead of Masked Upscaling (B)	83.66	31.46	41.01	0.2428	0.3309
Cosine Loss instead of Distillation Loss (C)	83.54	31.27	40.96	0.2421	0.3310
Frozen instead of Learnable Teacher (D)	83.34	31.90	41.88	0.2500	0.3444
Context instead of Novel Views (E)	84.02	32.08	41.74	0.2430	0.3332
SAM Masks instead of Manual Masks (F)	83.49	31.51	41.39	0.2436	0.3328
Feature Rendering Loss (G)	83.06	31.40	40.97	0.2484	0.3430
Basic Variant (H)	81.80	30.66	40.47	0.2741	0.3520
Ours (Full Model)	83.84	31.78	41.42	0.2421	0.3299

456
457

tive improvement of **0.03%**, **2.77%**, and **1.76%** on ScanNet++, ScanNet, and NYUv2, considering mIoU.

458
459
460
461
462
463

We observe a similar trend with DINOv2-Base, improving significantly on the ScanNet and NYUv2 datasets, with a slight decrease on the ScanNet++ dataset. In Fig. 6, we present a qualitative comparison of on the NYUv2 dataset. Our method produces cleaner object boundaries and avoids the fragmented masks present in baselines, as seen in the partition wall in the first row. Additional visualizations, for additional datasets, can be seen in Appendix A.1 in Fig. 9.

464
465

4.2 OUT OF DOMAIN EVALUATION

466
467
468
469
470
471

In Tab. 4, we assess our method using the DINOv2-base backbone on out-of-domain datasets. For segmentation on ADE20K and Pascal VOC, we achieve relative mIoU improvements of **3.56%** and **0.79%**, respectively over closest baseline. Notably, ADE20K contains many outdoor, highly cluttered scenes distinct from our training data. For monocular depth estimation on KITTI Geiger et al. (2013), we achieve a **3.31%** improvement over Fit3D, demonstrating transfer of 3D spatial awareness from indoor to outdoor scenarios. See Appendix A.1 Fig. 10 for visualizations.

472
473
474
475
476
477
478
479
480
481
482
483
484
485

In Tab. 5, we ablate our model on semantic segmentation and depth estimation. In **Ablation A**, we consider the effect of removing blending (Sec. 3.4). We also provide a visual illustration in Appendix A.1 Fig. 12. Next, in **Ablation B**, we consider the effect of replacing the mask-aware upscaling with standard bilinear upscaling. Visually, the effect is shown in Appendix A.1 Fig. 11. In **Ablation C**, we consider the effect of our distillation objective and compare it to using a cosine loss on the patch embeddings (without DINO head) instead. In **Ablation D**, we consider the effect of freezing the teacher, as opposed to updating it using EMA, demonstrating the effectiveness of jointly updating the teacher and student. In **Ablation E**, we consider the effect of rendering features to context views instead of a target view located between the two context views. As seen, this is beneficial for depth estimation. Interestingly, segmentation performance improves when rendering to the context views. In **Ablation F**, we use SAM-extracted masks Kirillov et al. (2023) instead of manually annotated masks for *mask-aware upscaling* and *semantic blending*, showing that manual annotation has only a minor advantage. Note, we don't require consistent class labels across frames.

486 In **Ablation G**, we replace our student-teacher distillation framework with a direct feature rendering
 487 loss on a fixed teacher. While this improves over Vanilla DINOv2, it underperforms our Full SnD
 488 (Depth RMSE 0.3430 vs. 0.3299), confirming that our soft distillation objective and iterative teacher
 489 updates are essential for mitigating artifacts and maximizing geometric awareness. In **Ablation H**,
 490 we evaluate the most basic configuration of our method (Fixed teacher, no mask-aware upscaling,
 491 no blending). The performance drop relative to the full model (Depth RMSE 0.3520 vs. 0.3299)
 492 validates that our architectural components—specifically the iterative EMA update and mask-aware
 493 lifting—are integral to achieving state-of-the-art results.

494 **Feature Visualization.** In Appendix A.2, we visualize our features using PCA, further showcasing
 495 our approach’s advantages. These reveal less noise and clearer semantic boundaries in feature
 496 space. K-means further shows that semantically similar objects cluster together while retaining fine
 497 details. We also analyze features from two views, in shared and per-view spaces.

498 4.4 ADDITIONAL COMPARISONS: TASK-SPECIFIC BACKBONES AND CONCURRENT WORK

500 Table 6: **Left:** Comparison of backbones within the VGGT pipeline (fine-tuning only the
 501 head/projection). **Right:** Comparison against DUNE. Both evaluated on ScanNet++ (ViT-Small).

503 VGGT Backbone Comparison			504 Comparison vs. DUNE		
505 Method	Depth Abs-Rel ↓	506 Depth RMSE ↓	Method	Depth RMSE ↓	507 Seg. mIoU ↑
508 VGGT (DINOv2)	0.2220	0.3426	DUNE	0.3929	25.77
509 VGGT (SnD)	0.2117	0.3283	Ours (SnD)	0.3299	31.78

510 **Task-Specific Backbones (VGGT).** To evaluate SnD as a backbone within state-of-the-art pipelines,
 511 we integrated our model into VGGT (Wang et al., 2025) for monocular depth estimation on Scan-
 512 Net++. Since the pre-trained VGGT relies on ViT-Large (1024-dim) and our model is ViT-Small
 513 (384-dim), we added a learnable linear projection (384 → 1024). Crucially, to isolate the qual-
 514 ity of the backbone representations, we froze the entire VGGT architecture (transformer layers,
 515 global/frame attention) and fine-tuned only the projection and depth head. As shown in Tab. 6
 516 (Left), replacing the DINOv2 backbone with SnD yields improved performance.

517 **Comparison to DUNE.** We compare against DUNE (Sariyildiz et al., 2025) that distills a
 518 universal encoder. We evaluated the official DUNE weights on ScanNet++, specifically the
 519 `dune_vitsmall14_448.pth` variant as it produced better results than the 336px version. As
 520 shown in Tab. 6 (Right), SnD significantly outperforms DUNE on both depth estimation and seman-
 521 tic segmentation. Unlike DUNE, which inherits 3D inconsistencies from DINOv2, SnD corrects
 522 them via our feed-forward reconstruction pipeline.

523 5 CONCLUSION

524 We introduced *Splat and Distill*, a novel 3D-aware distillation framework to instill robust 3D aware-
 525 ness into 2D VFM. Our core contribution is the augmentation of the teacher network with a fast,
 526 feed-forward 3D reconstruction pipeline within a distillation framework. This allows us to lift 2D
 527 features from context views into an explicit 3D Gaussian representation, *splat* these features onto
 528 novel viewpoints, and *distill* this geometrically grounded knowledge into a student model. Our
 529 method significantly outperforms state-of-the-art baselines on a comprehensive suite of downstream
 530 tasks, including monocular depth estimation, surface normal estimation, and multi-view corre-
 531 spondence, while also enhancing the underlying semantic richness of the original 2D features.

540 REPRODUCABILITY STATEMENT
541

542 We provide full implementation details of our method in Appendix A, including architecture spec-
543 ifications, hyperparameters, and training procedures. In addition, we include the source code as
544 supplementary as part of the submission, ensuring full reproducibility of experiments. All datasets
545 used in this work are publicly available online under their respective licenses, and we describe in
546 Appendix A.6 how they are accessed and preprocessed.

548 REFERENCES
549

550 Kingma DP Ba J Adam et al. A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
551 1412(6), 2014.

552 Gwangbin Bae, Ignas Budvytis, and Roberto Cipolla. Estimating and exploiting the aleatoric uncer-
553 tainty in surface normal estimation. In *Proceedings of the IEEE/CVF International Conference*
554 *on Computer Vision*, pp. 13137–13146, 2021.

556 Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka. Adabins: Depth estimation using adap-
557 tive bins. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
558 pp. 4009–4018, 2021.

559 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
560 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of*
561 *the IEEE/CVF international conference on computer vision*, pp. 9650–9660, 2021.

563 David Charatan, Sizhe Lester Li, Andrea Tagliasacchi, and Vincent Sitzmann. pixelsplat: 3d gaus-
564 sian splats from image pairs for scalable generalizable 3d reconstruction. In *Proceedings of the*
565 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 19457–19467, 2024.

566 Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang, Fanbo Xiang, Jingyi Yu, and Hao Su.
567 Mvsnerf: Fast generalizable radiance field reconstruction from multi-view stereo. In *Proceedings*
568 *of the IEEE/CVF international conference on computer vision*, pp. 14124–14133, 2021.

569 Yuedong Chen, Haofei Xu, Chuanxia Zheng, Bohan Zhuang, Marc Pollefeys, Andreas Geiger, Tat-
570 Jen Cham, and Jianfei Cai. Mvsplat: Efficient 3d gaussian splatting from sparse multi-view
571 images. In *European Conference on Computer Vision*, pp. 370–386. Springer, 2024.

572 Jiahuan Cheng, Jan-Nico Zaech, Luc Van Gool, and Danda Pani Paudel. Occam’s lgs: An efficient
573 approach for language gaussian splatting. *arXiv preprint arXiv:2412.01807*, 2024.

574 Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
575 Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In *Proceedings of the*
576 *IEEE conference on computer vision and pattern recognition*, pp. 5828–5839, 2017.

577 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
578 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
579 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
580 *arXiv:2010.11929*, 2020.

581 Mohamed El Banani, Amit Raj, Kevins-Kokitsi Maninis, Abhishek Kar, Yuanzhen Li, Michael Ru-
582 binstein, Deqing Sun, Leonidas Guibas, Justin Johnson, and Varun Jampani. Probing the 3d
583 awareness of visual foundation models. In *Proceedings of the IEEE/CVF Conference on Com-*
584 *puter Vision and Pattern Recognition*, pp. 21795–21806, 2024.

585 M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
586 PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. [http://www.pascal-](http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html)
587 [network.org/challenges/VOC/voc2012/workshop/index.html](http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html), 2012.

588 Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The
589 kitti dataset. *The international journal of robotics research*, 32(11):1231–1237, 2013.

594 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
 595 toencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer*
 596 *vision and pattern recognition*, pp. 16000–16009, 2022.

597

598 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 599 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

600

601 Haiwen Huang, Anpei Chen, Volodymyr Havrylov, Andreas Geiger, and Dan Zhang. Loftup:
 602 Learning a coordinate-based feature upsampler for vision foundation models. *arXiv preprint*
 603 *arXiv:2504.14032*, 2025.

604

605 Xiaoshui Huang, Zhou Huang, Sheng Li, Wentao Qu, Tong He, Yuenan Hou, Yifan Zuo, and Wanli
 606 Ouyang. Frozen clip transformer is an efficient point cloud encoder. In *Proceedings of the AAAI*
 607 *Conference on Artificial Intelligence*, volume 38, pp. 2382–2390, 2024.

608 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
 609 ting for real-time radiance field rendering. *ACM Trans. Graph.*, 42(4):139–1, 2023.

610 Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo Kanazawa, and Matthew Tancik. Lerf: Lan-
 611 guage embedded radiance fields. In *Proceedings of the IEEE/CVF international conference on*
 612 *computer vision*, pp. 19729–19739, 2023.

613 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 614 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceed-
 615 ings of the IEEE/CVF international conference on computer vision*, pp. 4015–4026, 2023.

616 Isaac Labe, Noam Issachar, Itai Lang, and Sagie Benaim. Dgd: Dynamic 3d gaussians distillation.
 617 In *European Conference on Computer Vision*, pp. 361–378. Springer, 2024.

618

619 L’ubor Ladický, Bernhard Zeisl, and Marc Pollefeys. Discriminatively trained dense surface normal
 620 estimation. In *European conference on computer vision*, pp. 468–484. Springer, 2014.

621

622 Yoel Levy, David Shavin, Itai Lang, and Sagie Benaim. Structurally disentangled feature fields
 623 distillation for 3d understanding and editing. *arXiv preprint arXiv:2502.14789*, 2025.

624 Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. *arXiv*
 625 *preprint arXiv:1608.03983*, 2016.

626

627 Juliette Marrie, Romain Menegaux, Michael Arbel, Diane Larlus, and Julien Mairal. Ludvig:
 628 Learning-free uplifting of 2d visual features to gaussian splatting scenes, 2025. URL <https://arxiv.org/abs/2410.14462>.

629

630 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
 631 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications*
 632 *of the ACM*, 65(1):99–106, 2021.

633

634 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 635 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 636 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

637

638 Minghan Qin, Wanhua Li, Jiawei Zhou, Haoqian Wang, and Hanspeter Pfister. Langsplat: 3d lan-
 639 guage gaussian splatting. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
Pattern Recognition, pp. 20051–20060, 2024.

640

641 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 642 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 643 models from natural language supervision. In *International conference on machine learning*, pp.
 644 8748–8763. PMLR, 2021.

645

646 Mert Bulent Sarıyıldız, Philippe Weinzaepfel, Thomas Lucas, Pau de Jorge, Diane Larlus, and Yan-
 647 nis Kalantidis. Dune: Distilling a universal encoder from heterogeneous 2d and 3d teachers. In
 648 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 649 2025.

648 Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. SuperGlue:
 649 Learning feature matching with graph neural networks. In *Proceedings of the IEEE/CVF confer-
 650 ence on computer vision and pattern recognition*, pp. 4938–4947, 2020.

651

652 Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and sup-
 653 port inference from rgbd images. In *European conference on computer vision*, pp. 746–760.
 654 Springer, 2012.

655 Mihai Suteu and neverix. pytorch-nyuv2. [https://github.com/xapharius/](https://github.com/xapharius/pytorch-nyuv2)
 656 pytorch-nyuv2, 2019. GitHub repository.

657

658 Stanislaw Szymanowicz, Chrisitian Rupprecht, and Andrea Vedaldi. Splatter image: Ultra-fast
 659 single-view 3d reconstruction. In *Proceedings of the IEEE/CVF conference on computer vision
 660 and pattern recognition*, pp. 10208–10217, 2024.

661 Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged con-
 662 sistency targets improve semi-supervised deep learning results. *Advances in neural information
 663 processing systems*, 30, 2017.

664 Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit iii: Revenge of the vit. In *European confer-
 665 ence on computer vision*, pp. 516–533. Springer, 2022.

666

667 Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
 668 Novotny. Vggt: Visual geometry grounded transformer. In *Proceedings of the IEEE/CVF Con-
 669 ference on Computer Vision and Pattern Recognition (CVPR)*, 2025.

670 Yi Wang, Zhiwen Fan, Tianlong Chen, Hehe Fan, and Zhangyang Wang. Can we solve 3d vision
 671 tasks starting from a 2d vision transformer? *arXiv preprint arXiv:2209.07026*, 2022.

672

673 Christopher Wewer, Kevin Raj, Eddy Ilg, Bernt Schiele, and Jan Eric Lenssen. latentsplat: Autoen-
 674 coding variational gaussians for fast generalizable 3d reconstruction. In *European conference on
 675 computer vision*, pp. 456–473. Springer, 2024.

676

677 Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Nießner, and Angela Dai. Scannet++: A high-
 678 fidelity dataset of 3d indoor scenes. In *Proceedings of the IEEE/CVF International Conference
 679 on Computer Vision*, pp. 12–22, 2023.

680

681 Yang You, Yixin Li, Congyue Deng, Yue Wang, and Leonidas Guibas. Multiview equivariance
 682 improves 3d correspondence understanding with minimal feature finetuning. *arXiv preprint
 arXiv:2411.19458*, 2024.

683

684 Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural radiance fields from
 685 one or few images. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
 686 recognition*, pp. 4578–4587, 2021.

687

688 Yuanwen Yue, Anurag Das, Francis Engelmann, Siyu Tang, and Jan Eric Lenssen. Improving 2d
 689 feature representations by 3d-aware fine-tuning. In *European Conference on Computer Vision*,
 690 pp. 57–74. Springer, 2024.

691

692 Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
 693 parsing through ade20k dataset. In *Proceedings of the IEEE conference on computer vision and
 694 pattern recognition*, pp. 633–641, 2017.

695

696 Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. ibot:
 697 Image bert pre-training with online tokenizer. *arXiv preprint arXiv:2111.07832*, 2021.

698

699 Shijie Zhou, Haoran Chang, Sicheng Jiang, Zhiwen Fan, Zehao Zhu, Dejia Xu, Pradyumna Chari,
 700 Suya You, Zhangyang Wang, and Achuta Kadambi. Feature 3dgs: Supercharging 3d gaussian
 701 splatting to enable distilled feature fields. In *Proceedings of the IEEE/CVF Conference on Com-
 702 puter Vision and Pattern Recognition*, pp. 21676–21685, 2024.

703

704 Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification:
 705 Learning view synthesis using multiplane images. *arXiv preprint arXiv:1805.09817*, 2018.

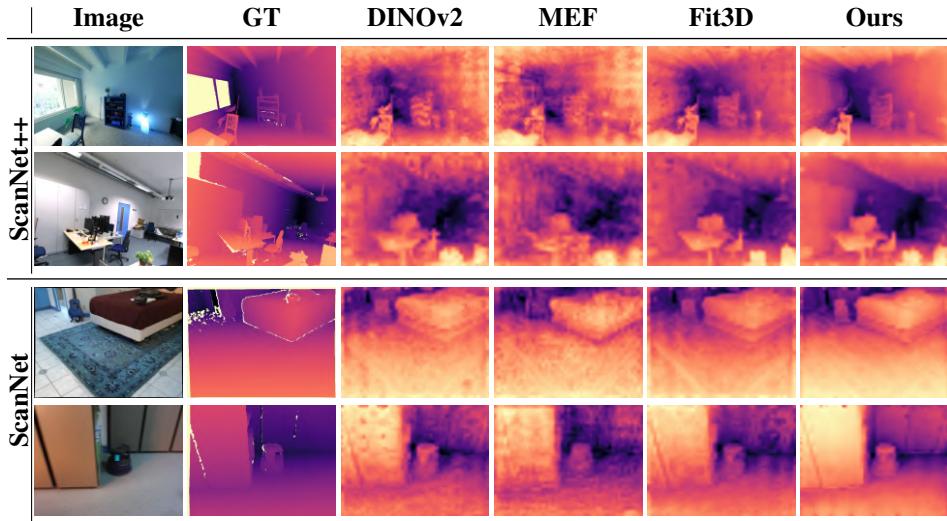


Figure 8: Qualitative comparison on the task of **monocular depth estimation**, using a ViT-Small backbone for the ScanNet++ and ScanNet datasets.

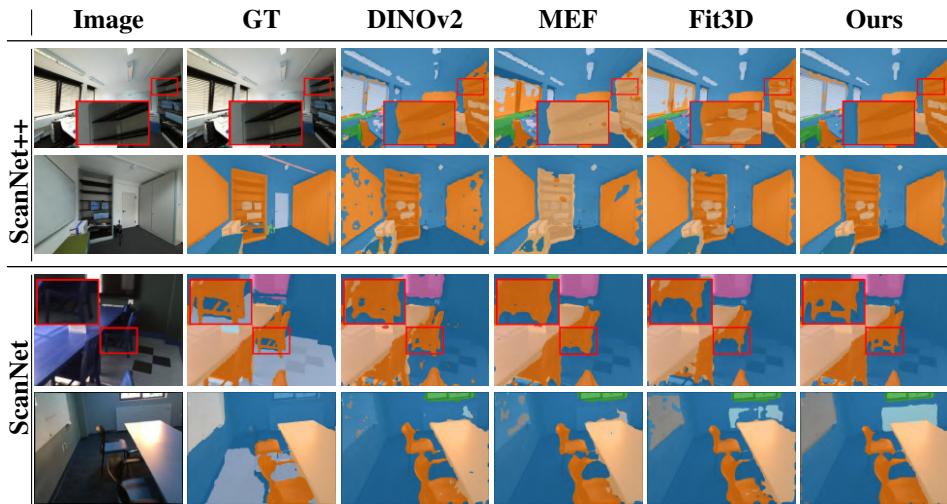


Figure 9: Qualitative comparison on the task of **semantic segmentation**, using a ViT-Small backbone for the ScanNet++ and ScanNet datasets.

A APPENDIX

We present additional qualitative results in Appendix A.1. In Appendix A.2, we provide a qualitative analysis of feature representations, comparing our method to DINOv2. Training implementation details are described in Appendix A.3, and evaluation protocols for all downstream tasks are summarized in Appendix A.4. Appendix A.5 outlines the baseline evaluation procedures, while Appendix A.6 details all datasets used for training and validation. In Appendix A.7 we discuss the limitations of our method. Finally, Appendix A.8 clarifies the use of large language models for literature review and manuscript preparation.

A.1 ADDITIONAL QUALITATIVE RESULTS

We provide additional qualitative results for the ScanNet and ScanNet++ dataset, on single-view depth estimation, and semantic segmentation results on indoor scenes in Fig. 8, and Fig. 9, respec-

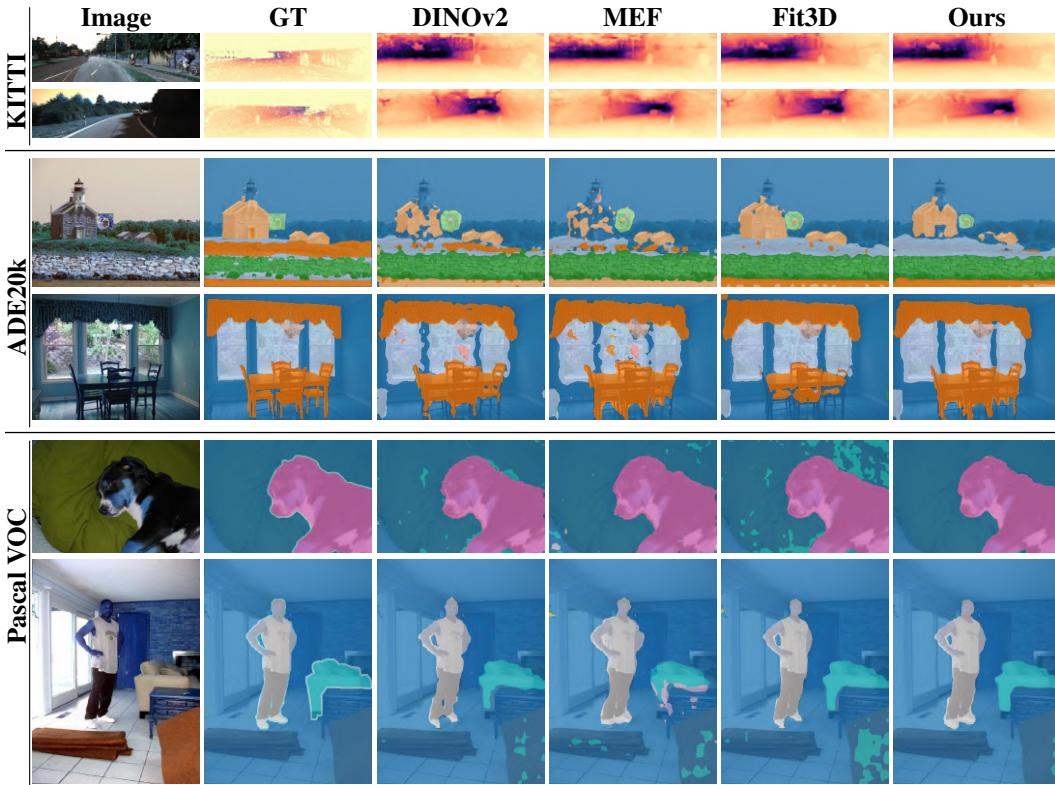


Figure 10: Qualitative comparison on **out-of-domain datasets** for two tasks: **monocular depth estimation and semantic segmentation**, using a ViT-Small backbone. Monocular depth estimation is evaluated on the KITTI dataset, while semantic segmentation on ADE20K and Pascal VOC.

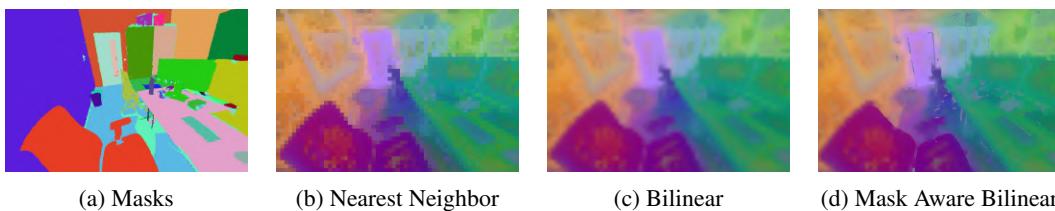


Figure 11: **Effect of mask-aware upscaling.** PCA of upscaled features with different methods, comparing nearest-neighbor vs. bilinear vs. mask-aware upscaling. Using mask-aware upscaling enables clear boundaries between distinct objects.

tively. In addition, we visualize single-view depth estimation and semantic segmentation results on out-of-domain datasets in Fig. 10.

Depth estimation qualitative results. Fig. 8 presents qualitative results for depth estimation on the ScanNet++ and ScanNet datasets. Our method accurately captures fine details, such as the chair in the second row, and produces smoother surfaces, as observed on the bed in the third row. Depth estimation captures the global structure of a scene, while surface normal prediction provides local orientation cues. Although their performance is often correlated, these tasks rely on distinct visual signals and thus offer complementary evidence for 3D understanding (El Banani et al., 2024).

Semantic segmentation qualitative results. Figure 9 shows qualitative results for semantic segmentation on ScanNet++ and ScanNet. Our method produces sharper, more coherent masks; for instance, in the third row, it accurately segments chair legs in the dining table image, even under low-light conditions. These results indicate that our model learns representations with enhanced spatial and semantic consistency.

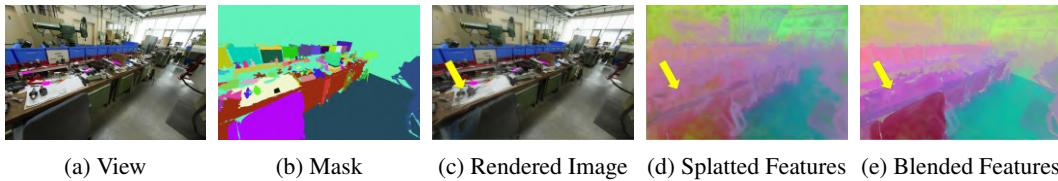


Figure 12: **Semantic Blending for Feature Regularization Visualization.** We visualize the impact of semantic blending for feature regularization. (a) shows the input view, (b) displays its corresponding semantic mask, available during training. (c) presents the reconstructed scene generated by our pretrained feed-forward model, highlighting areas of poor reconstruction—such as the misaligned desk. The splatted features (visualized via PCA) are shown in (d), illustrating the inaccuracies introduced by flawed reconstruction. (e) demonstrates how semantic blending, guided by the mask, refines these features and produces sharper object boundaries.

Out-of-domain qualitative results. Although our model was trained solely on the ScanNet++ dataset of indoor scenes, it demonstrates strong generalization to out-of-domain datasets. In Fig. 10, we evaluate our method on the KITTI dataset for depth estimation, observing improved depth smoothness. For semantic segmentation, comparisons on ADE20k and Pascal VOC show that our approach captures fine details, such as the legs of chairs at the dining table (fourth row), and produces cleaner, less noisy outputs, as seen in the background of the dog image (fifth row).

Visualization of mask-aware upscaling. We visualize the impact of various upscaling methods in comparison to the mask-aware bilinear upscaling (see Sec. 3.3) used by our method in Fig. 11. Notably, using mask-aware upscaling produces sharp boundaries between objects by leveraging semantic masks to guide interpolation around object boundaries.

Visualization of semantic blending for feature regularization. To analyze the impact of our semantic blending (see Sec. 3.4), we demonstrate its effect on rendered features visually, using PCA. In Fig. 12, we showcase an example where blending corrects a poorly reconstructed scene. Notably, observe the initial poor reconstruction of the chair and its correction after the application of blending.

A.2 FEATURES QUALITATIVE ANALYSIS

Multi-view features. We provide a qualitative analysis of our feature representations using principal component analysis (PCA) and K-means clustering. In Fig. 13, we compare results before and after applying our distillation method. To assess multi-view consistency, we extract features from two distinct views of the same scene from ScanNet++ (Yeshwanth et al., 2023). Both PCA and K-means clustering are performed jointly on features from both views, ensuring a shared feature basis across perspectives. Our results reveal clear and well-defined boundaries in the PCA plots, as well as more compact clusters in the K-means visualizations. These findings indicate improvements in multi-view consistency and feature semantics.

Single-view features. In Fig. 14 we evaluate feature quality across a diverse range of datasets, including both in-domain and out-of-domain samples. Our analysis reveals improved feature semantics, as evidenced by reduced noise in the PCA projections and more compact clusters in the K-means visualizations. Importantly, we find that distinct object semantics present before applying our distillation method are also preserved afterward, across all datasets (for example, in the seventh row, K-means consistently identifies *chickens* before and after distillation). These results increase the confidence that the proposed approach maintains the semantic integrity of the original model’s features while improving its quality via 3D awareness.

A.3 TRAINING IMPLEMENTATION DETAILS

For 3D scene reconstruction, we employ an off-the-shelf, pre-trained MVSplat model Chen et al. (2024), originally trained on the RE10k dataset (Zhou et al., 2018). We further fine-tune this model

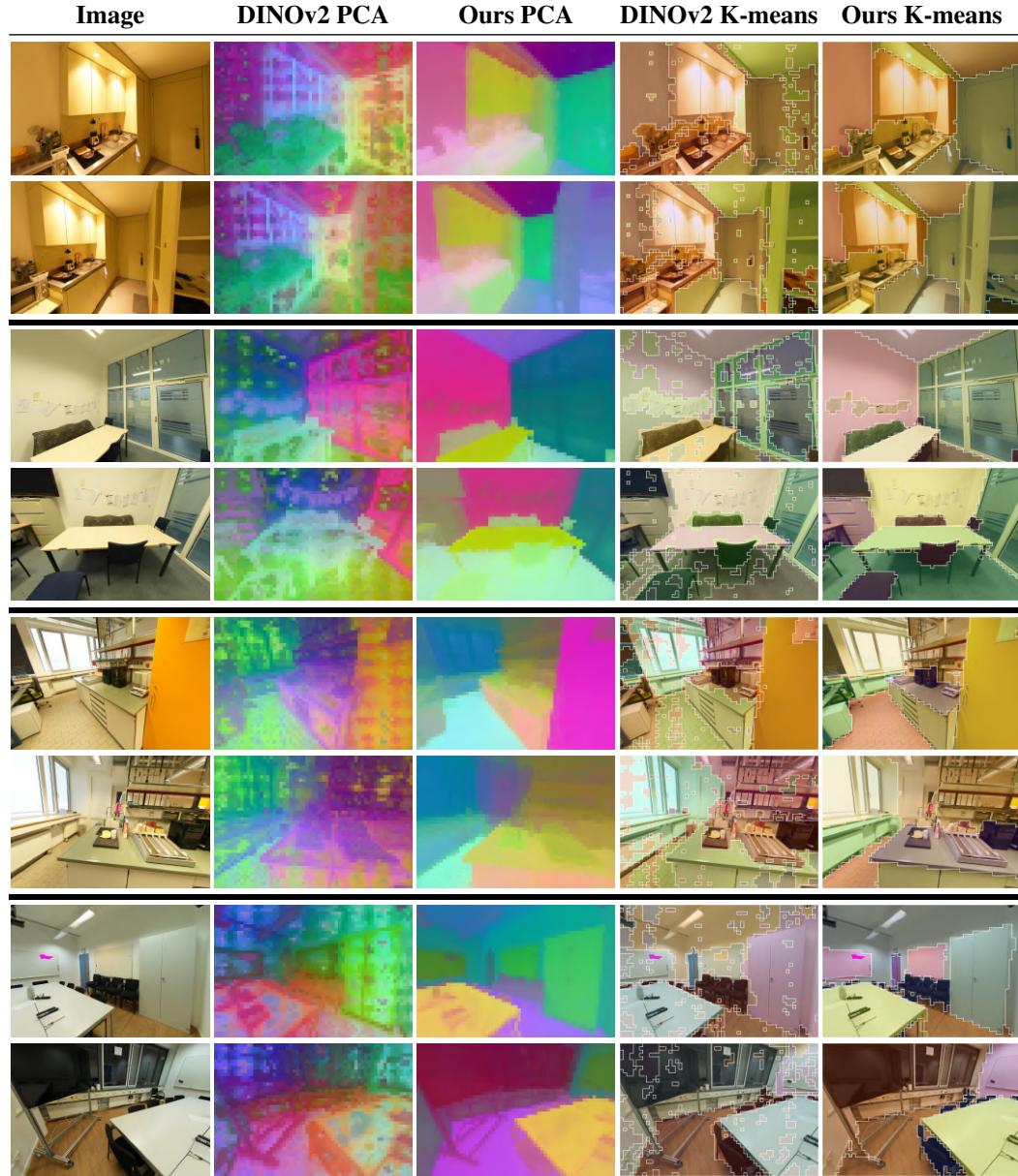


Figure 13: Qualitative visualization of DINOv2 features vs. ours on a ViT-Small backbone. Each pair of rows corresponds to a scene from the ScanNet++ dataset. PCA and K-means are computed per scene rather than per image.

on ScanNet++ Yeshwanth et al. (2023) to improve its 3D reconstruction for 40,000 iterations to better adapt it to our specific task requirements.

We initialize both the *student* and the *teacher* with the pretrained DINOv2 weights available online. In addition, we require a DINO head Oquab et al. (2023). The DINO head maps each backbone feature to a probability distribution over a set of learnable prototypes, implemented as the weights of a final linear layer. These prototypes act as latent surrogate classes, turning the distillation task into a classification-like objective without labels. An EMA updated teacher network provides soft targets, and the student is trained to match them via cross-entropy. This design encourages features to organize around diverse prototype centroids, prevents collapse, and yields robust, transferable representations, as refined in DINOv2 with additional stabilization techniques. The DINO head design used in our experiments consists of a multi-layer perceptron (MLP) with 3 layers, where

918 each hidden layer has a dimensionality of 2048. A bottleneck layer with a reduced dimension of 256
 919 is placed before the output, which helps to control the capacity and regularize the representations.
 920 The final output projects features onto 65,536 prototype vectors, which serve as anchor points for the
 921 distillation objective. This architectural choice follows the standard DINO framework, facilitating
 922 scalable clustering and robust representation learning.

923 Fine-tuning of the DINoV2 Oquab et al. (2023) backbone is performed using LoRA Hu et al. (2022)
 924 with a rank of 8 to enable efficient adaptation while minimizing additional parameters. Optimization
 925 is carried out with a batch size of 1 using the Adam optimizer Adam et al. (2014), starting from an
 926 initial learning rate of 2×10^{-5} and following a cosine annealing schedule.
 927

928 The teacher network is updated every 10 training steps via EMA with a momentum coefficient of
 929 0.999 (Tsvaini & Valpola, 2017). For simplicity, we do not incorporate DINoV2-specific compo-
 930 nents such as temperature scheduling and momentum centering.
 931

932 Training is conducted for 50,000 iterations on a single NVIDIA L40S GPU, requiring approximately
 933 18 hours to complete. The primary computational bottleneck of our approach arises from the train-
 934 able DINO head and the use of high-resolution input images. Note that the entire 3D reconstruction
 935 process and feature extraction from the teacher network are performed with frozen weights, making
 936 these steps highly efficient in resources.
 937

938 A.4 EVALUATION DETAILS

939 *Monocular Depth Estimation.* We treat depth estimation as a classification problem by discretizing
 940 the continuous depth range into 256 uniformly spaced bins, following the AdaBins approach Bhat
 941 et al. (2021). The input to the classification head is constructed by concatenating the global [CLS]
 942 token with each patch token from the Vision Transformer, and the resulting features are spatially
 943 upscaled by a factor of four. A linear head is then applied to these upscaled features to produce,
 944 for each pixel, logits corresponding to each depth bin. To map these logits to depth predictions, we
 945 generate (n_bins) linearly spaced depth values between (mindepth) and (maxdepth). The logits are
 946 transformed into a probability distribution across bins by applying a ReLU activation, adding a small
 947 epsilon for numerical stability, and normalizing so that the probabilities sum to one. The final depth
 948 for each pixel is calculated as the weighted sum of the bin centers, with the weights given by the
 949 normalized probabilities. This produces a continuous depth map, which is then interpolated back to
 950 the spatial resolution of the original input image. The probing is done using a classification loss, for
 951 307,200 iterations on a single GPU to predict the correct depth bin for each patch. We use AdamW
 952 optimizer Adam et al. (2014) with a learning rate of 0.0001, betas (0.9, 0.999), weight decay of 0.01,
 953 and a batch size of two.
 954

955 *Surface Normal Estimation.* For surface normal estimation, we follow the protocol of Bae et al. Bae
 956 et al. (2021) and employ an uncertainty-aware angular loss. We train a linear head to regress surface
 957 normals from frozen features, which are upscaled by a factor of four. The output of the linear layer
 958 is subsequently interpolated to the original input image resolution. Training is performed for ten
 959 epochs with a batch size of eight, using the AdamW optimizer and a learning rate of 5×10^{-4} .
 960 The learning rate schedule consists of a linear warmup phase followed by cosine decay(Adam et al.,
 961 2014; Loshchilov & Hutter, 2016). We report the root mean squared angular prediction error as our
 962 evaluation metric.
 963

964 *Feature correspondence* We follow the protocol established by Probe3D El Banani et al. (2024). To
 965 find correspondences between two images, we first extract feature maps from each image using a
 966 neural network. Pixel coordinates are projected into 3D space using depth maps and camera in-
 967 trinsics, and features at these 3D locations form point clouds. We then match features from the two
 968 point clouds by performing k-nearest neighbor search using cosine similarity. A ratio test is applied
 969 to filter out ambiguous matches, and the remaining matches are selected as correspondences. For
 970 evaluation, we use the ground-truth relative pose between the two views to transform the correspond-
 971 ing 3D points from one view to the other. These transformed points are then projected back to 2D
 972 image coordinates in the target image. We measure correspondence accuracy as the Euclidean dis-
 973 tance between each projected match and its ground-truth location in the target image. Performance is
 974 reported as recall at a 10-pixel error threshold, and further analyzed according to viewpoint changes.
 975 This provides a rigorous assessment of correspondence quality across different scenes and camera
 976 poses.
 977

972 *Semantic Segmentation.* A linear classifier is trained on top of the frozen patch tokens from the
 973 backbone. This classifier produces class scores at a lower spatial resolution, which are then upscaled
 974 to the original image dimensions to generate the final segmentation map. The linear layer is trained
 975 for 320,000 iterations using a single GPU. We utilize a cross-entropy loss. For optimization, we use
 976 AdamW optimizer Adam et al. (2014) with a learning rate of 0.001 and a batch size of two.
 977

978 A.5 BASELINE EVALUATIONS DETAILS

980 In this paper, we compare our pipeline with DINOv2, FiT3D, and MEF. All methods are based on a
 981 ViT architecture and provide publicly available weights for both ViT-S and ViT-B models. However,
 982 FiT3D and MEF include additional components beyond the base architecture, necessitating certain
 983 adjustments for a fair evaluation.

984 Unlike our approach, which utilizes features directly extracted from a finetuned DINOv2 ViT, FiT3D
 985 computes its metrics using a concatenation of features from their model and the original DINOv2.
 986 As a result, linear probing with FiT3D requires increasing the input dimension of the linear head by
 987 the embedding dimension to accommodate the additional channels. Notably, our results for depth
 988 estimation and semantic segmentation with FiT3D differ from those published in their paper. These
 989 discrepancies can be attributed to variations in dataset splits (except for ScanNet++, where splits
 990 are similar) and differences in training procedures—for instance, FiT3D trained probes for fewer
 991 training steps but with 8 Nvidia A100 GPUs, resulting in a larger effective batch size.
 992

993 Similarly, when comparing with MEF, we had to introduce an additional convolutional layer on top
 994 of the patch tokens, as required by their pipeline. In contrast, our method does not require any such
 995 modifications and only trains the weights of the original DINOv2 model.

996 A.6 DATASET DETAILS

997 **Training.** Our models are pretrained exclusively on the ScanNet++ Yeshwanth et al. (2023)
 998 dataset, following a similar protocol to Yue et al. (2024). Specifically, we use a training split of
 999 280 indoor scenes for representation learning. To ensure consistency with our baseline Yue et al.
 1000 (2024), we maintain the same input size at (584×876) for ScanNet++. Notably, this resolution is
 1001 significantly higher than (180×320) used in MVSplat (Chen et al., 2024). The ScanNet++ dataset
 1002 provides 3D annotations of the different objects in the scene, which are rendered to 2D and provide
 1003 a weak supervision of semantic guidance during our training pipeline.

1004 **Evaluation.** After finetuning, we assess the learned representations on various downstream tasks
 1005 using linear probing. This involves creating a train-test split to train and evaluate the linear probes,
 1006 while keeping the backbone model frozen throughout evaluation. For multi-view correspondence,
 1007 no split is needed, as it is performed without additional training.

1008 *ScanNet++:* For linear probing experiments on ScanNet++, we use the split described in Yue et al.
 1009 (2024), with 230 scenes (140,451 views) for training, and report results on the validation set, which
 1010 consists of 50 scenes (30,638 images).

1012 *ScanNet:* For depth estimation and semantic segmentation on ScanNet Dai et al. (2017), we use
 1013 the official `scannet_frames_25k` subset. For efficiency, we downscale the images in ScanNet
 1014 by a factor of two, i.e., (484×968) . This subset is randomly split into 80% for training and 20%
 1015 for validation. For multi-view correspondence, we utilize the ScanNet Pairs benchmark Sarlin et al.
 1016 (2020), which comprises 1,500 curated image pairs. As this task does not involve linear probing or
 1017 additional training, the entire set is used solely for evaluation.

1018 *NYUv2:* For depth estimation and semantic segmentation, we use the train-test split provided by Su-
 1019 teu & neverix (2019) for training and evaluating the linear probes. For surface normal estimation,
 1020 we follow the original split of 1,449 labeled images with ground-truth surface normal annotations
 1021 Ladický et al. (2014).

1022 *ADE20K:* For semantic segmentation evaluation of the ADE20K dataset Zhou et al. (2017), we
 1023 follow the official train-validation split.

1025 *PASCAL VOC 2012:* We further benchmark semantic segmentation on the PASCAL VOC 2012
 1026 dataset Everingham et al. (2012), adhering to the official train-test split.

1026 *KITTI*: For monocular depth estimation, we utilize the KITTI dataset Geiger et al. (2013). Due to
1027 the absence of an official split for the depth selection subset, we generate one by randomly assigning
1028 85% of the images to train and 15% to validation using a custom script, and use these splits for both
1029 training and evaluating the linear probes.
1030

1031 A.7 LIMITATIONS

1032 Our approach, while effective within its design scope, has two main limitations. First, the quality
1033 of our supervisory signal depends directly on the performance of the feed-forward 3D Gaussian
1034 Splatting (3DGS) model: when this reconstruction is suboptimal or inaccurate, the supervision is
1035 degraded and overall performance can suffer. Second, our training currently relies on multiview
1036 image datasets, which are relatively limited in availability and diversity. Enabling training on video
1037 data would allow us to leverage substantially larger and more diverse data sources.
1038

1039 A.8 USE OF LARGE LANGUAGE MODELS (LLMs)

1040 Large Language Models (LLMs) were utilized during the development of this work to assist with
1041 the identification of related research and to provide support in the writing process, including drafting
1042 and refining sections of the manuscript. All substantive scientific contributions, experimental design,
1043 and analysis were performed by the authors.
1044

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

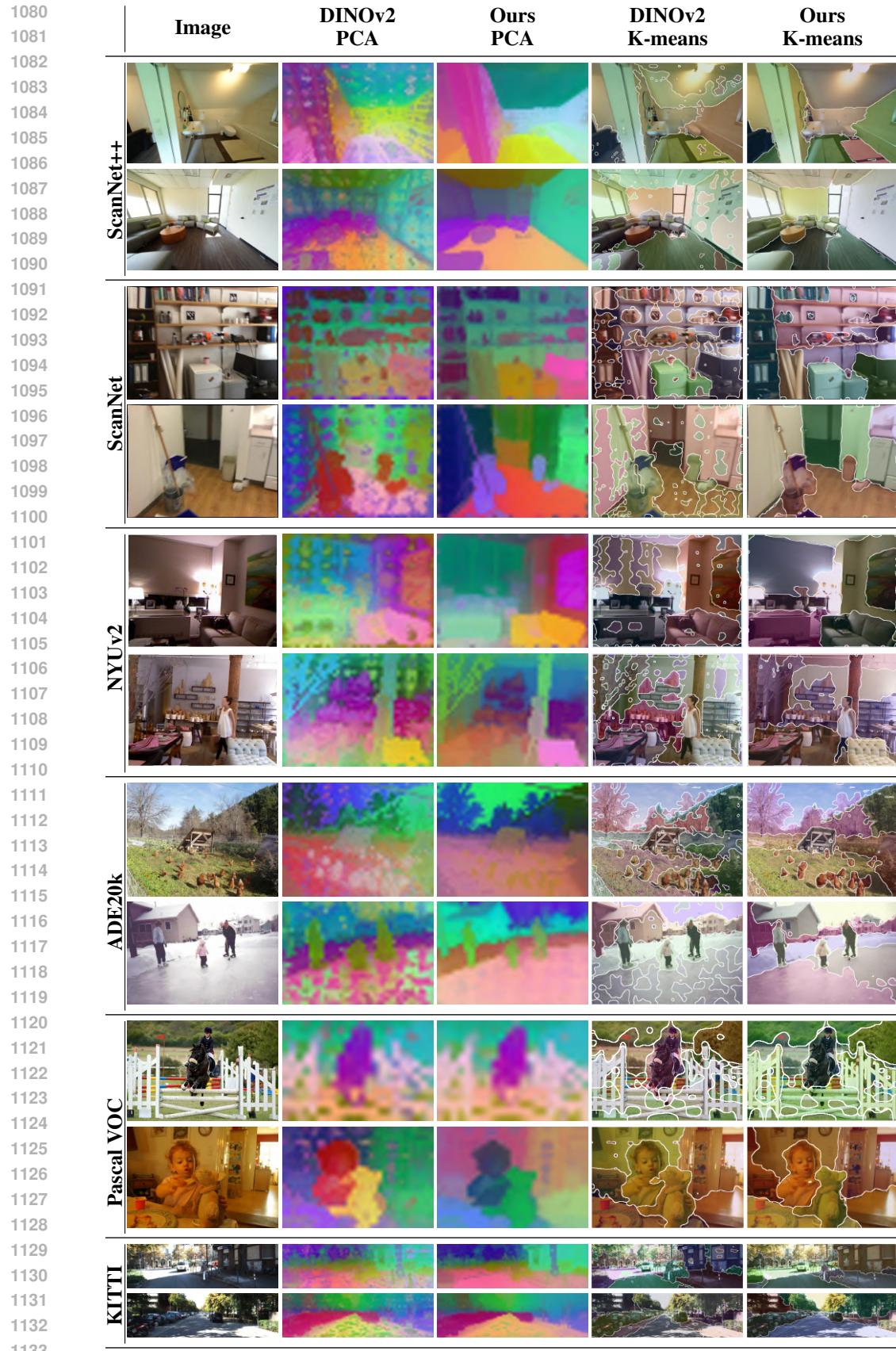


Figure 14: Qualitative visualization of DINOv2 features vs. ours on different datasets using a ViT-Small backbone. We visualize single-image features using PCA and K-means

[david: verify it's small.](#)