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ABSTRACT

Molecular property prediction enables rapid identification of promising drug can-
didates by forecasting key attributes such as bioactivity and toxicity. The relation-
ship between molecular structure and properties spans multiple scales—from indi-
vidual atoms to functional groups to the overall molecular framework. Depending
on the property task and the target molecule’s scaffold, prediction may require fo-
cusing on specific substructures or the entire molecular configuration. This obser-
vation suggests that selectively attending to relevant structural features at different
scales can improve prediction accuracy. In this light, we propose HierMolMoE, a
hierarchical mixture-of-experts framework that learns specialized predictive mod-
els at three natural granularities of molecular graphs: atom-level, motif-level, and
global-level. Our model integrates expert networks at each level with a high-level
gating mechanism, and each expert is tailored to capture the unique topological
semantics of molecular groups sharing similar scaffolds. Experiments on bench-
mark datasets demonstrate that HierMolMoE outperforms existing GNN-based
mixture-of-experts approaches for molecular property prediction, highlighting its
ability to learn robust structure–property relationships across scales.

1 INTRODUCTION

Molecular property prediction is essential for drug discovery, enabling the rapid identification of
candidates by forecasting properties such as bioactivity, toxicity, and pharmacokinetics (Shen &
Nicolaou (2019)). However, property prediction is challenging because it depends on a multitude of
factors that vary by task, with molecular features relevant at different scales. For example, blood-
brain barrier permeability might hinge on local features like hydrogen bonding capacity in some
molecules, while in others, global attributes such as molecular weight and polar surface area are
decisive (Kadry et al. (2020)). Similarly, enzyme inhibition depends on both key pharmacophoric
elements and broader structural context (Roy & Roy (2009)). These examples underscore the need
for models that can adaptively capture both local and global molecular characteristics.

Graph Neural Networks (GNNs) have emerged as powerful tools for encoding molecular graphs into
multi-scale representations (Yang et al. (2019)). Many methods have enhanced GNNs by exploiting
recurring subgraphs (motifs, Zhang et al. (2021); Peng et al. (2020); Wu et al. (2023)) or by em-
phasizing specific topological configurations during aggregation (Chen & Gel (2023); Baek et al.
(2021); Islam et al. (2023); Ying et al. (2018)). However, most approaches rely on a single GNN
operating uniformly over the graph, which can obscure scale-specific details (Rusch et al. (2023)).

Mixture-of-Experts (MoE) architectures offer an attractive alternative by employing multiple spe-
cialized predictors (Kim et al. (2023); Yao et al. (2023); Soares et al. (2024)). Yet, existing MoE
approaches for molecular prediction treat the molecule as a whole, neglecting its inherent hierarchi-
cal structure.

To address these challenges, we propose HierMolMoE, a hierarchical mixture-of-experts framework
that learns specialized predictors at three natural scales of molecular graphs: atom-level interactions,
substructure-level motifs, and global molecular representations. Each level further subdivides ex-
perts based on distinct scaffolds, enabling the model to capture both fine-grained and overall topo-
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logical features. By dynamically assigning molecules to one or more experts according to both local
and scaffold-specific cues, HierMolMoE effectively models the multi-scale, scaffold-dependent na-
ture of structure–property relationships.

Our main contributions are:

• Hierarchical GNN Feature Extraction: We leverage an hierarchical GNN pipeline to
obtain three levels of representations—atom-level, motif-level, and graph-level—thereby
preserving diverse topological signals essential for accurate property prediction.

• Two-Level Hierarchical Mixture-of-Experts: We introduce a low-level MoE that pro-
cesses each granularity with specialized experts, along with a high-level MoE that inte-
grates these outputs via topology-aware gating.

• Multi-Scale Topology Segregation: We extend topology-aware gating across multiple
scales, ensuring that molecules are differentiated based on both local substructures and
global properties.

2 PRELIMINARIES

2.1 PROBLEM FORMULATION

Molecular property prediction can be framed as a graph-based learning problem. In this setting, each
molecule is represented as an attributed graph where atoms serve as vertices and chemical bonds as
edges. Formally, let the training dataset be D = {(Gi, yi)}Ni=1, where each molecular graph Gi ∈ G
is paired with a property vector yi ∈ {0, 1}T that encodes T distinct characteristics. The goal is to
learn a function f : G → Y that generalizes well to unseen molecular structures.

2.2 MOTIFS AND SCAFFOLDS

Molecular structures can be decomposed into two key components:

• Scaffolds: A molecular scaffold is the core structural framework of a molecule, primar-
ily consisting of its ring systems and the linkers connecting them. This backbone remains
constant while different functional groups or side chains can be modified to create diverse
compounds. In drug discovery, scaffolds help researchers systematically explore chemi-
cal variations to optimize properties like potency, selectivity, and pharmacokinetics. The
Bemis-Murcko framework (Bemis & Murcko (1996)) is a widely used method for defining
scaffolds by identifying ring structures and linkers while disregarding terminal side chains.

• Motifs: Motifs are recurring structural patterns within a molecule that influences its chem-
ical properties and reactivity. Often referred to as functional groups, they define how a
molecule interacts in chemical reactions. The specific arrangement of these motifs within a
molecule plays a key role in shaping its behavior and function(Fey et al. (2020); Peng et al.
(2020)).

2.3 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs, Gilmer et al. (2017) extract rich representations of molecular graphs
through iterative message passing. At each layer l, the representation of an atom u is updated by
aggregating information from its neighbors N (u) along with the associated bond features. This
update is given by:

h(l+1)
u = Φ(l)

u

(
h(l)
u , Ψ(l)

a

(
{(h(l)

v , h(l)
u , euv) : v ∈ N (u)}

))
, (1)

where Φ
(l)
u and Ψ

(l)
a are learnable functions for updating the node state and aggregating messages,

respectively. A global molecular representation hG is then obtained by applying a permutation-
invariant readout function Ω over all atom embeddings:
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hG = Ω
(
{h(l)

u | u ∈ G}
)
. (2)

2.4 MIXTURE OF EXPERTS

The Mixture of Experts (MoE) framework Jacobs et al. (1991) leverages multiple specialized net-
works (experts) coordinated by a gating mechanism that routes each input to the most appropriate
experts. Recent advancements in sparse MoE architectures Shazeer et al. (2017); Lepikhin et al.
(2020); Du et al. (2022) have demonstrated that selectively activating a subset of experts can effi-
ciently scale model capacity while managing computational costs. This approach has been widely
adopted in large-scale language models Fedus et al. (2022a); Du et al. (2022); Fedus et al. (2022b),
where MoE models often achieve performance comparable to or better than dense models with fewer
resources.

3 METHODS

Figure 1: Overview of HierMolMoE: a hierarchical framework for molecular property prediction.
Our model first uses a Hierarchical GNN—enhanced with motif and global nodes—to extract multi-
scale representations. These features are then processed by a low-level Mixture-of-Experts module
with topology-aware gating, and a high-level gating network integrates the outputs. During infer-
ence, gating modules select the most appropriate experts based on the molecule’s scaffold.

3.1 OVERVIEW

Our framework addresses molecular property prediction through a hierarchical approach that explic-
itly models multiple structural granularities. The key insight is that different molecular properties
may depend on features at varying scales - from local atom interactions to global molecular structure
with the dependency on the overall topology of the molecule. Rather than forcing a single model to
capture all these scales, we employ specialized experts at each level.

The framework consists of three main components:

1. Multi-Scale Feature Extraction: A hierarchical GNN processes the input molecular graph
to generate representations at three distinct granularities: (1) atom-level, capturing local
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chemical environments and bonding patterns, (2) motif-level, encoding functional groups
and recurring substructures, and (3) graph-level, representing global molecular properties.

2. Topology-Aware Expert Specialization: Each granularity feeds into its own low-level
mixture-of-experts module. These modules contain multiple expert networks that special-
ize in different chemical scaffolds or structural patterns. A topology-aware gating mecha-
nism routes each input to the most relevant experts, allowing the model to develop special-
ized predictors for different classes of molecular structures.

3. Dynamic Multi-Scale Integration: A high-level mixture-of-experts module dynamically
integrates predictions across all granularities. This module learns to weight the contri-
butions of different scales based on the specific property being predicted and the input
molecule’s structure.

3.2 MODEL ARCHITECTURE

3.2.1 HIERARCHICAL GRAPH NEURAL NETWORK

The foundation of our architecture is a hierarchical GNN that processes molecular graphs at mul-
tiple scales. Given an input molecular graph G = (V,E), we enhance it with additional structural
information by introducing motif nodes and a global graph node. For motif extraction, we follow the
method introduced in Zhang et al. (2021), which uses BRICS decomposition (Degen et al. (2008))
to identify groups of atoms forming recurrent substructures. These substructures are then added as
new motif nodes that connect to every atom in the corresponding motif, effectively augmenting the
original graph with extra edges that encode local groupings.

For each node v, the GNN updates its representation through message passing as done in equation 1.
After obtaining node embeddings though several layers of message passing, we partition them into
three distinct sets:

• Hatom ∈ Rna×d: Atom-level representations
• Hmotif ∈ Rnm×d: Motif-level representations
• Hgraph ∈ R1×d: Graph-level representation

Each set is then pooled to obtain fixed-size representations: xatom, xmotif, and xgraph respectively.

3.2.2 LOW-LEVEL MIXTURE-OF-EXPERTS

For each granularity g ∈ {atom,motif, graph}, we employ a separate low-level MoE module with
Klow experts. Each expert specializes in specific molecular substructures or patterns, allowing the
model to capture different aspects of molecular topology at each granularity level. Following Kim
et al. (2023), the low-level MoE process consists of several key steps:

Gating Mechanism In order to properly gate according to topology and granularity, we follow
the method introduced in Kim et al. (2023). We first project each molecule’s granularity-specific
representation into a latent space. Next, soft expert assignments are computed using a Student’s
t-distribution, refined through Gumbel-Softmax sampling. Finally, these assignments are aligned
with scaffold embeddings to incorporate prior chemical knowledge.

Given a granularity-specific representation xg (atom, motif, or graph-level), we first transform it into
a topology-aware representation through a non-linear dimension reduction network:

zg = MLP(xg), (3)

Next, we maintain Klow learnable cluster centroids {Ck}Klow
k=1, where each Ck ∈ Rdzg . The assign-

ment probability to the k-th expert is computed using a Student’s t-distribution with one degree of
freedom:

qk =
(1 + ∥zg − Ck∥2)−1∑Klow

k′=1(1 + ∥zg − Ck′∥2)−1
, (4)
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This formulation naturally groups molecules with similar topological patterns to the same expert
through a soft clustering mechanism. To enable stochastic expert selection during training while
maintaining differentiability, we apply Gumbel-Softmax:

gk =
exp((log qk + γk)/τ)∑Klow

k′=1 exp((log qk′ + γk′)/τ)
, (5)

where γk is drawn from a Gumbel distribution, and τ is the temperature parameter annealed from a
high initial value τ0 to a low final value τE during training. As training progresses and τ decreases,
the gating weights approach a one-hot distribution, and the annealing process gradually transitions
from exploring multiple experts to specializing in specific molecular topologies.

To additionally incorporate prior knowledge of molecular topology, we additionally align the expert
assignments with molecular scaffolds. For a training set with |S| scaffolds, each molecule’s scaffold
index is represented as a one-hot vector. We maintain learnable scaffold embeddings {εs}|S|

s=1 where
εs ∈ Rdzg , and define a cost matrix M ∈ R|S|×Klow based on cosine distances between scaffold
embeddings and cluster centers:

msk = 1− cos(εs, Ck). (6)

While we also experimented with molecular fingerprint-based clustering, we found that scaffold-
based alignment consistently yields better performance in practice.

Expert Integration. Each expert fk is implemented as a single fully-connected layer and inde-
pendently processes the input to produce task-specific predictions. The outputs are combined using
the gating weights:

yg =

Klow∑
k=1

gkfk(xg), (7)

producing granularity-specific predictions yg ∈ RT for T tasks.

3.2.3 HIGH-LEVEL INTEGRATION

The high-level MoE module combines predictions from all granularities. First, we concatenate the
topology-aware latent representations zg that were used for gating in the low-level MoE:

L = [zatom; zmotif; zgraph], (8)

which is processed by a gating network to compute weights for each granularity:

w = softmax(WhL+ bh). (9)

The final prediction is computed as a weighted combination:

yfinal =
∑

g∈{atom,motif,graph}

wgyg. (10)

3.3 TRAINING AND LOSS FUNCTIONS

3.3.1 TRAINING OBJECTIVE

The overall training objective combines three types of losses:

Ltotal = Lpred + αLcluster + βLalign, (11)

where α and β are balancing parameters, Lpred is the primary prediction loss, Lcluster is the clustering
loss for encouraging cohesive expert specialization, and Lalign is the scaffold alignment loss.
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3.3.2 TRAINING STRATEGY

To ensure stable training and effective expert specialization, we adopt a two-stage training process:

1. Warmup Phase: Each low-level MoE is first trained independently with a high tempera-
ture τ , allowing experts to explore diverse molecular patterns.

2. Joint Training Phase: The entire network is trained end-to-end while gradually annealing
τ from τ0 to τE . We alternate between epochs focusing on joint prediction loss and those
emphasizing individual expert specialization.

During inference, we directly use the cluster assignment probabilities qk instead of the Gumbel-
Softmax outputs for deterministic prediction.

3.3.3 LOSS FUNCTIONS

For molecular property prediction tasks, we use binary cross-entropy as our prediction loss:

Lpred =
1

N

N∑
i=1

BCE(yi, ŷi), (12)

where yi is the ground truth label and ŷi is the model’s prediction. The selection of ŷi differs
according to the training phase.

To strengthen cluster cohesion, we define a clustering loss using a target distribution that sharpens
the assignments:

pk =
q2k/

∑
i qi,k∑

k′(q2k′/
∑

i qi,k′)
, (13)

Lcluster = KL(P∥Q) =
1

N

N∑
i=1

Klow∑
k=1

pi,k log
pi,k
qi,k

. (14)

For the scaffold alignment, we follow Kim et al. (2023) that encourages consistency between expert
assignments and molecular scaffolds:

Lalign =

|S|∑
s=1

Klow∑
k=1

ts · qk ·msk, (15)

where ts and qk are the scaffold and cluster assignment probabilities respectively and msk is defined
in equation 6. This alignment loss ensures molecules sharing the same scaffold are assigned to
similar experts, while allowing topologically similar scaffolds to be grouped together when |S| ≫
Klow.

4 EXPERIMENTS

We conduct extensive experiments to evaluate HierMolMoE on multiple molecular property pre-
diction benchmarks. First, we compare our method against state-of-the-art baselines across various
molecular prediction tasks. Then, we perform detailed ablation studies to analyze the contribution
of each hierarchical component.

4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS

We evaluate our approach on eight benchmark datasets widely employed for molecular property
prediction Wu et al. (2018). These datasets span diverse molecular prediction tasks - from toxicity
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prediction (Tox21, ToxCast, SIDER) to pharmacological properties (BBBP, ClinTox) - providing
a comprehensive testbed for assessing model performance. Following standard practice Kim et al.
(2023); Hu et al. (2021), we extract molecular features including atom attributes, bond characteris-
tics, and scaffold indices using the RDKit toolkit Landrum (2013).

To ensure rigorous evaluation of generalization capability, we adopt the scaffold splitting protocol
Hu et al. (2021) which partitions molecules based on their structural scaffolds into training, vali-
dation, and test sets (80:10:10 ratio). This protocol is more challenging than random splitting as
it requires models to predict properties of molecules with entirely novel scaffolds not seen during
training.

4.1.2 IMPLEMENTATION DETAILS

We train all models for a maximum of 500 epochs with early stopping if validation AUROC does
not improve for 50 consecutive epochs. For HierMolMoE, we employ 4 experts per granularity,
resulting in 12 low-level experts total. Model parameters are optimized using Adam with a learning
rate of 1e−4. All runs were run in a single NVIDIA GeForce RTX 3090 TURBO GDDR6X 24GB.

Our two-stage training process begins with a 50-epoch warmup phase where granularity experts are
trained independently. The validation monitoring starts after this warmup during joint training. For
Gumbel-Softmax sampling, we employ temperature annealing from τ0 = 10 to τE = 0.01. For
clustering and alignment loss weights, we fix α = 0.1 and β = 0.01. All experiments use GIN Xu
et al. (2018) as the backbone with identical node encoders. Results are reported as mean AUROC
(±standard deviation) across 10 different random seeds.

4.1.3 BASELINES

We compare against the following several methods using identical GIN backbones but differing in
their prediction strategies:

• Single Classifier (SingleCLF) Xu et al. (2018): A standard classifier that employs a single
prediction module (i.e., one expert) for generating the final output.

• Mixture of Experts (MoE) Zoph et al. (2022): A model that utilizes an MLP with Gumbel-
Softmax to stochastically select and combine the outputs from multiple experts.

• Expert-Ensemble (E-Ensemble) Dietterich (2000): An approach that aggregates the out-
puts from several experts by taking their arithmetic mean.

• GraphDIVE Hu et al. (2021): A method that combines expert outputs using a weighted
sum, where the weights are computed by a linear layer followed by a Softmax.

• MoCE: Yao et al. (2023) A method that combines a GNN encoder with a dynamic multi-
expert predictor, where a gating network selectively weights diverse expert projections to
capture both common and topology-specific molecular features for property prediction

• TopExpert Kim et al. (2023): A topology-specific MoE that leverages a clustering-based
gating module to assign molecules into groups according to their topological features.

4.2 RESULTS AND DISCUSSION

4.2.1 MAIN RESULTS

Table 1 presents the comparison between HierMolMoE and state-of-the-art baselines across eight
benchmark datasets. Our method consistently outperforms all baselines, achieving an average AUC-
ROC of 74.1% and representing a significant improvement of 5.5% over the next best baseline
(TopExpert, 68.0%). The improvements are particularly pronounced on ClinTox (80.3% vs 62.0%),
BACE (82.6% vs 71.4%), and MUV (79.5% vs 72.9%). Moreover, our method demonstrates re-
markable stability with lower standard deviations across most datasets - notably BBBP (±0.6 vs
±3.5).
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Model BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE AVG
# of Mol. 2,039 7,831 8,575 1,427 1,478 93,087 41,127 1,513 -
# of Tasks 1 12 617 27 2 17 1 1 -
SingleCLF 69.9 ± 3.1 73.9 ± 1.4 64.1 ± 1.2 58.7 ± 1.5 60.1 ± 3.7 74.1 ± 3.3 73.3 ± 2.8 67.7 ± 3.9 67.8
MoE 62.8 ± 4.1 74.6 ± 0.3 59.1 ± 1.4 58.5 ± 1.9 57.5 ± 2.1 76.9 ± 0.7 73.4 ± 1.5 69.1 ± 2.1 66.6
E-Ensemble 67.1 ± 1.3 74.1 ± 0.8 60.3 ± 0.9 55.9 ± 1.3 60.1 ± 4.6 71.9 ± 3.7 76.2 ± 1.3 67.9 ± 3.9 66.7
GraphDIVE 65.2 ± 1.7 71.6 ± 2.6 57.7 ± 0.3 54.2 ± 3.7 59.3 ± 3.9 69.1 ± 4.0 70.1 ± 1.1 62.3 ± 4.1 63.7
MoCE 64.6 ± 2.5 72.0 ± 1.2 62.0 ± 0.6 57.4 ± 1.0 57.3 ± 1.0 67.3 ± 3.9 70.9 ± 4.2 71.4 ± 2.8 65.4
TopExpert 69.5 ± 3.5 73.9 ± 0.7 61.3 ± 0.6 56.8 ± 1.3 62.0 ± 2.3 72.9 ± 5.0 76.6 ± 1.9 71.3 ± 4.6 68.0
Ours 71.9 ± 0.6 76.3 ± 0.4 64.7 ± 0.5 59.4 ± 1.6 80.3 ± 3.9 79.5 ± 1.0 78.1 ± 0.5 82.6 ± 1.7 74.1

Table 1: Performance comparison((↑) with baseline models on molecular property prediction tasks.
Values indicate the mean AUC-ROC (%) across datasets with best values in bold.

Model Components Performance Metrics (↑) Rank (↓)
Atom Motif Graph BBBP Tox21 ToxCast SIDER ClinTox BACE AVG

Single MoE
✓ 61.2 75.9 63.7 59.4 65.5 76.6 67.0 5.86

✓ 59.5 72.3 64.8 56.4 66.0 81.0 66.7 6.29
✓ 56.7 75.2 66.5 60.8 69.5 81.4 68.4 4.29

Dual MoE
✓ ✓ 70.6 75.4 64.4 60.3 82.8 82.0 72.6 3.29
✓ ✓ 69.6 76.6 66.0 61.7 77.0 82.7 72.3 2.29

✓ ✓ 68.4 73.4 66.4 60.5 75.8 81.2 71.0 4.14
Triple MoE ✓ ✓ ✓ 71.4 76.5 65.2 60.9 81.3 83.4 73.1 1.86

Table 2: Performance comparison(↑) across different granularity combinations. Each row represents
a different model configuration using atom, motif, and graph-level experts. Results show mean
AUC-ROC (%) for 5 random seed runs with best and second-best values in bold and underlined
respectively. The Rank column shows the average ranking across all metrics (lower is better).

4.3 DISCUSSION

Table 1 presents the comparison between HierMolMoE and baseline approaches across eight bench-
mark datasets. Our method achieves superior overall performance with an average AUC-ROC of
74.1%, a 5.7% improvement over the next best baseline. The improvements are particularly signifi-
cant on ClinTox (79.3%), BACE (81.6%), and MUV (79.5%). Beyond better accuracy, our method
shows notably lower standard deviations, indicating more stable predictions. These results demon-
strate that modeling molecular properties through granularity-specific experts offers a more effective
approach than using a single GNN model, highlighting the importance of specialized representations
at different structural scales.

To further understand the effectiveness of our hierarchical design, we conduct detailed ablation
studies by systematically varying model components (Table 2). In single granularity settings, we
observe that different datasets favor different granularities. Notably, models using multiple granu-
larities (dual or triple) consistently outperform single granularity variants across all datasets, with
improvements of up to 20% (ClinTox: 65.5% → 82.8%). While the Triple MoE configuration is not
always the top performer for every individual dataset, it exhibits overall robust and balanced perfor-
mance compared to both the dual and single granularity models. This indicates that integrating all
three levels of representation not only provides competitive predictions on a per-task basis but also
offers a more consistent and generalizable approach across diverse molecular property prediction
tasks.

Overall, our findings suggest that the conventional approach of using a single granularity may be
limiting the ability to fully capture molecular properties. By explicitly modeling and combining
multiple structural scales through topology-aware specialized experts, we can better handle the in-
herent complexity of molecular structures and their associated properties.

MEANINGFULNESS STATEMENT

All systems of life possess inherent hierarchical organization, from atoms to molecules to complex
biological systems. This multi-scale organization is fundamental to how biological systems process
information and determine their properties. Our work contributes to this direction by developing
a robust molecular representation framework that mirrors nature’s hierarchical structure, enabling
more reliable predictions of molecular properties through specialized experts at different structural
levels.
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