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Abstract

Imitation Learning (IL) has achieved remarkable success across various domains, including
robotics, autonomous driving, and healthcare, by enabling agents to learn complex behaviors
from expert demonstrations. However, existing IL methods often face instability challenges,
particularly when relying on adversarial reward or value formulations in world model frame-
works. In this work, we propose a novel approach to online imitation learning that addresses
these limitations through a reward model based on random network distillation (RND) for
density estimation. Our reward model is built on the joint estimation of expert and be-
havioral distributions within the latent space of the world model. We evaluate our method
across diverse benchmarks, including DMControl, Meta-World, and ManiSkill2, showcasing
its ability to deliver stable performance and achieve expert-level results in both locomotion
and manipulation tasks. Our approach demonstrates improved stability over adversarial
methods while maintaining expert-level performance.

1 Introduction

Imitation Learning (IL) has recently shown remarkable effectiveness across a wide range of domains, par-
ticularly in addressing complex real-world challenges. In robotics, IL has significantly advanced the state of
the art in manipulation tasks (Zhu et al., 2022; Wan et al., 2024; Stepputtis et al., 2020; Chi et al., 2023),
enabling robots to perform intricate operations with precision and adaptability. Similarly, IL has achieved
impressive results in locomotion tasks (Chiu et al., 2024; Seo et al., 2023; Huang et al., 2024), where it has
facilitated the development of robust and agile motion controllers for various robotic platforms. Beyond
robotics, IL has also demonstrated its versatility in domains such as autonomous driving (Pan et al., 2017;
Bronstein et al., 2022; Cheng et al., 2024), where it is used to model complex decision-making processes and
ensure safe and efficient vehicle navigation. Moreover, IL has started making meaningful contributions to
healthcare (Deuschel et al., 2023), providing support in medical decision-making and enhancing the inter-
pretability of complex diagnostic processes. These achievements highlight the broad applicability of IL and
its potential to drive transformative progress across diverse fields.

The simplest approach to imitation learning is to apply behavioral cloning directly to the provided expert
dataset, as demonstrated in prior works like IBC (Florence et al., 2022) and Diffusion Policy (Chi et al., 2023).
However, this approach is not dynamics aware and may result in lack of generalization when encountering
out-of-distribution states. To address these shortcomings, methods like GAIL (Ho & Ermon, 2016), SQIL
(Reddy et al., 2019), IQ-Learn (Garg et al., 2021), MAIL (Baram et al., 2016) and CFIL (Freund et al.,
2023) have introduced value or reward estimation to facilitate a deeper understanding of the environment,
while leveraging online interactions to enhance exploration. Specifically, GAIL, MAIL, and IQ-Learn frame
the imitation learning problem as an adversarial training process, distinguishing between the state-action
distributions of the expert and the learner.

Recent advancements in latent world models for imitation learning have made significant progress. Several
prior works, including V-MAIL (Rafailov et al., 2021), CMIL (Kolev et al., 2024), Ditto (DeMoss et al.,
2023), EfficientImitate (Yin et al., 2022), and IQ-MPC (Li et al., 2024), have integrated adversarial imitation
learning frameworks with world models to address imitation learning tasks. However, as discussed in Section
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4.4, we found that even with world models, the adversarial objectives can still suffer from instability in
certain scenarios. To overcome this issue, we propose replacing the adversarial reward or value formulation
with a novel density estimation approach based on random network distillation (RND) (Burda et al., 2018),
which mitigates the instability. Specifically, we perform density estimation in the latent space of the world
model, leveraging the superior properties of latent representations and their enhanced dynamics-awareness,
as the latent dynamics model is trained directly within this space. Unlike existing methods that use RND for
imitation learning (Wang et al., 2019), our approach jointly learns the reward model and other components
of the world model, estimating both the expert and behavioral distributions simultaneously. In contrast, the
existing Random Expert Distillation (Wang et al., 2019) estimates distributions in the original observation
and action spaces and decouples the reward model learning from the downstream RL process, making it
hard to solve complex tasks with high dimensional observation and action spaces. We evaluate our approach
across a range of tasks in DMControl (Tassa et al., 2018), Meta-World (Yu et al., 2020a), and ManiSkill2
(Gu et al., 2023), demonstrating stable performance and achieving expert-level results.

In conclusion, the contributions of our work are summarized as follows:

• We propose a novel reward model formulation for world model online imitation learning based on
random network distillation for density estimation.

• We demonstrate that our approach exhibits superior stability compared to previous approaches with
adversarial formulations and achieves expert-level performance across a range of imitation learning
tasks, including both locomotion and manipulation.

2 Preliminary

We formulate our decision-making problem as Markov Decision Processes (MDPs). MDPs can be defined
via a tuple ⟨S,A, p0,P, r, γ⟩. In details, S and A represent the state and action spaces, p0 is the initial state
distribution, P : S ×A → ∆S depicts the transition probability, r(s,a) is the reward function, and γ ∈ (0, 1)
is the discount factor. Let Z denote the latent state space of the world model. The expert latent state-action
distribution and the behavioral latent state-action distribution (induced by the behavioral policy π) over
Z ×A are denoted by ρE and ρπ, respectively.

2.1 Random Network Distillation

Random Network Distillation (RND) (Burda et al., 2018) is a technique for promoting exploration. In
details, it leverages a fixed randomly parameterized network fθ̄(x) and a learnable predictor network fθ(x).
During training, RND minimizes the following MSE loss for dataset D for certain data distribution ρ:

LRND(θ) = Ex∼D∥fθ̄(x)− fθ(x)∥2
2 (1)

During the evaluation, we obtain a data point x′ for unknown data distribution ρ′. By computing the L2
norm ∥fθ̄(x′) − fθ(x′)∥2

2, we can estimate the difference between distribution ρ and ρ′. This can also be
interpreted as performing density estimation for the new data point x′ within the original distribution ρ. A
similar methodology has been used in imitation learning and inverse reinforcement learning (Wang et al.,
2019).

2.2 World Models

Recent world models in the context of robotics control and reinforcement learning often represent a model-
based RL method with latent spaces. The model learns a latent state transition model z′ = dθ(z,a), along
with a encoder z = hθ(z) and a policy model a = πθ(z). The decision-making process often includes planning
with latent unrolling. For models based on the Recurrent State-space Model (RSSM) (Hafner et al., 2019b),
the latent states often are split into a deterministic part and a stochastic part. PlaNet (Hafner et al., 2019a)
and Dreamer series (Hafner et al., 2019b; 2020; 2023) leverage decoders for observation reconstruction, while
TD-MPC series (Hansen et al., 2022; 2023) leverages a decoder-free architecture and conducts planning solely
in the latent space.
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Figure 1: Coupled Distributional Random Expert Distillation We present the architecture of our
CDRED reward model. During training, the behavioral and expert predictors are trained using latent
representations encoded from observations and actions sampled from the behavioral and expert buffers. The
dotted blue lines indicate the gradient backpropagation paths. During inference, rewards are estimated by
the outputs of the behavioral and expert predictors, along with the mean and second-order moments of the
target network’s output, for an unseen latent state-action pair.

3 Methodology

In this section, we will go over the motivation and detailed methodology of our method, Coupled
Distributional Random Expert Distillation, or CDRED as an abbreviation. We show that our method is
stabler and more reasonable compared to naively apply Random Expert Distillation (RED) (Wang et al.,
2019) on imitation learning with world models.

3.1 Motivation

Random Expert Distillation (RED) (Wang et al., 2019) performs imitation learning by estimating the support
of expert policy distribution. During training, it minimizes K pairs of predictors and fixed random targets
in expert dataset with N data points DE = {si,ai}0:N :

θ̂k = argmin
θ

1
N

N−1∑
i=0

(fθ(si,ai)− fθ̄k
(si,ai))2 (2)

In order to determine if a state-action pair is within the support of expert policy, it computes the L2 norm
deviation for an unknown state-action pair (s,a) using K pairs of predictors and targets:

LRED(s,a) = 1
K

K−1∑
k=0

(fθ̂k
(s,a)− fθ̄k

(s,a))2 (3)
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Figure 2: Intuitive Illustration for Coupled Distribution Estimation When the state-action distri-
bution of the initial policy differs significantly from that of the expert distribution, the initial rewards tend
to approach zero. This often leads to a slower or even unsuccessful learning process. By estimating the
behavioral distribution in conjunction with the expert distribution, we can effectively model the rewards to
guide the behavioral distribution closer to that of the expert.

By leveraging a reward in the shape of r(s,a) = exp(−σ LRED(s,a)), the approach effectively guides the
downstream RL policy towards the expert distribution. However, this method may encounter challenges
when the initial behavioral policy distribution is far from the expert distribution or when RED is applied
naively on large latent spaces in world models.

To address these difficulties, we introduce a coupled approach. This approach jointly estimates both the
expert distribution and the behavioral distribution; it encourages policy exploration during the early stages
of training. We provide an intuitive illustration in Figure 2 and describe the detailed methodology in Section
3.3. In this coupled approach, we need to estimate the behavioral distribution during online training, which
naturally raises the problem of inconsistent final rewards, as noted by Yang et al. (2024). Thus, we adopt
their method for tracking the frequency of data occurrence, which we describe in Section 3.2.

Faster convergence Better performance in complex settings

Figure 3: Advantages of Coupled Density Estimation We demonstrate the empirical performance boost
of our coupled density estimation in terms of leveraging random network distillations for reward modeling
based on state-action distribution estimation. With coupled estimation, we observe faster convergence to
optimal in many simple cases (Left) and better performance in complex tasks (Right).
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3.2 Mitigating Inconsistent Reward Estimation

Inconsistencies can arise at various stages of RND model training (Yang et al., 2024). During the initial stage,
these inconsistencies stem from extreme values in one network, which can be mitigated by using multiple
target networks (denoted as K target networks). In the final stage, inconsistencies occur when the resulting
reward distribution does not align with the actual state-action distribution. To address this, an unbiased
estimator for the state-action occurrence count n is necessary. We should track state-action occurrence
frequencies in order to maintain consistency when the distributional RND model is trained online. In this
section, we replace the original state st with the latent representation zt for the input of the RND model.
Following Yang et al. (2024), we denote the random variable c(zt,at) as the output of a target network fθ̄k

,
where k is sampled uniformly from the interval [0,K). For a predictor f estimating a distribution ρ (which
can be either the expert distribution ρE or the behavioral distribution ρπ), by minimizing the L2-norm loss
∥f(zt,at)− c(zt,at)∥2

2, the optimal predictor f∗(zt,at) is given by:

f∗(zt,at) = 1
n

n∑
i=1

ci(zt,at) (4)

where ci(zt,at) is representing the c(zt,at) for the i-th occurrence for state-action pair (zt,at) in distribution
ρ. In order to track the occurrence count n, we adopt a lemma proposed by Yang et al. (2024):
Lemma 1 (Unbiased Estimator). For a state-action distribution ρ, f∗ is the optimal predictor on this
distribution defined in Eq. 4, the following statistic is an unbiased estimator of 1/n for this distribution:

y(zt,at) = [f∗(zt,at)]2 − [µθ̄(zt,at)]2

B2(zt,at)− [µθ̄(zt,at)]2

where the second-order moment is:

B2(zt,at) = 1
K

K−1∑
k=0

[fθ̄k
(zt,at)]2

Proof. See Appendix E or prior work (Yang et al., 2024).

In this way, we are able to estimate the data distribution with higher consistency as the training proceeds.
Following Yang et al. (2024), we construct the following estimator for

√
1/n as an additional bonus correction

term:

ϵ(zt,at, f) =

√
[f(zt,at)]2 − [µθ̄(zt,at)]2
B2(zt,at)− [µθ̄(zt,at)]2

(5)

This bonus correction is incorporated into the reward model construction discussed in Section 3.3.

3.3 Coupled Distributional Random Expert Distillation

We construct a reward model with two predictor networks that share the same random target ensemble on
the latent space of a world model. The distributional random target ensemble consists of K random networks
{fθ̄k
}0:K with fixed parameters. Regarding the predictors, one of them is the expert predictor fϕ while the

other is the behavioral predictor fψ. A predictor f is defined by f : Z ×A → Rp, while p is the dimension
of the low-dimensional embedding space for L2 norm distance computation. Following Yang et al. (2024),
we ask these two predictors to learn the random targets sampled. This is different to RED which learn K
predictors for K targets. Given an expert buffer BE and a behavioral buffer Bπ, we aim to optimize through
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the following objective:

Lr(ϕ, ψ) =
H∑
t=0

λt Ek∼Uniform(0,K)

[
E(st,at)∼BE

[
∥fϕ(zt,at)− fθ̄k

(zt,at)∥2
2

]
+ E(st,at)∼Bπ

[
∥fψ(zt,at)− fθ̄k

(zt,at)∥2
2

]] (6)

We sample short trajectories with horizon H from the replay buffers and sum up the loss for every step with
a discounting factor λ. Note that this factor is different from the environment discount factor γ. We update
every time with one target network fθ̄k

, where index k is sampled from a uniform distribution over integers
ranging [0,K). zt is the latent representation of st with an encoder mapping zt = h(st). In this way, we can
obtain the estimation for expert distribution ρE and behavioral distribution ρπ. Furthermore, it enables us
to construct a reward model based on the distribution estimations. Incorporating the bias correction term
introduced in Eq. 5, we are able to compute the reward via:

R(zt,at) = ζ g(−σ b(zt,at, fϕ))− (1− ζ) g(−σ b(zt,at, fψ)) (7)

where
b(zt,at, f) = α ∥f(zt,at)− µθ̄(zt,at)∥2

2 + (1− α) ϵ(zt,at, f) (8)

µθ̄(zt,at) = 1
K

K−1∑
k=0

fθ̄k
(zt,at) (9)

The first term in Eq. 7 measures the distance between the current and expert distributions, while the second
term encourages exploration by penalizing exploitation. A scaling factor ζ balances these terms, with the
second term dominating during early training when the policy is sub-optimal, promoting exploration. As the
policy approaches optimality, the first term takes over, stabilizing the policy near the expert distribution.
Typically, ζ is close to 1, allowing the first term to dominate after initial exploration.

The coefficient σ controls the decay rate of the reward function, which is based on the expert distribution
for the first term and the behavioral distribution for the second. To ensure stability, the reward is computed
using the mean output of K random target networks. The function g(x) is monotonically increasing, and
both g(x) = exp(x) and g(x) = x work, with slight differences in behavior, as discussed in Appendix D.2.

The scalar coefficient α in Eq. 8 balances the contributions of the first term (the L2-norm) and the second
term (an estimator for

√
1/n). Following Yang et al. (2024), we let the first term dominate initially, switching

to the second term as training progresses. This can be achieved with a fixed α, rather than a dynamic
coefficient. This modification enables consistent online estimation of the state-action distribution, directly
supporting reward modeling for online imitation learning.

3.4 Integrating into World Models for Imitation Learning

World models learn the policy and underlying environment dynamics by encoding the observations into a
latent space and learning the transition model in the latent space. Decoder-free world models such as TD-
MPC series (Hansen et al., 2022; 2023) has proved to be a powerful tool for complex reinforcement learning
tasks. We leverage a decoder-free world model containing the following components:

Encoder: zt = h(st) (10)
Latent dynamics: z′

t = d(zt,at) (11)
Value function: q̂t = Q(zt,at) (12)

Policy prior: ât = π(zt) (13)
CDRED model: r̂t = R(zt,at) (14)

The reward model, i.e., the CDRED model, consists of two predictors and K target networks, estimating the
expert and behavioral distributions for reward approximation. The encoder h : S → Z maps the observation
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(state-based or vision based) to latent representation. The latent dynamics model d : Z × A → Z learns
the transition dynamics over the latent representations, implicitly modeling the environment dynamics. The
value function learns to estimate the future return by training on temporal difference objective with the
assist of the estimated rewards from the CDRED model. The policy prior learns a stochastic policy which
guides the planning process of the world model. The training procedure is outlined in Algorithm 1, while
the planning process is detailed in Algorithm 2.

Model Training The learnable parameters of the world model are denoted as three parts. While ϕ and ψ
denote the parameterization of expert predictor and behavioral predictor in the CDRED reward model, the
rest of the parameters related to the encoder, latent dynamics, value model and policy prior are represented
as ξ. Note that the parameters of the target networks θ̄k are not learnable. We train the encoder, dynamics
model, value model, and reward model jointly with the following objective:

L(ϕ, ψ, ξ) =
H∑
t=0

E(st,at,s′
t)∼BE∪Bπ

[
λt
(
∥z′
t − sg(h(s′

t))∥2
2 + CE(q̂t, qt)

)]
︸ ︷︷ ︸

Consistency and TD Loss

+ Lr(ϕ, ψ)︸ ︷︷ ︸
CDRED Loss

(15)

The first term contains consistency loss and temporal difference loss to ensure the prediction consistency
of the dynamics model and the accuracy for value function estimation. the temporal difference target is
computed by qt = R(zt,at) + γQ(z′

t, π(z′
t)) where R(zt,at) is the output of the reward model. We convert

the regression TD objective into a classification problem for stabler value estimation, which is also used by
the TD-MPC series and mentioned by Farebrother et al. (2024). CE(q̂t, qt) is the cross entropy loss between
target Q value and current predicted value. The second term is the reward loss, which is shown in Eq.6.
Similar to the computation of reward loss, we also sum up the consistency and TD loss with factor λ over a
horizon H.

Policy Prior Learning Regarding the policy prior update, we adopt maximum entropy objective
(Haarnoja et al., 2018) to train a stochastic policy:

Lπ(ξ) =
H∑
t=0

λt

[
E(st,at)∼BE∪Bπ

[
−Q(zt, π(zt)) + β log(π(·|zt))

]]
(16)

We use short trajectories with horizon H sampled from both expert and behavioral buffers for policy updates.
We sum up the policy loss over the horizon with the same discount factor λ. β is a fixed scalar coefficient to
balance the entropy term and the Q value.

Planning Following TD-MPC series (Hansen et al., 2022; 2023), we also leverage model predictive path
integral (MPPI) (Williams et al., 2015) for planning. We optimize using the sampled action sequences
(at,at+1, ...,at+H) in a derivative-free style, maximizing the estimated return for the latent trajectories that
have been rolled out using our dynamics model. Mathematically, our objective can be describe as a return
maximizing process (Hansen et al., 2023):

µ∗, σ∗ = argmax
(µ,σ)

E
(at,at+1,...,at+H )∼N (µ,σ2)

[
γHQ(zt+H ,at+H) +

H−1∑
h=t

γhR(zh,ah)
]

(17)

After planning, the agent interacts with the environment using the first action at ∼ N (µ∗, (σ∗)2) to obtain
new observations. New trajectories are stored in behavioral buffer Bπ for following training.

4 Experiments

We conduct experiments across a diverse range of tasks, including locomotion, manipulation, and tasks with
both visual and state-based observations. We evaluate our approach using the DMControl (Tassa et al.,
2018), Meta-World (Yu et al., 2020a) and ManiSkill2 (Gu et al., 2023) environments. As for the baselines,
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we compare our approach with IQ-MPC (Li et al., 2024), which integrates a world model architecture, as well
as with model-free approaches, specifically IQ-Learn+SAC (Garg et al., 2021) (referred to as IQL+SAC in
the plots), CFIL+SAC (Freund et al., 2023), HyPE (Ren et al., 2024) (In Appendix D.3) and SAIL (Wang
et al., 2020) (In Appendix D.4). Additionally, we also incorporate behavioral cloning (BC) as a baseline
method in our evaluation. For all experiments, we sample expert trajectories from a trained TD-MPC2
(Hansen et al., 2023). Additionally, we conduct ablation studies on the number of expert trajectories and
the choice of function g, as detailed in Appendix D.2. We further evaluate the robustness of our algorithm in
noisy environment dynamics (Appendix D.5), examine the benefits of constructing the reward model in the
latent space (Section 4.5), and highlight its advantages over existing adversarial training methods (Section
4.4).

Figure 4: Meta-World Results We evaluate our CDRED method (red lines) on 6 tasks in Meta-World
environments. We show stabler performance on these tasks, outperforming the baselines. IQ-MPC (orange
lines) suffers from overly powerful discriminator problem mentioned in Section 4.4. We conduct the experi-
ments on 3 random seeds.

4.1 Meta-World Experiments

We conduct experiments on 6 tasks in Meta-World environments. We use 100 expert trajectories for each
task, ensuring that the expert data remains consistent across all algorithms for fair comparison within each
task. IQ-MPC suffers from overly powerful discriminators in these tasks, even with gradient penalty applied,
due to the adversarial training methodology. CFIL+SAC (Freund et al., 2023) encounters instability in the
training process due to the challenges inherent in training flow models. We show stable and expert-level
performance, outperforming these baselines in these tasks. We show the episode reward results in Figure 4
and success rate results in Table 1.

4.2 DMControl Experiments

We conduct experiments on 6 tasks in DMControl (Tassa et al., 2018) environments. For low-dimensional
tasks, we utilize 100 expert trajectories, while for high-dimensional tasks, we use 500 expert trajectories.
Details on environment dimensionality can be found in Appendix C. Our CDRED model performs compa-
rably to IQ-MPC on the Hopper Hop, Walker Run, and Humanoid Walk tasks. However, in Cheetah Run
and Dog Stand, IQ-MPC experiences long-term instability, causing the agent to fail after extensive online
training. On the Reacher Hard task, IQ-MPC struggles with an overly powerful discriminator, which pre-
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Method BC IQL+SAC CFIL+SAC IQ-MPC CDRED(Ours)
Box Close 0.58±0.12 0.61±0.09 0.00±0.00 0.53±0.18 0.96±0.03

Bin Picking 0.43±0.18 0.75 ± 0.11 0.01±0.01 0.79±0.05 0.99±0.01
Reach Wall 0.10±0.08 0.90±0.04 0.01±0.01 0.31±0.14 0.98±0.01
Stick Pull 0.02±0.02 0.34±0.11 0.00±0.00 0.13±0.08 0.92±0.05
Stick Push 0.42±0.14 0.76±0.14 0.00±0.00 0.23±0.10 0.94±0.03

Soccer 0.04±0.03 0.73±0.09 0.01±0.01 0.12±0.07 0.81±0.05

Table 1: Manipulation Success Rate Results in Meta-World We show the success rate comparison
on 6 tasks in Meta-World. Our CDRED model demonstrates outperforming results compared to existing
methods. We compute the success rates over 100 episodes. We evaluate our model and other baselines on 3
random seeds.

vents it from learning an expert-level policy. The model-free methods in baseline algorithms fail to achieve
stable, expert-level performance on these tasks. The episode reward results are shown in Figure 5.

Figure 5: DMControl Results We evaluate our CDRED method (red lines) on 6 tasks in DMControl
environments. Our approach achieves results comparable to IQ-MPC (orange lines) in Hopper Hop, Walker
Run, and Humanoid Walk, while demonstrating greater stability across the remaining tasks. We conduct
the experiments on 3 random seeds.

4.3 Vision-based Experiments

In addition to experiments using state-based observations, we also benchmark our method on tasks with
visual observations. Specifically, we select three tasks from DMControl (Tassa et al., 2018) with visual
observations. To create these visual datasets, we render visual observations based on state-based expert
trajectories, replacing the original state-based observations in the expert data. For each task, we use 100
expert trajectories generated by a trained TD-MPC2 model (Hansen et al., 2023). We show our results
in Figure 6. Interestingly, we observe that visual IQ-MPC encounters an issue with an overly powerful
discriminator in the Cheetah Run task when using trajectories generated by a trained state-based TD-
MPC2 policy, where state observations are replaced by RGB images rendered from those states. However,
IQ-MPC performs well when using expert trajectories generated by a TD-MPC2 policy trained directly on
visual observations.
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Figure 6: Visual Experiment Results We compare the results of our model with IQ-MPC on tasks with
visual observations. Our approach outperforms IQ-MPC in Cheetah Run and Reacher Hard tasks, while
obtains comparable performance on Walker Run task. We conduct the experiments on 3 random seeds.

4.4 Advantages Compared to Current Methods Involving Adversarial Training

The current existing methods (Li et al., 2024; Kolev et al., 2024; Rafailov et al., 2021; Yin et al., 2022)
for world model online imitation learning often involve adversarial training, following the similar problem
formulation as GAIL (Ho & Ermon, 2016) or IQ-Learn (Garg et al., 2021). IQ-MPC (Li et al., 2024) adopted
inverse soft-Q objective for critic learning while CMIL (Kolev et al., 2024), V-MAIL (Rafailov et al., 2021)
and EfficientImitate (Yin et al., 2022) leveraged GAIL style reward modeling. In terms of IQ-Learn, an
improved version of GAIL, although its policy can be computed by applying a softmax to the Q-value in
discrete control, effectively converting a min-max problem into a single maximization (Garg et al., 2021),
it still requires the maximum entropy RL objective for policy updates in continuous control settings. In
such cases, IQ-Learn performs adversarial training between the policy and the critic, which leads to stability
issues similar to those encountered in GAIL. IQ-MPC, while performing well in various complex scenarios
such as high-dimensional locomotion control and dexterous hand manipulation, still encounters challenges
in some cases. These challenges include an imbalance between the discriminator and the policy, as well as
long-term instability. These issues stem from using an adversarially trained Q-function as the critic. While
IQ-MPC attempts to mitigate them by incorporating regularization terms during the training process, it
doesn’t fully resolve the problem. Figure 7 illustrates the drawbacks of IQ-MPC in some cases, namely an
overly powerful discriminator and long-term instability. We also demonstrate the quantitative results for
training stability analysis in Appendix D.6.

Overly Powerful Discriminator The generative adversarial training process is often prone to instability
(Gulrajani et al., 2017). IQ-MPC employs generative adversarial training between the policy and the critic,
and it also encounters this challenge. To mitigate this issue, IQ-MPC leverages gradient penalty from
Gulrajani et al. (2017) to enforce Lipschitz condition of the gradients in a form of:

Lpen =
H∑
t=0

λt

[
E(̂st,ât)∼B

(
∥∇Q(ẑt, ât)∥2 − 1

)2
]

(18)

In the gradient penalty, (̂st, ât) are data points on straight lines between expert and behavioral distributions,
which are generated by linear interpolation. Although it counters the problem to some extent, the perfor-
mance of IQ-MPC is still not satisfactory in some tasks such as Reacher in DMControl and Meta-World
robotics manipulation tasks, for which we will refer to our experimental results in Section 4. An overly power-
ful discriminator often causes the Q-value difference between the policy and expert distributions to diverge, as
noted by Li et al. (2024). Specifically, this divergence is reflected in the gap between the expected Q-values
under the expert distribution, E(s,a)(0:H)∼BE

Q(zt,at), and the policy distribution, E(s,a)(0:H)∼Bπ
Q(zt,at).

While IQ-MPC can mitigate this divergence to some extent through gradient penalty, it does not eliminate
the difference entirely, indicating that the policy does not achieve expert-level performance. We show the Q
difference plot in a problematic case in Figure 8.

Long-term Instability Since we’re conducting online imitation learning, we prefer to train a policy that
can reach expert-level and maintain stable expert-level performance during further training, which is the
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Overly powerful discriminator Long-term instability

Figure 7: Drawbacks of Methods Including Adversarial Training We demonstrate the drawbacks of
IQ-MPC (Li et al., 2024) in some tasks, which employs adversarial training for online imitation learning. An
overly powerful discriminator (Left) leads to sub-optimal policy learning, while long-term instability (Right)
of adversarial training prevents IQ-MPC from maintaining expert-level performance during extended online
training. Our CDRED method, which replaces adversarial training with density estimation, is immune to
these issues.

Figure 8: IQ-MPC Q Value Difference Visualization We present the Q-difference plot for IQ-MPC
in a problematic scenario (Reacher Hard task in DMControl) where it is affected by an overly powerful
discriminator. Although applying a gradient penalty prevents the Q-difference from diverging, it still fails
to converge to a value near zero, resulting in a persistently large Q-difference throughout training.

long-term training stability. Due to the use of adversarial training, we find it hard for IQ-MPC to maintain
stable expert-level performance during extensive long-term online training.

4.5 Improvement of Constructing the Reward Model on the Latent Space

Original RND (Burda et al., 2018) and Random Expert Distillation (Wang et al., 2019) train their reward or
bonus models directly on the original observation space. In contrast, we found that constructing the CDRED
reward model using the latent representations from a world model yields better empirical performance. This
highlights the superior properties of latent representations, which enable more accurate reward estimation.
Furthermore, by training a latent dynamics model within this space, the representations become more
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dynamics-aware, facilitating the construction of a reward model that effectively captures the underlying
dynamics.

To validate this, we compared training the CDRED reward model on the original observation space versus the
latent space. Our results indicate that while training on the observation space may exhibit slightly suboptimal
behavior in low-dimensional settings, it fails entirely in high-dimensional cases due to the challenges of density
estimation on raw observations. These findings are illustrated in Figure 9.

Figure 9: Effectiveness of the latent space CDRED reward model We conduct comparative exper-
iments to evaluate the performance of the CDRED reward model when trained on the latent space of the
world model versus the original observation space. Our results show that training the CDRED reward model
on the latent space yields superior empirical performance.

5 Conclusion

We propose a novel approach for world model-based online imitation learning, featuring an innovative reward
model formulation. Unlike traditional adversarial approaches that may introduce instability during training,
our reward model is grounded in density estimation for both expert and behavioral state-action distribu-
tions. This formulation enhances stability while maintaining high performance. Our model demonstrates
expert-level proficiency across various tasks in multiple benchmarks, including DMControl, Meta-World, and
ManiSkill2. Furthermore, it consistently retains stable performance throughout long-term online training.
With its robust reward modeling and stability, our approach has the potential to tackle complex real-world
robotics control tasks, where reliability and adaptability are crucial.
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A Hyperparameters and Architectural Details

A.1 Architectural Details

We show the overall model architecture via a Pytorch style notation. We leverage layernorm (Ba, 2016) and
Mish activations (Misra, 2019) for our model. The detialed architecture is displayed as following:

WorldModel (
( _encoder ): ModuleDict (

(state): Sequential (
(0): NormedLinear ( in_features =state_dim , out_features =256 , bias=True ,

act=Mish)
(1): NormedLinear ( in_features =256 , out_features =512 , bias=True , act=

SimNorm )
)

)
( _dynamics ): Sequential (

(0): NormedLinear ( in_features =512+ action_dim , out_features =512 , bias=True ,
act=Mish)

(1): NormedLinear ( in_features =512 , out_features =512 , bias=True , act=Mish)
(2): NormedLinear ( in_features =512 , out_features =512 , bias=True , act=

SimNorm )
)
( _reward ): CDRED_Reward (

( behavioral_predictor ): Sequential (
(0): NormedLinear ( in_features =512+ action_dim , out_features =512 , bias=

True , act=Mish)
(1): NormedLinear ( in_features =512 , out_features =512 , bias=True , act=

Mish)
(2): Linear ( in_features =512 , out_features =64, bias=True)

)
( expert_predictor ): Sequential (

(0): NormedLinear ( in_features =512+ action_dim , out_features =512 , bias=
True , act=Mish)

(1): NormedLinear ( in_features =512 , out_features =512 , bias=True , act=
Mish)

(2): Linear ( in_features =512 , out_features =64, bias=True)
)
( target_networks )[not learnable ]: Vectorized ModuleList (

(0 -4): 5 x Sequential (
(0): NormedLinear ( in_features =512+ action_dim , out_features =512 ,

bias=True , act=Mish)
(1): NormedLinear ( in_features =512 , out_features =512 , bias=True ,

act=Mish)
(2): Linear ( in_features =512 , out_features =64, bias=True)

)
)

)
(_pi): Sequential (

(0): NormedLinear ( in_features =512 , out_features =512 , bias=True , act=Mish)
(1): NormedLinear ( in_features =512 , out_features =512 , bias=True , act=Mish)
(2): Linear ( in_features =512 , out_features =2* action_dim , bias=True)

)
(_Qs): Vectorized ModuleList (

(0 -4): 5 x Sequential (
(0): NormedLinear ( in_features =512+ action_dim , out_features =512 , bias=

True , dropout =0.01 , act=Mish)
(1): NormedLinear ( in_features =512 , out_features =512 , bias=True , act=

Mish)
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(2): Linear ( in_features =512 , out_features =101 , bias=True)
)

)
( _target_Qs ): Vectorized ModuleList (

(0 -4): 5 x Sequential (
(0): NormedLinear ( in_features =512+ action_dim , out_features =512 , bias=

True , dropout =0.01 , act=Mish)
(1): NormedLinear ( in_features =512 , out_features =512 , bias=True , act=

Mish)
(2): Linear ( in_features =512 , out_features =num_bins , bias=True)

)
)

)

A.2 Hyperparameter Details

The specific hyperparameters used in the CDRED reward model are as follows:

• The predictors and target networks project latent state-action pairs to an embedding space with
dimension p = 64.

• We use an ensemble of 5 target networks for the CDRED reward model.

• The function g(x) = x is used in all experiments.

• The value of ζ = 0.8 is used across all experiments.

• We adopt α = 0.9 for all experiments.

• A StepLR learning rate scheduler is employed with γlr = 0.1, with a scheduler step of 500K for
Meta-World and ManiSkill2 experiments, and 2M for DMControl experiments.

The remaining hyperparameters are consistent with those used in TD-MPC2 (Hansen et al., 2023).
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B Training and Planning Algorithms

B.1 Training Algorithm

In this section, we present the detailed training algorithm for the CDRED world model, as shown in Algorithm
1. For clarity, let θ = {ϕ, ψ, ξ} represent all learnable parameters of the world model, and θ− denote a fixed
copy of θ.

Algorithm 1 CDRED World Model (training)
Require: θ, θ−: randomly initialized network parameters

η, τ, λ,Bπ,BE : learning rate, soft update coefficient, horizon discount coefficient, behavioral buffer,
expert buffer
for training steps do

// Collect episode with CDRED world model from s0 ∼ p0:
for step t = 0...T do

Compute at with πθ(·|hθ(st)) using Algorithm 2 ◁ Planning with MPPI
(s′
t, rt) ∼ env.step(at)
Bπ ← Bπ ∪ (st,at, rt, s′

t) ◁ Add to behavioral buffer
st+1 ← s′

t

end for
// Update reward-free world model using collected data in Bπ and BE:
for num updates per step do

(st,at, s′
t)0:H ∼ Bπ ∪ BE ◁ Combine behavioral and expert batch

z0 = hθ(s0) ◁ Encode first observation
// Unroll for horizon H
for t = 0...H do

zt+1 = dθ(zt,at) ◁ Unrolling using the latent dynamics model
q̂t = Q(zt,at) ◁ Estimate the Q value
z′
t = h(s′

t) ◁ Encode the ground-truth next state
r̂t = R(zt,at) ◁ Estimate Reward using the CDRED reward model
qt = r̂t + γQ(z′

t, π(z′
t)) ◁ Compute the TD target using the estimated reward

end for
Compute model loss L ◁ Equation 15
Compute policy prior loss Lπ ◁ Equation 16
θ ← θ − 1

H η∇θ(L+ Lπ) ◁ Update online network
θ− ← (1− τ)θ− + τθ ◁ Soft update

end for
end for
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B.2 Planning Algorithm

In this section, we present the detailed MPPI planning algorithm for the CDRED world model, as shown in
Algorithm 2. For simplicity, let θ = {ϕ, ψ, ξ} represent all learnable parameters of the world model.

Algorithm 2 CDRED World Model (inference)
Require: θ : learned network parameters

µ0, σ0: initial parameters for N
N,Nπ: number of sample/policy trajectories
st, H: current state, rollout horizon

1: Encode state zt ← hθ(st)
2: for each iteration j = 1..J do
3: Sample N trajectories of length H from N (µj−1, (σj−1)2I)
4: Sample Nπ trajectories of length H using πθ, dθ

// Estimate trajectory returns ϕΓ using dθ, Qθ, πθ, Rθ starting from zt and initialize ϕΓ = 0:
5: for all N +Nπ trajectories (at,at+1, . . . ,at+H) do
6: for step t = 0..H − 1 do
7: zt+1 ← dθ(zt,at) ◁ Latent transition
8: ât+1 ∼ πθ(·|zt+1)
9: ϕΓ = ϕΓ + γtRθ(zt,at) ◁ Estimate reward with CDRED reward model

10: end for
11: ϕΓ = ϕΓ + γHQθ(zH ,aH) ◁ Terminal Q value
12: end for
13: // Update parameters µ, σ for next iteration:
14: µj , σj ← MPPI update with ϕΓ.
15: end for
16: return a ∼ N (µJ , (σJ)2I)

C Task Details and Environment Specifications

We consider 12 continuous control tasks in locomotion control and robot manipulation. We leverage 6
manipulation tasks in Meta-World (Yu et al., 2020a), 6 locomotion tasks in DMControl (Tassa et al., 2018)
and 3 tasks in ManiSKill2 (Gu et al., 2023). In this section, we list the environment specifications for
completeness in Table 2, Table 3 and Table 4.

Task Observation Dimension Action Dimension
Box Close 39 4

Bin Picking 39 4
Reach Wall 39 4
Stick Pull 39 4
Stick Push 39 4

Soccer 39 4

Table 2: Meta-World Tasks We evaluate on 6 tasks in Meta-World. The Meta-World benchmark is specif-
ically constructed to facilitate research in multitask and meta-learning, ensuring a consistent embodiment,
observation space, and action space across all tasks.
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Task Observation Dimension Action Dimension High-dimensional?
Reacher Hard 6 2 No
Hopper Hop 15 4 No
Cheetah Run 17 6 No
Walker Run 24 6 No

Humanoid Walk 67 24 Yes
Dog Stand 223 38 Yes

Table 3: DMControl Tasks We evaluate on 6 tasks in DMControl. DMControl is a benchmark for
reinforcement learning, offering a range of continuous control tasks built on the MuJoCo physics engine.
It provides diverse environments for testing algorithms on tasks from basic motions to complex behaviors,
supporting standardized evaluation in control and planning research.

Task Observation Dimension Action Dimension
Lift Cube 42 4
Pick Cube 51 4

Turn Faucet 40 7

Table 4: ManiSkill2 Tasks We evaluate on 3 tasks in ManiSkill2. The ManiSkill2 benchmark represents
a sophisticated platform designed to advance large-scale robot learning capabilities. It distinguishes itself
through comprehensive task randomization and an extensive array of task variations, enabling more robust
and generalized robotic skill development.

D Additional Experiments

D.1 Experiments on ManiSkill2

We further evaluate our method on additional manipulation tasks in ManiSkill2 (Gu et al., 2023), achieving
stable and competitive results on the pick cube, lift cube, and turn faucet tasks. Notably, IQL+SAC (Garg
et al., 2021) and IQ-MPC (Li et al., 2024) also perform relatively well in these scenarios. Table 5 summarizes
the success rates of each method across the ManiSkill2 tasks.

Method IQL+SAC CFIL+SAC IQ-MPC CDRED(Ours)
Pick Cube 0.61±0.13 0.00±0.00 0.79±0.05 0.87±0.04
Lift Cube 0.85 ± 0.04 0.01±0.01 0.89±0.02 0.93±0.03

Turn Faucet 0.82±0.04 0.00±0.00 0.73±0.08 0.84±0.08

Table 5: Manipulation Success Rate Results in ManiSkill2 We evaluate the success rate of CDRED
across three tasks in the ManiSkill2 environment. CDRED demonstrates superior performance compared to
IQL+SAC, CFIL+SAC, and IQ-MPC on the Pick Cube and Lift Cube tasks, while achieving comparable
results on Turn Faucet. The reported results are averaged over 100 trajectories and evaluated across three
random seeds.

D.2 Ablation Studies

To evaluate the influence of different architecture choices and expert data amounts, we ablate over the expert
trajectories number, the g function choice, and the usage of coupling. We show that our approach is still
robust under a small number of expert demonstrations.

Ablation on Expert Trajectories Number We evaluate the impact of the number of expert trajecto-
ries on model performance and find that our model can learn effectively with a limited number of expert
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trajectories. We conduct this ablation on the Bin Picking task in Meta-World and the Cheetah Run task
in DMControl, observing that our model achieves expert-level performance with only five demonstrations.
The results are presented in Figure 10. Our model can effectively learn with only 5 expert demonstrations
for Cheetah Run and Bin Picking tasks.

Figure 10: Ablation Study on Expert Trajectories Number We conduct an ablation study on the
number of expert trajectories for the Cheetah Run task in DMControl and the Bin Picking task in Meta-
World. Our results demonstrate that our model can achieve expert-level performance using only 5 expert
demonstrations for both tasks.

Ablation on the g Function Choice Function g maps the neural network output bonus to the actual
reward space. In order to keep the optimal point for the reward function unchanged, we need to leverage
a monotonically increasing function. Empirically, we find g(x) = x and g(x) = exp(x) can both work, but
they have different performances in high-dimensional settings. We find g(x) = x tends to provide a faster
convergence in high-dimensional tasks such as Dog Stand compared to g(x) = exp(x). While we haven’t
observed any significant difference on low-dimensional tasks. We show the ablation in Figure 11.

Low-dimensional task High-dimensional task

Figure 11: Ablation on g function choice For low-dimensional task (left), both forms of g(x) demonstrate
comparable performance. However, in high-dimensional task (right), g(x) = exp(x) exhibits instability and
suboptimal behavior, whereas g(x) = x maintains stability. The task dimensionality information is shown
in Appendix C.

Ablation on the Hyperparameter Choice We conduct ablation studies on two hyperparameters, α
and ζ, introduced in Section 3.3, which are related to the construction of the reward model. Our experiments
demonstrate that these parameters influence the model’s convergence during the initial training phase, which
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Ablation on ζ Ablation on α

Figure 12: Ablation Study on Hyperparameters We conduct an ablation study on hyperparameter ζ
and α. The ablation study is conducted on Humanoid Walk task.

is closely tied to the policy’s exploration capability. For the hyperparameter ζ, we find that smaller values
may encourage exploration, leading to faster convergence. However, if ζ is too small, the model may fail to
learn effectively. For the hyperparameter α, larger values may enhance exploration, potentially promoting
convergence. The results are aligned with our intuition given in Section 3.3. We perform the ablation study
on the state-based Humanoid Walk task in the DMControl environment, and the results are presented in
Figure 12.

D.3 Additional Comparison with HyPE

Hybrid IRL (Ren et al., 2024) is a recently proposed method for performing inverse reinforcement learning
and imitation learning using hybrid data. In this section, we compare our approach with the model-free
method (HyPE) introduced in their work. Our method achieves superior empirical performance on three
DMControl locomotion tasks, including the high-dimensional Humanoid Walk task. The results are presented
in Figure 13.

Figure 13: Comparison with HyPE We compare our CDRED approach with the HyPE method (Ren
et al., 2024) on the Hopper Hop, Cheetah Run, and Humanoid Walk tasks. Among these, the Humanoid
Walk task is high-dimensional, while the others are low-dimensional. Our approach demonstrates superior
empirical performance and improved sampling efficiency on these tasks.

D.4 Additional Comparison with SAIL

Support-weighted Adversarial Imitation Learning (SAIL) (Wang et al., 2020) is an extension of Genera-
tive Adversarial Imitation Learning (GAIL) (Ho & Ermon, 2016) that enhances performance by integrating
Random Expert Distillation (RED) rewards (Wang et al., 2019). In this section, we present an additional
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comparative analysis between our proposed CDRED method and SAIL. The experimental results are illus-
trated in Figure 14.

Figure 14: Comparison with SAIL We compare our CDRED approach with the SAIL method (Wang
et al., 2020) on the Walker Run, Cheetah Run, and Humanoid Walk tasks. Among these, the Humanoid Walk
task is high-dimensional, while the others are low-dimensional. SAIL fails to learn in the high-dimensional
Humanoid Walk task while our approach achieves nearly expert-level performance. Overall, our approach
demonstrates superior empirical performance and improved sampling efficiency on these tasks.

D.5 Robustness Analysis under Noisy Dynamics

We conduct an additional analysis to evaluate the robustness of our model under noisy environment dynamics.
Following the evaluation protocol of Hybrid IRL (Ren et al., 2024), we introduce noise by adding a trembling
probability, ptremble. During interactions with the environment, the agent executes a random action with
probability ptremble and follows the action generated by the policy for the remaining time. Our empirical
results demonstrate that our model exhibits robustness to noisy dynamics, as its performance only slightly
deteriorates from the expert level when noise is introduced. The results for the Cheetah Run and Walker
Run tasks are presented in Figure 15.

Figure 15: Robustness Analysis under Noisy Environment Dynamics We analyze the performance of
our model on the Cheetah Run and Walker Run tasks under stochastic environment dynamics. Our results
demonstrate that the model shows notable robustness to noise in the environment dynamics.

D.6 Quantitative Analysis of Training Stability

To assess the training stability of our algorithm, we examine the mean and maximum gradient norms
throughout the training process. This approach is similar to the analysis conducted in TD-MPC2 (Hansen
et al., 2023). We compare the gradient norms of our method with those of IQ-MPC (Li et al., 2024), a
world model online imitation learning approach that employs an adversarial formulation, on DMControl
tasks. Our results indicate that the gradient norms of our approach are significantly smaller than those of
IQ-MPC, suggesting superior training stability. The detailed comparison is presented in Table 6.

23



Under review as submission to TMLR

Gradient Norm IQ-MPC (mean) CDRED (mean) IQ-MPC (max) CDRED (max)
Humanoid Walk 12.6 0.073 198.3 0.32
Hopper Hop 324.8 1.3 8538.6 4.6
Cheetah Run 131.7 0.34 2342.6 3.1
Walker Run 344.6 0.26 1534.7 1.8
Reacher Hard 11.3 0.012 65.8 0.083
Dog Walk 989.7 0.059 6824.3 0.13

Table 6: Training Stability Analysis Comparison of gradient norms between our CDRED approach and
the IQ-MPC method. The significantly smaller gradient norms of our approach indicate enhanced training
stability.

E Proof of Lemma 1

For completeness, we adapt the proof from Yang et al. (2024) to construct the proof of Lemma 1. For a
latent state-action pair (z,a) sampled from a latent state-action distribution ρ. We denote the moments of
the distribution of random variable c(z,a) as:

µθ̄(z,a) = E
[
fθ̄k

(z,a)
]

= 1
K

K−1∑
k=0

fθ̄k
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= 1
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The calculation for the moments of f∗(z,a) is as follows:
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The statistic y(z,a) is defined as follows in Lemma 1:

y(z,a) =
f2

∗ (z,a)− µ2
θ̄
(z,a)

B2(z,a)− µ2
θ̄
(z,a) ,

and its expectation is:

E[y(z,a)] =
E[f2

∗ (z,a)]− µ2
θ̄
(z,a)

B2(z,a)− µ2
θ̄
(z,a) = 1

n
.

This implies that the statistic y(z,a) serves as an unbiased estimator for the reciprocal of the frequency of
(z,a). The variance of y(z,a) is given by:

V ar[y(z,a)] = V ar[f2
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= E[f4
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where

K1 = 1, K2 = 4n− 4, K3 = 2n− 3,
K4 = 4n2 − 16n+ 12, K5 = −5n2 + 10n− 6.

so we have:
lim
n→∞

V ar[y(z,a)] = 0.

As n approaches infinity, the variance of the statistic approaches zero, indicating the stability and consistency
of y(z,a).

F Related Works

Our work builds on previous advancements in imitation learning and model-based reinforcement learning.

Imitation Learning Recent advancements in imitation learning (IL) have leveraged deep neural networks
and diverse methodologies to enhance performance. Generative Adversarial Imitation Learning (GAIL) (Ho
& Ermon, 2016) laid the foundation for adversarial reward learning by formulating it as a min-max opti-
mization problem inspired by Generative Adversarial Networks (GANs) (Goodfellow et al., 2014). Several
approaches have built on GAIL. Model-based Adversarial Imitation Learning (MAIL) (Baram et al., 2016)
extended GAIL with a forward model trained via data-driven methods. ValueDICE (Kostrikov et al., 2019)
transformed the adversarial framework by focusing on off-policy learning through distribution ratio estima-
tion.

Offline imitation learning has seen significant advancements through approaches like Diffusion Policy (Chi
et al., 2023), which applied diffusion models for behavioral cloning, and Ditto (DeMoss et al., 2023), which
combined Dreamer V2 (Hafner et al., 2020) with adversarial techniques. Implicit BC (Florence et al.,
2022) demonstrated that supervised policy learning with implicit models improves empirical performance in
robotic tasks. DMIL (Zhang et al., 2023) leveraged a discriminator to assess dynamics accuracy and the
suboptimality of model rollouts against expert demonstrations in offline IL.

Other innovations focused on integrating advanced reinforcement learning techniques. Inverse Soft Q-
Learning (IQ-Learn) (Garg et al., 2021) reformulated GAIL’s learning objectives, applying them to soft
actor-critic (Haarnoja et al., 2018) and soft Q-learning agents. SQIL (Reddy et al., 2019) contributed an
online imitation learning algorithm utilizing soft Q-functions. CFIL (Freund et al., 2023) introduced a
coupled flow method for simultaneous reward generation and policy learning from expert demonstrations.
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Random Expert Distillation (RED) (Wang et al., 2019) proposed an alternative method for constructing
reward models by estimating the support of the expert policy distribution.

Model-based methods have also played a pivotal role in advancing IL. V-MAIL (Rafailov et al., 2021)
employed variational models to facilitate imitation learning, while CMIL (Kolev et al., 2024) utilized conser-
vative world models for image-based manipulation tasks. Prior works (Englert et al., 2013; Hu et al., 2022;
Igl et al., 2022) highlighted the potential of model-based imitation learning in real-world robotics control and
autonomous driving. A model-based inverse reinforcement learning approach by Das et al. (2021) explored
key-point prediction to improve performance in imitation tasks. Hybrid Inverse Reinforcement Learning
(Ren et al., 2024) offered a novel strategy blending online and expert demonstrations, enhancing agent ro-
bustness in stochastic settings. EfficientImitate (Yin et al., 2022) fused EfficientZero (Ye et al., 2021) with
adversarial imitation learning, achieving impressive performance on DMControl tasks (Tassa et al., 2018).

Model-based Reinforcement Learning Recent advancements in model-based reinforcement learning
(MBRL) utilize learned dynamics models, constructed via data-driven methodologies, to enhance agent
learning and decision-making. MBPO (Janner et al., 2019) introduced a model-based policy optimization
algorithm that ensures stepwise monotonic improvement. Extending this to offline RL, MOPO (Yu et al.,
2020b) incorporated a penalty term in the reward function based on the uncertainty of the dynamics model
to manage distributional shifts effectively. MBVE (Feinberg et al., 2018) augmented model-free agents with
model-based rollouts to improve value estimation.

Many approaches focus on constructing dynamics models in latent spaces. PlaNet (Hafner et al., 2019b)
pioneered this direction by proposing a recurrent state-space model (RSSM) with an evidence lower bound
(ELBO) training objective, addressing challenges in partially observed Markov decision processes (POMDPs).
Building on PlaNet, the Dreamer algorithms (Hafner et al., 2019a; 2020; 2023) leveraged learned world
models to simulate future trajectories in a latent space, enabling efficient learning and planning. The TD-
MPC series (Hansen et al., 2022; 2023) further refined latent-space modeling by developing a scalable world
model for model predictive control, utilizing a temporal-difference learning objective to improve performance.
Similarly, MuZero (Schrittwieser et al., 2020) combined a latent dynamics model with tree-based search to
achieve strong performance in discrete control tasks, blending planning and policy learning seamlessly. The
EfficientZero series (Ye et al., 2021; Wang et al., 2024) enhances MuZero, achieving superior sampling
efficiency in visual reinforcement learning tasks.
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