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Abstract001

Large Language Models (LLMs) display002
formidable capabilities in generative tasks but003
also pose potential risks due to their tendency to004
generate hallucinatory responses. Uncertainty005
Quantification (UQ), the evaluation of model006
output reliability, is crucial for ensuring the007
safety and robustness of AI systems. Recent008
studies have concentrated on model uncertainty009
by analyzing the relationship between output010
entropy under various sampling conditions and011
the corresponding labels. However, these meth-012
ods primarily focus on measuring model en-013
tropy with precision to capture response charac-014
teristics, often neglecting the uncertainties asso-015
ciated with greedy decoding results, the sources016
of model labels, which can lead to biased clas-017
sification outcomes. In this paper, we explore018
the biases introduced by greedy decoding and019
propose a label-confidence-aware (LCA) un-020
certainty estimation based on Kullback-Leibler021
(KL) divergence bridging between samples and022
label source, thus enhancing the reliability and023
stability of uncertainty assessments. Our em-024
pirical evaluations across a range of popular025
LLMs and NLP datasets reveal that different la-026
bel sources can indeed affect classification, and027
that our approach can effectively capture dif-028
ferences in sampling results and label sources,029
demonstrating more effective uncertainty esti-030
mation.031

1 Introduction032

Large language models (LLMs) have demonstrated033

formidable capabilities in natural language process-034

ing tasks such as machine translation (Fomicheva035

et al., 2020), abstract text summarization (Brown036

et al., 2020), and question-answering (Touvron037

et al., 2023). Techniques such as In-context038

Learning (ICL) (Dong et al., 2022) and Chain-of-039

Thought (COT) (Wei et al., 2022) have further en-040

hanced model performance on complex reasoning041

tasks and scenarios involving unseen data, con-042

sistently setting new benchmarks. However, de- 043

spite their proficiency under scaling laws (Kaplan 044

et al., 2020), these models underperform on more 045

challenging tasks like mathematical problems (Luo 046

et al., 2023). A significant concern is that, rather 047

than refusing to answer, models are more likely to 048

generate answers that include illusory reasoning 049

processes and hallucinations. Uncertainty estima- 050

tion and measurement have become essential tools 051

in machine learning aiding in determining the ex- 052

tent to which humans can trust AI-generated con- 053

tent and deciding when to intervene with manual 054

assistance. Previous research works in this field 055

have involved prompting LLMs to self-assess the 056

confidence of their own answers or employing con- 057

fidence assessments based on model outputs using 058

logits or entropy. Recent development Semantic 059

Entropy (SE) (Kuhn et al., 2023) has introduced 060

semantic-based entropy prediction schemes in that 061

account for the synonym phenomena inherent in 062

language models, performing answer aggregation 063

in semantic space. Duan et al. (2023) and Bak- 064

man et al. (2024) propose schemes SAR and MARS 065

based on semantic importance weighting, focus- 066

ing on more precisely measuring the information 067

content in the model’s latent space to offer viable 068

approaches to align the sampling entropy more 069

closely with the actual value. However, we ob- 070

serve that the confidence and semantic alignment 071

of the answers which serve as label sources, as 072

well as their deviations from the distribution space, 073

significantly impact the entropy’s classification per- 074

formance, an aspect overlooked by these schemes. 075

076

As shown in Figure 1, when given a question, 077

in the beam search multi-sampling strategy, three 078

out of the five answers generated by the LLM are 079

correct, but due to the high overall entropy value, 080

the LLM may be marked as unable to answer this 081

question. Such an error is caused by the entropy 082

threshold used in the evaluation only considering 083
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Figure 1: Ignoring the probability information of the
label answer in Free-form may lead to incorrect un-
certain classification. We term it as label confidence
unawareness, and integrate the omitted information into
our method.

the absolute value, such as the common − log(0.5),084

and ignoring the distribution of the model itself for085

the question, that is, the greedy decoding proba-086

bility is lower than the probability corresponding087

to the sample entropy value, which is 0.1661 as088

shown below.089

To mitigate this issue, as shown in Figure 1,090

we propose a label-confidence-aware (LCA) uncer-091

tainty estimation based on Kullback-Leibler diver-092

gence (KLD) bridging between samples and label093

source, thus enhances the reliability and stability of094

uncertainty assessments. We first sample answers095

of question as well as the output probabilities for096

calculating entropy of sample set. We then obtain097

an average probability stand for the samples and098

merge it with labeled answer probability by KLD099

to measure their difference, and use the integrated100

information to classify whether the model could101

answer the question or whether the answer can be102

trusted.103

Our work contributes in the following ways:104

• We conduct experiments on 5 models and 5105

datasets on recently popular methods, identi-106

fying and reporting biases in the uncertainty107

measurement methods when assessing differ-108

ent answers and sample sizes, as well as ana-109

lyze the reasons behind these biases based on110

semantic probabilities.111

• We introduce a novel method for estimating112

uncertainty, termed Label-Confidence-Aware113

(LCA), which is based on what we refer to114

as Gibbs probability. This method explicitly115

accounts for the discrepancies between the116

sampling outcomes and the observed results117

when quantifying uncertainty.118

• We evaluate multiple important free-form 119

question-answering datasets on the currently 120

popular pre-trained LLMs. Results demon- 121

strate that our LCA based on KLD surpass 122

baseline methods. Furthermore, through hy- 123

perparameter ablation experiments, we show 124

how the variables in our method affect the 125

final results. 126

2 Related Work 127

Verbalization and logit-based or entropy-based 128

methods play a crucial role in addressing uncer- 129

tainty in the field of Natural Language Processing 130

(NLP). The verbalization methods which prompt 131

models to output confidence levels for their gener- 132

ated content, first introduced by Lin et al. (2022), 133

unfortunately often result in overconfident outputs. 134

Enhancements such as COT reasoning (Xiong et al., 135

2023) and multi-round dialogue cross models (Co- 136

hen et al., 2023) encourage models to stimulate 137

multi-steps reasoning for a more convincing scores. 138

Fine-tuning methods transforms model confidence 139

outputs into assessments of answer correctness 140

in a designed format and tuning the models with 141

specially crafted data (Kapoor et al., 2024; Han 142

et al., 2024). Logit-based and entropy-based meth- 143

ods assess model confidence and uncertainty by 144

focusing on the logits during the output process. 145

Kadavath et al. (2022) add a classification head 146

to the model’s final layer, mapping logits to the 147

probability of the “True” token, thus estimating 148

the model’s confidence in its responses. Huang 149

et al. (2023) combine token-level probabilities and 150

one-sentence entropy to evaluate the uncertainty 151

in model-generated content. Jiang et al. (2021) 152

proposes to mitigate the miscalibration of token 153

probability caused by linguistic synonymy through 154

data augmentation training and temperature fine- 155

tuning and Farquhar et al., 2024 suggests that ag- 156

gregates probabilities of synonymous sentences at 157

the sentence-level in the multi-sampling process 158

for better hallucination detection 159

3 Background 160

Total uncertainty includes aleatoric uncertainty 161

—measuring the ambiguity inherent in the problem 162

itself, and epistemic uncertainty -measuring the 163

uncertainty in predictions due to a lack of knowl- 164

edge within the models. It can be understood as the 165

entropy of the model’s predictions, Predictive En- 166

tropy (PE). For a given input x and output space Y , 167
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the predictive entropy is calculated as following:168

PE(x) = −
∫

P (y|x) logP (y|x)dy, (1)169

where P (y|x) is the conditional probability of170

generation y.171

The higher PE(x) is, the closer the model’s172

output probabilities are to a uniform distribution,173

indicating lower confidence in any specific output174

y out of the output space Y , and thus greater model175

uncertainty.176

In Bayesian networks, the sampling space for177

a model with a vocabulary of K tokens gen-178

erating sequences of length L is exponentially179

large, specifically |K|L, posing computational chal-180

lenges. To mitigate these challenges, we can em-181

ploy Monte Carlo sampling (Gal and Ghahramani,182

2016), which introduces random factors to approx-183

imate the sampling process.184

Under the condition of sufficient sampling quan-185

tity, an unbiased estimate of entropy can be:186

PE(x) = − 1

|N |
∑
y∼Y

logP (y|x)

= − log
∏
y∼Y

P (y|x)
1

|N| = − log P̃ .
(2)187

So we get P̃ = e−PE(x). This form resembles188

the Gibbs factor, which represents the overall prob-189

ability of system in physics. We refer to this value190

as “Gibbs probability”, a probability estimation for191

the sampled outcome distribution of the problem.192

Besides, the probability derived from a correspond-193

ing greedy decoded answer is termed the observed194

probability.195

As probabilities tend to decrease with increas-196

ing length, length-normalization method (Malinin197

and Gales, 2020), replacing probability of y with198
1
N

∑N
i logP (yi|y<i), could be used to scale the199

conditional probabilities of sentences of different200

lengths to the same magnitude and has been suc-201

cessfully applied in machine translation scenarios202

(Murray and Chiang, 2018).203

While in natural language generation tasks for204

sequence prediction, different sentences may ex-205

press the same meaning, thus sharing a common206

semantic space. SE introduced an effective UQ207

method in the level of semantic cluster in which208

uncertainty is the average of each cluster entropy.209
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Figure 2: Percentage of Falcon-7B and Mistral-7B w. &
w/o label answers in sample on CoQA and TriviaQA.

The formula is expressed as follows: 210

SE(x) = −
∑
c∈C

P (c|x) logP (c|x)

= −
∑
c∈C

((
∑
s∈c

P (s|x) log(
∑
s∈c

P (s|x))))

≈ −|C|−1

|C|∑
i=1

logP (Ci|x).

(3) 211

Similar to prior works, in our study, we also 212

normalize the entropy values obtained through dif- 213

ferent methods based on length. 214

4 Entropy Bias in Evaluating Different 215

Subjects 216

Uncertainty Quantification calculate a value about 217

information content of high-probability samples. 218

The higher the total probability of the sampling 219

results, the closer it approximates the true distribu- 220

tion. Then such a value is then evaluated on the 221

effectiveness of priorly representing the quality of 222

greedy decoded answer. 223

To analyze the representativeness of the greedy 224

decoded label, we evaluated the relationship be- 225

tween the greedy decoded label and the sampled 226

results. The datasets and models we used here are 227

the same as those described in experiment section 228

6. Specifically, we first measured the ROUGE-L 229

score between the labeled answer and the sampled 230

answers. Denoting sample set as S and the greedy 231

decoded answer as G, G is considered to be in S if 232

at least one Rouge−L(Si,G) exceeds a predefined 233

threshold α: 234

sim(S,G) =

{
1 if ∃ Rouge(Si,G) > α

0 otherwise
(4) 235

Figure 2 illustrates the occurrence of greedy de- 236

coded results within the sampled outcomes for 237
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Table 1: Uncertainty estimation AUROCs of LNPE &
SE with and without labeled answers in sample set.

model data num LNPE SE
in not in in not in

Falcon-7B
CoQA 10 0.7332| 0.5466| 0.7394| 0.5344
CoQA 20 0.7245| 0.6820| 0.7121| 0.6663

TriviaQA 5 0.5225| 0.5547| 0.7117| 0.6197

Mistral-7B
CoQA 10 0.7473| 0.4233| 0.7720| 0.3834

TriviaQA 5 0.6408| 0.4720| 0.7492| 0.5098
TriviaQA 20 0.6392| 0.5322| 0.7662| 0.4622

avg 0.6601| 0.5507| 0.7256| 0.5771

Falcon-7B and Mistral-7B over CoQA and Triv-238

iaQA (refer to the Appendix A for more results).239

Our results indicate that in many cases, the greedy240

results do not appear within the sampled set. Even241

when we increase the number of samples per ques-242

tion to 20 or 40, such a phenomenon is not signifi-243

cantly alleviated. This observation aligns with re-244

sults from SE (Kuhn et al., 2023), that performance245

improvements tend to plateau once the number of246

samples reaches five. This indicates that, although247

we hope the sampled outcomes would effectively248

represent the entire semantic space, current sam-249

pling strategies often fail to meet this objective.250

We further grouped the test data according to251

whether it is in or not in sample set to analyze the252

impact on the classification performance of the set253

entropy. We used the Area Under the Receiver Op-254

erating Characteristic (AUROC) metric to evaluate255

performance. The algorithm is shown below: We

Algorithm 1 Comparison between groups
Require: model M , questions Q, answer G, threshold α,

sets A, B, LA, LB, greedy-decoded answer g, samples
S, label L

1: for each q ∈ Q do
2: Generate g and samples S using model M
3: L = 1 if Rouge-L(G, g) > α else 0
4: for each s ∈ S do
5: Calculate β = Rouge-L(g, s)
6: if β > α then
7: A← A ∪ {g}, LA← LA ∪ {L}
8: else
9: B ← B ∪ {g}, LB ← LB ∪ {L}

10: end if
11: end for
12: end for
13: Calculate AUC(A,LA) and AUC(B,LB)

256
conduct experiments on LNPE (Malinin and Gales,257

2020) scheme and SE scheme. The models and258

the datasets remain the same as those mentioned259

above.260

We present the experimental results in Table 1.261

In most cases, when the greedy decoded answer is262

in the sampled results, the entropy of the sampled 263

results aligns with the quality of labeled answer 264

well and the performance drops significantly when 265

this is not the case. We focus on bridging between 266

those two circumstances to mitigate the misclassifi- 267

cation. 268

5 Method 269

Based on the previous experimental conclusions, 270

we believe that introducing label answers into the 271

sample set may improve performance. An intu- 272

itive method is to group labeled answer based on 273

sim(S,G), however it not only incurs significant 274

additional computational costs but also becomes 275

effective only when the greedy answer introduces 276

new answers. Additionally, when a label source 277

answer is merged into the sampled set, its inherent 278

confidence level should still be considered as a vital 279

piece of information. Our label-confidence-aware 280

(LCA) method, designed to effectively link answers 281

from any label source to the sampled results, shifts 282

the focus to probabilities. By integrating the over- 283

all probability of the joint sampling distribution 284

which derived from the entropy-based Gibbs prob- 285

ability with observed outcomes, it identifies a more 286

efficient and stable metric for measurement. 287

For a given problem x, we first use multino- 288

mial beam search to sample M sequences from 289

P (Y |x), resulting in a sample set {s1, s2, ...sM}. 290

We then compute the semantic implications be- 291

tween each sentence and categorize them into |C| 292

clusters using RoBERTa-Large (Liu et al., 2019), 293

The conditional probability of a cluster containing 294

N sequences is the sum of the probabilities of the 295

sentences. At the cluster level, we calculate the 296

entropy Ex and the corresponding Gibbs probabil- 297

ity. Then we greedily decode a represent answer 298

of which probability is Pgreedy. We consider the 299

aggregated probability of the sampling results as 300

a measure of confidence, representing the model’s 301

perceived probability of a set to be able to provide 302

an answer, considered as P (True). Similarly, we 303

view the probability of the greedy results as the 304

observed probability that can provide an correct 305

answer, considered as P
′
(True). 306

5.1 Pointwise KL-Divergence 307

When we introduce a new labeled answer to mea- 308

sure the overall probability of the calculation, this 309

answer will introduce epistemic uncertainty. We 310

used Kullback-Leibler divergence (KLD) to quan- 311
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tifiy the information lost when one distribution is312

used to approximate another and to messure the313

new uncertainties arising from noisy labels. In our314

study, we employ KLD between distributions of315

sampling results and observed outcomes as a metric316

to measure model uncertainty. This can help us ana-317

lyze to what extent the greedy decoding labels may318

be overconfident or underestimated. Specifically,319

we use the pointwise KL divergence between these320

two distributions, as described by Robert (2014),321

focusing solely on the probability differences be-322

tween tokens within the distributed answers:323

DifferKLD(S,G) = P̃ log
P̃

PG
. (5)324

5.2 Why Gibss probability?325

The Expected Pairwise KL Divergence (EPKL) is326

another measure of uncertainty that quantifies the327

total bidirectional divergence between each pair of328

samples in the model. We derive that our method329

is calculated from a geometric mean perspective,330

integrating information from all sampled answers331

in one direction and smoothing out some details,332

making it more suitable for an overall assessment333

of the entire sampling distribution, while EPKL334

is based on the arithmetic mean, which leads to335

numerical instability when there is significant vari-336

ance among sample results. More details refer to337

Appendix E.2.338

6 Experiments339

Baselines. We chose vinilla Length Normalizaiton340

Predictive Entropy (LNPE) (Malinin and Gales,341

2020), Semantic Entropy (SE) (Kuhn et al., 2023),342

and Shift Attention Towards Relevance (SAR)343

(Duan et al., 2023) as baselines, and enhancing344

them with aggregation methods to compare perfor-345

mance. Detailed implementations are available in346

Appendix B.347

Models. Following experimental methodologies in348

the SE and SAR studies, we conduct experiments349

using open-source LLMs, including models from350

the Llama 2 (Touvron et al., 2023), OPT (Zhang351

et al., 2022), Falcon (Penedo et al., 2023), and Mis-352

tral (Jiang et al., 2023) series, ranging in size from353

2.7B to 13B parameters. Detailed experimental354

configurations can be found in Appendix C.355

Datasets. We conduct experiments on several356

free-form text generation tasks in NLP, including357

CoQA (Reddy et al., 2019), Natural Questions (Nat-358

uralQA) (Kwiatkowski et al., 2019) , TriviaQA359

(Joshi et al., 2017) , SciQ (Welbl et al., 2017) and 360

SVAMP (Patel et al., 2021). CoQA is a machine 361

reading comprehension task, SciQ, NaturalQA and 362

TriviaQA are open domain tasks, and SVAMP fo- 363

cuses on mathematical problems. Details regarding 364

the composition of the test sets can be found in 365

Appendix D. 366

Correctness Metric We employ the ROUGE-L 367

metric to determine the labels, which serve as a 368

classification result for whether the model can an- 369

swer the question. The datasets we focus on are 370

primarily concerned with sentence-level genera- 371

tion, making ROUGE-L the most commonly used 372

evaluation metric for these types of tasks. Unless 373

specifically stated otherwise, we set the default 374

ROUGE threshold to 0.5, as this is a commonly 375

accepted value. 376

Evaluation Metric Following the prior works, we 377

used AUROC as a evaluation metric, which is pop- 378

ular in binary classification tasks. Furthermore, We 379

calculated the Pearson correlation coefficient to an- 380

alyze the performance of our method in the case of 381

continuous classification. 382

Hyperparameters. For the CoQA dataset, we gen- 383

erated 10 answers per question, while for others, 384

we generated 5 answers per question. We set the 385

generation temperature at 0.5 which works best. In 386

the SAR experiments, the parameter t was set to 10. 387

To be consistent with prior works, we employed 388

greedy search to generate the most probable an- 389

swers for evaluating correctness labels and utilized 390

multinomial sampling to produce reference genera- 391

tions. All experiments were carried out using two 392

NVIDIA A40 GPUs. 393

7 Results Analysis 394

In Table 2, we provide a detailed performance com- 395

parison between our LCA method and the baselines 396

across evaluation datasets using models including 397

OPT-2.7B, Falcon-7B, Mistral-7B, Llama2-7B and 398

OPT-13B. In the majority of cases, our metric out- 399

performs the baseline. Our LCA method, in the 400

average results of all data, has an AUROC that ex- 401

ceeds the SAR method by 5.5%, the TokenSAR 402

method by 6.8%, the SE method by 8.5%, and the 403

LNPE method by 12%. Even when the OPT-13B 404

model achieves a high AUROC score of 0.8514 405

on the SciQ dataset on LNPE, LCA method still 406

enhances its performance further, reaching 0.9033. 407

On the challenging SVAMP, our method signifi- 408

cantly outperforms baselines by effectively analyz- 409
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Table 2: Uncertainty estimation AUROCs of our LCA method with different methods as backbone and baselines
across datasets.

model data LNPE SE TokenSAR SAR
base LCA base LCA base LCA base LCA

OPT-2.7B
CoQA 0.7377 0.6934 0.7037 0.7048 0.7006 0.7055 0.7116 0.7165
TriviaQA 0.7418 0.9304 0.7477 0.8499 0.7524 0.8042 0.7540 0.8011
NaturalQA 0.7573 0.7670 0.8488 0.8617 0.8673 0.8624 0.8675 0.8661

Mistral-7B

CoQA 0.6217 0.8629 0.6206 0.7652 0.6227 0.7377 0.6215 0.7180
TriviaQA 0.5928 0.8803 0.6189 0.8030 0.6272 0.7433 0.6257 0.7244
NaturalQA 0.5461 0.6521 0.5716 0.5959 0.5662 0.5944 0.5695 0.5932
SciQ 0.5933 0.8640 0.6720 0.8237 0.6980 0.7808 0.6972 0.7731
SVAMP 0.6385 0.7902 0.5734 0.8291 0.5781 0.8309 0.5773 0.8039

Falcon-7B

CoQA 0.7674 0.7137 0.7472 0.7448 0.7384 0.7415 0.7485 0.7519
TriviaQA 0.6098 0.7637 0.6902 0.7715 0.6953 0.6799 0.6969 0.6828
NaturalQA 0.4800 0.5365 0.5815 0.5918 0.5916 0.5993 0.5949 0.6033
SciQ 0.7136 0.8812 0.7200 0.8294 0.7046 0.7330 0.7109 0.7350
SVAMP 0.6793 0.8441 0.6701 0.8342 0.6696 0.8304 0.6699 0.8220

Llama2-7B

CoQA 0.7636 0.8602 0.7465 0.8146 0.7333 0.7886 0.7475 0.7917
TriviaQA 0.5720 0.8064 0.6336 0.7660 0.6289 0.7071 0.6287 0.7013
NaturalQA 0.5500 0.5990 0.6267 0.6437 0.6215 0.6473 0.6247 0.6476
SciQ 0.5827 0.8054 0.6150 0.7468 0.6133 0.6922 0.6153 0.6892
SVAMP 0.6242 0.8737 0.5319 0.8804 0.5368 0.8803 0.5401 0.8172

OPT-13B
CoQA 0.7438 0.7250 0.7309 0.7337 0.7277 0.7340 0.7376 0.7436
TriviaQA 0.5839 0.8285 0.6897 0.7995 0.6934 0.7100 0.6949 0.7098
NaturalQA 0.6990 0.7429 0.7428 0.7562 0.7515 0.7456 0.7489 0.7523
SciQ 0.8514 0.9033 0.6824 0.7725 0.7214 0.7675 0.7280 0.7620

avg 0.6568 0.7874 0.6711 0.7690 0.6745 0.7420 0.6778 0.7364

Table 3: Pearson correlation coefficient results of exper-
iments.

model SE LNPE TokenSAR SAR
base LCA base LCA base LCA base LCA

OPT-2.7B 0.202 0.286 0.210 0.298 0.053 0.254 0.220 0.255
Falcon-7B 0.208 0.306 0.191 0.288 0.124 0.237 0.214 0.233
Mistral-7B 0.135 0.372 0.123 0.409 0.462 0.315 0.138 0.231
Llama2-7B 0.147 0.278 0.146 0.291 0.309 0.234 0.154 0.205
OPT-13B 0.174 0.249 0.160 0.243 0.066 0.198 0.187 0.202

avg 0.173 0.298 0.166 0.306 0.203 0.248 0.183 0.225

ing the relationship between the probability diver-410

gence among the sample sets and observed results411

We also calculated the average Pearson correla-412

tion coefficients performance of different methods413

on 5 datasets on 5 models. Results are shown in414

Table 3. These results show that our proposed met-415

ric has a stronger correlation with ROUGE-L and416

performs better as a priori representation of NLG417

answer quality, surpassing metrics designed only418

for classification tasks.419

We further explored the impact of introducing420

perturbations to the label sources and probabili-421

ties. By using labels derived from different an-422

swer strategies, we aimed to more deeply analyze423

the importance and effectiveness of establishing424

a connection between the two probabilities. This425

was achieved by comparing the overall model per-426

formance and the associated uncertainty. We em- 427

ployed various strategies for replacing labels. On 428

LNPE, we chose the highest probability sample 429

from the sampling set, denoted as LNPEsample, 430

as the label source. On SE, we chose the sam- 431

ple with the highest probability from the largest 432

semantic cluster, denoted as SEsample. Addition- 433

ally, in both experiments, we randomly pick sam- 434

ples from the sets, LNPErandom and SErandom 435

to get new labels for evaluation. On SE, we add a 436

control group that integrates the greedy decoded 437

answers into a sample set based on semantic simi- 438

larity. Specially, if the semantic similarity between 439

the greedy-decoded answer and si is the highest 440

and exceeds 0.5, G is assigned to the semantic clus- 441

ter containing si. Otherwise, G is assigned to a new 442

semantic cluster. 443

Our results in Table 4 show that, in both LNPE 444

and SE experiments, labels from sampled answers 445

significantly surpass the baseline in AUROC. We 446

attribute this observation to the fact that samples, 447

as part of the sampled set, exhibit a stronger cor- 448

relation with the Gibbs probability of the set. The 449

probability of a sample, to some extent, reflects the 450

contribution of its label within the set—a stronger 451

contribution often implies that its label is more rep- 452

resentative of the overall labels. Additionally, as 453

the highest probability in the entire semantic space 454

or within the largest semantic cluster of the sam- 455
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Figure 3: Ablation results. (a):Num of generation ablation. As number rises, AUROCs increase and then levels
off.(b)ROUGE-L threshold ablation. As the higher threshold is, a stricter critirion it is and the better result we get.
(c)TriviaQA temperature ablation on Llama2-7B. As the temperature rises, AUROCs first increase and then decrease

Table 4: Uncertainty estimation AUROCs of LNPE &
SE with labels from different strategies. TQ stands
for TriviaQA, sp stands for Sample, and rd stands for
random.

model num LNPE SE
&data base sp rd base sp rd merge

Falcon-7B

CoQA 10 0.747 0.748 0.734 | 0.747 0.772 0.748 0.746
CoQA 20 0.737 0.736 0.719 | 0.721 0.747 0.734 0.718
TQ 5 0.549 0.589 0.479 | 0.690 0.729 0.623 0.761

Mistral-7B

CoQA 10 0.608 0.777 0.746 | 0.620 0.802 0.770 0.833
TQ 5 0.567 0.678 0.649 | 0.619 0.808 0.730 0.818
TQ 20 0.578 0.680 0.621 | 0.620 0.811 0.6798 0.748

avg 0.631 0.701 0.658 0.670 0.778 0.714 0.771

pled space, its label possesses higher representative-456

ness. The AUROC of randomly selected labels sur-457

passes the baseline but remains significantly lower458

than the highest score, which indirectly supports459

our hypothesis that randomly picked labels are less460

robust as representatives of the set. Furthermore,461

when integrating the greedy decoded answer with462

the sampled results, the performance exceeds that463

of randomly picked labels but slightly falls short464

of SEsample, indicating that the greedy decoded465

answer is not always the most probable one. We466

provide a probabilistic analysis of how it impacts467

the results in Appendix E.1.468

We also evaluated the improvements brought by469

our method when the labeled answer is either in-470

cluded in or excluded from the sample set, across471

different data sets Table 5 presents a comparison472

result using SE as a backbone method. Our method473

consistently outperforms baselines in both scenar-474

ios to varying degrees. Furthermore, in the scenario475

where the greedy answer is semantically integrated476

Table 5: Uncertainty estimation AUROCs of baseline
and LCA method in different datasets. Results are aver-
aged from all our test models.

data baseline not in sample in sample merge
base LCA base LCA base LCA

CoQA 0.717 0.466 0.588 0.745 0.748 0.780 0.788
NaturalQA 0.640 0.420 0.612 0.645 0.673 0.697 0.703
SCiQ 0.691 0.559 0.733 0.692 0.793 0.764 0.794
TriviaQA 0.648 0.595 0.789 0.659 0.759 0.786 0.818
SVAMP 0.617 0.536 0.864 0.566 0.681 0.839 0.840

avg 0.663 0.515 0.717 0.661 0.731 0.773 0.789

into the sample set, we still achieves a 1.6% in- 477

crease in the score compared to the baseline (refer 478

to Appendix F for more data). This demonstrates 479

that even when we group the labeled answer seman- 480

tically to enhance the entropy representiveness, the 481

confidence of label still need to be concerned about. 482

As SVAMP is harder, models tend to be wrong even 483

when label probability is high, and the correct an- 484

swer of this type of problem tends to come from 485

the beam search sampling. After merging it into 486

the sample, the entropy value is reduced, resulting 487

in the correct answer result being opposite to the 488

label. It shows that the label selection strategy is 489

also an issue worthy of attention. 490

8 Ablation Study 491

8.1 Number of Generation 492

The impact of the number of samples on the per- 493

formance of our method with LNPE, SE and SAR 494

methods as backbone is illustrated in Figure 3(a). 495

Even though the SAR method significantly surpass 496

others, we get higher scores. Taking the perfor- 497

mance of the OPT-2.7 model on the NaturalQA 498

(NQ) dataset as an example, the AUROC increases 499

with the number of samples, reaches its peak and 500

7



Table 6: The performance of KLD-based method and
R-KLD-based method on each backbone. All the results
are obtained by averaging results of all models on all
datasets.

backbone baseline KLD R-KLD SAD

LNPE 0.6568 0.7874 0.6856 0.4096
SE 0.6711 0.7690 0.6018 0.6607
TOKENSAR 0.6745 0.7420 0.6553 0.6235
SAR 0.6778 0.7364 0.6363 0.6711

avg 0.6701 0.7587 0.6447 0.5912

stabilizes with more samples and almost constant501

diversity, which is similar to results proposed by502

SE. These results suggest that further optimizing503

the model’s decoding strategy to enhance its diver-504

sity could potentially improve the method’s perfor-505

mance.506

8.2 Sensitivity to Rouge-L Threshold507

We use the mean of all experimental results to show508

the effect of the change in ROUGE-L threshold on509

the performance of KLD-based method in Figure510

3(b). As the Rouge threshold increases, the correct-511

ness judgment becomes more stringent. Our exper-512

imental results show that as the Rouge-L threshold513

increases, the performance of different methods in514

judging model uncertainty increases accordingly.515

Across all thresholds our methods are always better516

than the baselines.517

8.3 Temperature518

We show the effect of temperature on performance519

in Figure 3(c). Following SE, we conduct ex-520

periments on TriviaQA using the Llama2-7B. A521

smaller temperature will make the token proba-522

bility sharper and reduce the diversity of model523

generation. As the temperature increases, after the524

temperature exceeding 0.5, the performance of the525

model decreases as the temperature increases. We526

speculate that this is because although the model di-527

versity has increased, the difference between tokens528

in vocabulary, thus the probability divergence of529

the final sampling set and greedy decoding results530

has become flatter and more difficult to distinguish.531

8.4 Different Integrate Methods532

We compare the use of KL-divergence (KLD) with533

methods that use sample average deviation (SAD)534

(Rivera et al., 2024) and Reverse KL-divergence535

(R-KLD) (Malinin and Gales, 2019) as aggregation536

methods, where:537

DifferSAD(S,G) = |P̃ − PG |, (6)538

DifferR−KLD(S,G) = PG log
PG

P̃
. (7) 539

Our results, shown in Table 6 results indicate that 540

when we treat the sampling results as the “cor- 541

rect” distribution and view greedy sampling as the 542

prediction, divergence calculations help us better 543

identify when the model is more likely to be able 544

to answer. However, with R-KLD, it shows a poor 545

simulator of the actual distribution, only winning 546

in LNPE. As for SAD, it shows that directly com- 547

paring the probabilities would even mislead our 548

classification in LNPE. 549

8.5 Effectiveness on Multi-fact Generation 550

Multi-fact generation tasks represent a common cat- 551

egory within natural language generation (NLG). 552

To evaluate the performance of LCA method on 553

such tasks, we took summarization task as a rep- 554

resentative. We utilized the Llama3-8B model to 555

conduct experiments on the XSum (Narayan et al., 556

2018) dataset. Generations with ROUGE-L greater 557

than the threshold will be assigned a label of 1, 558

otherwise it will be assigned a label of 0. The re- 559

sults of these experiments are presented in Table 560

7. Our LCA consistently enhances performance 561

across various methods, achieving a maximum im- 562

provement of 0.09 on LNPE backbone. Notably, 563

the method of LNPE performs the best. We at- 564

tribute this to the presence of multiple facts in the 565

generated text. Specifically, sequence-level clus- 566

tering employed by other semantic-level methods 567

tends to overlook the independence of individual 568

facts within generations. 569

Table 7: Results of Llama3-8B on Xsum under different
Rouge Threshold.

Thres SE PE TokenSAR SAR
base LCA base LCA base LCA base LCA

0.3 0.529 0.555 0.543 0.614 0.529 0.557 0.527 0.543
0.2 0.499 0.531 0.525 0.616 0.500 0.532 0.502 0.521
0.15 0.517 0.552 0.548 0.636 0.518 0.552 0.514 0.536

9 Conclusion 570

In this paper, we reveal the impact of biases be- 571

tween label sources and samples in uncertainty esti- 572

mation and propose our LCA method to aggregate 573

the confidence of them. Results demonstrate that 574

our method surpasses the state-of-the-art perfor- 575

mance. Further ablation results show the impact of 576

various parameters on method performance. 577
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10 Limitations578

We recognize that there are several areas where our579

approach can be further enhanced: (1) Model Ca-580

pability: In Section 6, we utilized Roberta to assess581

semantic relevance. Employing a more powerful582

model, or fine-tuning Roberta specifically on the583

test domain, could yield superior sampling results584

for semantic clustering and would significantly585

boost the performance of our uncertainty measure-586

ment. (2) Similarity Calculation in Multi-fact Sce-587

narios: Our experiments on the xsum dataset reveal588

that sequence-level similarity calculations can de-589

tract from the method’s performance in multi-fact590

contexts. Implementing more refined similarity cal-591

culations in these scenarios would likely enhance592

overall model performance.593

11 Ethics Statement594

In our research and experimental endeavors, we595

uphold rigorous ethical standards to ensure that596

our development and application of artificial in-597

telligence technology are conducted responsibly.598

Throughout our research process, we have avoided599

using data that relies on personal information or600

manual annotations. Additionally, we have utilized601

open-source models for our experiments without602

any additional training, thereby ensuring that we603

do not introduce bias or other harmful knowledge604

into them. We have also made our code and data605

publicly available on GitHub. We hope this trans-606

parency allows the community to verify the per-607

formance of our proposed method and to further608

enhance it.609
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A Results For Preliminary Experiments 776

we will further show the total distributions of mod- 777

els about the num of greedy answer is in/not in 778

sample set and the ratio value on our evaluation 779

datasets. As shown in Table 8, we see that there are 780

53% questions with, 47% questions without greedy 781

decoded answers in their sample sets, suggesting 782

that our multinomial beam search sampling can 783

search a larger retrieval space. On the other hand, 784

it also shows that our greedy decoding answer is 785

not the maximum decoding probability in a broad 786

sense. We may need to choose a better decoding 787

result as our label source. Such a distribution has 788

obvious deviations in different data and different 789
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models. For example, the overall in_rate is higher790

in the CoQA and NaturalQA datasets, indicating791

that the diversity of answers in these two datasets792

is relatively small, and most of the greedy decoded793

results in the overall sampling space belong to rel-794

atively high probability answers. However, the795

TriviaQA, SciQ and SVAMP datasets show the op-796

posite result, that is, the answer diversity of these797

questions is relatively large. In this case, we are798

often more likely to find the correct answer to the799

problem in the sampling set. For example, in the800

SVAMP dataset, the accuracy of the label source is801

low.

Table 8: Distributions about whether greedy decoded
answer is in sample set.

data model In_num NotIn_num In_rate

CoQA

Falcon-7B 5614 2369 0.71
Llama2-7B 7103 880 0.89
Mistral-7B 3275 4708 0.41
OPT-2.7B 6562 1421 0.82
OPT-13B 6913 1070 0.87

NaturalQA

Falcon-7B 3450 160 0.96
Llama2-7B 3524 86 0.98
Mistral-7B 3519 91 0.97
OPT-2.7B 3086 524 0.85
OPT-13B 3400 210 0.94

SciQ

Falcon-7B 177 823 0.18
Llama2-7B 172 828 0.17
Mistral-7B 284 716 0.28
OPT-2.7B 39 961 0.04
OPT-13B 56 944 0.06

SVAMP

Falcon-7B 280 717 0.28
Llama2-7B 110 887 0.11
Mistral-7B 141 856 0.14
OPT-2.7B 122 875 0.12

TriviaQA

Falcon-7B 2769 5234 0.35
Llama2-7B 1602 6401 0.20
Mistral-7B 2155 5848 0.27
OPT-2.7B 1348 6655 0.17
OPT-13B 1083 6920 0.14

Total 56784 51181 0.53

802

B Details Of Baselines803

B.1 TOKENSAR804

TokenSAR considers the different semantic impor-805

tances of tokens during generation, adjusting the806

contribution of different tokens in the overall sen-807

tence probability. This importance is measured by808

the similarity between the token and the sentence.809

That is:810

W (si,j , si, x) = 1− |g(x
⋃

si, x
⋃

si\si,j)|,
(8)811

with g(, ) calculates the similarity before and af- 812

ter removing the corresponding token si,j . The 813

more relevant the token, the greater the seman- 814

tic change it will cause, thus assigning it a higher 815

weight. The uncertainty measure of the entire sen- 816

tence becomes: 817

TOKENSARsi =

|si|∑
j=0

− logP (si,j |x, si,<j) · (1

−|g(x
⋃

si, x
⋃

si\si,<j)|)
(9)

818

B.2 SAR 819

The SAR method combines TokenSAR and 820

SentSAR, where SentSAR considers the relevance 821

of individuals within the beam search set to others, 822

calculated by their similarity sim(si, sj), shown 823

below: 824

SentSARsi = − log(P (si|x)

+
1

t

|s| & j!=i∑
j=0

g(si, sj)P (sj |x)),
(10) 825

with t as a hyperparameter for temperature. Re- 826

place P (si|x) in SentSARsi with e−TOKENSARsi , 827

and we will get SARsi . 828

C Details Of Models 829

To enhance the generalizability of our experimental 830

results, we employ a diverse range of models, span- 831

ning from 2.7B to 13B parameters, including both 832

pre-trained and instruction-tuned variants. Build- 833

ing upon models used in prior studies, we select 834

the OPT, Falcon, Mistral, and Llama series for our 835

evaluation. Specifically, we test pre-trained mod- 836

els such as OPT-2.7B, OPT-13B, and Llama2-7B, 837

as well as instruction-tuned models like Mistral- 838

7B and Falcon-7B. No additional fine-tuning on 839

evaluation datasets is applied to these models. 840

D Details Of Datasets 841

D.1 CoQA 842

CoQA is a dialogue comprehension dataset span- 843

ning multiple domains, with each entry comprising 844

a story relevant to the posed questions as well as 845

multi-turn human conversations. We conduct in- 846

ference tests on the entire validation set, which in- 847

cludes 500 dialogues and a total of 7,983 questions. 848

For each question, we concatenate the background 849

story and the conversation history, which serves 850
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as a reference for the model’s responses, in the851

following format:852

[The Provided Background Story]853

[History Conversations]854

Q: [Question for the model]855

D.2 SciQ856

SciQ is a question-answering dataset focused on857

the scientific domain, aiming at improving the per-858

formance of natural language models in science-859

related tasks. We perform inference tests on the860

entire validation set, which includes a total of 1,000861

questions.862

D.3 TriviaQA863

TriviaQA is an open-domain, closed-book question-864

answering dataset that spans a broad spectrum865

of topics and knowledge areas. We utilize the866

Question-Answer pairs, where the questions can867

be answered by the model without access to the868

associated documents. From the TriviaQA valida-869

tion set, which consists of 17,944 entries, we select870

about 8,000 for evaluation to maintain consistency871

in dataset size with COQA.872

Following the SE paper, we evaluate SciQ and873

TriviaQA using a 10-shot prompt format, con-874

structed from 10 randomly selected questions from875

the validation set. Below is an example:876

This is a bot that correctly answers877

questions.878

Question: {Question1} Answer: {Answer1}879

Question: {Question2} Answer: {Answer2}880

Question: {Question3} Answer: {Answer3}881

Question: {Question4} Answer: {Answer4}882

Question: {Question5} Answer: {Answer5}883

Question: {Question6} Answer: {Answer6}884

Question: {Question7} Answer: {Answer7}885

Question: {Question8} Answer: {Answer8}886

Question: {Question9} Answer: {Answer9}887

Question: {Question10} Answer: {Answer10}888

Question: {Question for model} Answer:889

D.4 Natural Questions890

Natural Questions (NaturalQA) is an open-domain891

question-answering dataset derived from real user892

queries entered into a search engine, providing a893

closer approximation to real-world scenarios. We894

utilize NQ-Open, a simplified derivative of the orig-895

inal dataset, and conduct testing on the entire val-896

idation set, comprising 3,610 questions. We con-897

struct a 2-shot prompt using two randomly selected 898

examples, with the data formatted as follows: 899

Answer these questions: 900

Question: What is the capital city of 901

Australia? 902

Answer: The capital city of Australia 903

is Canberra. 904

Question: Who painted the famous artwork 905

"Starry Night"? 906

Answer: "Starry Night" was painted by 907

Vincent van Gogh. 908

Question: {Question for model}? 909

Answer: 910

D.5 SVAMP 911

SVAMP is a dataset designed for mathematical 912

reasoning tasks, requiring models to comprehend 913

and solve math problems described in natural lan- 914

guage. This dataset is specifically created to chal- 915

lenge models with complex reasoning, testing their 916

ability to perform multi-step arithmetic operations 917

accurately. SVAMP also features problems with 918

varying levels of difficulty, making it a comprehen- 919

sive benchmark for evaluating the mathematical 920

reasoning capabilities of natural language models. 921

We randomly select 3 problems from the valida- 922

tion set to construct a 3-shot prompt, which is then 923

used to evaluate 997 test questions. Below is an 924

example: 925

Q: Winter is almost here and most 926

animals are migrating to warmer 927

countries. There are 41 bird families 928

living near the mountain. If 35 bird 929

families flew away to asia and 62 bird 930

families flew away to africa How many 931

more bird families flew away to africa 932

than those that flew away to asia? A: 933

27 Q: Paige raised 7 goldfish and 12 934

catfish in the pond but stray cats loved 935

eating them. Now she has 15 left. How 936

many fishes disappeared? A: 4 Q: Marco 937

and his dad went strawberry picking. 938

Together they collected strawberries 939

that weighed 22 pounds. On the way back 940

Marco'dad found 30 more pounds of 941

strawberries. Marco's strawberries now 942

weighed 36 pounds. How much did his dad' 943

s strawberries weigh now? A: 16 Q: Debby 944

bought 200 water bottles and 256 soda bottles 945

when they were on sale. If she drank 312 946

water bottles and 4 soda bottles a day How 947

12



Table 9: Uncertainty estimation AUROCs for experiments that contain the greedy decoded answer within the sample
set.

data model PE SE TOKENSAR SAR
base LCA base LCA base LCA base LCA

COQA

Falcon-7B 0.7534 0.6898 0.7394 0.7352 0.7330 0.7257 0.7457 0.7420
Llama2-7B 0.7417 0.8073 0.7305 0.7861 0.7160 0.7776 0.7343 0.7823
Mistral-7B 0.7723 0.7517 0.7720 0.7954 0.7632 0.7829 0.7742 0.7889
OPT-13B 0.7270 0.6898 0.7244 0.7242 0.7230 0.7213 0.7359 0.7358

NaturalQA

Falcon-7B 0.4696 0.5255 0.5786 0.5891 0.5912 0.6067 0.5947 0.6067
Llama2-7B 0.5609 0.6110 0.6436 0.6609 0.6382 0.6566 0.6418 0.6583
Mistral-7B 0.5377 0.6443 0.5683 0.5923 0.5635 0.5860 0.5668 0.5852
OPT-2.7B 0.7670 0.7499 0.8452 0.8492 0.8620 0.8637 0.8629 0.8671
OPT-13B 0.7283 0.7536 0.7489 0.7586 0.7568 0.7605 0.7541 0.7575

SciQ

Falcon-7B 0.5871 0.6969 0.6703 0.7098 0.7684 0.7897 0.7766 0.7948
Llama2-7B 0.5209 0.7249 0.5833 0.6920 0.5989 0.6992 0.6042 0.6996
Mistral-7B 0.6060 0.7614 0.6914 0.7954 0.7266 0.8219 0.7308 0.8161
OPT-13B 0.9636 1.0000 0.9091 0.9636 0.9273 0.9818 0.9455 0.9818

SVAMP
Falcon-7B 0.6701 0.6165 0.6752 0.6779 0.6779 0.6785 0.6789 0.6831
Llama2-7B 0.6566 0.6951 0.5280 0.7612 0.5317 0.7576 0.5335 0.7392
Mistral-7B 0.5262 0.7084 0.3376 0.6283 0.3259 0.4794 0.3288 0.4193

TriviaQA

Falcon-7B 0.5552 0.6417 0.7117 0.7399 0.7493 0.7708 0.7512 0.7705
Llama2-7B 0.5383 0.6424 0.6672 0.7155 0.6685 0.7167 0.6682 0.7147
Mistral-7B 0.6728 0.6728 0.7492 0.7552 0.7555 0.7622 0.7492 0.7586
OPT-2.7B 0.7010 0.8789 0.7417 0.8268 0.7461 0.8273 0.7484 0.8242
OPT-13B 0.5453 0.8899 0.7072 0.8305 0.7270 0.8400 0.7301 0.8350

avg 0.6477 0.7215 0.6820 0.7423 0.6929 0.7431 0.6979 0.7410

Table 10: Uncertainty estimation AUROCs for experiments that exclude the greedy decoded answer within the
sample set.

data model PE SE TOKENSAR SAR
base LCA base LCA base LCA base LCA

COQA

Falcon-7B 0.5251 0.6001 0.5344 0.5478 0.5158 0.5271 0.5056 0.5148
Llama2-7B 0.4981 0.7238 0.4786 0.5229 0.4857 0.5371 0.4762 0.5171
Mistral-7B 0.4345 0.8055 0.3834 0.4870 0.3978 0.4853 0.4022 0.4723
OPT-13B 0.4345 0.5652 0.4388 0.4550 0.4398 0.4557 0.4349 0.4471

NaturalQA
Llama2-7B 0.0941 0.3294 0.0353 0.0706 0.0353 0.1294 0.0235 0.0941
OPT-2.7B 0.7089 0.8720 0.8765 0.9578 0.9053 0.9674 0.9053 0.9610
OPT-13B 0.1911 0.7572 0.6106 0.6875 0.6466 0.7212 0.6418 0.7212

SciQ

Falcon-7B 0.4672 0.7672 0.4366 0.6279 0.4643 0.5771 0.4649 0.5665
Llama2-7B 0.5668 0.8060 0.5990 0.7436 0.5902 0.7404 0.5901 0.7321
Mistral-7B 0.5264 0.8356 0.5397 0.6884 0.5376 0.6927 0.5351 0.6811
OPT-13B 0.9343 0.8176 0.4040 0.5779 0.4825 0.5864 0.4931 0.5737

SVAMP
Falcon-7B 0.5855 0.9137 0.5547 0.8304 0.5487 0.8239 0.5495 0.8054
Llama2-7B 0.5626 0.8936 0.5092 0.8818 0.5078 0.8278 0.5082 0.8134
Mistral-7B 0.5344 0.7898 0.4668 0.8723 0.4870 0.8528 0.4875 0.8338

TriviaQA

Falcon-7B 0.6246 0.7919 0.6197 0.7191 0.5675 0.6750 0.5619 0.6637
Llama2-7B 0.5316 0.7729 0.5937 0.7312 0.5898 0.7301 0.5865 0.7207
Mistral-7B 0.4982 0.8428 0.5098 0.6964 0.5094 0.6949 0.5046 0.6671
OPT-2.7B 0.6736 0.9288 0.6515 0.8001 0.6617 0.8018 0.6592 0.7923
OPT-13B 0.5831 0.8228 0.6676 0.7834 0.6663 0.7818 0.6666 0.7774

avg 0.5250 0.7703 0.5216 0.6674 0.5284 0.6636 0.5261 0.6503
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many days would the soda bottles last? A:948

E Probabilistic Analysis949

E.1 Merge Greedy Decoded Answer into950

Samples951

We denote the probability of an individual in a sam-952

pling set with N samples as Pi and the probability953

of the greedy decoded answer as Pgreedy. When954

considering merging the greedy decoded answer955

into the sampling set based on semantic similarity,956

the impact on the overall entropy will differ de-957

pending on whether the greedy answer has already958

appeared in the sampling set. The entropy of the959

samples can be calculated as:960

Esample = −
N∑
i

Pi logPi, (11)961

If the greedy answer belongs to clusteri within the962

sampling domain, the entropy remains unchanged963

since the answer has already been sampled, avoid-964

ing repeated calculations of the same answer that965

would bias the entropy value. If the greedy an-966

swer is outside the sampling domain, the entropy967

changes to:968

Esample = −(
N∑
i

Pi′ logPi′+Pgreedy logPgreedy),

(12)969

where Pi′ =
Pi∑N

i=1 Pi+Pgreedy
Since Pi′ < Pi, the970

entropy increases, further widening the gap be-971

tween the expected probability and the observed972

value. Thus, when the greedy decoded answer has973

not appeared in the sampling set, adopting a merg-974

ing strategy will make the overall distribution more975

closely approximate the true distribution.976

E.2 Gibss Probability and EPKL977

Expected Pairwise KL-divergence (EPKL) is an-978

other uncertainty measurement that calculate total979

divergence between each sample from model:980

EPKL[y, θ|x,D] = Eq(θ)q(θ̃)

[
Ep(y|x,θ)

[
lnP (y|x, θ)

− lnP (y|x, θ̃)
]]
.

(13)981

where θ, θ̃ represent either Bayesian network pa-982

rameters or randomness injected via Monte Carlo983

sampling. As mentioned above, we treat Gibss984

probability and “observed probability” as P (True)985

and P ′(True), standing for confidence level. We986

use the divergence between distributions of pair- 987

wise sampling results as a measure of the network’s 988

uncertainty. Instead of calculating the average KL 989

divergence between the set of sampled answers and 990

the labeled answer, denoted as 1
|S|

∑|S|
i PSi log

PSi
PG

991

(Malinin and Gales, 2020), we use “Gibbs Proba- 992

bility”. When the number of samples is sufficient, 993

the sum of sample probabilities
∑

PSi approaches 994

1, providing the following unbiased estimate: 995

1

|S|

|S|∑
i

PSi log
PSi

PG
=

1

|S|
(

|S|∑
i

PSi logPSi

−
|S|∑
i

PSi logPG) ≈
∑|S|

1 PSi

|S|
(log P̃ − logPG)

(14) 996997

P̃ log
P̃

PG
= P̃ (log P̃ − logPG)

≈
|S|∏
1

P
1
|S|
Si

(log P̃ − logPG),

(15) 998

Eq. 15 calculates from a geometric mean perspec- 999

tive integrating information from all sampled an- 1000

swers in one direction, smoothing out some details, 1001

making it more suitable for an overall assessment 1002

of the entire sampling distribution, while Eq. 14 is 1003

based on the arithmetic mean leading to numerical 1004

instability when there is significant variance among 1005

sample results. 1006

F Results Of Experiments 1007

In our experiments, we present the average perfor- 1008

mance of different models across three scenarios: 1009

when “the greedy decoded answer is present in 1010

the sample set”, when “the greedy decoded an- 1011

swer is absent from the sample set”, and when “the 1012

greedy decoded answer is merged into the sample 1013

set” across various datasets. In this subsection, we 1014

provide a detailed comparison of our LCA method 1015

against the baseline in these three scenarios. When 1016

we group the data according to the experimental 1017

strategy in the paper, in some cases, the AUROC 1018

will be 0 because all the answers to the correspond- 1019

ing group of the question are wrong. We remove 1020

this part of the data before displaying it, and only 1021

display the cases where the AUROC is greater than 1022

0. 1023

F.1 Label Answer In Sample Set 1024

Table 9 presents the AUROC results for the exper- 1025

iment with greedy decoded answer in sample set. 1026
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Table 11: Uncertainty estimation AUROCs for experi-
ments that merge the greedy decoded answer into the
sample set.

data model SE Merge
baseline LCA

CoQA

Falcon-7B 0.7472 0.7456 0.7402
Llama2-7B 0.7465 0.8074 0.8178
Mistral-7B 0.6206 0.8327 0.8573
OPT-13B 0.7309 0.7343 0.7366

NaturalQA

Falcon-7B 0.5815 0.5899 0.5988
Llama2-7B 0.6267 0.6572 0.6572
Mistral-7B 0.5716 0.6050 0.6263
OPT-2.7B 0.8488 0.8686 0.8609
OPT-13B 0.7428 0.7617 0.7713

SciQ

Falcon-7B 0.7200 0.7926 0.8143
Llama2-7B 0.6150 0.7686 0.7923
Mistral-7B 0.6720 0.8316 0.8496
OPT-13B 0.6824 0.6633 0.7209

SVAMP
Falcon-7B 0.6701 0.7069 0.7066
Llama2-7B 0.5319 0.9254 0.9255
Mistral-7B 0.5734 0.8869 0.8886

TriviaQA

Falcon-7B 0.6902 0.7614 0.7810
Llama2-7B 0.6336 0.7747 0.8043
Mistral-7B 0.6189 0.8181 0.8412
OPT-2.7B 0.7477 0.8015 0.8530
OPT-13B 0.6897 0.7720 0.8119

avg 0.6696 0.7669 0.7836

In most instances, our LCA method surpasses the1027

baseline method to varying extents, with an im-1028

provement of 8% on PE method, 6% on SE, and1029

5% on TOKENSAR and SAR. Specifically, when1030

using the OPT-13B model on the SciQ dataset, the1031

baseline method achieves an AUROC of 0.9636,1032

while our LCA approach further enhances this to1033

a perfect score of 1. Moreover, it is evident that in1034

most cases, when the label answer is present in the1035

sample set, there is a strong correlation between1036

the entropy value of the set and the final label. No-1037

tably, only 4 out of 168 experimental groups exhibit1038

an AUROC below 0.5, which indicates a negative1039

correlation between the entropy value and the clas-1040

sification label. In 3 of these 4 cases, our LCA1041

method successfully corrects these discrepancies,1042

resulting in AUROCs greater than 0.5.1043

F.2 Label Answer Not In Sample Set1044

Table 10 presents the AUROC results for the exper-1045

iment without greedy decode answer in sample set.1046

In this part of the experiment, the AUROC scores1047

are generally low, but our LCA solution can still1048

achieve good performance, improving 25% on the1049

PE solution and 13% on the SE, TOKENSAR and1050

SAR methods. In most cases, the correlation be-1051

tween entropy and corresponding label is low, and 1052

in 1/3 of the cases, the AUROCs are lower than 0.5. 1053

However, in these serious misclassification cases, 1054

4/5 of which our LCA solutions can optimize and 1055

prompt AUROCs to a higher level. 1056

F.3 Merge Label Answer To Sample Set 1057

In Table 11, we show the AUROC changes when 1058

the greedy decoded answer is semantically merged 1059

into the sampling set, and the AUROCs further in- 1060

crease when our LCA solution is applied on this 1061

basis. We can see that except for a slight decrease in 1062

the baseline score of OPT-13B on the SciQ dataset, 1063

and mostly the correlation between entropy value 1064

and labels after merging have been improved, with 1065

an overall improvement of 9.7%. Combined with 1066

our previous experimental analysis, this is because 1067

we have expanded the diversity of the sampling 1068

space (because the greedy answer does not appear 1069

in the sampling set in half of the cases), and the 1070

distributions are closer to the true one. Our LCA 1071

method further improves 1.7% on this basis, which 1072

is 11.4% higher than the original solution in aver- 1073

age. This result shows that label confidence aware- 1074

ness can still play a role when the label answer is 1075

merged into the sampling set. 1076

G Additional Overhead 1077

When our solution is integrated on the backbone 1078

method, no additional computational overhead is in- 1079

troduced except for calculating the KL divergence. 1080
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