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Abstract

Large Language Models (LLMs) display
formidable capabilities in generative tasks but
also pose potential risks due to their tendency to
generate hallucinatory responses. Uncertainty
Quantification (UQ), the evaluation of model
output reliability, is crucial for ensuring the
safety and robustness of Al systems. Recent
studies have concentrated on model uncertainty
by analyzing the relationship between output
entropy under various sampling conditions and
the corresponding labels. However, these meth-
ods primarily focus on measuring model en-
tropy with precision to capture response charac-
teristics, often neglecting the uncertainties asso-
ciated with greedy decoding results, the sources
of model labels, which can lead to biased clas-
sification outcomes. In this paper, we explore
the biases introduced by greedy decoding and
propose a label-confidence-aware (LCA) un-
certainty estimation based on Kullback-Leibler
(KL) divergence bridging between samples and
label source, thus enhancing the reliability and
stability of uncertainty assessments. Our em-
pirical evaluations across a range of popular
LLMs and NLP datasets reveal that different la-
bel sources can indeed affect classification, and
that our approach can effectively capture dif-
ferences in sampling results and label sources,
demonstrating more effective uncertainty esti-
mation.

1 Introduction

Large language models (LLMs) have demonstrated
formidable capabilities in natural language process-
ing tasks such as machine translation (Fomicheva
et al., 2020), abstract text summarization (Brown
et al., 2020), and question-answering (Touvron
et al., 2023). Techniques such as In-context
Learning (ICL) (Dong et al., 2022) and Chain-of-
Thought (COT) (Wei et al., 2022) have further en-
hanced model performance on complex reasoning
tasks and scenarios involving unseen data, con-

sistently setting new benchmarks. However, de-
spite their proficiency under scaling laws (Kaplan
et al., 2020), these models underperform on more
challenging tasks like mathematical problems (Luo
et al., 2023). A significant concern is that, rather
than refusing to answer, models are more likely to
generate answers that include illusory reasoning
processes and hallucinations. Uncertainty estima-
tion and measurement have become essential tools
in machine learning aiding in determining the ex-
tent to which humans can trust Al-generated con-
tent and deciding when to intervene with manual
assistance. Previous research works in this field
have involved prompting LLMs to self-assess the
confidence of their own answers or employing con-
fidence assessments based on model outputs using
logits or entropy. Recent development Semantic
Entropy (SE) (Kuhn et al., 2023) has introduced
semantic-based entropy prediction schemes in that
account for the synonym phenomena inherent in
language models, performing answer aggregation
in semantic space. Duan et al. (2023) and Bak-
man et al. (2024) propose schemes SAR and MARS
based on semantic importance weighting, focus-
ing on more precisely measuring the information
content in the model’s latent space to offer viable
approaches to align the sampling entropy more
closely with the actual value. However, we ob-
serve that the confidence and semantic alignment
of the answers which serve as label sources, as
well as their deviations from the distribution space,
significantly impact the entropy’s classification per-
formance, an aspect overlooked by these schemes.

As shown in Figure 1, when given a question,
in the beam search multi-sampling strategy, three
out of the five answers generated by the LLM are
correct, but due to the high overall entropy value,
the LLM may be marked as unable to answer this
question. Such an error is caused by the entropy
threshold used in the evaluation only considering
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Figure 1: Ignoring the probability information of the
label answer in Free-form may lead to incorrect un-
certain classification. We term it as label confidence
unawareness, and integrate the omitted information into
our method.
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the absolute value, such as the common — log(0.5),
and ignoring the distribution of the model itself for
the question, that is, the greedy decoding proba-
bility is lower than the probability corresponding
to the sample entropy value, which is 0.1661 as
shown below.

To mitigate this issue, as shown in Figure 1,
we propose a label-confidence-aware (LCA) uncer-
tainty estimation based on Kullback-Leibler diver-
gence (KLD) bridging between samples and label
source, thus enhances the reliability and stability of
uncertainty assessments. We first sample answers
of question as well as the output probabilities for
calculating entropy of sample set. We then obtain
an average probability stand for the samples and
merge it with labeled answer probability by KLLD
to measure their difference, and use the integrated
information to classify whether the model could
answer the question or whether the answer can be
trusted.

Our work contributes in the following ways:

* We conduct experiments on 5 models and 5
datasets on recently popular methods, identi-
fying and reporting biases in the uncertainty
measurement methods when assessing differ-
ent answers and sample sizes, as well as ana-
lyze the reasons behind these biases based on
semantic probabilities.

* We introduce a novel method for estimating
uncertainty, termed Label-Confidence-Aware
(LCA), which is based on what we refer to
as Gibbs probability. This method explicitly
accounts for the discrepancies between the
sampling outcomes and the observed results
when quantifying uncertainty.

* We evaluate multiple important free-form
question-answering datasets on the currently
popular pre-trained LLMs. Results demon-
strate that our LCA based on KLLD surpass
baseline methods. Furthermore, through hy-
perparameter ablation experiments, we show
how the variables in our method affect the
final results.

2 Related Work

Verbalization and logit-based or entropy-based
methods play a crucial role in addressing uncer-
tainty in the field of Natural Language Processing
(NLP). The verbalization methods which prompt
models to output confidence levels for their gener-
ated content, first introduced by Lin et al. (2022),
unfortunately often result in overconfident outputs.
Enhancements such as COT reasoning (Xiong et al.,
2023) and multi-round dialogue cross models (Co-
hen et al., 2023) encourage models to stimulate
multi-steps reasoning for a more convincing scores.
Fine-tuning methods transforms model confidence
outputs into assessments of answer correctness
in a designed format and tuning the models with
specially crafted data (Kapoor et al., 2024; Han
et al., 2024). Logit-based and entropy-based meth-
ods assess model confidence and uncertainty by
focusing on the logits during the output process.
Kadavath et al. (2022) add a classification head
to the model’s final layer, mapping logits to the
probability of the “True” token, thus estimating
the model’s confidence in its responses. Huang
et al. (2023) combine token-level probabilities and
one-sentence entropy to evaluate the uncertainty
in model-generated content. Jiang et al. (2021)
proposes to mitigate the miscalibration of token
probability caused by linguistic synonymy through
data augmentation training and temperature fine-
tuning and Farquhar et al., 2024 suggests that ag-
gregates probabilities of synonymous sentences at
the sentence-level in the multi-sampling process
for better hallucination detection

3 Background

Total uncertainty includes aleatoric uncertainty
—measuring the ambiguity inherent in the problem
itself, and epistemic uncertainty -measuring the
uncertainty in predictions due to a lack of knowl-
edge within the models. It can be understood as the
entropy of the model’s predictions, Predictive En-
tropy (PE). For a given input x and output space Y,



the predictive entropy is calculated as following:

PE(x) = - / P(y|z) log Pylz)dy, (1)

where P(y|x) is the conditional probability of
generation y.

The higher PE(x) is, the closer the model’s
output probabilities are to a uniform distribution,
indicating lower confidence in any specific output
y out of the output space Y, and thus greater model
uncertainty.

In Bayesian networks, the sampling space for
a model with a vocabulary of K tokens gen-
erating sequences of length L is exponentially
large, specifically | K'|”, posing computational chal-
lenges. To mitigate these challenges, we can em-
ploy Monte Carlo sampling (Gal and Ghahramani,
2016), which introduces random factors to approx-
imate the sampling process.

Under the condition of sufficient sampling quan-
tity, an unbiased estimate of entropy can be:

PE(s) = ~ 37 3. o8 Plyle)

~Y
! N )
= —log H P(ylz)NT = —log P.
y~Y
So we get P = ¢ PE()_ This form resembles

the Gibbs factor, which represents the overall prob-
ability of system in physics. We refer to this value
as “Gibbs probability”, a probability estimation for
the sampled outcome distribution of the problem.
Besides, the probability derived from a correspond-
ing greedy decoded answer is termed the observed
probability.

As probabilities tend to decrease with increas-
ing length, length-normalization method (Malinin
and Gales, 2020), replacing probability of y with
+ S">NMlog P(yi|y<:), could be used to scale the
conditional probabilities of sentences of different
lengths to the same magnitude and has been suc-
cessfully applied in machine translation scenarios
(Murray and Chiang, 2018).

While in natural language generation tasks for
sequence prediction, different sentences may ex-
press the same meaning, thus sharing a common
semantic space. SE introduced an effective UQ
method in the level of semantic cluster in which
uncertainty is the average of each cluster entropy.
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Figure 2: Percentage of Falcon-7B and Mistral-7B w. &
w/o label answers in sample on CoQA and TriviaQA.

The formula is expressed as follows:
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Similar to prior works, in our study, we also
normalize the entropy values obtained through dif-
ferent methods based on length.

4 Entropy Bias in Evaluating Different
Subjects

Uncertainty Quantification calculate a value about
information content of high-probability samples.
The higher the total probability of the sampling
results, the closer it approximates the true distribu-
tion. Then such a value is then evaluated on the
effectiveness of priorly representing the quality of
greedy decoded answer.

To analyze the representativeness of the greedy
decoded label, we evaluated the relationship be-
tween the greedy decoded label and the sampled
results. The datasets and models we used here are
the same as those described in experiment section
6. Specifically, we first measured the ROUGE-L
score between the labeled answer and the sampled
answers. Denoting sample set as S and the greedy
decoded answer as G, G is considered to be in S if
at least one Rouge— L(S;, G) exceeds a predefined
threshold a:

1 if 3 Rouge(S;,G) > «

0 otherwise

sim(S,G) = { 4)

Figure 2 illustrates the occurrence of greedy de-
coded results within the sampled outcomes for



Table 1: Uncertainty estimation AUROCSs of LNPE &
SE with and without labeled answers in sample set.

_ LNPE SE

data in not in in not in

model num

CoQA 10 0.7332] 0.5466| 0.73941 0.5344
Falcon-7B. CoQA 20 0.7245] 0.68201 0.71211 0.6663
TriviaQA 5 0.52251 0.55471 0.71171 0.6197

CoQA 10 0.7473I 0.4233] 0.77201 0.3834
Mistral-7B TriviaQA 5  0.6408| 0.47201 0.74921 0.5098
TriviaQA 20 0.63921 0.5322] 0.76621 0.4622

avg 0.66011 0.55071 0.7256l 0.5771

Falcon-7B and Mistral-7B over CoQA and Triv-
1aQA (refer to the Appendix A for more results).
Our results indicate that in many cases, the greedy
results do not appear within the sampled set. Even
when we increase the number of samples per ques-
tion to 20 or 40, such a phenomenon is not signifi-
cantly alleviated. This observation aligns with re-
sults from SE (Kuhn et al., 2023), that performance
improvements tend to plateau once the number of
samples reaches five. This indicates that, although
we hope the sampled outcomes would effectively
represent the entire semantic space, current sam-
pling strategies often fail to meet this objective.
We further grouped the test data according to
whether it is in or not in sample set to analyze the
impact on the classification performance of the set
entropy. We used the Area Under the Receiver Op-
erating Characteristic (AUROC) metric to evaluate
performance. The algorithm is shown below: We

Algorithm 1 Comparison between groups

Require: model M, questions (), answer G, threshold a,
sets A, B, LA, LB, greedy-decoded answer g, samples
S, label L
1: for each g € @ do

2: Generate g and samples S using model M
3: L =1ifRouge-L(G,g) > aelse 0

4: foreachs € S do

5: Calculate 8 = Rouge-L(g, )

6: if 5 > « then

7: A+ AU{g}, LA+~ LAU{L}
8: else

9: B+ BU{g}, LB+ LBU{L}
10: end if

11: end for

12: end for

13: Calculate AUC(A, LA) and AUC(B, LB)

conduct experiments on LNPE (Malinin and Gales,
2020) scheme and SE scheme. The models and
the datasets remain the same as those mentioned
above.

We present the experimental results in Table 1.
In most cases, when the greedy decoded answer is

in the sampled results, the entropy of the sampled
results aligns with the quality of labeled answer
well and the performance drops significantly when
this is not the case. We focus on bridging between
those two circumstances to mitigate the misclassifi-
cation.

5 Method

Based on the previous experimental conclusions,
we believe that introducing label answers into the
sample set may improve performance. An intu-
itive method is to group labeled answer based on
sim(S, G), however it not only incurs significant
additional computational costs but also becomes
effective only when the greedy answer introduces
new answers. Additionally, when a label source
answer is merged into the sampled set, its inherent
confidence level should still be considered as a vital
piece of information. Our label-confidence-aware
(LCA) method, designed to effectively link answers
from any label source to the sampled results, shifts
the focus to probabilities. By integrating the over-
all probability of the joint sampling distribution
which derived from the entropy-based Gibbs prob-
ability with observed outcomes, it identifies a more
efficient and stable metric for measurement.

For a given problem z, we first use multino-
mial beam search to sample M sequences from
P(Y|z), resulting in a sample set {s1, S2,...S71}-
We then compute the semantic implications be-
tween each sentence and categorize them into |C/|
clusters using RoOBERTa-Large (Liu et al., 2019),
The conditional probability of a cluster containing
N sequences is the sum of the probabilities of the
sentences. At the cluster level, we calculate the
entropy £, and the corresponding Gibbs probabil-
ity. Then we greedily decode a represent answer
of which probability is Pj,ccqy. We consider the
aggregated probability of the sampling results as
a measure of confidence, representing the model’s
perceived probability of a set to be able to provide
an answer, considered as P(7'rue). Similarly, we
view the probability of the greedy results as the
observed probability that can provide an correct
answer, considered as P’ (True).

5.1 Pointwise KL-Divergence

When we introduce a new labeled answer to mea-
sure the overall probability of the calculation, this
answer will introduce epistemic uncertainty. We
used Kullback-Leibler divergence (KLD) to quan-



tifiy the information lost when one distribution is
used to approximate another and to messure the
new uncertainties arising from noisy labels. In our
study, we employ KLD between distributions of
sampling results and observed outcomes as a metric
to measure model uncertainty. This can help us ana-
lyze to what extent the greedy decoding labels may
be overconfident or underestimated. Specifically,
we use the pointwise KL divergence between these
two distributions, as described by Robert (2014),
focusing solely on the probability differences be-
tween tokens within the distributed answers:

~ P
Differx.p(S,G) = Plog B 5)
g

5.2 Why Gibss probability?

The Expected Pairwise KL Divergence (EPKL) is
another measure of uncertainty that quantifies the
total bidirectional divergence between each pair of
samples in the model. We derive that our method
is calculated from a geometric mean perspective,
integrating information from all sampled answers
in one direction and smoothing out some details,
making it more suitable for an overall assessment
of the entire sampling distribution, while EPKL
is based on the arithmetic mean, which leads to
numerical instability when there is significant vari-
ance among sample results. More details refer to
Appendix E.2.

6 Experiments

Baselines. We chose vinilla Length Normalizaiton
Predictive Entropy (LNPE) (Malinin and Gales,
2020), Semantic Entropy (SE) (Kuhn et al., 2023),
and Shift Attention Towards Relevance (SAR)
(Duan et al., 2023) as baselines, and enhancing
them with aggregation methods to compare perfor-
mance. Detailed implementations are available in
Appendix B.

Models. Following experimental methodologies in
the SE and SAR studies, we conduct experiments
using open-source LL.Ms, including models from
the Llama 2 (Touvron et al., 2023), OPT (Zhang
et al., 2022), Falcon (Penedo et al., 2023), and Mis-
tral (Jiang et al., 2023) series, ranging in size from
2.7B to 13B parameters. Detailed experimental
configurations can be found in Appendix C.
Datasets. We conduct experiments on several
free-form text generation tasks in NLP, including
CoQA (Reddy et al., 2019), Natural Questions (Nat-
uralQA) (Kwiatkowski et al., 2019) , TriviaQA

(Joshi et al., 2017) , SciQ (Welbl et al., 2017) and
SVAMP (Patel et al., 2021). CoQA is a machine
reading comprehension task, SciQ, NaturalQA and
TriviaQA are open domain tasks, and SVAMP fo-
cuses on mathematical problems. Details regarding
the composition of the test sets can be found in
Appendix D.

Correctness Metric We employ the ROUGE-L
metric to determine the labels, which serve as a
classification result for whether the model can an-
swer the question. The datasets we focus on are
primarily concerned with sentence-level genera-
tion, making ROUGE-L the most commonly used
evaluation metric for these types of tasks. Unless
specifically stated otherwise, we set the default
ROUGE threshold to 0.5, as this is a commonly
accepted value.

Evaluation Metric Following the prior works, we
used AUROC as a evaluation metric, which is pop-
ular in binary classification tasks. Furthermore, We
calculated the Pearson correlation coefficient to an-
alyze the performance of our method in the case of
continuous classification.

Hyperparameters. For the CoQA dataset, we gen-
erated 10 answers per question, while for others,
we generated 5 answers per question. We set the
generation temperature at 0.5 which works best. In
the SAR experiments, the parameter ¢ was set to 10.
To be consistent with prior works, we employed
greedy search to generate the most probable an-
swers for evaluating correctness labels and utilized
multinomial sampling to produce reference genera-
tions. All experiments were carried out using two
NVIDIA A40 GPUs.

7 Results Analysis

In Table 2, we provide a detailed performance com-
parison between our LCA method and the baselines
across evaluation datasets using models including
OPT-2.7B, Falcon-7B, Mistral-7B, Llama2-7B and
OPT-13B. In the majority of cases, our metric out-
performs the baseline. Our LCA method, in the
average results of all data, has an AUROC that ex-
ceeds the SAR method by 5.5%, the TokenSAR
method by 6.8%, the SE method by 8.5%, and the
LNPE method by 12%. Even when the OPT-13B
model achieves a high AUROC score of 0.8514
on the SciQ dataset on LNPE, LCA method still
enhances its performance further, reaching 0.9033.
On the challenging SVAMP, our method signifi-
cantly outperforms baselines by effectively analyz-



Table 2: Uncertainty estimation AUROC:Ss of our LCA method with different methods as backbone and baselines

across datasets.

model data LNPE SE TokenSAR SAR
base LCA base LCA base LCA base LCA
CoQA 0.7377 0.6934 0.7037 0.7048 0.7006 0.7055 0.7116 0.7165
OPT-2.7B TriviaQA 0.7418 0.9304 0.7477 0.8499 0.7524 0.8042 0.7540 0.8011
NaturalQA  0.7573  0.7670 0.8488 0.8617 0.8673 0.8624 0.8675 0.8661
CoQA 0.6217 0.8629 0.6206 0.7652 0.6227 0.7377 0.6215 0.7180
) TriviaQA 0.5928 0.8803 0.6189 0.8030 0.6272 0.7433 0.6257 0.7244
Mistral-7B NaturalQA  0.5461 0.6521 0.5716 0.5959 0.5662 0.5944 0.5695 0.5932
SciQ 0.5933 0.8640 0.6720 0.8237 0.6980 0.7808 0.6972 0.7731
SVAMP 0.6385 0.7902 0.5734 0.8291 0.5781 0.8309 0.5773 0.8039
CoQA 0.7674 0.7137 0.7472 0.7448 0.7384 0.7415 0.7485 0.7519
TriviaQA 0.6098 0.7637 0.6902 0.7715 0.6953 0.6799 0.6969 0.6828
Falcon-7B NaturalQA  0.4800 0.5365 0.5815 0.5918 0.5916 0.5993 0.5949 0.6033
SciQ 0.7136  0.8812 0.7200 0.8294 0.7046 0.7330 0.7109 0.7350
SVAMP 0.6793 0.8441 0.6701 0.8342 0.6696 0.8304 0.6699 0.8220
CoQA 0.7636  0.8602 0.7465 0.8146 0.7333 0.7886 0.7475 0.7917
TriviaQA 0.5720 0.8064 0.6336 0.7660 0.6289 0.7071 0.6287 0.7013
Llama2-7B  NaturalQA  0.5500 0.5990 0.6267 0.6437 0.6215 0.6473 0.6247 0.6476
SciQ 0.5827 0.8054 0.6150 0.7468 0.6133 0.6922 0.6153 0.6892
SVAMP 0.6242 0.8737 0.5319 0.8804 0.5368 0.8803 0.5401 0.8172
CoQA 0.7438 0.7250 0.7309 0.7337 0.7277 0.7340 0.7376  0.7436
OPT-13B TriviaQA 0.5839 0.8285 0.6897 0.7995 0.6934 0.7100 0.6949 0.7098
NaturalQA  0.6990 0.7429 0.7428 0.7562 0.7515 0.7456 0.7489 0.7523
SciQ 0.8514 0.9033 0.6824 0.7725 0.7214 0.7675 0.7280 0.7620
avg 0.6568 0.7874 0.6711 0.7690 0.6745 0.7420 0.6778 0.7364

Table 3: Pearson correlation coefficient results of exper-
iments.

SE LNPE TokenSAR SAR
base LCA base LCA base LCA base LCA

OPT-2.7B 0.202 0.286 0.210 0.298 0.053 0.254 0.220 0.255
Falcon-7B 0.208 0.306 0.191 0.288 0.124 0.237 0.214 0.233
Mistral-7B 0.135 0.372 0.123 0.409 0.462 0.315 0.138 0.231
Llama2-7B 0.147 0.278 0.146 0.291 0.309 0.234 0.154 0.205
OPT-13B  0.174 0.249 0.160 0.243 0.066 0.198 0.187 0.202

0.173 0.298 0.166 0.306 0.203 0.248 0.183 0.225

model

avg

ing the relationship between the probability diver-
gence among the sample sets and observed results

We also calculated the average Pearson correla-
tion coefficients performance of different methods
on 5 datasets on 5 models. Results are shown in
Table 3. These results show that our proposed met-
ric has a stronger correlation with ROUGE-L and
performs better as a priori representation of NLG
answer quality, surpassing metrics designed only
for classification tasks.

We further explored the impact of introducing
perturbations to the label sources and probabili-
ties. By using labels derived from different an-
swer strategies, we aimed to more deeply analyze
the importance and effectiveness of establishing
a connection between the two probabilities. This
was achieved by comparing the overall model per-

formance and the associated uncertainty. We em-
ployed various strategies for replacing labels. On
LNPE, we chose the highest probability sample
from the sampling set, denoted as LN P Eqmpie,
as the label source. On SE, we chose the sam-
ple with the highest probability from the largest
semantic cluster, denoted as S Eqple. Addition-
ally, in both experiments, we randomly pick sam-
ples from the sets, LN PFE 4 ndom and S Erqandom
to get new labels for evaluation. On SE, we add a
control group that integrates the greedy decoded
answers into a sample set based on semantic simi-
larity. Specially, if the semantic similarity between
the greedy-decoded answer and s; is the highest
and exceeds 0.5, G is assigned to the semantic clus-
ter containing s;. Otherwise, G is assigned to a new
semantic cluster.

Our results in Table 4 show that, in both LNPE
and SE experiments, labels from sampled answers
significantly surpass the baseline in AUROC. We
attribute this observation to the fact that samples,
as part of the sampled set, exhibit a stronger cor-
relation with the Gibbs probability of the set. The
probability of a sample, to some extent, reflects the
contribution of its label within the set—a stronger
contribution often implies that its label is more rep-
resentative of the overall labels. Additionally, as
the highest probability in the entire semantic space
or within the largest semantic cluster of the sam-
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Table 4: Uncertainty estimation AUROCSs of LNPE &
SE with labels from different strategies. TQ stands
for TriviaQA, sp stands for Sample, and rd stands for
random.

model LNPE SE
&data ™™ base sp rd base sp

Falcon-7B

CoQA 10 0.747 0.748 0.734 1 0.747 0.772 0.748
CoQA 20 0.737 0.736 0.719 1 0.721 0.747 0.734
TQ 5 0.549 0.589 0.479 1 0.690 0.729 0.623

Mistral-7B

CoQA 10 0.608 0.777 0.746 1 0.620 0.802 0.770 0.833
TQ 5 0.567 0.678 0.64910.619 0.808 0.730 0.818
TQ 20 0.578 0.680 0.62110.620 0.811 0.6798 0.748

avg 0.631 0.701 0.658 0.670 0.778 0.714 0.771

rd merge

0.746
0.718
0.761

pled space, its label possesses higher representative-
ness. The AUROC of randomly selected labels sur-
passes the baseline but remains significantly lower
than the highest score, which indirectly supports
our hypothesis that randomly picked labels are less
robust as representatives of the set. Furthermore,
when integrating the greedy decoded answer with
the sampled results, the performance exceeds that
of randomly picked labels but slightly falls short
of SEgqmpie, indicating that the greedy decoded
answer is not always the most probable one. We
provide a probabilistic analysis of how it impacts
the results in Appendix E.1.

We also evaluated the improvements brought by
our method when the labeled answer is either in-
cluded in or excluded from the sample set, across
different data sets Table 5 presents a comparison
result using SE as a backbone method. Our method
consistently outperforms baselines in both scenar-
i0s to varying degrees. Furthermore, in the scenario
where the greedy answer is semantically integrated

Table 5: Uncertainty estimation AUROCSs of baseline
and LCA method in different datasets. Results are aver-
aged from all our test models.

not in sample in sample merge

data baseline base LCA base LCA base LCA
CoQA 0.717 0.466 0.588 0.745 0.748 0.780 0.788
NaturalQA 0.640 0.420 0.612 0.645 0.673 0.697 0.703
SCiQ 0.691 0.559 0.733 0.692 0.793 0.764 0.794
TriviaQA  0.648 0.595 0.789 0.659 0.759 0.786 0.818
SVAMP 0.617 0.536 0.864 0.566 0.681 0.839 0.840
avg 0.663 0.515 0.717 0.661 0.731 0.773 0.789

into the sample set, we still achieves a 1.6% in-
crease in the score compared to the baseline (refer
to Appendix F for more data). This demonstrates
that even when we group the labeled answer seman-
tically to enhance the entropy representiveness, the
confidence of label still need to be concerned about.
As SVAMP is harder, models tend to be wrong even
when label probability is high, and the correct an-
swer of this type of problem tends to come from
the beam search sampling. After merging it into
the sample, the entropy value is reduced, resulting
in the correct answer result being opposite to the
label. It shows that the label selection strategy is
also an issue worthy of attention.

8 Ablation Study

8.1 Number of Generation

The impact of the number of samples on the per-
formance of our method with LNPE, SE and SAR
methods as backbone is illustrated in Figure 3(a).
Even though the SAR method significantly surpass
others, we get higher scores. Taking the perfor-
mance of the OPT-2.7 model on the NaturalQA
(NQ) dataset as an example, the AUROC increases
with the number of samples, reaches its peak and



Table 6: The performance of KLD-based method and
R-KLD-based method on each backbone. All the results
are obtained by averaging results of all models on all
datasets.

backbone baseline KLD R-KLD SAD

LNPE 0.6568 0.7874 0.6856 0.4096
SE 0.6711 0.7690 0.6018 0.6607
TOKENSAR 0.6745 0.7420 0.6553 0.6235
SAR 0.6778 0.7364 0.6363 0.6711
avg 0.6701 0.7587 0.6447 0.5912

stabilizes with more samples and almost constant
diversity, which is similar to results proposed by
SE. These results suggest that further optimizing
the model’s decoding strategy to enhance its diver-
sity could potentially improve the method’s perfor-
mance.

8.2 Sensitivity to Rouge-L Threshold

We use the mean of all experimental results to show
the effect of the change in ROUGE-L threshold on
the performance of KLD-based method in Figure
3(b). As the Rouge threshold increases, the correct-
ness judgment becomes more stringent. Our exper-
imental results show that as the Rouge-L threshold
increases, the performance of different methods in
judging model uncertainty increases accordingly.
Across all thresholds our methods are always better
than the baselines.

8.3 Temperature

We show the effect of temperature on performance
in Figure 3(c). Following SE, we conduct ex-
periments on TriviaQA using the Llama2-7B. A
smaller temperature will make the token proba-
bility sharper and reduce the diversity of model
generation. As the temperature increases, after the
temperature exceeding 0.5, the performance of the
model decreases as the temperature increases. We
speculate that this is because although the model di-
versity has increased, the difference between tokens
in vocabulary, thus the probability divergence of
the final sampling set and greedy decoding results
has become flatter and more difficult to distinguish.

8.4 Different Integrate Methods

We compare the use of KL-divergence (KLD) with
methods that use sample average deviation (SAD)
(Rivera et al., 2024) and Reverse KL-divergence
(R-KLD) (Malinin and Gales, 2019) as aggregation
methods, where:

Differssp(S,G) = |P — Pgl, (6)

P
Differg_x1n(S,G) = Py log ?g. )

Our results, shown in Table 6 results indicate that
when we treat the sampling results as the “cor-
rect” distribution and view greedy sampling as the
prediction, divergence calculations help us better
identify when the model is more likely to be able
to answer. However, with R-KLD, it shows a poor
simulator of the actual distribution, only winning
in LNPE. As for SAD, it shows that directly com-
paring the probabilities would even mislead our
classification in LNPE.

8.5 Effectiveness on Multi-fact Generation

Multi-fact generation tasks represent a common cat-
egory within natural language generation (NLG).
To evaluate the performance of LCA method on
such tasks, we took summarization task as a rep-
resentative. We utilized the Llama3-8B model to
conduct experiments on the XSum (Narayan et al.,
2018) dataset. Generations with ROUGE-L greater
than the threshold will be assigned a label of 1,
otherwise it will be assigned a label of 0. The re-
sults of these experiments are presented in Table
7. Our LCA consistently enhances performance
across various methods, achieving a maximum im-
provement of 0.09 on LNPE backbone. Notably,
the method of LNPE performs the best. We at-
tribute this to the presence of multiple facts in the
generated text. Specifically, sequence-level clus-
tering employed by other semantic-level methods
tends to overlook the independence of individual
facts within generations.

Table 7: Results of Llama3-8B on Xsum under different
Rouge Threshold.

Th SE PE TokenSAR SAR
T€S base LCA base LCA base LCA base LCA

0.3 0.529 0.555 0.543 0.614 0.529 0.557 0.527 0.543
0.2 0.499 0.531 0.525 0.616 0.500 0.532 0.502 0.521
0.15 0.517 0.552 0.548 0.636 0.518 0.552 0.514 0.536

9 Conclusion

In this paper, we reveal the impact of biases be-
tween label sources and samples in uncertainty esti-
mation and propose our LCA method to aggregate
the confidence of them. Results demonstrate that
our method surpasses the state-of-the-art perfor-
mance. Further ablation results show the impact of
various parameters on method performance.



10 Limitations

We recognize that there are several areas where our
approach can be further enhanced: (1) Model Ca-
pability: In Section 6, we utilized Roberta to assess
semantic relevance. Employing a more powerful
model, or fine-tuning Roberta specifically on the
test domain, could yield superior sampling results
for semantic clustering and would significantly
boost the performance of our uncertainty measure-
ment. (2) Similarity Calculation in Multi-fact Sce-
narios: Our experiments on the xsum dataset reveal
that sequence-level similarity calculations can de-
tract from the method’s performance in multi-fact
contexts. Implementing more refined similarity cal-
culations in these scenarios would likely enhance
overall model performance.

11 Ethics Statement

In our research and experimental endeavors, we
uphold rigorous ethical standards to ensure that
our development and application of artificial in-
telligence technology are conducted responsibly.
Throughout our research process, we have avoided
using data that relies on personal information or
manual annotations. Additionally, we have utilized
open-source models for our experiments without
any additional training, thereby ensuring that we
do not introduce bias or other harmful knowledge
into them. We have also made our code and data
publicly available on GitHub. We hope this trans-
parency allows the community to verify the per-
formance of our proposed method and to further
enhance it.
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A Results For Preliminary Experiments

we will further show the total distributions of mod-
els about the num of greedy answer is in/not in
sample set and the ratio value on our evaluation
datasets. As shown in Table 8, we see that there are
53% questions with, 47% questions without greedy
decoded answers in their sample sets, suggesting
that our multinomial beam search sampling can
search a larger retrieval space. On the other hand,
it also shows that our greedy decoding answer is
not the maximum decoding probability in a broad
sense. We may need to choose a better decoding
result as our label source. Such a distribution has
obvious deviations in different data and different



models. For example, the overall in_rate is higher
in the CoQA and NaturalQA datasets, indicating
that the diversity of answers in these two datasets
is relatively small, and most of the greedy decoded
results in the overall sampling space belong to rel-
atively high probability answers. However, the
TriviaQA, SciQ and SVAMP datasets show the op-
posite result, that is, the answer diversity of these
questions is relatively large. In this case, we are
often more likely to find the correct answer to the
problem in the sampling set. For example, in the
SVAMP dataset, the accuracy of the label source is
low.

Table 8: Distributions about whether greedy decoded
answer is in sample set.

data model In_num Notln_num In_rate
Falcon-7B 5614 2369 0.71
Llama2-7B 7103 880 0.89
CoQA Mistral-7B 3275 4708 0.41
OPT-2.7B 6562 1421 0.82
OPT-13B 6913 1070 0.87
Falcon-7B 3450 160 0.96
Llama2-7B 3524 86 0.98
NaturalQA Mistral-7B 3519 91 0.97
OPT-2.7B 3086 524 0.85
OPT-13B 3400 210 0.94
Falcon-7B 177 823 0.18
Llama2-7B 172 828 0.17
SciQ Mistral-7B 284 716 0.28
OPT-2.7B 39 961 0.04
OPT-13B 56 944 0.06
Falcon-7B 280 717 0.28
Llama2-7B 110 887 0.11
SVAMP  \icral- 7B 141 856 0.14
OPT-2.7B 122 875 0.12
Falcon-7B 2769 5234 0.35
Llama2-7B 1602 6401 0.20
TriviaQA  Mistral-7B 2155 5848 0.27
OPT-2.7B 1348 6655 0.17
OPT-13B 1083 6920 0.14
Total 56784 51181 0.53

B Details Of Baselines
B.1 TOKENSAR

TokenSAR considers the different semantic impor-
tances of tokens during generation, adjusting the
contribution of different tokens in the overall sen-
tence probability. This importance is measured by
the similarity between the token and the sentence.
That is:

W (sig,six) = 1= gl sz Jsi\sij)l,
3)

11

with g(,) calculates the similarity before and af-
ter removing the corresponding token s; ;. The
more relevant the token, the greater the seman-
tic change it will cause, thus assigning it a higher
weight. The uncertainty measure of the entire sen-
tence becomes:

Isi]
TOKENSAR,, = > —log P(s; j|z, si,<;) - (1
j=0
—lg(@|Jsi, 2| Jsi\si<i))
®
B.2 SAR

The SAR method combines TokenSAR and
SentSAR, where SentSAR considers the relevance
of individuals within the beam search set to others,
calculated by their similarity sim(s;, s;), shown
below:

SentSAR;, = — log(P(s;|z)

& jl=i

S glsisi)Plsil2)),

j=0

1! (10)

3

with t as a hyperparameter for temperature. Re-
place P(s;|x) in SentSAR;, with ¢~ TOKENSARs;
and we will get SARg;.

C Details Of Models

To enhance the generalizability of our experimental
results, we employ a diverse range of models, span-
ning from 2.7B to 13B parameters, including both
pre-trained and instruction-tuned variants. Build-
ing upon models used in prior studies, we select
the OPT, Falcon, Mistral, and Llama series for our
evaluation. Specifically, we test pre-trained mod-
els such as OPT-2.7B, OPT-13B, and Llama2-7B,
as well as instruction-tuned models like Mistral-
7B and Falcon-7B. No additional fine-tuning on
evaluation datasets is applied to these models.

D Details Of Datasets
D.1 CoQA

CoQA is a dialogue comprehension dataset span-
ning multiple domains, with each entry comprising
a story relevant to the posed questions as well as
multi-turn human conversations. We conduct in-
ference tests on the entire validation set, which in-
cludes 500 dialogues and a total of 7,983 questions.
For each question, we concatenate the background
story and the conversation history, which serves



as a reference for the model’s responses, in the
following format:

[The Provided Background Story]
[History Conversations]
Q: [Question for the model]

D2 SciQ

SciQ is a question-answering dataset focused on
the scientific domain, aiming at improving the per-
formance of natural language models in science-
related tasks. We perform inference tests on the
entire validation set, which includes a total of 1,000
questions.

D.3 TriviaQA

TriviaQA is an open-domain, closed-book question-
answering dataset that spans a broad spectrum
of topics and knowledge areas. We utilize the
Question-Answer pairs, where the questions can
be answered by the model without access to the
associated documents. From the TriviaQA valida-
tion set, which consists of 17,944 entries, we select
about 8,000 for evaluation to maintain consistency
in dataset size with COQA.

Following the SE paper, we evaluate SciQ and
TriviaQA using a 10-shot prompt format, con-
structed from 10 randomly selected questions from
the validation set. Below is an example:

This is a bot that correctly answers

questions.

Question: {Question1} Answer: {Answerl}
Question: {Question2} Answer: {Answer2}
Question: {Question3} Answer: {Answer3}
Question: {Question4} Answer: {Answer4}
Question: {Question5} Answer: {Answer5}
Question: {Question6} Answer: {Answer6}
Question: {Question7} Answer: {Answer7}
Question: {Question8} Answer: {Answer8}
Question: {Question9} Answer: {Answer9}
Question: {Question1@} Answer: {Answer10}
Question: {Question for model} Answer:

D.4 Natural Questions

Natural Questions (NaturalQA) is an open-domain
question-answering dataset derived from real user
queries entered into a search engine, providing a
closer approximation to real-world scenarios. We
utilize NQ-Open, a simplified derivative of the orig-
inal dataset, and conduct testing on the entire val-
idation set, comprising 3,610 questions. We con-
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struct a 2-shot prompt using two randomly selected
examples, with the data formatted as follows:

Answer these questions:

Question: What is the capital city of
Australia?

Answer: The capital city of Australia
is Canberra.

Question: Who painted the famous artwork
"Starry Night"?

Answer: "Starry Night" was painted by
Vincent van Gogh.

Question: {Question for model}?
Answer:

D.5 SVAMP

SVAMP is a dataset designed for mathematical
reasoning tasks, requiring models to comprehend
and solve math problems described in natural lan-
guage. This dataset is specifically created to chal-
lenge models with complex reasoning, testing their
ability to perform multi-step arithmetic operations
accurately. SVAMP also features problems with
varying levels of difficulty, making it a comprehen-
sive benchmark for evaluating the mathematical
reasoning capabilities of natural language models.
We randomly select 3 problems from the valida-
tion set to construct a 3-shot prompt, which is then
used to evaluate 997 test questions. Below is an
example:

Q: Winter is almost here and most
animals are migrating to warmer
countries. There are 41 bird families
living near the mountain. If 35 bird
families flew away to asia and 62 bird
families flew away to africa How many
more bird families flew away to africa
than those that flew away to asia? A:

27 Q: Paige raised 7 goldfish and 12
catfish in the pond but stray cats loved
eating them. Now she has 15 left. How
many fishes disappeared? A: 4 Q: Marco
and his dad went strawberry picking.
Together they collected strawberries
that weighed 22 pounds. On the way back
Marco'dad found 3@ more pounds of
strawberries. Marco's strawberries now
weighed 36 pounds. How much did his dad'
s strawberries weigh now? A: 16 Q: Debby

bought 200 water bottles and 256 soda bottles

when they were on sale. If she drank 312
water bottles and 4 soda bottles a day How



Table 9: Uncertainty estimation AUROCS for experiments that contain the greedy decoded answer within the sample
set.

PE SE TOKENSAR SAR
base LCA base LCA base LCA base LCA

Falcon-7B 0.7534  0.6898  0.7394  0.7352  0.7330  0.7257  0.7457  0.7420
Llama2-7B  0.7417  0.8073  0.7305 0.7861  0.7160  0.7776  0.7343  0.7823
Mistral-7B -~ 0.7723  0.7517  0.7720  0.7954  0.7632  0.7829  0.7742  0.7889
OPT-13B 0.7270  0.6898  0.7244  0.7242  0.7230  0.7213  0.7359  0.7358

Falcon-7B 04696  0.5255 05786  0.5891 0.5912  0.6067 0.5947  0.6067
Llama2-7B  0.5609 0.6110 0.6436  0.6609  0.6382  0.6566  0.6418  0.6583
NaturalQA  Mistral-7B 0.5377  0.6443  0.5683  0.5923  0.5635 0.5860 0.5668  0.5852
OPT-2.7B 0.7670  0.7499  0.8452 0.8492 0.8620 0.8637 0.8629  0.8671
OPT-13B 0.7283  0.7536  0.7489  0.7586  0.7568  0.7605  0.7541  0.7575

Falcon-7B 0.5871  0.6969  0.6703 0.7098 0.7684 0.7897  0.7766  0.7948
Llama2-7B  0.5209  0.7249  0.5833  0.6920 0.5989  0.6992  0.6042  0.6996
Mistral-7B - 0.6060  0.7614  0.6914  0.7954  0.7266  0.8219  0.7308  0.8161
OPT-13B 0.9636  1.0000 0.9091 09636 09273 09818 0.9455 0.9818

Falcon-7B 0.6701  0.6165 0.6752 0.6779 0.6779 0.6785 0.6789  0.6831
SVAMP Llama2-7B  0.6566  0.6951 0.5280 0.7612  0.5317 0.7576  0.5335  0.7392
Mistral-7B 0.5262  0.7084  0.3376  0.6283  0.3259 0.4794 0.3288  0.4193

Falcon-7B 0.5552  0.6417 0.7117 0.7399  0.7493  0.7708 0.7512  0.7705
Llama2-7B  0.5383  0.6424  0.6672 0.7155 0.6685 0.7167 0.6682  0.7147
TriviaQA Mistral-7B~ 0.6728  0.6728  0.7492  0.7552  0.7555 0.7622  0.7492  0.7586
OPT-2.7B 0.7010  0.8789  0.7417 0.8268 0.7461  0.8273  0.7484  0.8242
OPT-13B 0.5453 0.8899  0.7072 0.8305 0.7270  0.8400 0.7301  0.8350

avg 0.6477  0.7215 0.6820 0.7423  0.6929 0.7431  0.6979  0.7410

data model

COQA

SciQ

Table 10: Uncertainty estimation AUROCS for experiments that exclude the greedy decoded answer within the
sample set.

PE SE TOKENSAR SAR
base LCA base LCA base LCA base LCA

Falcon-7B 0.5251  0.6001  0.5344 0.5478 0.5158 0.5271  0.5056  0.5148
Llama2-7B  0.4981 0.7238  0.4786  0.5229 0.4857 0.5371 04762 0.5171
Mistral-7B 0.4345  0.8055 0.3834 0.4870 0.3978 0.4853  0.4022  0.4723
OPT-13B 04345 05652 0.4388 0.4550 0.4398 0.4557 04349 0.4471

Llama2-7B  0.0941 0.3294 0.0353 0.0706  0.0353  0.1294  0.0235 0.0941
NaturalQA  OPT-2.7B 0.7089  0.8720 0.8765 09578 09053 0.9674 0.9053  0.9610
OPT-13B 0.1911  0.7572  0.6106  0.6875 0.6466  0.7212  0.6418  0.7212

Falcon-7B 04672  0.7672 0.4366  0.6279 0.4643  0.5771 0.4649  0.5665
Llama2-7B  0.5668  0.8060  0.5990 0.7436  0.5902 0.7404  0.5901  0.7321
Mistral-7B - 0.5264  0.8356  0.5397 0.6884  0.5376  0.6927  0.5351  0.6811
OPT-13B 09343 0.8176  0.4040 0.5779 0.4825 0.5864 0.4931 0.5737

Falcon-7B 0.5855 09137 05547 0.8304 0.5487 0.8239 0.5495 0.8054
SVAMP Llama2-7B  0.5626  0.8936  0.5092  0.8818  0.5078  0.8278  0.5082  0.8134
Mistral-7B 0.5344  0.7898  0.4668 0.8723  0.4870 0.8528 0.4875  0.8338

Falcon-7B 0.6246  0.7919  0.6197 0.7191 0.5675 0.6750 0.5619  0.6637
Llama2-7B  0.5316  0.7729  0.5937 0.7312 0.5898 0.7301  0.5865  0.7207
TriviaQA Mistral-7B 0.4982  0.8428  0.5098  0.6964  0.5094  0.6949 0.5046  0.6671
OPT-2.7B 0.6736  0.9288 0.6515 0.8001 0.6617 0.8018 0.6592  0.7923
OPT-13B 0.5831 0.8228 0.6676  0.7834  0.6663  0.7818  0.6666  0.7774

avg 0.5250  0.7703  0.5216 0.6674 0.5284 0.6636  0.5261  0.6503

data model

COQA

SciQ
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E Probabilistic Analysis

E.1 Merge Greedy Decoded Answer into
Samples

We denote the probability of an individual in a sam-
pling set with N samples as P; and the probability
of the greedy decoded answer as Py,ccqy. When
considering merging the greedy decoded answer
into the sampling set based on semantic similarity,
the impact on the overall entropy will differ de-
pending on whether the greedy answer has already
appeared in the sampling set. The entropy of the
samples can be calculated as:

N
Esample = _Zpilogpia (1D
7

If the greedy answer belongs to cluster; within the
sampling domain, the entropy remains unchanged
since the answer has already been sampled, avoid-
ing repeated calculations of the same answer that
would bias the entropy value. If the greedy an-
swer is outside the sampling domain, the entropy
changes to:

N
Esample = _(Z Pi’ log R’+Pgreedy log Pgreedy)a

Z (12)
ST Pﬁpgreedy Since Py < P, the
entropy increases, further widening the gap be-
tween the expected probability and the observed
value. Thus, when the greedy decoded answer has
not appeared in the sampling set, adopting a merg-
ing strategy will make the overall distribution more
closely approximate the true distribution.

where Pi’ =

E.2 Gibss Probability and EPKL

Expected Pairwise KL-divergence (EPKL) is an-
other uncertainty measurement that calculate total
divergence between each sample from model:

EPKLy, 0]z, D] = E ) 5) [Epyieo) | In Pyle.0)

—In P(y|z, HN)” .

13)
where 6, 0 represent either Bayesian network pa-
rameters or randomness injected via Monte Carlo
sampling. As mentioned above, we treat Gibss
probability and “observed probability” as P(T'rue)
and P’(T'rue), standing for confidence level. We
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use the divergence between distributions of pair-
wise sampling results as a measure of the network’s
uncertainty. Instead of calculating the average KL
divergence between the set of sampled answers and
the labeled answer, denoted as ﬁ Zl‘ﬂ Ps, log %
(Malinin and Gales, 2020), we use “Gibbs Proba-
bility”. When the number of samples is sufficient,
the sum of sample probabilities > | Ps, approaches
1, providing the following unbiased estimate:

L s e 1
— 3" Ps log =2t = — (S Ps, log P,
57 2T lo8 Ty = s (2 P low s
S| S| p, 3
—Y " Ps log Pg) ~ T&(logP —log Pg)
b (14)
- P - -
Plog — = P(log P — log FPg)
Fg
S| (15)

1

~ H PS‘?‘ (log P — log Pg),
1

Eq. 15 calculates from a geometric mean perspec-
tive integrating information from all sampled an-
swers in one direction, smoothing out some details,
making it more suitable for an overall assessment
of the entire sampling distribution, while Eq. 14 is
based on the arithmetic mean leading to numerical
instability when there is significant variance among
sample results.

F Results Of Experiments

In our experiments, we present the average perfor-
mance of different models across three scenarios:
when “the greedy decoded answer is present in
the sample set”, when “the greedy decoded an-
swer is absent from the sample set”, and when “the
greedy decoded answer is merged into the sample
set” across various datasets. In this subsection, we
provide a detailed comparison of our LCA method
against the baseline in these three scenarios. When
we group the data according to the experimental
strategy in the paper, in some cases, the AUROC
will be 0 because all the answers to the correspond-
ing group of the question are wrong. We remove
this part of the data before displaying it, and only
display the cases where the AUROC is greater than
0.

F.1 Label Answer In Sample Set

Table 9 presents the AUROC results for the exper-
iment with greedy decoded answer in sample set.



Table 11: Uncertainty estimation AUROCS for experi-
ments that merge the greedy decoded answer into the
sample set.

Merge

data model SE baseline LCA
Falcon-7B  0.7472  0.7456  0.7402
CoQA Llama2-7B  0.7465 0.8074 0.8178
Mistral-7B  0.6206  0.8327  0.8573
OPT-13B 0.7309 0.7343  0.7366
Falcon-7B  0.5815 0.5899 0.5988
Llama2-7B  0.6267 0.6572  0.6572
NaturalQA  Mistral-7B 0.5716  0.6050  0.6263
OPT-2.7B  0.8488 0.8686 0.8609
OPT-13B 0.7428 0.7617 0.7713
Falcon-7B  0.7200 0.7926 0.8143
SciQ Llama2-7B  0.6150 0.7686  0.7923
Mistral-7B 0.6720 0.8316  0.8496
OPT-13B 0.6824  0.6633 0.7209
Falcon-7B  0.6701 0.7069  0.7066
SVAMP Llama2-7B  0.5319 0.9254  0.9255
Mistral-7B 0.5734 0.8869  0.8886
Falcon-7B  0.6902 0.7614  0.7810
Llama2-7B  0.6336  0.7747  0.8043
TriviaQA  Mistral-7B 0.6189  0.8181 0.8412
OPT-2.7B  0.7477 0.8015 0.8530
OPT-13B 0.6897 0.7720 0.8119
avg 0.6696 0.7669  0.7836

In most instances, our LCA method surpasses the
baseline method to varying extents, with an im-
provement of 8% on PE method, 6% on SE, and
5% on TOKENSAR and SAR. Specifically, when
using the OPT-13B model on the SciQ dataset, the
baseline method achieves an AUROC of 0.9636,
while our LCA approach further enhances this to
a perfect score of 1. Moreover, it is evident that in
most cases, when the label answer is present in the
sample set, there is a strong correlation between
the entropy value of the set and the final label. No-
tably, only 4 out of 168 experimental groups exhibit
an AUROC below 0.5, which indicates a negative
correlation between the entropy value and the clas-
sification label. In 3 of these 4 cases, our LCA
method successfully corrects these discrepancies,
resulting in AUROCs greater than 0.5.

F.2 Label Answer Not In Sample Set

Table 10 presents the AUROC results for the exper-
iment without greedy decode answer in sample set.
In this part of the experiment, the AUROC scores
are generally low, but our LCA solution can still
achieve good performance, improving 25% on the
PE solution and 13% on the SE, TOKENSAR and
SAR methods. In most cases, the correlation be-
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tween entropy and corresponding label is low, and
in 1/3 of the cases, the AUROCS are lower than 0.5.
However, in these serious misclassification cases,
4/5 of which our LCA solutions can optimize and
prompt AUROC:s to a higher level.

F.3 Merge Label Answer To Sample Set

In Table 11, we show the AUROC changes when
the greedy decoded answer is semantically merged
into the sampling set, and the AUROC:s further in-
crease when our LCA solution is applied on this
basis. We can see that except for a slight decrease in
the baseline score of OPT-13B on the SciQ dataset,
and mostly the correlation between entropy value
and labels after merging have been improved, with
an overall improvement of 9.7%. Combined with
our previous experimental analysis, this is because
we have expanded the diversity of the sampling
space (because the greedy answer does not appear
in the sampling set in half of the cases), and the
distributions are closer to the true one. Our LCA
method further improves 1.7% on this basis, which
is 11.4% higher than the original solution in aver-
age. This result shows that label confidence aware-
ness can still play a role when the label answer is
merged into the sampling set.

G Additional Overhead

When our solution is integrated on the backbone
method, no additional computational overhead is in-
troduced except for calculating the KL divergence.
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