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Figure 1. Comparison of latent space trajectories over 100 optimization steps for RNAGenScape and existing methods, visualized using
the top two principal components. Each trajectory is shown as a line fading from bright to dark in a consistent color. Although most
methods progress in generally correct directions, our proposed RNAGenScape follows more visually reasonable paths and achieves
more optimized results. Besides, RNAGenScape is among the most efficient methods during inference.

Abstract

Designing mRNA sequences with optimized
biological properties remains a fundamental
challenge in synthetic biology and therapeutic
development. Deep generative models have
enabled data driven sequence generation, but
most are designed for de novo generation,
meaning generating entirely from scratch.
However, refine existing sequences, interpolate
between sequences, or producing interpretable
optimization steps remain important tasks in
mRNA design. In this work, we introduce
RNAGenScape, a framework for mRNA design
that combines Langevin-dynamics with a learned
manifold projector. Operating entirely in
the latent space of a pretrained encoder,
RNAGenScape updates latent representations
using property guided gradients and then projects
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each noisy step back onto the learned manifold
to ensure biological plausibility. This approach
enables property-guided optimization, smooth
interpolation between arbitrary mRNA sequences,
and tracking of interpretable latent trajectories, all
without requiring explicit the density estimation
or the score learning typically utilized in score-
matching diffusion models. We demonstrate
results on zebrafish mRNA datasets. We
show that RNAGenScape can continuously
steer sequences toward target properties while
remaining close to natural sequences, and
can generate intermediate variants along each
trajectory. Our results establish a scalable and
generalizable paradigm for controllable mRNA
design and latent space exploration in biological
sequence modeling.

1. Introduction
Designing biological sequences using machine learning has
emerged as a critical objective in computational biology.
Recent efforts have focused on de novo design (Prykhodko
et al., 2019; Méndez-Lucio et al., 2020; Meyers et al.,
2021; Munson et al., 2024; Watson et al., 2023), that
is, creating protein and mRNA sequences from scratch.
These methods are typically evaluated on the novelty,
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diversity, and biological plausibility of the generated
sequences. Empowered by recent advances in deep
generative modeling (Goodfellow et al., 2020; Ho et al.,
2020; Lipman et al., 2022), recent works have demonstrated
strong generative performance and have opened promising
new directions in synthetic biology (Méndez-Lucio et al.,
2020; Dauparas et al., 2022; Repecka et al., 2021; Madani
et al., 2023; Watson et al., 2023).

However, de novo design typically operates without
reference to natural biological sequences. The generated
outputs are often detached from biological context and
offer limited insight into how specific changes in sequence
affect function, or vice versa. In many cases, the designed
sequences are difficult to interpret or validate experimentally,
and do not reflect the constraints or patterns observed in the
real data. As a result, these models can achieve high scores
on synthetic benchmarks while failing to advance biological
understanding or utility.

In this work, we propose RNAGenScape, a novel approach
to refining existing sequences on the learned latent manifold.
Rather than generating sequences from scratch, we begin
with real mRNA untranslated region (UTR) sequences
and optimize them to improve a desired property, such
as translation efficiency. We achieve this by designing a
Langevin dynamics that can steer existing points toward
more optimized regions along the latent manifold. This
allows us to optimize from real sequences while preserving
interpretability. By tracing the entire sequence optimization
process, we can examine intermediate variants, measure
how specific edits influence the target properties, gain a
more detailed view of the sequence landscape, and discover
new biological insights.

In summary, our main contributions are as follows.

1. We propose a Langevin-dynamics framework that
enables interpolation and continuous property-guided
optimization of mRNA sequences starting from real
data points, rather than generating from scratch.
This framework shifts the focus from generation
to refinement and offers a path toward biologically
grounded sequence modeling.

2. We introduce a learned manifold-projection
mechanism using a denoising autoencoder to
constrain the sampling process and ensure that updates
remain close to the biological data manifold.

3. We demonstrate that this combination yields
interpretable trajectories in the latent space for both
property optimization and target-directed interpolation,
enabling analysis of how sequence edits affect
properties at each step.

4. We provide empirical evidence that our method
improves target properties (e.g., translation efficiency)

while maintaining manifold fidelity, outperforming
various optimization and generation methods.

2. Preliminaries
2.1. Manifold hypothesis and manifold learning

The manifold hypothesis (Cayton et al., 2008; Narayanan
& Mitter, 2010; Fefferman et al., 2016) posits that
high-dimensional data commonly encountered in machine
learning tasks lie near a low-dimensional manifold
embedded in the ambient space. Under this assumption,
each observation xi ∈ Rn arises from a smooth nonlinear
map f : Md → Rn applied to a latent variable zi ∈
Md, where Md is a d dimensional manifold with d ≪
n. Manifold learning methods aim to recover this latent
structure by constructing representations that preserve the
intrinsic geometry of the data (Van Dijk et al., 2018; Moon
et al., 2019; Burkhardt et al., 2021; Liu et al., 2024; Liao
et al., 2024; Liu et al., 2025a;b; Sun et al., 2025).

A point is considered “on-manifold”, if it lies within
the range of the generative map f , reflecting the
learned structure of the data (Rifai et al., 2011). In
contrast, off-manifold points deviate from this structure
and may correspond to invalid samples or adversarial
perturbations (Zhang et al., 2022; Li et al., 2023). Projecting
off-manifold points back onto the manifold is critical in
tasks that require robustness or structure-aware optimization,
where staying close to the data manifold is desirable (He
et al., 2023b).

2.2. Langevin-dynamics and beyond

Diffusion Models (Ho et al., 2020) are generative
frameworks that learn a data distribution p(x) by reversing
a fixed Markov diffusion process of length T . Starting
from Gaussian noise, they are trained to iteratively denoise
samples through a sequence of learned denoising functions
over T steps. The training objective (Eqn (1)) is a
reweighted form of the variational lower bound, closely
related to denoising score matching (Song et al., 2021).

LDM := Ex,ϵ∼N (0,1),t

[
||ϵ− ϵθ(xt, t)||22

]
(1)

Latent Diffusion Models (Rombach et al., 2022) present an
extension of the concept. Instead of performing the reverse
diffusion process in the data space, they operate in a latent
space after embedding the data with an encoder E , where
z = E(x). The modified objective is shown in Eqn (2).

LLDM := Ez,ϵ∼N (0,1),t

[
||ϵ− ϵθ(zt, t)||22

]
(2)

Langevin Dynamics (Song & Ermon, 2019) has been
employed in generative models to sample from high-
dimensional data distributions using only an estimate of
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Figure 2. Schematic of RNAGenScape. (a) We first train an organized latent space for mRNA sequences by jointly optimizing
reconstruction and property prediction objectives. (b) We then train a manifold projector to project perturbed samples back to the
embedding manifold, while the encoder’s weights are frozen. (c) We can use the encoder and the manifold projector to optimize the
properties of given input mRNA sequences. (d) Notably, the intermediate products during the optimization process can also be generated.

the score function∇x log p(x). In particular, it first trains a
neural network sθ to approximate the score function of data
perturbed by Gaussian noise. Sampling is then performed
via annealed Langevin dynamics, given by Eqn (3).

x̃t = x̃t−1 +
ηi
2
sθ(x̃t−1, σi) +

√
ηizt (3)

Here, sθ(x̃t−1, σi) is the learned score function at noise
level σi, and ηi is the step size at that level. By gradually
annealing from high to low noise, this procedure enables
generation of high-quality samples without an explicit
likelihood or energy model.

Neural Stochastic Differential Equations (Kidger et al.,
2021), abbreviated as neural SDEs, are differential equations
simultaneously modeling two terms: a drift term f(·)
depicting the true time-varying dynamics of the variable,
and a diffusion term g(·) representing stochasticity using
the Brownian motion Wt (Eqn (4)). From a high level,
Langevin dynamics is a special case of neural SDEs after
discretization.

dXt = f(t,Xt)dt+ g(t,Xt) ◦ dWt (4)

3. Methods
In this section, we will describe RNAGenScape in detail.
The key components of our framework are:

1. An autoencoder whose latent space is organized by the
target property (Section 3.1 and Figure 2a),

2. A manifold projector that brings perturbed embeddings
to the data manifold (Section 3.2 and Figure 2b), and

3. Property-guided on-manifold Langevin dynamics in
the latent space (Section 3.3 and Figure 2c-d).

Once trained, these components allows RNAGenScape
to (1) optimize the target property of a given sequence
(Section 3.4 and Figure 3) and (2) interpolate between
existing sequences (Section 3.5 and Figure 4).

3.1. Learning a latent space organized by property

We begin by training an organized autoencoder (OAE),
where the latent space is implicitly structured via
supervision from a property prediction task (Figure 2a).
Similar to a vanilla autoencoder (Hinton & Salakhutdinov,
2006), the encoder E maps the input mRNA sequence
x to a latent representation z, which is decoded by D
back to the sequence space. In addition to this standard
architecture, a predictor P infers properties from the
embedding z (Eqn (5)).

The latent space Z is thus shaped by jointly optimizing
the reconstruction loss (Eqn (6)) and the prediction
loss (Eqn (7)), encouraging it to capture sequence-relevant
information while being organized by the target properties.

z = E(x), x̂ = D(z), ŷ = P(z) (5)

LRecon =
1

N

N∑
i

||x̂i, xi||22 (6)

LPred =
1

N

N∑
i

||ŷi, yi||22 (7)
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3.2. Training a manifold projector

To ensure that the generated trajectories remain close to the
latent data manifold, we introduce a manifold projector Ψ,
implemented as a denoising autoencoder (DAE) (Vincent
et al., 2008). As shown in Figure 2b, given a slightly
perturbed input z̃ derived from a clean data point z on the
manifold, Ψ projects z̃ back onto or near the manifold.

We train Ψ by corrupting the input samples and minimizing
the reconstruction error between the projected noisy inputs
and their clean counterparts (Eqn (8)).

LΨ =
1

N

N∑
i

||Ψ(C(z̃|z))− z||22, (8)

Here, C(z̃|z) is the conditional distribution of the corrupted
data. We also incorporate multi-step denoising to help
improve the performance of the manifold projector Ψ. The
training procedure of Ψ is described in Algorithm 1.

Algorithm 1 Training Denoiser Ψ for Manifold Projection

Input: Dataset Z = {zi}Ni=1, denoiser Ψ, noise levels
{σ1, . . . , σK}, denoising steps K, learning rate η
for each zi in minibatch {zi}Bi=1 ⊂ Z do

Initialize z̃(0) ← zi
for k = 1 to K do
z̃(k) ∼ C(Z̃|Z̃(k−1), σk)
L(k) = ∥Ψ(z̃(k))− z̃(k−1)∥22

end for
Li =

∑K
k=1 L(k)

Ψ← Ψ− η∇Ψ

(
1
B

∑B
i=1 Li

)
end for

3.3. Property-guided on-manifold Langevin dynamics

Next, we introduce a novel property-guided on-manifold
Langevin-dynamics framework that iteratively adjusts latent
embeddings to optimize a target property, while ensuring
the resulting trajectories remain close to the data manifold.

Given a pretrained encoder E , a property predictor P , and a
manifold projector Ψ, our Langevin-dynamics framework
optimizes sequences for a target property. Starting from the
latent embedding z = E(x) of a sequence x, we iteratively
update it using a gradient-based drift term f(z), inject
Gaussian noise ϵ, and apply a manifold projection Ψ(·) to
ensure biological plausibility and interpretability.

We define the update rule as follows.

dzt = η∇zf(zt) +
√

2ητ · ϵt,
ϵt ∼ N (0, I)

(9)

zt+1 = Ψ(zt + dzt) (10)

The temperature τ can be tuned to control the scale of the
random noise during each update. A smaller τ makes a
more focused update, while a larger one makes more diverse
samples.

Here, the drift function f(z) guides the movement along the
property gradient given by the pretrained property predictor
P while being regularized by a sparsity term fsparsity(z) that
encourages exploration of sparse regions in the latent space.

f(z) = P(z) + λsparsityfsparsity(z) (11)

To construct the sparsity estimator fsparsity, we first fit a
kernelK to the input batch data to encode pairwise affinities,
and use the resulting affinity matrix to approximate the local
sparsity of the input region. Specifically, we define fsparsity
as the negative row sum of the affinity matrix:

fsparsity(z) = −∥K(z, ·)∥1 (12)

We adopt an anisotropic kernel (Coifman & Lafon, 2006)
on the batch latent embeddings z:

K(z1, z2) =
G(z1, z2)

∥G(z1, ·)∥α1 ∥G(z2, ·)∥α1
, where

G(z1, z2) = e−
∥z1−z2∥2

σ

(13)

Here, 0 ≤ α ≤ 1 controls the separation of geometry
from data density. With α = 0 producing the classic
Gaussian kernel, and α = 1 completely removing density
and providing a geometric equivalent to uniform sampling
of the underlying manifold.

The manifold projector Ψ is applied after each update to
ensure that each step remains near the biologically valid
latent manifold, enabling interpretable and controllable
generation trajectories.

3.4. Optimizing the property of a sequence

With the pretrained components E , P and Ψ, we can
optimize the target property of any given sequence using
the Langevin dynamics described in Section 3.3. Notably,
optimization entails both maximization and minimization:
users can choose to increase or decrease the target property,
depending on the application.

3.5. Interpolating between sequences

In addition to optimizing a single sequence, we can
interpolate between two existing sequences by guiding the
latent embedding of one sequence toward that of another.
Specifically, given a source sequence xsource and a target
sequence xtarget, we first obtain their latent embeddings via
the encoder: zsource = E(xsource) and ztarget = E(xtarget).
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Figure 3. Latent space trajectories of RNAGenScape over 100 optimization steps, visualized using the top two principal components.
The trajectories follow smooth, reasonable and coherent paths with steady improvement in the target property.

We then perform property-guided on-manifold Langevin
dynamics starting from z = zsource, with an added force
term that drives the embedding toward ztarget:

F (z, ztarget) = −
z − ztarget

∥z − ztarget∥2
(14)

In this case, we slightly modify the update rule of the
Langevin dynamics (Eqn (9)) as follows:

dzt = η (∇zf(zt) + λinterpF (zt)) +
√

2ητ · ϵt (15)

By setting the interpolation weight λinterp > 0 in Eqn (15),
we add a directional bias that drives the latent trajectory
toward the target point. All other components of the
Langevin framework remain the same, including the use of
Gaussian noise for exploration and the manifold projection
Ψ to maintain plausibility.

4. Empirical Results
In this section, we demonstrate the effectiveness of
RNAGenScape on two key tasks: (1) RNA sequence
optimization and (2) RNA sequence interpolation.

The first task is broadly relevant to applications in
therapeutics and synthetic biology. For example, enhancing
the translation efficiency and stability of an mRNA vaccine
can increase its protein yield and persistence, thereby
boosting therapeutic efficacy while reducing the required
dose.

The second task facilitates the exploration of intermediate
variants. This can provide insights into the functional and
structural landscape of regulatory elements within the RNAs
of interest.

Our results demonstrate that:

1. RNAGenScape enables smooth latent space
trajectories that stay on the data manifold (Section 4.2),

2. it achieves stronger property improvements than both
de novo generative models and optimization baselines
(Section 4.3),

3. it does so with substantially higher efficiency and
directionality (Section 4.4), and

4. it allows interpolation between arbitrary sequences
(Section 4.5).

4.1. Experimental Settings

Datasets In this study, we focus on the 5’ untranslated
region (UTR) of mRNAs, a non-coding segment located
upstream of the coding sequence. 5’ UTR plays a
crucial role in regulating translation initiation and protein
expression levels, without modifying the encoded protein
sequence. These properties make a 5’ UTR a biologically
meaningful target for sequence optimization in synthetic
biology and therapeutic applications.

We trained and evaluated RNAGenScape on five diverse
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Table 1. Quantitative comparison of de novo sequence generation and property optimization methods. Our proposed RNAGenScape
outperforms others in property optimization while also being inference-efficient. Top performers among property optimization methods
are bolded. For de novo generative models, the optimization columns are grayed out, as they cannot explicitly steer properties; reported
values instead reflect samples from their learned distributions. Note that in our context lower W2 distances do not necessarily indicate
better performance, as property-optimized distributions are not expected to replicate the data distribution.

Methods ↓ Metrics→ Inference Speed Distribution Alignment Property Optimization (+) Property Optimization (−)

ms/sample ↓ W2 distance median ∆property ↑ % mRNAs improved ↑ median ∆property ↓ % mRNAs improved ↑
de novo generative models

VAE (Kingma et al., 2013) 0.06 0.60 0.13 65.7 0.13 34.3
WGAN-GP (Gulrajani et al., 2017) 0.07 0.69 0.72 53.0 0.72 47.0
DDPM (Ho et al., 2020) 0.91 0.62 -1.06 39.2 -1.06 60.8
LDM (Rombach et al., 2022) 0.74 0.62 -0.78 46.2 -0.78 53.8
FM (Lipman et al., 2022) 5.82 0.62 -1.09 34.7 -1.09 65.3

Property optimization methods

OAE + Gradient Ascent 0.50 0.28 0.30 97.8 -0.06 73.5
OAE + MCMC 10.93 0.47 0.25 83.5 -0.58 95.1
OAE + Sequence-space MCMC 3.84 0.44 0.29 90.4 0.13 28.0
OAE + Hill Climbing 81.52 0.56 0.09 62.1 -0.28 85.0
OAE + Stochastic Hill Climbing 99.66 0.60 0.02 53.6 -0.46 86.2
OAE + RNAGenScape (Ours) 0.57 0.67 0.79 98.9 -1.17 99.5

5’ UTR datasets of zebrafish, experimentally collected
using Nascent Peptide Translating Ribosome Affinity
Purification (NaP-TRAP (Strayer et al., 2023)), a massively
parallel reporter assay for quantifying translation control.
These datasets span multiple developmental stages and
experimental conditions, including 2 hours post-fertilization
(hpf) and 6 hpf with both polyadenylated and SV40 late
polyadenylation signal contexts, as well as a 12 hpf dataset
using HEK293T cells expressing zebrafish 5’ UTRs. Each
dataset has around 11,000 5’ UTR sequences of length 124.

We used translation efficiency as the optimization target.
Translation efficiency reflects how many copies of proteins
each mRNA produces, and maximizing this property
can enhance protein production for therapeutic, synthetic
biology, or developmental applications.

Baselines We compared our method with a range of
popular de novo generative modeling approaches, including
variational autoencoder (VAE) (Kingma et al., 2013),
Wasserstein generative adversarial network with gradient
penalty regularization (WGAN-GP) (Gulrajani et al., 2017),
denoising diffusion probabilistic model (DDPM) (Ho et al.,
2020), latent diffusion model (LDM) (Rombach et al.,
2022), and flow matching (FM) (Rombach et al., 2022).
To benchmark against optimization-based methods, we also
experiments with gradient ascent (Zinkevich, 2003), Markov
chain Monte Carlo (MCMC) (Brooks, 1998; Andrieu et al.,
2003), and hill climbing (Selman & Gomes, 2006). All
optimization baselines were GPU-compatible adaptions
from the implementation in (Castro et al., 2022).

Hardware All experiments were carried out on the five
aforementioned datasets with three random seeds, and
we reported the averaged results. The evaluations were

performed on a single NVIDIA A100 GPU. With that said,
RNAGenScape requires minimal GPU memory and can
be run efficiently on more modest hardware.

Evaluation Since the optimization process could and
should result in mRNA sequences not covered by the
dataset, to quantify their properties, we trained a separate
property prediction model Ptrue(x) to serve as a proxy of
the ground truth. Note that Ptrue(x) is not accessible by
RNAGenScape or competing methods during optimization,
and is only used for evaluation.

4.2. RNAGenScape produces structured, data-aligned
trajectories

RNAGenScape operates within a learned latent space that
reflects the manifold of real biological sequences. As
shown in Figure 1, the optimization trajectories of different
methods tend to point in generally correct directions,
but often veer off-manifold, stagnate in local optimal
regions, or oscillate erratically. In contrast, RNAGenScape
consistently traces smooth and data-consistent paths that
preserve proximity to the natural sequence manifold.

To further illustrate this behavior, we visualize individual
optimization runs in Figure 3. Each trajectory exhibits
(roughly) monotonic increases in the target property
while remaining near regions populated by real sequences.
These trajectories are direct consequences of the manifold-
constrained dynamics, which guided each step toward high-
property regions while staying on the manifold.

Importantly, all intermediate steps during optimization can
be decoded into mRNA sequences, allowing researchers
to examine how sequences evolve step by step as specific
properties are optimized. A deeper analysis of these
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Figure 4. Latent space interpolation trajectories of RNAGenScape over 100 optimization steps, visualized using the top two principal
components. Each trajectory is shown as a line fading from bright to dark in a consistent color. By incorporating the directional force
toward the target, RNAGenScape produces smooth and coherent paths between arbitrary input–target pairs on the manifold.

trajectories is left for future work.

4.3. Superior property optimization in both directions

We quantitatively compare RNAGenScape against a
range of de novo generative models and optimization
baselines (Table 1). Although de novo approaches are
effective in modeling the data distribution, they offer limited
explicit control over the target properties. As a result, their
performance in property optimization is limited.

In contrast, RNAGenScape consistently achieves the
strongest performance among property optimization
methods. It achieves the highest median property change
and the highest success rate in both positive and negative
directions. In particular, its median property improvement
is approximately twice that of the runner-up, and its success
rate is the highest among all methods compared.

For sanity check, we also computed the 2-Wasserstein (W2)
distance between the generated sequence distribution and
the test set sequence distribution. We note that lowerW2

distances to the test distribution should not be interpreted as
better in this context, since property optimization naturally
shifts the output distribution away from the original data
distribution.

4.4. Efficiency and scalability

In addition to its strong property control, RNAGenScape
is also highly efficient at inference time. As reported in
Table 1, it achieves an inference speed of 0.57 ms/sample,
nearly matching the fastest method (gradient ascent at 0.50
ms/sample) and substantially faster than other methods
such as hill climbing (81.52 ms/sample) and MCMC (10.93
ms/sample). This efficiency makes RNAGenScape well
suited for large-scale or iterative design workflows where
fast feedback is essential.

4.5. Interpolating between arbitrary sequences

Besides being able to optimize mRNA sequences for target
properties, RNAGenScape enables interpolation between
arbitrary sequences by leveraging the directional drift
term (Eqn (11)).

We qualitatively illustrate the resulting interpolation
trajectories in Figure 4. Guided by a directional force
toward a specified target, RNAGenScape generates smooth
and coherent trajectories on the learned manifold while
preserving biological plausibility and continuity. These
trajectories connect arbitrary input–target sequence pairs
in a structured manner, reflecting semantically meaningful
transitions that can be decoded back for further biological
interpretation and investigation. Again, a deeper analysis of
these trajectories is left for future work.

5. Conclusion
We introduced RNAGenScape, a Langevin-dynamics
framework that refines real mRNA sequences in a learned
latent space rather than generating from scratch. By
combining an organized autoencoder with a denoising-
based manifold projector, RNAGenScape steers existing
sequences along smooth, manifold-aligned trajectories that
both improve target properties and preserve biological
plausibility. Empirically, RNAGenScape outperforms
a suite of de novo generative models and optimization
methods in property control, while matching or exceeding
their inference efficiency. With this work, we also hope
to shift the paradigm of biological sequence design from
unconstrained, de novo generation to guided refinement of
real data points.

6. Limitations and Future Work
One limitation of our approach is its dependence on
the fidelity of the organized latent space: if the
organized autoencoder fails to capture critical sequence
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constraints, manifold projections may permit small
but functionally invalid drifts. Additionally, our
current formulation optimizes a single scalar property;
extending RNAGenScape to multi-objective settings
would broaden its applicability. Finally, while we have
demonstrated compelling in silico gains, integrating real-
world experimental feedback remains an important avenue
to validate and refine the learned manifold.

In future work, we will analyze the intermediate outputs
from both property optimization and targeted interpolation
to uncover new biological insights. We will also
study the possibility to perform sequence-structure joint
modeling and optimization. Beyond mRNA, we plan to
extend RNAGenScape to other modalities such as protein
sequences and regulatory elements, and integrate active
learning frameworks that guide wet lab experimentation. By
grounding sequence optimization in the manifold of real
data, we aim to provide a versatile platform for interpretable
and high-throughput design in synthetic biology.

7. Related Works
Machine learning is becoming increasingly popular for
optimizing biological sequences such as DNA, RNA, and
proteins. This section reviews recent advances in sequence
modeling and optimization, with an emphasis on mRNAs.

Sequence-to-function modeling A central goal in
biological sequence modeling is predicting quantitative
properties (e.g., expression level, stability) directly from
the sequence (Oliver, 1996). Recent deep learning
models trained on high-throughput experimental data
have demonstrated strong performance in this setting,
particularly for regulatory regions such as 5’UTRs and
promoters (Sample et al., 2019; Vaishnav et al., 2022).
Models such as ConvNets (Chen et al., 2024) and
Transformers (He et al., 2023a) have been used to capture
complex dependencies in mRNA space, and form the basis
for downstream prediction of properties.

Generative models for design Generative models enable
sampling of novel sequences enriched for desired traits.
Variational autoencoders (VAEs) (Kingma et al., 2013) have
been applied to proteins to learn smooth latent spaces that
are amenable to gradient-based optimization (Sinai et al.,
2017; Castillo-Hair et al., 2024). ProteinMPNN (Dauparas
et al., 2022), although described as a message-passing neural
network by the authors, shares core design principles with
autoencoders. Generative adversarial networks (Goodfellow
et al., 2020) such as Méndez-Lucio et al. (Méndez-Lucio
et al., 2020) or ProteinGAN (Repecka et al., 2021) and
autoregressive language models such as ProGen (Madani
et al., 2023) have also been used to generate diverse protein

sequences. More recently, diffusion models (Ho et al., 2020)
have shown promise in discrete domains. For example,
RFdiffusion (Watson et al., 2023) generates proteins
unconditionally or conditioned on structural constraints.
These methods can be readily adapted to mRNA design.

Optimization of biological sequences Sequence
optimization can be framed as a black-box search or a
differentiable surrogate-guided process. Several approaches
relax discrete inputs for gradient-based updates, such as
using straight-through estimators (Linder et al., 2019).
ReLSO learns a continuous latent space and performs
gradient ascent (Castro et al., 2022). Others apply
reinforcement learning (Eastman et al., 2018) or Monte
Carlo algorithm (Wirecki et al., 2023) for sequence
optimization. Methods such as Fast SeqProp (Linder &
Seelig, 2021) and LaMBO (Stanton et al., 2022) have
demonstrated success in optimizing sequences under
multi-objective constraints.

Integration of structural context While the present work
strictly focuses on the mRNA sequence, many successful
models incorporate inductive biases from the structures.
ProteinMPNN (Dauparas et al., 2022) and diffusion-
based inverse folding (Yi et al., 2023) condition sequence
generation on 3D structures. ImmunoStruct (Givechian
et al., 2025) jointly models protein sequence, structure,
and biochemical properties to predict immunogenicity.
CellSpliceNet (Afrasiyabi et al., 2025) integrates long-
range sequence, local regions of interest, secondary
structure, and gene expression to predict alternative slicing.
EternaFold (Wayment-Steele et al., 2022) incorporate
predicted secondary structures to improve fitness prediction.
Although in our work we did not incorporate mRNA
structures, extending RNAGenScape to sequence-structure
joint modeling and optimization could be a promising
direction.
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