Navigate through Enigmatic Labyrinth
A Survey of Chain of Thought Reasoning: Advances, Frontiers and Future

Anonymous ACL submission

Abstract

Reasoning, a fundamental cognitive process
in human intelligence, has garnered signifi-
cant attention in the realm of artificial intel-
ligence. Recent studies have found that chain-
of-thought prompting significantly enhances
LLM’s reasoning capabilities, which attracts
widespread attention from both academia and
industry. However, the field lacks a systematic
survey. In this paper, we systematically investi-
gate pertinent research, summarizing advanced
methods from novel perspectives by meticu-
lous taxonomy. Moreover, we delve into the
current frontiers and delineate the challenges
and future directions, thereby shedding light on
future research. Furthermore, we engage in a
discussion about open questions. We hope this
paper serves as an introduction for beginners
and fosters future research. Relevant resources
have been made public available'.

1 Introduction

In the realm of human cognition, reasoning stands
as the linchpin, playing a vital role in the com-
prehension of the world and the formulation of
decisions. As pre-training scales continue to ex-
pand (Brown et al., 2020; OpenAl, 2023; Touvron
et al., 2023a,b), language models exhibit grow-
ing capabilities (Wei et al., 2022a; Schaeffer et al.,
2023; Zhou et al., 2023c), but challenges persist in
the face of complex reasoning (Cobbe et al., 2021;
Gevaetal., 2021). Surprisingly, recent studies have
found that guiding language models to reason step-
by-step can enhance their ability to tackle intricate
problems (Wei et al., 2022b; Jin and Lu, 2023),
also known as chain-of-thought prompting (CoT).
As depicted in Figure 1, the model progressively
navigates its way out of the enigmatic labyrinth un-
der the guidance of CoT prompting, finally arriving
at the correct answer.

'Resources are available at https://github.com/,
updated periodically
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Figure 1: The model tackles complex problems step-by-
step under the guidance of chain-of-thought prompting.

Thanks to the remarkable performance of CoT
prompting, it has garnered widespread attention
in both academia and industry, evolving into an
independent research trajectory outside the realms
of prompting engineering (Liu et al., 2023d; Qiao
et al., 2023). Moreover, it has emerged as a cru-
cial component in the landscape of Al autonomous
agents (Wang et al., 2023h; Xi et al., 2023). How-
ever, these studies have yet to lack a systematic re-
view and analysis. To fill this gap, we propose this
work to conduct a comprehensive and detailed anal-
ysis of the XoT family. It’s worth noting that this
paper explores the generalized chain-of-thought
(XoT) from a broad perspective, with its core idea
centered on reasoning step-by-step, progressively
addressing complex problems.

Our contributions can be summarized as follows:
(1) First Survey: This is the first comprehensive
survey dedicated for XoT reasoning; (2) Meticu-
lous taxonomy: We introduce a meticulous taxon-
omy (shown in Figure 2); (3) Frontier and Future:
We discuss new frontiers, outline their challenges,
and shed light on future research. (4) Resources:
We make the resources publicly available to facili-
tate the research community.

Survey Organization We first give background
and preliminary (§2); then present benchmarks (§3)
and advanced methods (§4) from different per-
spectives. Furthermore, we discuss frontier re-
search (§5) and outline challenges and future re-
search directions (§6). Finally, we give a further
discussion about open questions (§A.2).
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2 Background and Preliminary

2.1 Background

In recent years, as model sizes increase (Brown
etal., 2020; Scao et al., 2022; Touvron et al., 2023b;
Zhao et al., 2023b), language models have emerged
with numerous new capabilities, such as in-context
learning (ICL) (Wei et al., 2022a; Brown et al.,
2020) and chain-of-thought reasoning (Wei et al.,
2022b). Accompanying this trend, pretrain with
ICL has gradually supplanted pretrain with fine-
tune, becoming the new paradigm in NLP (Qiu
et al., 2020).

ICL integrates input-output demonstrations into
prompts, enabling inference through few-shot
learning. Through ICL, LLMs achieve competitive
performance without fine-tuning but underperform
in the face of complex reasoning tasks, while CoT
prompting presents reasoning steps to LLMs, guid-
ing them to solve complex problems progressively,
thereby enhancing reasoning capabilities. More-
over, it exposes the LLM‘s reasoning process to
users, which offers interpretability.

2.2 Preliminary

In this section, we introduce the preliminary chain-
of-thought reasoning with LLMs. Suppose there is
a question Q, a prompt 7 and a probabilistic lan-
guage model Prjs. The model takes the question
and prompt as inputs to give the rationale R and
answer A. We first consider in-context scenarios
where the demonstrations do not contain reason-
ing chains. We need to maximize the likelihood of
Answer A, as shown in Equ. (1,2).
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In chain-of-thought reasoning scenario, where
the demonstrations contain reasoning process, we
need to maximize the likelihood of Answer A and
rationale R, as shown in Equ. (3,4,5,6).
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3 Benchmarks

Mathematical Reasoning Mathematical reason-
ing forms the foundation of human intelligence,
playing a crucial role in problem-solving, decision-
making, and world comprehension®. It is com-
monly used to assess the general reasoning abil-
ity of language models (Patel et al., 2021; Cobbe
et al., 2021; Hendrycks et al., 2021b; Mishra et al.,

2022a).

Commonsense Reasoning Commonsense rea-
soning is essential for the interaction in daily life
and the perception of the world, which assesses the
world comprehension capacity of language mod-
els (Talmor et al., 2019, 2021; Geva et al., 2021).

Symbolic Reasoning Symbolic reasoning disen-
tangles semantics and serves as a testbed for lan-
guage models’ competence in simulating atomic
operations (Wei et al., 2022b; Srivastava et al.,
2022; Suzgun et al., 2023).

Logical Reasoning Logical reasoning is of
paramount importance as it serves as the bedrock
for rational thinking, robust problem-solving and
interpretable decision-making (Liu et al., 2020; Yu
et al., 2020; Tafjord et al., 2021; Han et al., 2022).

Multi-modal Reasoning Multimodal reasoning
goes beyond the text, connecting human thought
(text) with the natural world (vision, auditory,
etc.) (Zellers et al., 2019; Park et al., 2020; Xiao
et al., 2021; Lu et al., 2022).

4 Advanced Methods

In this section, we will discuss advanced XoT
methods from three perspectives: construction ap-
proach (§4.1), structural variations (§4.2), and
enhancement methods (§4.3). The taxonomy is
shown in Figure 2.

4.1 Construction Approach

Based on the human effort required for model per-
forming XoT reasoning, we divide the construction
approaches into three categories: 1) Manual XoT,
2) Automatic XoT, and 3) Semi-automatic XoT.

4.1.1 Manual XoT

Wei et al. (2022b) first propose chain-of-thought
prompting (Fewshot CoT) by manually annotating
natural language form rationales to guide models in

%Please refer to Appendix for details of benchmarks.
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Figure 2: Taxonomy of Advanced Methods, Frontiers and Future Directions (Full version in Figure 8).

stepwise reasoning. To mitigate intermediate errors
in reasoning, PAL (Gao et al., 2023), PoT (Chen
et al., 2022a), MathPrompter (Imani et al., 2023)
and NLEP (Zhang et al., 2023d) leverage ratio-
nales in programming language form, transform-
ing problem-solving into program generation, and
obtaining a deterministic answer through external
program executor. Moreover, Fu et al. (2023a)
discovers that using complex reasoning chains as
demonstrations can further improve reasoning per-
formance.

4.1.2 Automatic XoT

Some work designs specific instructions to stim-
ulate CoT reasoning in a zero-shot manner, such
as appending Let’s think step by step after ques-
tions (Zeroshot CoT) (Kojima et al., 2022). There
are also other types of instructions, including
writing programs (Chen et al., 2022a), creating
plans (Wang et al., 2023i), and generating task-
related descriptions (Crispino et al., 2023), etc.
However, due to the lack of demonstration guid-
ance, instruction-based methods are extremely un-
stable. Another route of work conducts few-shot
reasoning based on automatically generated ratio-
nales (usually by Zeroshot CoT), which provides
more stable reasoning. Such approaches focus on
demonstration selection to boost reasoning. Zhang
et al. (2023h) chooses diverse rationales through
clustering, Zou et al. (2023) builds demonstrations

based on the question pattern, Wan et al. (2023) em-
ploys answer entropy as a metric for selection, and
Xu et al. (2023) uses gibbs sampling to iteratively
select samples.

4.1.3 Semi-automatic XoT

Building upon automatic methods rooted in few-
shot learning, semi-automatic approaches incor-
porate a small number of human-annotated ratio-
nales to obtain supervision signals. They focus
on bootstrapping to acquire high-quality rationales
and selecting appropriate demonstrations to facili-
tate reasoning. Shao et al. (2023b) generates high-
quality rationales through alternating forward and
backward synthetic processes and Pitis et al. (2023)
iteratively expands the examples when encounter-
ing challenging questions, which mitigates the is-
sue of limited human supervision. On the other
hand, some studies optimize demonstration selec-
tion. Shum et al. (2023) and Lu et al. (2023b) uti-
lize policy gradient strategy to find examples, while
Ye and Durrett (2023) applies two proxy metrics
on development sets to yield demonstrations.

4.1.4 Pros and Cons of three Approaches

Manual XoT relies on high-quality rationale an-
notations, which result in superior performance.
However, it encounters drawbacks such as high
labor requirements and challenges in domain trans-
fer. In contrast, Automatic XoT incurs no labor
costs and allows for free domain transfer. How-
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ever, it is plagued by errors and instability due to
a lack of supervised signals. Semi-automatic XoT
strikes a subtle balance between the two, achieving
anuanced trade-off between performance and costs,
making it more suitable for real-world applications.

4.2 XoT Structural Variants

The evolution of XoT has led to the development
of multiple topological variants?. In this section,
we will introduce variants of chain structure, tree
structure and graph structure.

Chain Structure The descriptive form of ratio-
nales significantly influences reasoning execution.
PAL (Gao et al., 2023) and PoT (Bi et al., 2023)
use programming languages to depict the reasoning
process, turning problem-solving into code genera-
tion. Similarly, formal logic description languages
are also used to depict logical reasoning (Olausson
etal., 2023; Pan et al., 2023; Ye et al., 2023a). They
decouple the thought generation from execution,
eliminating inconsistency errors. Additionally, al-
gorithmic descriptions (Sel et al., 2023) can offer a
high-level reasoning framework instead of address-
ing specifics, endowing the model with the ability
for global thinking.

Tree Structure Chain structure inherently lim-
its the scope of exploration. Through the incor-
poration of tree structures and search algorithms,
models gain the capability to widely explore and
backtrack during reasoning (Long, 2023; Yao et al.,
2023Db), as shown in Figure 3(e). Benefiting from

3We consider XoT with chain structure and natural lang. ra-
tionales as vanilla CoT (the most primitive chain-of-thought).

the exploration, tree variants have gained prelimi-
nary global planning capabilities towards the global
optimum. Meanwhile, (Mo and Xin, 2023; Cao
et al., 2023) introduce uncertainty measures based
on Monte Carlo dropout and generation likelihood,
respectively, thereby offering a more accurate eval-
uation of intermediate reasoning processes. To
address complex problems, Yu et al. (2023b) uses
a bottom-up approach by building an analogy sub-
problems tree. In addition, Ning et al. (2023) ac-
celerates reasoning by solving tree structure sub-
problems in parallel. However, current methods
are restricted by demands of explicit question de-
composition and state transition, which leads to
limitations in task generalization.

Graph Structure Graph structures introduce
loops and N-to-1 connections, enabling improved
modeling of subproblem aggregation and self-
verification (Besta et al., 2023; Lei et al., 2023a),
as illustrated in Figure 3(f). When confronted with
complex problems, it demonstrates superior perfor-
mance compared to tree variants, but faces similar
challenges in task generalization. To address the
generalization, Jiang et al. (2023a) establishes con-
nections between reasoning steps in the prompts,
thereby implicitly constructing a reasoning graph,
which alleviates constraints imposed by complex
topological structure.

The models’ capability progresses as the struc-
ture becomes more complex. Nevertheless, the
generalization is limited by complex topological
structures. The primary challenge for future re-
search lies in extending methods based on these
complex structures to universal domains.
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4.3 XoT Enhancement Methods

In the following, we introduce enhanced XoT meth-
ods from five perspectives, including verify and
refine (§4.3.1), question decomposition (§4.3.2),
knowledge enhancement (§4.3.3), multiple ensem-
bling (§4.3.4) and efficient reasoning (§4.3.5).

4.3.1 Verify and Refine

LLMs tend to be hallucinatory, which manifests
as factual and faithful errors in reasoning (Huang
et al., 2023c). Incorporating verification and refine-
ment can be an effective strategy for mitigating the
phenomena. In this section, we primarily focus on
mitigating faithful errors, with a separate discus-
sion of factual errors in the following knowledge
enhancement section (§4.3.3).

LLMs can refine reasoning based on critics’ feed-
back. Paul et al. (2023) trains a small critic model
to provide structured feedback, but the quality
of the feedback is limited due to the model size.
Madaan et al. (2023) employs feedback from it-
self for iterative self-refinement, Li et al. (2022c)
uses finer-grained feedback at the step level, and
Shinn et al. (2023) further enhances this approach
by incorporating long and short-term memory to
provide more concise suggestions. However, recent
research suggests that LLMs may not address is-
sues beyond their own capabilities (Kadavath et al.,
2022; Yin et al., 2023), which raises doubt on the
effectiveness of self-feedback (Huang et al., 2023b).
To address this, some work incorporates external
feedback (Gou et al., 2023a; Nathani et al., 2023)
or performs secondary verification on the refine-
ment (Shridhar et al., 2023).

On the other hand, logical reasoning structures
are also well-suited for verification. Ling et al.
(2023) devises a deductive reasoning form named
Natural Program, which guarantees that the con-
clusion is derived from the designated premises.
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Figure 5: Question decomposition solves complex ques-
tions progressively by solving simple sub-questions.

Besides, backward (abductive) reasoning excels
in detecting inconsistencies in reasoning. It recon-
structs conditions or variables in the question based
on the reasoning chain to discover inconsistencies,
thereby refining the reasoning (Xue et al., 2023;
Weng et al., 2022; Jiang et al., 2023b).

Reasoning with LLMs is prone to hallucinations,
and feedback from intermediate steps plays a cru-
cial role in refining the reasoning. However, the cur-
rent acquisition of feedback signals still has many
shortcomings, which necessitates further research.

4.3.2 Question Decomposition

The core idea of XoT is to solve questions step-
by-step. However, vanilla CoT does not explicitly
decompose questions, making it challenging to an-
swer complex questions. To address this, certain
approaches embrace the divide-and-conquer philos-
ophy, overcoming intricate problems by tackling
straightforward sub-problems.

L2M (Zhou et al., 2023b) initially breaks down
the question into sub-questions in a top-down fash-
ion. It then solves one sub-question at a time and
leverages its solution to facilitate subsequent sub-
questions. Dua et al. (2022) takes a similar ap-
proach to L2M, but it uses solutions from previ-
ous sub-questions to iteratively decompose ques-
tions. Khot et al. (2023) designs a modular task-
sharing library that tailors more effective solutions
to different classes of sub-questions. In multi-hop
reasoning, iterative decomposition has become a
common practice (Wang et al., 2022; Press et al.,
2023; Trivedi et al., 2023). Additionally, some
methods obtain a dedicated decomposer through
supervised training rather than relying on the LLM
itself (Li et al., 2023d; Junbing et al., 2023). How-
ever, when dealing with tabular reasoning, answer-
ing sub-questions may also pose a challenge, par-
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ticularly when handling large tables. To tackle
this issue, certain approaches involve decomposing
both the questions and tables simultaneously (Ye
et al., 2023b; Cheng et al., 2023).

In addition to top-down decomposition, bottom-
up sub-question aggregation is also a viable solu-
tion, with a smaller exploration space that leads to
lower costs. Qi et al. (2023) employs Socratic ques-
tioning for recursive self-questing to solve complex
questions, while Zhang et al. (2023e), in a similar
fashion, breaks tasks into small components and
resolves them bottom-up.

4.3.3 Knowledge Enhancement

When dealing with knowledge-sensitive tasks,
LLMs often make factual errors. Introducing ex-
ternal knowledge or mining the model’s internal
knowledge can help alleviate this issue. Some
methods explicitly utilize the model’s intrinsic
knowledge. For example, Dhuliawala et al. (2023);
Jietal. (2023); Zheng et al. (2023c) prompt models
to output its parametric knowledge, and then reason
based on that intrinsic knowledge. Additionally,
Zhang et al. (2023g) prompts the model to perform
inductive reasoning on its intrinsic knowledge, de-
riving more general conclusions. Furthermore, Liu
et al. (2023c) incorporates reinforcement learning
to optimize based on model’s intrinsic knowledge.
Meanwhile, Li and Qiu (2023) constructs an exter-
nal memory bank using model’s reasoning chains
and retrieves from it as needed.

External knowledge is often more reliable than
parametric knowledge. Li et al. (2023d); Wang et al.
(2023e) generates queries based on the question,
utilizing a knowledge base as the external knowl-
edge. Building upon this, Wang et al. (2023c) in-
troduces a verification step for the retrieved knowl-
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edge, further ensuring knowledge accuracy. How-
ever, when confronted with multi-hop reasoning,
direct retrieval using the question can be insuffi-
cient. Therefore, Press et al. (2023); Trivedi et al.
(2023); Shao et al. (2023a); Yoran et al. (2023)
decompose the question and iteratively use sub-
question for more precise retrieval.

4.34

The sampling of generation introduces uncertainty,
which, in turn, creates the possibility of improving
performance through ensemble learning. Cobbe
et al. (2021) trains a verifier to rank answers.
SC (Wang et al., 2023m) performs majority voting
based on answers across multiple samples, and Fu
et al. (2023a) proposes a complexity-based voting
strategy on top of SC. Widespread practical evi-
dence indicates that ensemble is an effective way
to improve performance. However, answer-based
ensembling fails to consider intermediate steps. In
response, Miao et al. (2023); Yoran et al. (2023);
Khalifa et al. (2023) refines the ensemble at the
step level. Yet another concern is the limited diver-
sity offered by probability sampling. To overcome
this limitation, Naik et al. (2023) uses different
instructions, Liu et al. (2023¢) ensembles various
XoT variants, and Qin et al. (2023a) ensembles us-
ing multi-lingual reasoning chains. Furthermore,
the multi-agent debate (MAD) framework can also
be regarded as heterogeneous ensemblings (Liang
et al., 2023; Du et al., 2023; Wang et al., 2023b).

Multiple Ensembling

4.3.5 Efficient Reasoning

LLMs are often inefficient in reasoning, such as
high latency, substantial annotation costs, and ele-
vated inference costs. To speed up reasoning, Ning
et al. (2023) decomposes the questions in paral-
lel and handles them simultaneously, Zhang et al.
(2023b) generates a draft to skip intermediate lay-
ers during inference, and Leviathan et al. (2023)



introduces speculative decoding, which employs
a smaller model for approximate inference. Diao
et al. (2023) annotates high-uncertainty samples to
reduce human costs, and Aggarwal et al. (2023)
dynamically adjusts sampling frequency to reduce
inference costs. Further research should focus on
efficient reasoning to promote the widespread ap-
plication of LLMs.

5 Frontiers Research

5.1 Tool Using

LLMs face challenges accessing news, performing
calculations, and interacting with the environment.
Previous work (Parisi et al., 2022; Schick et al.,
2023; Shen et al., 2023a) grant LLM the ability
to employ external tools, augmenting reasoning
capabilities and assimilate external knowledge, en-
abling it to engage in calculation or multimodal
interaction. However, the above approaches have
limitations in facilitating multiple invocations of
the tool and rectifying query errors. To tackle this
problem, ReAct (Yao et al., 2023c) and Reflex-
ion (Shinn et al., 2023) integrate the strengths of
reasoning and action to complement each other.
ART (Paranjape et al., 2023) uses a task library to
select relevant tools and reasoning demonstrations.
These research studies focus on designing tools
(or APIs) to enhance the capabilities of LLMs in
various domains. Action facilitates interaction with
external sources, such as knowledge bases and en-
vironments, enabling it to gather additional infor-
mation. Simultaneously, XoT enables effective
elicitation, tracking, and action refining.

5.2 Planning

LLMs cannot directly provide accurate responses
for intricate problems, which requires planning to
decompose them into sub-tasks and trace intermedi-
ate results. A plan can be described by code or defi-
nition language. AdaPlanner (Sun et al., 2023) gen-
erates Python code to control the agent and refines
the plan iteratively based on feedback from execu-
tion. LLM+P (Liu et al., 2023a) and LLM+DP (Da-
gan et al., 2023) facilitate the Planning Domain
Definition Language (PDDL) (Gerevini, 2020) to
describe the planning procedure. PDDL assists
in decomposing complex problems and utilizing
specialized models for planning before converting
the results into natural language. ISR-LLM (Zhou
et al., 2023d) combines Self-Refine with PDDL to

achieve a better success rate in long-horizon se-
quential tasks.

Instead of pre-defined plans, many studies use
search algorithms to plan and explore the ac-
tion space dynamically. Tree-of-Thought (Yao
et al., 2023b) decomposes the problem by deep-
first or breadth-first search. Reasoning via Plan-
ning (RAP) (Hao et al., 2023a) and LATS (Zhou
et al., 2023a) utilize LM-based Monte Carlo Tree
Search for a more flexible planning procedure.
Toolchain* (Zhuang et al., 2023) enables a more
efficient exploring through heuristic A* search.

In summary, employing an LLM as a central
controller, alongside tool usage and planning ca-
pabilities, constitutes a pathway toward realizing
autonomous agents and, potentially, embodied in-
telligence in future research.

5.3 Distillation of Reasoning Capabilities

In low-resource scenarios such as edge comput-
ing, distillation offers a possibility for deploying
LLMs. Besides, self-distillation is also a means
of enhancing reasoning capabilities. Huang et al.
(2023a) employs self-consistency to generate rea-
soning chains from unlabeled data, followed by
fine-tuning, enhancing its generalized reasoning
capabilities. Zelikman et al. (2022) improves LM’s
reasoning capabilities via self-loop bootstrapping.

Though CoT is an emerging ability primarily
observed in LLMs, it is limited in smaller mod-
els. Magister et al. (2023) demonstrates that fine-
tuning T5 with reasoning chains generated by
larger teacher models can substantially enhance
task performance across diverse datasets. Hsieh
et al. (2023b) generates rationales by prompting
the language model to provide reasoning from
the answer voted by self-consistency. Ho et al.
(2023); Li et al. (2023b) finds that sampling mul-
tiple reasoning chains per instance is paramount
for improving students’ capability. SCOTT (Wang
et al., 2023j) utilizes contrastive decoding (Li et al.,
2022b; O’Brien and Lewis, 2023) and counterfac-
tual reasoning objective to tackle the shortcut prob-
lem. DialCoT (Han et al., 2023) decomposes rea-
soning steps into a multi-round dialog and selects
the correct path using the PPO algorithm.

These studies adopt a shared paradigm that dis-
tills smaller models with reasoning chains gener-
ated from larger models with superior reasoning ca-
pabilities. It’s notable that language models have in-
tricate tradeoffs associated with multidimensional



capabilities, and distilling task-specific reasoning
ability may adversely impact the general perfor-
mance (Fu et al., 2023b).

6 Future Directions

While XoT has showcased remarkable performance
on numerous tasks, there are still some challenges
that necessitate further research.

6.1 Multi-modal Reasoning

Current XoT research mostly focuses on plain text.
However, interacting with the real world neces-
sitates multi-modal capabilities. To facilitate re-
search, SciQA (Lu et al., 2022) and CURE (Chen
et al., 2023b) are introduced to emphasize multi-
modal CoT reasoning. Through fine-tuning with
vision-language features, Zhang et al. (2023i);
Wang et al. (2023g) endow models with multi-
modal XoT capabilities, and Yao et al. (2023d,a)
further incorporate graph structures to model
multi-hop relationships. Other approaches con-
vert images to captions and use LLM for prompt-
based reasoning (Yang et al., 2023b; Zheng et al.,
2023b). However, the limited capabilities of vision-
language models constrain their performance in
XoT reasoning (Alayrac et al., 2022; Li et al.,
2023a; Peng et al., 2023).

Nevertheless, several critical challenges remain
to be addressed in future research, which we sum-
marize as follows: (1) Visual-text interaction:
How can visual and textual features be effectively
integrated, instead of relying solely on captions?
(2) Harnessing LLLM: How can we better ap-
ply LLM-based reasoning techniques to the multi-
modal domain? (3) Video Reasoning: How to
expand into video reasoning with complex tempo-
ral dependencies?

6.2 Faithful Reasoning

Extensive research indicates that LLMs often en-
gage in unfaithful reasoning, such as factual er-
rors and inconsistencies. To address factual er-
rors, one common approach is retrieval augmenta-
tion (Trivedi et al., 2023; Zhao et al., 2023a), but it
requires appropriate timing and retrieval accuracy.
Compared to factual errors, inconsistencies are
more difficult to identify. Common detection meth-
ods include logic-based (Jiang et al., 2023b; Xue
et al., 2023; Ling et al., 2023), post-processing (He
et al., 2023a; Lei et al., 2023b), and critic-based
approaches (Madaan et al., 2023; Nathani et al.,

2023). Neural-symbolic reasoning (Chen et al.,
2022a; Olausson et al., 2023) is a widely used ap-
proach for reducing inconsistencies, and question
decomposition (Radhakrishnan et al., 2023) has
also demonstrated its effectiveness to some degree.
Furthermore, Zhang et al. (2023c); Lanham et al.
(2023) investigate the factors influencing faithful-
ness from an empirical perspective.

The faithful reasoning encounters two signifi-
cant challenges: (1) Detection: How can unfaithful
reasoning be accurately identified? (2) Correction:
How can precise feedback be generated to facilitate
accurate correction?

6.3 Theoretical Perspective

The mechanism behind the CoT and ICL has not
been clearly explained so far. Some studies empir-
ically explore the roles of CoT and ICL in rea-
soning, offering practical insights (Wang et al.,
2023a; Madaan and Yazdanbakhsh, 2022; Tang
et al., 2023). Another line of work explores from
a theoretical perspective. Li et al. (2023e); Feng
et al. (2023); Merrill and Sabharwal (2023) investi-
gate why CoT enhances reasoning abilities, while
Wau et al. (2023b); Tutunov et al. (2023); Hou et al.
(2023); Wang et al. (2023f) examine the mecha-
nisms from a feature-based standpoint (informa-
tion flow, attention). Additionally, there has been
preliminary exploration of the emergence mecha-
nism (Schaeffer et al., 2023; Zhou et al., 2023c).

At present, the exploration of CoT theories is
still limited to the surface level. There are still
open questions that require further in-depth inves-
tigation. (1) How does the emergence capability
arise? (2) In what way does CoT enhance reason-
ing compared to standard ICL?

7 Conclusion

In this paper, we present a systematic survey of ex-
isting research on X-of-thought reasoning, offering
a comprehensive review of the field. Specifically,
we summarize and discuss the advanced methods
from various perspectives. Additionally, we delve
into the current frontiers, highlighting existing chal-
lenges, identifying potential research directions for
the future, and discussing open questions*. This pa-
per is the first systematic survey dedicated to XoT
reasoning. We hope that this survey will facilitate
further research in this area.

*Due to page limit, we leave related work, discussion in
Appendix A, and benchmarks details in Appendix B



Limitations

This study provides the first comprehensive survey
of generalized chain-of-thought (XoT) reasoning.
Related work, benchmarks details and further dis-
cussion can be found in Appendix A,B.

We have made our best effort, but there may
still be some limitations. Due to page limitations,
we cannot provide every technical detail. We pri-
marily gather studies from ACL*, NeurIPS, ICLR,
ICML and arXiv, and there is a chance that we
may have missed some important work published
in other venues. In the benchmarks section, we
primarily include widely used datasets, and more
complete benchmarks can be found in Guo et al.
(2023). As of now, there is no definitive conclu-
sion on open questions. We will stay abreast of
discussions within the research community, updat-
ing opinions and supplementing overlooked work
in the future.
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A Appendix

A.1 Related Survey

Zhao et al. (2023b) primarily focuses on the devel-
opment of contemporary LLMs, while Qiu et al.
(2020) surveys about early PLMs. Some works dis-
cuss reasoning in specific domains, such as math-
ematical reasoning (Lu et al., 2023c), common-
sense reasoning (Talmor et al., 2019), and logi-
cal reasoning (Yang et al., 2023c). Huang et al.
(2023c¢); Zhang et al. (2023f) conducts an investi-
gation into potential hallucination phenomena in
LLM’s reasoning. Dong et al. (2023) discusses
in-context learning techniques in the era of LLMs,
and Yu et al. (2023a) conducts a macroscopic inves-
tigation into natural language reasoning. Liu et al.
(2023d) mainly discusses prompt tuning, while
Qiao et al. (2023); Yu et al. (2023d) are more con-
centrated on prompt engineering and strategies.

Distinct from the above-mentioned surveys, this
paper focuses on generalized chain-of-thought rea-
soning in the era of LLMs. This is the first sys-
tematic investigation into XoT reasoning, and we
hope our work can serve as an overview to facilitate
future research.

A.2 Further Discussion

Open Question: Does CoT ability originate from
code data pre-training? This is a pending ques-
tion, initially summarized by Fu and Khot (2022)
and widely circulated in the research community.
In the early stages, LLMs like GPT3 (Brown et al.,
2020) (davinci) and OPT (Zhang et al., 2022b) usu-
ally do not possess CoT capabilities and they do
not use or only incorporate a small amount of code
data (not specialized) during pre-training. Recent
models often incorporate specialized code data dur-
ing pre-training, such as GPT-3.5, LLaMA2 (Tou-
vron et al., 2023b) (with approximately 8% of
code data during pre-training) and they all possess
strong CoT capabilities. Additionally, Gao et al.
(2023); Chen et al. (2022a) have found that the
use of programming language form rationales can
significantly enhance the model’s performance on
complex reasoning tasks. Various indications point
towards the source of CoT abilities lying in code
data during pre-training. However, as of now, there
is no work that has reached a definite conclusion
on this opinion, which necessitates further in-depth
exploration in future research.
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Open Question: How to provide precise feed-
back on model’s reasoning or decisions? When
dealing with multi-step reasoning or decision-
making tasks, errors often occur in intermediate
steps, and if these errors are not corrected promptly,
they may lead to cascading errors. Currently, the
primary methods for obtaining feedback include
feedback from model itself (Madaan et al., 2023;
Shinn et al., 2023), feedback from other mod-
els (Paul et al., 2023), feedback from the exter-
nal environment (Nathani et al., 2023; Gou et al.,
2023a), and feedback based on reinforcement learn-
ing (Uesato et al., 2022; Lightman et al., 2023; Ma
et al., 2023). However, these methods have inher-
ent issues. (1) How dependable is the feedback
generated by the model itself? (2) Is there a fun-
damental distinction between feedback from other
models and self-feedback? (3) Does the feedback
quality still remain constrained by the model’s ca-
pability boundaries? (4) How is external feedback
for various scenarios pre-defined, and how can this
be expanded to different scenarios? (5) How to
obtain an effective reward model?

In summary, there is currently no fully satisfy-
ing feedback approach and more research attention
is needed on how to accurately obtain feedback
signals from the model’s intermediate processes.

Discussion: Towards (early) AGI AGI has been
the long-standing ultimate aspiration in the realm
of artificial intelligence.

Integration of reasoning and world interac-
tion. With robust language comprehension capa-
bilities, LLMs can engage with the external world
through text-based interactions using plugins (tools,
API, etc) (Schick et al., 2023; Shen et al., 2023a;
Qin et al., 2023b). Combining powerful reasoning
capabilities, LLMs have made significant strides in
various planning and decision-making tasks (Shinn
et al., 2023; Yao et al., 2023b; Zhuang et al., 2023),
catalyzing research on LLM-based autonomous
agents (Wang et al., 2023h; Xi et al., 2023).

LLM acts as the Brain (Controller). In con-
trast to traditional Al, which concentrates on spe-
cific tasks, AGI seeks the ability to understand gen-
eral tasks (Devlin et al., 2019; Dosovitskiy et al.,
2021), covering a widespread spectrum. Within
LLM-based Al, the LLM typically serves as the
brain (or central controller), handling reasoning,
planning and decision-making, while delegating
specific execution to dedicated modules (tools,
weak Al, etc.) (Shen et al., 2023a; Yang et al.,,



2023a). LLM-based Al has already diverged sig-
nificantly from weak Al and is progressing towards
human cognition and thinking.

While some studies suggest that LLLMs represent
an early manifestation of AGI (Bubeck et al., 2023;
Jack, 2023), there are also scholars who contend
that LLMs may not progress into AGI due to fac-
tors such as auto-regressive modeling and limited
memory. As of now, there is still intense debate on
whether LLMs can evolve into AGI. But regardless,
LLM-based Al has embarked on a distinctly dif-
ferent path from traditional Al, evolving towards a
more generalized direction.

A.3 Early Attempts and Efforts in Specific
Domains

In this section, we list the early attempts of XoT
reasoning and efforts focused on specific domains.
Before the concept of CoT was introduced (Wei
et al., 2022b), some efforts were made to enhance
reasoning performance through the use of ratio-
nales (Marasovic et al., 2022; Rajani et al., 2019a,b;
Dua et al., 2020). After that, certain work has em-
pirically demonstrated the effectiveness of chain-
of-thought prompting (Lampinen et al., 2022; Ye
and Durrett, 2022; Arora et al., 2023) and Shi
et al. (2023) explores multi-lingual CoT reason-
ing. Other work focuses on specific domains, such
as machine translation (He et al., 2023b), senti-
ment analysis (Fei et al., 2023), sentence embed-
dings (Zhang et al., 2023a), summarization (Wang
et al., 2023n), arithmetic (Lee and Kim, 2023), and
tabular reasoning (Chen, 2023; Jin and Lu, 2023),
etc. Katz et al. (2022); Zhang et al. (2022a) pro-
vide benchmarks and resources. Besides, some
research utilizes specific pre-training to enhance
certain capabilities, such as mathematical reason-
ing (Lewkowycz et al., 2022; Zhao et al., 2022).

A.4 Empirical Results

We statistic the performance of various XoT meth-
ods in mathematics, common sense, and symbolic
reasoning, as shown in Table 2. We primarily
focus on the performance of GPT series mod-
els and the results are mainly from correspond-
ing papers (some results are used as baselines
in other papers). It is worth noting that due to
variations in model versions and experimental se-
tups, even the methods with the same backbone
may not be fairly comparable on the same dataset.
Therefore, this table only provides trends and em-
pirical insights.
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B Details of Benchmarks

B.1 Mathematical Reasoning

Mathematical reasoning is often used to measure
the reasoning power of a model. Early bench-
marks contain simple arithmetic operations (Hos-
seini et al., 2014; Koncel-Kedziorski et al., 2015;
Roy and Roth, 2015; Koncel-Kedziorski et al.,
2016). Ling et al. (2017) labels the reasoning pro-
cess in natural language form, and Amini et al.
(2019) builds on AQUA by labeling the reasoning
process in program form. Later benchmarks (Miao
et al., 2020; Patel et al., 2021; Cobbe et al., 2021;
Gao et al., 2023) contain more complex and di-
verse questions. (Zhu et al., 2021; Chen et al., 2021,
2022b) require reasoning based on the table content.
There are also general benchmarks (Hendrycks
et al., 2021b; Mishra et al., 2022a,b) and reading
comprehension form benchmarks (Dua et al., 2019;
Chen et al., 2023a).

B.2 Commonsense Reasoning

Commonsense reasoning is the process of making
inferences, judgments, and understandings based
on knowledge that is generally known and com-
monly perceived in the everyday world. How to
acquire and understand commonsense knowledge
is a major impediment to models facing common-
sense reasoning. Many benchmarks and tasks are
proposed focusing on commonsense understand-
ing (Talmor et al., 2019, 2021; Bhakthavatsalam
et al., 2021; Mihaylov et al., 2018; Geva et al.,
2021; Huang et al., 2019; Bisk et al., 2020), event
temporal commonsense reasoning (Rashkin et al.,
2018; Zhou et al., 2019) , and commonsense verifi-
cation (Wang et al., 2019).

B.3 Symbolic Reasoning

Symbolic reasoning here refers specifically to the
simulation of some simple operations, which are
simple for humans yet challenging for LLMs. Last
letter concatenation, coin flip, and reverse list (Wei
et al., 2022b) are the most commonly used sym-
bolic reasoning tasks. In addition, the collaborative
benchmark BigBench (Srivastava et al., 2022) and
BigBench-Hard (Suzgun et al., 2023) also contain
several symbolic reasoning datasets, such as state
tracking and object counting.

B.4 Logical Reasoning

Logical reasoning is divided into deductive rea-
soning, inductive reasoning, and abductive reason-



Task Dataset Size Input Output Rationale Description
AddSub (Hosseini et al., 2014) 395 Question Number Equation Simple arithmetic
SingleEq (Koncel-Kedziorski et al., 2015) 508 Question Number Equation Simple arithmetic
MultiArith (Roy and Roth, 2015) 600 Question Number Equation Simple arithmetic
MAWPS (Koncel-Kedziorski et al., 2016) 3320 Question Number Equation Simple arithmetic
AQUA-RAT (Ling et al., 2017) 100,000 Question Option Natural Language Math reasoning with NL rationale
ASDiv (Miao et al., 2020) 2305 Question Number Equation Multi-step math reasoning
SVAMP (Patel et al., 2021) 1,000 Question Number Equation Multi-step math reasoning
Mathematical GSMSK (Cobbe et al., 2021) 8,792 Qucslgcn Number Natural Language Mulli—sch math reasoning
Reasoning GSM-Hard (Gao et al., 2023) 936 Question Number Natural Language GSMBSK with larger number
MathQA (Amini et al., 2019) 37,297 Question Number Operation Annotated based on AQUA
DROP (Dua et al., 2019) 96,567 Question+Passage Number+Span Equation Reading comprehension form
TheoremQA (Chen et al., 2023a) 800 Question+Theorem Number Answer based on theorems
TAT-QA (Zhu et al., 2021) 16,552 Question+Table+Text Number+Span Operation Answer based on tables
FinQA (Chen et al., 2021) 8,281 Question+Table+Text Number Operation Answer based on tables
ConvFinQA (Chen et al., 2022b) 3892 Question+Table+Dialog Number Operation Multi-turn dialogs
MATH (Hendrycks et al., 2021b) 12500 Question Number Natural Language Challenging competition math problems
NumGLUE (Mishra et al., 2022b) 101,835 Question+Text Number+Span X Multi-task benchmark
LILA (Mishra et al., 2022a) 133,815 Question+Text Free-form Program Multi-task benchmark
ARC (Bhakthavatsalam et al., 2021) 7787 Question Option X From science exam
OpenBookQA (Mihaylov et al., 2018) 5,957 Question+Context Option X Open-book knowledges
PIQA (Bisk et al., 2020) 21000 Goal+Solution Option X Physical commonsense knowledge
CommonsenseQA (Talmor et al., 2019) 12247 Question Option X Derived from ConceptNet
Commonsense Common§enseQA 2:0 (Talmor et al., 2021) 14343 Question Yes/No ) X Gaming annotation with high qu?]i(y
Reasoning Event2Mind (Rashkin et al., 2018) 25000 Event Intent+Reaction X Intension commonsense reasoning
° McTaco (Zhou et al., 2019) 13225 Question Option X Event temporal commonsense reasoning
CosmosQA (Huang et al., 2019) 35588 Question+Paragraph Option X Narrative commonsense reasoning
ComValidation (Wang et al., 2019) 11997 Statement Option X Commonsense verification
ComExplanation (Wang et al., 2019) 11997 Statement Option/Free-form X Commonsense explanation
StrategyQA (Geva et al., 2021) 2,780 Question Yes/No X Multi-hop commonsense reasoning
Last Letter Concat. (Wei et al., 2022b) Words Letters X Rule-based
Symbolic Coin Flip _(Wei el_al., 2022b) Stale_menl Yes/No ) X Rule-based
Reasoning Reverse List (Wei et al., 2022b) List Reversed List X Rule-based
” © BigBench (Srivastava et al., 2022) - - X Contains multiple symbolic reasoning datasets
BigBench-Hard (Suzgun et al., 2023) X Contains multiple symbolic reasoning datasets
ReClor (Yu et al., 2020) 6,138 Question+Context Option X Questions from GMAT and LSAT
LogiQA (Liu et al., 2020) 8,678 Question+Paragraph Option X Questions from China Civil Service Exam
Logical ProofWriter (Tafjord et al., 2021) 20192 Question+Rule Answer+Proof Entailment Tree Reasoning process generation
Re;soninv FOLIO (Han et al., 2022) 1435 Conclusion+Premise Yes/No X First-order logic
° DEER (Yang et al., 2022) 1,200 Fact Rule X Inductive reasoning
PrOntoQA (Saparov and He, 2023) - Question+Context Yes/No+Proccess First-Order Logic Deductive reasoning
VCR (Zellers et al., 2019) 264,720 Question+Image Option Natural Language Visual commonsense reasoning
Visual COMET (Park et al., 2020) 1,465,704 Image+Event Action+Intent Visual commonsense reasoning
PMR (Dong et al., 2022) 15,360 Image+Background Option X Premise-based multi-modal reasoning
ScienceQA (Lu et al., 2022) 21,208 Q+Image+Context Option Natural Language Multi-modal reasoning with NL rationales
Multimodal VLEP (Lei et al., 2020) 28,726 Premise+Video Option Video event prediction
Reasoning CLEVRER (Yi et al., 2020) 305,280 Question+Video Option/Free-form Program Video temporal and causal reasoning
STAR (Wu et al., 2021) 600,000 Question+Video Option X Video situated reasoning
NEXT-QA (Xiao et al., 2021) 47,692 Question+Video Option X Video temporal,causal,cc T
Causal-VidQA (Li et al., 2022a) 107,600 Question+Video Free-form Natural Language Video causal and commonsense reasoning
News-KVQA (Gupta and Gupta, 2022) 1,041,352 Q+V+KG Option X Video reasoning with external knowledge

Table 1: An overview of benchmarks and tasks on reasoning.

ing (Yu et al., 2023a). Deductive reasoning de-
rives conclusions from general premises (Liu et al.,
2020; Yu et al., 2020; Tafjord et al., 2021; Han
et al., 2022). Inductive reasoning derives general
conclusions from special cases (Yang et al., 2022).
Abductive reasoning gives rational explanations for
observed phenomena (Saparov and He, 2023).

B.5 Multi-modal Reasoning

In the real world, reasoning also involves infor-
mation in modalities other than text, with visual
modalities being the most prevalent. To this end,
many benchmarks for visual multi-modal reasoning
are proposed (Zellers et al., 2019; Park et al., 2020;
Dong et al., 2022; Lu et al., 2022), and among
them, ScienceQA (Lu et al., 2022) annotates rea-
soning process and is the most commonly used
visual multi-modal reasoning benchmark. Video
multi-modal reasoning (Lei et al., 2020; Yi et al.,
2020; Wu et al., 2021; Xiao et al., 2021; Li et al.,
2022a; Gupta and Gupta, 2022) is more challeng-
ing as it introduces additional temporal information
compared to visual multi-modal reasoning.
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B.6 Comprehensive Benchmarks

Apart from the aforementioned individual datasets,
there are also some comprehensive evaluation
benchmarks. Some works aim to provide a holistic
evaluation of the general reasoning capabilities (Sri-
vastava et al., 2022; Suzgun et al., 2023; Hendrycks
et al., 2021a; Huang et al., 2023e; Liang et al.,
2022). In addition, there are also some multi-task
benchmarks that focus on specific reasoning abili-
ties, such as logical reasoning (Luo et al., 2023; Liu
et al., 2023b) and temporal reasoning (Chu et al.,
2023; Wang and Zhao, 2023).

B.7 Evaluation Metrics

Accuracy Accuracy is used to assess a model’s
ability on classification tasks and is commonly
used for multi-choice (Ling et al., 2017; Mihaylov
et al., 2018; Liu et al., 2020; Lu et al., 2022) and
yes/no (Talmor et al., 2021; Geva et al., 2021; Han
et al., 2022) tasks.

Ncorrect

Ntotal

)

Accuracy =



. Mathematical Commonsense Symbolic
Method Setting Backbone GSM8K SVAMP Asdiv AQuA | CSQA StrategyQA | LastLetterConcat CoinFlip
I-O Prompting (Brown et al., 2020) fewshot text-davinci-002 19.7 69.9 74 29.5 79.5 65.9 5.8 49.0
Fewshot CoT (Wei et al., 2022b) fewshot text-davinci-002 63.1 76.4 80.4 453 73.5 65.4 71.5 99.6
PoT (Chen et al., 2022a) fewshot text-davinci-002 80 89.1 - 58.6 - - - -
Complex CoT (Fu et al., 2023a) fewshot text-davinci-002 72.6 - - - - 77 - -
Automate CoT (Shum et al., 2023) fewshot text-davinci-002 49.7 73.3 742 379 76.1 67.9 58.9 -
Fewshot CoT (Wei et al., 2022b) fewshot text-davinci-003 | 16.83 69.06 - 29.13 - - - -
PHP (Zheng et al., 2023a) fewshot text-davinci-003 79 84.7 - 58.6 - - - -
Self-consistency (Wang et al., 2023m) fewshot text-davinci-003 | 67.93 83.11 - 55.12 - - - -
Active Prompt (Diao et al., 2023) fewshot text-davinci-003 65.6 80.5 79.8 48 78.9 74.2 71.2 -
Synthetic Prompt (Shao et al., 2023b) fewshot text-davinci-003 73.9 81.8 80.7 - - - - -
FOBAR (Jiang et al., 2023b) fewshot text-davinci-003 79.5 86 - 58.66 - - - -
Boosted Prompting (Pitis et al., 2023) fewshot text-davinci-003 71.6 - - 55.1 - - - -
Fewshot CoT (Wei et al., 2022b) fewshot code-davinci-002 | 60.1 75.8 80.1 39.8 79 734 70.4 99
Self-Consistency (Wang et al., 2023m) fewshot code-davinci-002 78 86.8 87.8 52 81.5 79.8 73.4 99.5
PAL (Gao et al., 2023) fewshot code-davinci-002 72 79.4 79.6 - - - - -
Resprompt (Jiang et al., 2023a) fewshot code-davinci-002 |  66.6 - - 453 - - - -
DIVERSE (Li et al., 2022¢) fewshot code-davinci-002 | 82.3 87 88.7 - 79.9 78.6 - -
Least-to-Most (Zhou et al., 2023b) fewshot code-davinci-002 | 68.01 - - - - - 94 -
Boosted Prompting (Pitis et al., 2023) fewshot code-davinci-002 | 83.3 88.6 - 61.7 - - - -
Fewshot CoT (Wei et al., 2022b) fewshot  gpt-3.5-turbo 76.5 81.9 - 54.3 78 63.7 732 99
Self-consistency (Wang et al., 2023m) fewshot  gpt-3.5-turbo 81.9 86.4 - 62.6 - - - -
MetaCoT (Zou et al., 2023) fewshot  gpt-3.5-turbo 75.1 88.6 - 547 | 72.4 64.5 712 100
Verify CoT (Ling et al., 2023) fewshot  gpt-3.5-turbo 86 - - 69.5 - - 92.6 -
Active Prompting (Diao et al., 2023) fewshot  gpt-3.5-turbo 81.8 82.5 879 553 - - - -
RCoT (Xue et al., 2023) fewshot  gpt-3.5-turbo 84.6 84.9 893 571 - - - -
FOBAR (Jiang et al., 2023b) fewshot  gpt-3.5-turbo 87.4 87.4 - 57.5 - - - -
Memory-of-Thought (Li and Qiu, 2023) fewshot  gpt-3.5-turbo - - - 54.1 - - - -
Adaptive-consistency (Aggarwal et al., 2023) fewshot  gpt-3.5-turbo 82.7 85 83 - - 67.9 - -
Boosted Prompting (Pitis et al., 2023) fewshot  gpt-3.5-turbo 87.1 - - 72.8 - - - -
Zeroshot CoT (Kojima et al., 2022) zeroshot text-davinci-002 40.5 63.7 - 319 64 523 57.6 87.8
PoT (Chen et al., 2022a) zeroshot  text-davinci-002 57 70.8 - 439 - - - -
AutoCoT (Zhang et al., 2023h) zeroshot  text-davinci-002 479 69.5 - 36.5 74.4 65.4 59.7 99.9
COSP (Aggarwal et al., 2023) zeroshot code-davinci-001 8.7 - - 55.4 52.8 - -
Plan-and-Solve (Wang et al., 2023i) zeroshot text-davinci-003 58.2 72 - 42.5 65.2 63.8 64.8 96.8
Agent-Instruct (Crispino et al., 2023) zeroshot  gpt-3.5-turbo 73.4 80.8 - 579 | 74.1 69 99.8 95.2
Self-Refine (Madaan et al., 2023) zeroshot  gpt-3.5-turbo 64.1 - - - - - - -
RCoT (Xue et al., 2023) zeroshot  gpt-3.5-turbo 82 79.6 86 55.5 - - - -

Table 2: The performance of various XoT methods in commonly used mathematical, commonsense and symbolic
reasoning benchmarks. It is worth noting that, due to variations in the experimental setups of different methods,
their performances are not directly comparable. The table is used to provide an overall empirical insight.

EM and F1 EM and F1 are metrics used to eval-
uate free form (Mishra et al., 2022a; Wang et al.,
2019; Yi et al., 2020) and span extraction (Dua
et al., 2019; Zhu et al., 2021; Mishra et al., 2022b)
tasks. Both are calculated at the token level.

2-P-R
Fl=—— 8
P+R ®)
IMA = A
v — =4 =4 9)
Ntotal

where P and R stand for precision and recall, and
EM calculates the proportion of predictions and
answers that are exactly the same.
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Few-shot CoT (Wei et al., 2022b), PAL (Gao et al., 2023), PoT (Chen et al., 2022a), MathPrompter (Imani

Manual XoT et al., 2023), Complex CoT (Fu et al., 2023a)

Zero-shot CoT (Kojima et al., 2022), PoT (Chen et al., 2022a), Plan-and-Solve (Wang et al., 2023i), Auto-
XoT X . Automatic XoT CoT (Zhang et al., 2023h), RePrompting (Xu et al., 2023), Agent-Instruct (Crispino et al., 2023), Meta-
Construction (§4.1) CoT (Zou et al., 2023), COSP (Wan et al., 2023), LogiCoT (Zhao et al., 2023c)

Synthetic Prompting (Shao et al., 2023b), AutoMate CoT (Shum et al., 2023), Explanation-Selection (Ye
Semi-automatic XoT and Durrett, 2023), BoostedPrompt (Pitis et al., 2023), DynamicPrompt (Lu et al., 2023b), SPCoT (Wang
et al., 2023d)

PoT (Chen et al., 2022a), PAL (Gao et al., 2023), LINC (Olausson et al., 2023), LogicLM (Pan et al.,
Chain Structure 2023), SatisfiedLM (Ye et al., 2023a), Algorithm-of-Thought (Sel et al., 2023), Chain-of-Symbol (Hu et al.,
2023a)

XoT Structural Tree Struct ToT! (Yao et al., 2023b), ToT? (Long, 2023), ToUT (Mo and Xin, 2023), Skeleton-of-Thought (Ning et al.,
Variants (§4.2) ree Structure 2023), ProbTree (Cao et al., 2023), Thought-Propagation (Yu et al., 2023b)

GoT! (Besta et al., 2023), GoT? (Lei et al., 2023a), ResPrompt (Jiang et al., 2023a), LLMCascades (DohanJ

Graph Structure
et al., 2022)

Self-Refine (Madaan et al., 2023), DIVERSE (Li et al., 2022c), Reflexion (Shinn et al., 2023),

R3Prompt (Tian et al., 2023), REFINER (Paul et al., 2023), SCREWS (Shridhar et al., 2023), CRITIC (Gou
et al., 2023a), MAF (Nathani et al., 2023), CannotSelfCorrect (Huang et al., 2023b), Verify-and-Edit (Zhao
et al., 2023a), VerifyCoT (Ling et al., 2023), RCoT (Xue et al., 2023), Self-Verification (Weng et al., 2022),
FOBAR (Jiang et al., 2023b)

Verify
and Refine

Least-to-Most (Zhou et al., 2023b), Decomposed Prompting (Khot et al., 2023), Successive Prompting (Dua
Question et al., 2022), PHP (Zheng et al., 2023a), CogTree (Junbing et al., 2023), iCAP (Wang et al., 2022), Self-
Decompose Ask (Press et al., 2023), IRCot (Trivedi et al., 2023), SocraticQuestion (Qi et al., 2023), CumulativeReason-
ing (Zhang et al., 2023e), Binder (Cheng et al., 2023), VersatileDecomposer (Ye et al., 2023b)

XoT Enh CoD (Lu et al., 2023a), CoK' (Li et al., 2023d), CoK? (Wang et al., 2023¢c), Memory-of-Thought (Li
Methods (§4.3) Knowledge and Qiu, 2023), KD-CoT (Wang et al., 2023e), IAG (Zhang et al., 2023g), Self-Ask (Press et al., 2023),
Iter-RetGen (Shao et al., 2023a), MCR (Yoran et al., 2023), Crystal (Liu et al., 2023c), Chain-of-
Verification (Dhuliawala et al., 2023), StepbackPrompt (Zheng et al., 2023c)

Verifiers (Cobbe et al., 2021), Self-Consistency (Wang et al., 2023m), ComplexCoT (Fu et al., 2023a),
GRACE (Khalifa et al., 2023), Self-Check (Miao et al., 2023), MCR (Yoran et al., 2023), Diversity-of-
Ensembling Thought (Naik et al., 2023), DiverseXoT (Liu et al., 2023e), CLP (Shi et al., 2023), MAD' (Liang et al.,
2023), MAD? (Du et al., 2023), MAD? (Wang et al., 2023b)

AR

Efficient Adaptive Consistency (Aggarwal et al., 2023), Skeleton-of-Thought (Ning et al., 2023), ActivePrompt-
Reasoning ing (Diao et al., 2023), DraphVerify (Zhang et al., 2023b), SpeculativeDecoding (Leviathan et al., 2023)

MRKL (Karpas et al., 2022), TAML (Parisi et al., 2022), HuggingGPT (Shen et al., 2023a), Toolformer (Schick et al., 2023),
ToolkenGPT (Hao et al., 2023b), ChatCoT (Chen et al., 2023c), LATM (Cai et al., 2023), GEAR (Lu et al., 2023d), ToolLLM (Qin
et al., 2023b), ToolDocumentation (Hsieh et al., 2023a), MINT (Wang et al., 2023k), ReACT (Yao et al., 2023c), ART (Paranjape

et al., 2023), MMREACT (Yang et al., 2023b), API-Bank (Li et al., 2023c), MetaTool (Huang et al., 2023d), TaskBench (Shen et al.,
2023b)

AdaPlanner (Sun et al., 2023), LLM+P (Liu et al., 2023a), LLM+DP (Dagan et al., 2023), ISRLLM (Zhou et al., 2023d), Re-
Act (Yao et al., 2023c), Self-Refine (Madaan et al., 2023), Reflexion (Shinn et al., 2023), Plan, Verify and Switch (Liu et al., 2023f),
ToT! (Yao et al., 2023b), ToT? (Long, 2023), Tree-Planner (Hu et al., 2023b), RAP (Hao et al., 2023a), LATS (Zhou et al., 2023a),
ToolChain* (Zhuang et al., 2023), TPTU (Ruan et al., 2023), TPTUv2 (Kong et al., 2023), AgentInstruct (Crispino et al., 2023),
ToRA (Gou et al., 2023b), AutoUI (Zhang and Zhang, 2023)

LMSI (Huang et al., 2023a), STaR (Zelikman et al., 2022), Magister et al. (2023), SCoTD (Li et al., 2023b), SECToR (Zhang and

Parkes, 2023), Distilling Step-by-Step (Hsieh et al., 2023b), SCOTT (Wang et al., 2023j), DialCoT (Han et al., 2023), PlanningTo-
stlation (85-- ken (Wang et al., 20231), TailoredLearning (Wang et al., 20230), Yu et al. (2023c), ImplicitCoT (Deng et al., 2023), Fu et al. (2023b),

CoT Collection (Kim et al., 2023)
Multi-modal (§6.1)

Faithfulness (§6.2)

Multi-modalCoT (Zhang et al., 2023i), GoT? (Yao et al., 2023d), ToMT (Hu et al., 2023c), Hypergraph-of-Thought (Yao et al.,
2023a), T-SciQ (Wang et al., 2023g), SocraticQuestion (Qi et al., 2023), MMReact (Yang et al., 2023b)

Future
Directions (§6)

Rethinking and Retrievaling (He et al., 2023a), Verify-and-Edit (Zhao et al., 2023a), CoK (Li et al., 2023d), Verify-Edit (Zhao et al.,
2023a), Chain-of-NLI (Lei et al., 2023b), Radhakrishnan et al. (2023), Lanham et al. (2023), Zhang et al. (2023c)

== J )

Wang et al. (2023a), Madaan and Yazdanbakhsh (2022), Tang et al. (2023), Merrill and Sabharwal (2023), Wu et al. (2023b), Li et al.

CoT Theory (§6.3) (2023e), Feng et al. (2023), Tutunov et al. (2023), Hou et al. (2023), Wang et al. (2023f), Schaeffer et al. (2023), Zhou et al. (2023c)

— —J

AddSub (Hosseini et al., 2014), SingleEq (Koncel-Kedziorski et al., 2015), MultiArith (Roy and Roth, 2015), MAWPS (Koncel-
Kedziorski et al., 2016), AQUA-RAT (Ling et al., 2017), ASDiv (Miao et al., 2020), SVAMP (Patel et al., 2021), GSM8K (Cobbe
et al., 2021), GSM-Hard (Gao et al., 2023), MathQA (Amini et al., 2019), DROP (Dua et al., 2019), TheoremQA (Chen et al.,
2023a), TAT-QA (Zhu et al., 2021), FinQA (Chen et al., 2021), ConvFinQA (Chen et al., 2022b), MATH (Hendrycks et al., 2021b),
NumGLUE (Mishra et al., 2022b), LILA (Mishra et al., 2022a), Conicl0K (Wu et al., 2023a)

CSQA (Talmor et al., 2019), CSQA 2.0 (Talmor et al., 2021), ARC (Bhakthavatsalam et al., 2021), OpenBookQA (Mihaylov et al.,
2018), PIQA (Bisk et al., 2020), Event2Mind (Rashkin et al., 2018), McTaco (Zhou et al., 2019), CosmosQA (Huang et al., 2019),
ComValidation (Wang et al., 2019), ComExplanation (Wang et al., 2019), StrategyQA (Geva et al., 2021)

Commonsense (§B.2)

Benchmarks (§3) Symbolic (§B.3) Last Letter Concat. (Wei et al., 2022b), Coin Flip (Wei et al., 2022b), Reverse List (Wei et al., 2022b), BigBench (Srivastava et al.,
Y o 2022), BigBench-Hard (Suzgun et al., 2023)

Logical (§B.4) ReClor (Yu et al., 2020), LogiQA (Liu et al., 2020), ProofWriter (Tafjord et al., 2021), FOLIO (Han et al., 2022), PrOn-
ogIc ) toQA (Saparov and He, 2023), LogiGLUE (Luo et al., 2023), GLORE (Liu et al., 2023b)
ScienceQA (Lu et al., 2022), VCR (Zellers et al., 2019), Visual COMET (Park et al., 2020), PMR (Dong }

Multi-modal (§B.5)

VLEP (Lei et al., 2020), CLEVRER (Yi et al., 2020), STAR (Wu et al., 2021), NExT-QA (Xiao et al.,
2021), Causal-VidQA (Li et al., 2022a), News-KVQA (Gupta and Gupta, 2022)

et al., 2022), CURE (Chen et al., 2023b)

Figure 8: Taxonomy of Advanced Methods, Frontiers, Future Directions, and Benchmarks (Full Edition).
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