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ABSTRACT

Molecular representation learning has shown great success in AI-based drug dis-
covery. The 3D geometric structure contains crucial information about the un-
derlying energy function, related to the physical and chemical properties. Re-
cently, denoising diffusion probabilistic models have achieved impressive results
in molecular conformation generation. However, the knowledge of pre-trained
diffusion models has not been fully exploited in molecular representation learn-
ing. In this paper, we study the ability of representation learning inherent in the
diffusion model for conformation generation. We introduce a new general diffu-
sion model framework called MaskedDiff for molecular representation learning.
Instead of adding noise to atoms like conventional diffusion models, Masked-
Diff uses a discrete distribution to select a subset of the atoms to add continuous
Gaussian noise at each step during the forward process. Further, we develop a
novel subgraph diffusion model termed SUBGDIFF for enhancing the perception
of molecular substructure in the denoising network (noise predictor), by incorpo-
rating auxiliary subgraph predictors during training. Experiments on molecular
conformation generation and 3D molecular property predictions demonstrate the
superior performance of our approach.

1 INTRODUCTION

Figure 1: Equilibrium probability of
the six ibuprofen conformers c1–c6 in
four different conditions. The 3D sub-
structure is a significant characteristic
of a molecule.

Molecular representation learning (MRL) has attracted
tremendous attention due to its significant role in learning from
limited labeled data for applications like AI-based drug dis-
covery (Shen & Nicolaou, 2019) and material science (Pol-
lice et al., 2021). From a physical chemistry perspective, the
3D molecular conformation can largely determine the prop-
erties of molecules and the activities of drugs (Cruz-Cabeza
& Bernstein, 2014). Thus, numerous geometric neural net-
work architectures and self-supervised learning strategies have
been proposed to explore 3D molecular structures to improve
performance on downstream molecular property prediction
tasks (Schütt et al., 2017; Zaidi et al., 2023; Liu et al., 2023a).

Meanwhile, diffusion probabilistic models (DPM) have shown
remarkable power to generate realistic samples, especially in
synthesizing high-quality images and videos (Sohl-Dickstein
et al., 2015; Ho et al., 2020). By modeling the generation as
a reverse diffusion process, DPMs transform a random noise
into a sample in the target distribution. Recently, diffusion models have demonstrated strong capa-
bilities of molecular 3D conformation generation (Xu et al., 2022; Jing et al., 2022). The training
process of a DPM for conformation generation can be viewed as the reconstruction of the original
conformation from a noisy version, where the noise is modulated by different time steps. Conse-
quently, the denoising objective in the diffusion model can naturally be used as a self-supervised
representation learning technique (Pan et al., 2023). Inspired by this intuition, several works have
used this technique for molecule pretraining (Liu et al., 2023b; Zaidi et al., 2023). Despite con-
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siderable progress, the potential of DPMs for molecular representation learning has not been fully
exploited. In this paper, we intend to explore the potential of generative DPM for MRL. To this aim,
we raise the question: Can we effectively enhance the perception of 3D molecular structures with
the denoising network (noise predictor) of DPM? If yes, how to achieve it?
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Figure 2: Comparison of forward process between DDPM (Ho et al.,
2020) and MaskedDiff. For each step, DDPM adds noise into all atomic
coordinates, while MaksedDIff selects a subset of the atoms to diffuse.

To answer this question, we
first analyze the gap between
the current DPMs and the char-
acteristics of molecular struc-
tures. Most diffusion mod-
els on molecules propose to
independently inject continuous
Gaussian noise into the ev-
ery node feature (Hoogeboom
et al., 2022) or atomic coordi-
nates of 3D molecular geome-
try (Xu et al., 2022; Zaidi et al.,
2023). This however implicitly
models each atom as a separate
particle, neglecting the substructure in the molecules which plays a significant role in molecular rep-
resentation learning (Yu & Gao, 2022; Wang et al., 2022a).As shown in Figure 11, the 3D geometric
substructure contains crucial information about the properties, such as the equilibrium distribution,
crystallization and solubility (Marinova et al., 2018). As a result, uniformly adding same-scale
Gaussian noise to all atoms makes it difficult for the denoising network to capture the properties
of the 3D molecules related to the substructure. So here we try to answer the previous question by
training a DPM with the knowledge of substructures.

Toward this goal, we first propose a general masked diffusion framework named MaskedDiff, adding
different Gaussian noise to 3D molecular conformation. Specifically, instead of adding the same
Gaussian noise to every atomic coordinate, MaskedDiff introduces a discrete binary distribution to
the diffusion process, where a mask vector sampling from the distribution can be used to select a
subset of the atoms to determine which substructure the noise should be added to at the current
time step (Figure 2). MaskedDiff can unify many masked-related diffusion models in other do-
main (Alcaraz & Strodthoff, 2022; Lei et al., 2023). Despite the fact that MaskedDiff can be directly
used for self-supervised learning, it cannot be employed for generative tasks due to the difficulty of
determining the mask vector during generation.

In order to make MaskedDiff usable for both molecular conformation generation and self-supervised
representation learning, we design a novel subgraph diffusion model termed SUBGDIFF which in-
corporates a mask predictor (akin to a node classifier) in MaskedDiff during training that explicitly
imposes the denoising network to capture the substructure information from the molecules. In SUB-
GDIFF, the substructure is concretized as the subgraph of the molecular graph. The mask predictor
can also be used to generate the mask vector during molecule generation, thereby giving the gener-
ative ability to SUBGDIFF. With the ability to capture the substructure information from the noisy
3D molecular, the denoising networks tend to gain more representation power. It is made possible
by the discrete distribution involved in the diffusion model, which, in contrast to conventional same-
scale Gaussian models, captures the subgraph in the noisy graphs. These improvements enhance the
performance of SUBGDIFF on molecular conformation generation and 3D molecular representation
learning tasks. The experiments on molecular conformation generation and 3D molecular property
prediction demonstrate the superior performance of our approach.

The key contributions of this paper are as follows: (1) The paper proposes a novel general mask
diffusion model framework MaskedDiff. This framework combines the continuous and discrete
characteristics, thereby being capable of recovering many typical diffusion models. (2) A new dif-
fusion model SUBGDIFF is designed to enhance the representation power of the DPM for molecular
conformation generation via equipping the subgraph constraint in the diffusion process. SUBGDIFF
can be used for molecular conformation generation and self-supervised representation learning. (3)
The proposed method achieves superior performance on molecular conformation generation and 3D
molecular property protection tasks compared to the typical continuous diffusion models.

1Adapted with permission from Marinova et al. (2018). Copyright 2018 American Chemical Society.
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2 RELATED WORK

Diffusion models on graphs. The diffusion models on graphs can be mainly divided into two
categories: continuous diffusion and discrete diffusion. Continuous diffusion applies a Gaussian
noise process on each node or edge (Ingraham et al., 2019; Niu et al., 2020), including GeoDiff (Xu
et al., 2022), EDM (Hoogeboom et al., 2022). Meanwhile, discrete diffusion constructs the Markov
chain on discrete space, including Digress (Haefeli et al., 2022) and GraphARM (Kong et al., 2023a).
However, it remains open to exploring fusing the discrete characteristic into the continuous Gaussian
on graph learning, although a closely related work has been proposed for images and cannot be used
for generation (Pan et al., 2023). Our work, SUBGDIFF, is the first masked diffusion model for
graphs, combining discrete characteristics and the continuous Gaussian.

Conformation generation. Various deep generative models have been proposed for conformation
generation, including CVGAE (Mansimov et al., 2019), GRAPHDG (Simm & Hernandez-Lobato,
2020), CGCF (Xu et al., 2021a), CONFVAE (Xu et al., 2021b), CONFGF (Shi et al., 2021) and
GEOMOL (Ganea et al., 2021). Recently, diffusion-based methods have shown competitive perfor-
mance. Torsional Diffusion (Jing et al., 2022) raises a diffusion process on the hypertorus defined by
torsion angles. However, it is not suitable as a self-supervised learning technique due to the lack of
local information (length and angle of bonds). GEODIFF (Xu et al., 2022) generates molecular con-
formation by doing a conventional diffusion model on atomic coordinates. However, these methods
view the atoms as separate particles, without considering the critical dependence between atoms,
especially the substructure.

SSL for 3D molecular property prediction. There exist several works leveraging the 3D molec-
ular conformation to boost the representation learning, including GeoSSL (Liu et al., 2023b), the
denoising pretraining approach raised by Zaidi et al. (2023) and MoleculeSDE (Liu et al., 2023a),
etc. However, those studies have not considered the molecular substructure in the pertaining. In
this paper, we concentrate on how to boost the perception of molecular substructure in the denoising
networks through the diffusion model.

3 PRELIMINARIES

Notations. We use I to denote the identity matrix with dimensionality implied by context. ⊙
represents the element product and diag(s) denotes the diagonal matrix with diagonal elements of
the vector s. The topological molecular graph can be denoted as G(V, E ,X) where V is the set of
nodes, E is the set of edges, X is the node feature matrix, and its corresponding 3D Conformational
Molecular Graph is represented as G3D(G,R), where R = [R1, · · · , R|V|] ∈ R|V|×3 is the set of
3D coordinates of atoms.

DDPM. Denoising diffusion probabilistic models (DDPM) (Ho et al., 2020) is a typical diffusion
model (Sohl-Dickstein et al., 2015) which consists of a diffusion (aka forward) and a reverse process.
In the setting of molecular conformation generation, the diffusion model adds noise on the 3D
molecular coordinates R (Xu et al., 2022).

Forward Process. Given the fixed variance schedule β1, β2, · · · , βT , the posterior distribution
q(R1:T |R0) that is fixed to a Markov chain can be written as

q(R1:T |R0) =
T∏

t=1

q(Rt|Rt−1), q(Rt|Rt−1) = N (Rt,
√

1− βtR
t−1, βtI). (1)

To simplify notation, we consider the diffusion on single atom coordinate Rv and omit the subscript
v to get the general notion R throughout the paper. Let αt = 1− βt, ᾱt =

∏t
i=1(1− βt), and then

the sampling of Rt at any time step t has the closed form: q(Rt|R0) = N (Rt,
√
ᾱtR

0, (1− ᾱt)I).

Reverse Process and Training. The reverse process is defined as a Markov chain starting from a
Gaussian distribution p(RT ) = N (RT ;0, I):

pθ(R0:T ) = p(RT )

T∏
t=1

pθ(R
t−1|Rt); pθ(R

t−1|Rt) = N (Rt−1;µθ(R
t, t), σt), (2)

where σt = 1−ᾱt−1

1−ᾱt
βt denote time-dependent constant. In DDPM, µθ(R

t, t) is parameterized as
µθ(R

t, t) = 1
ᾱt
(Rt − βt√

1−ᾱt
ϵθ(R

t, t)) and ϵθ, i.e., the denoising network, is parameterized by a
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neural network where the inputs are Rt and time step t. The training objective of DDPM is:

Lsimple(θ) = Et,R0,ϵ[∥ϵ− ϵθ(
√
ᾱtR

0 +
√
1− ᾱtϵ, t)∥2], ϵ ∼ N (0, I). (3)

Sampling. After training, samples are generated through the reverse process pθ(R0:T ). Specifically,
RT is first sampled from N (0, I), and Rt in each step is predicted as follows,

Rt−1 =
1√
αt

(Rt − 1− αt√
1− ᾱt

ϵθ(R
t, t)) + σtz, z ∼ N (0, I). (4)

4 METHODOLOGY

Directly using the typical diffusion model on atomic coordinates of 3D molecular means each atom
is viewed as an independent single data point. However, the subgraph plays an important role in the
molecular generation (Jin et al., 2020) and representation learning (Zang et al., 2023). Therefore,
ignoring connections between nodes may hurt the denoising network’s ability to capture molecular
substructure. Here, we propose to involve a mask operation in each diffusion step, driving a new
masked diffusion for 3D molecular representation learning. Further, we also include the mask pre-
dictor and reset the state of the Markov Chain to be an expectation of mask distribution, leading to
a new diffusion model SUBGDIFF for molecular generation and representation.

4.1 AN IMPORTANT LEMMA FOR DIFFUSION MODEL

According to (Sohl-Dickstein et al., 2015; Ho et al., 2020), the diffusion model is trained by opti-
mizing the variational bound on the negative log-likelihood − log pθ(R

0), in which the tricky terms
are Lt−1 = DKL(q(R

t−1|Rt, R0)||pθ(Rt−1|Rt))), T ≥ t > 1. Here we provide a lemma that
tells us the posterior distribution q(Rt−1|Rt, R0) used in the training and sampling algorithms of
the diffusion model can be determined by q(Rt|Rt−1, R0), q(Rt−1|R0). Formally, we have

Lemma 4.1 Assume the forward and reverse processes of the diffusion model are both Markov
chains. Given the forward Gaussian distribution q(Rt|Rt−1, R0) = N (Rt;µ1R

t−1, σ2
1I),

q(Rt−1|R0) = N (Rt−1;µ2R
0, σ2

2I) and ϵ0 ∼ N (0, I), the distribution q(Rt−1|Rt, R0) is

q(Rt−1|Rt, R0) ∝ N (Rt−1;
1

µ1
(Rt − σ2

1√
µ2
1σ

2
2 + σ2

1

ϵ0),
σ2
1σ

2
2

µ2
1σ

2
2 + σ2

1

I). (5)

Parameterizing pθ(R
t−1|Rt) in the reverse process as N (Rt−1; 1

µ1
(Rt −

σ2
1√

µ2
1σ

2
2+σ2

1

ϵθ(R
t, t)),

σ2
1σ

2
2

µ2
1σ

2
2+σ2

1
I) , the training objective of the DPM can be written as

L(θ) = Et,R0,ϵ

[ σ2
1

2µ2
1σ

2
2

∥ϵ− ϵθ(µ1µ2R
0 +

√
µ2
1σ

2
2 + σ2

1ϵ, t)∥2
]
, (6)

and the sampling (reverse) process is

Rt−1 =
1

µ1

(
Rt − σ2

1√
µ2
1σ

2
2 + σ2

1

ϵθ(R
t, t)

)
+

σ1σ2√
µ2
1σ

2
2 + σ2

1

z, z ∼ N (0, I) (7)

The proof of the lemma can be found in the Appendix. Once we get the variables (µ1, σ1, µ2, σ2),
we can directly obtain the training objective and sampling process via lemma 4.1, which will help
the design of new diffusion models.

4.2 MASKED DIFFUSION MODEL

𝑅𝑡−1 𝑅𝑡

𝑠𝑡 = 0

𝑠𝑡 = 1

Figure 3: The Markov
Chain of MaskedDiff is a
lazy Markov Chain.

Let us focus on the typical DDPM. Using reparameterization trick, we
have Rt

v =
√
1− βtR

t−1
v +

√
βtϵt−1,∀v ∈ V , in which the Gaus-

sian noise ϵt−1 is injected to every atom. Moreover, the training ob-
jective in equation 3 shows that the denoising networks would always
predict a Gaussian noise for all atoms. Neither the diffusion nor de-
noising process of DDPM does not take into account the substructure of
the molecule. Instead, we propose MaskedDiff, where a mask vector
st = [st1 , · · · , st|V| ]

⊤ ∈ {0, 1}|V| is sampled from a discrete distribu-
tion pst(S) to select a subset of the atoms to determine which atoms will
be added noise at step t. In molecular graphs, the discrete mask distribution pst(S) is equivalent to
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the subgraph distribution, defined over a predefined sample space χ = {Gi
sub}Ni=1, where each sam-

ple is a connected subgraph extracted from G. Further, the pre-defined distribution pst(S) should
keep the selected connected subgraph to cohere with the molecular substructures. Here, we adopt
a Torsional-based decomposition methods (Jing et al., 2022)(subsec. 4.3.3 ). Thus, the state tran-
sition of MaskedDiff can be formulated as (Figure 3): Rt

v =
√
1− βtR

t−1
v +

√
βtϵt−1 if stv = 1,

otherwise Rt
v = Rt−1

v , which can be rewritten as Rt
v =

√
1− stvβtR

t−1
v +

√
stvβtϵt−1. The

posterior distribution q(R1:T |R0) can be expressed as matrix form:
q(R1:T |R0) =

T∏
t=1

q(Rt|Rt−1); q(Rt|Rt−1) = N (Rt,
√

1− βtdiag(st)Rt−1, βtdiag(st)I). (8)

To simplify the notation, we consider the diffusion on single node v ∈ G3D and omit the subscript of
coordinate Rt

v and stv to get the notion Rt and st. By defining γt = 1−stβt, γ̄t =
∏t

i=1(1−stβt),
the closed form of sampling Rt from R0 is q(Rt|R0) = N (Rt,

√
γ̄tR

0, (1 − γ̄t)I). By Lemma
4.1, with µ1 =

√
1− stβt, σ1 =

√
stβt, µ2 =

√
γ̄t−1, σ2 =

√
1− γ̄t−1, the training objective of

MaskedDiff is:

L(θ) = Et,R0,ϵ

[
stβt

2(1− stβt)(1− γ̄t−1)
∥ϵ− ϵθ(

√
γ̄tR

0 +
√

(1− γ̄t)ϵ, t,G)∥2
]
. (9)

It is clear that if st = 0, L(θ) = 0, which means that this node v will not be trained in time step t.
Therefore, the st also determines the substructure selected in time step t. One drawback of Masked-
Diff is that it cannot be directly employed in sampling since it is unable to obtain (s1, s2, · · · , sT )
to derive the σ1 and σ2 in equation 7. The discussion with related work (MDM (Pan et al., 2023),
MDSM (Lei et al., 2023) and SSSD (Alcaraz & Strodthoff, 2022) ) is deferred to Appendix A.

4.3 SUBGDIFF: A DIFFUSION MODEL FOR REPRESENTATION LEARNING AND
CONFORMATION GENERATION

In this section, we propose a novel diffusion model called SUBGDIFF for self-supervised represen-
tation learning and conformation generation. Inheriting from MaskedDiff, SUBGDIFF adopts the
mask vector to embed the substructure into the denoising network ϵθ. However, the main problem is
that MaskedDiff cannot be used for generations. To solve the problem, SUBGDIFF applies multiple
techniques to make it better for generation.

4.3.1 MASK ESTIMATION

Recall the forward process in MaskedDiff, only a subgraph (substructure) in the molecular graph
is chosen to diffuse at each time step. Correspondingly, during the reverse process, the mask is
used to determine which subgraph needs to be denoised. This means that the sampling process
will prioritize the subgraphs that are selected by the mask, which is also reflected by equation 7
(σ1 and σ2). However, the mask series (s1, s2, · · · , sT ) cannot be accessed during sampling. This
uncertainty will bring the tribulation to make the denoising network capture the substructure. To
estimate the mask series, SUBGDIFF uses a mask predictor to infer st and adapt an expectation state
to eliminate the effect of (s1, · · · , st−1).

Mask Predictor. Given the current time step t in sampling, we need to infer the pivotal mask
(subgraph) st to highlight the subgraph of G3D(X,Rt) that will be denoised to recover Rt−1. Thus,
we first introduce a mask predictor to estimate the mask vector st during training (the theoretical
motivation can be seen in Appendix). Consequently, the training objective of SUBGDIFF is:

Lsimple(θ, ϑ) = Et,R0,st,ϵ[∥diag(st)(ϵ− ϵθ(G,Rt, t))∥2 + λBCE(st, sϑ(G,Rt, t))], (10)

where BCE(sti , sϑi) = sti log sϑ(G,Rt, t)i + (1− sti) log (1− sϑ(G,Rt, t)i) is the Binary Cross
Entropy loss and λ is the weight used for the trade-off. The mask predictor sϑ is implemented as a
node classifier with G3D(G,Rt) as input and shares a molecule encoder with ϵθ, thereby explicitly
imposing the denoising network to capture the substructure information from molecules. Eventually,
the sϑ can be used to infer the mask vector ŝt = sϑ(G, R̂t, t) during sampling. More importantly,
this BCE loss explicitly imposes the denoising network to capture the substructure information from
the molecules.

Expectation State Diffusion. As mentioned above, the MaskedDiff cannot be used for sampling
due to the unknown mask series (s1, s2, · · · , st). We have designed a mask predictor to infer st.
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Figure 4: The forward process of SUBGDIFF. The state 0 to km uses the expectation state, and the state km+1
to t applies the same-mask diffusion.
However, using another predictor to infer (s1, · · · , st−1) solely from Rt becomes challenging due
to the intricate modulation of noise introduced in Rt through multi-step Gaussian processes. This
complex modulation of noise in Rt also heightens the challenge of predicting st, a critical factor in
enhancing the denoising network’s ability to discern substructures during self-supervised learning.
Recall the forward process of MaskedDiff. The state Rt−1 =

√
γ̄t−1R

0 +
√
(1− γ̄t−1)ϵ0 ∝

(s1, · · · , st−1, ϵ0). To eliminate the effect of mask series, we use the mean state Es1:t−1
Rt−1 to

estimate the state Rt−1. Assume each node v ∈ V , stv ∼ Bern(p) (i.i.d. w.r.t. t), the Es1:t−1
Rt−1

can be formulated as:
Es1:t−1

Rt−1 =
√
ᾱiR

0 + p(

t∑
i=1

ᾱt

ᾱi
βi)

1/2ϵ0, (11)

where αi := (p
√
1− βi+1−p)2 and ᾱt :=

∏t
i=1 αi are general form of αj and ᾱj in DDPM (p =

1), respectively. This estimation is reasonable since the expectation Es1:t−1
Rt−1 is like a cluster

center of Rt−1, which can represent the Rt−1 properly. Meanwhile, using expectation is beneficial
to reduce the complexity of Rt for predicting the mask st during training. This will improve the
denoising network to perceive the substructure when we use the diffusion model for pretraining.
Eventually, we get a new forward process, in which, state 0 to state t − 1 use the Es1:t−1

Rt−1 and
state t remains as MaskedDiff. Formally, we have q(Rt|Rt−1) = N (Rt;

√
1− stβtR

t−1, (stβt)I)

and q(Rt−1|R0) = q(ERt−1|R0) = N (ERt−1;
∏t−1

i=1

√
αiR

0, p2
∑t−1

i=1

∏t−1
j=i+1 αjβiI). From

Lemma 4.1, the training objective we can use equation 10 and the sampling process is:

Rt−1 =
1√

1− ŝtβt

Rt − ŝtβt

√
1− ŝtβt

√
ŝtβt + (1− stβt)p2

∑t−1
i=1

ᾱt−1

ᾱi
βi

ϵθ(R
t, t) + σtz, (12)

where ŝt = sϑ(R
t, t) and σt = ŝtβtp

2
∑t−1

i=1
ᾱt−1

ᾱi
βi/(ŝtβt + p2(1− ŝtβt)

∑t−1
i=1

ᾱt−1

ᾱi
βi).

4.3.2 k-STEP SAME-MASK DIFFUSION.

Algorithm 1: Training SUBGDIFF

Input: A molecular graph G3D, k for
same mask diffusion

Sample t ∼ U(1, ..., T ) , ϵ ∼ N (0, I)
Sample st ∼ pst(S)
Rt ← q(Rt|R0) ▷ Eq.14
L1 = BCE(st, sϑ(G,Rt, t)
L2 = ∥diag(st)(ϵ− ϵθ(G,Rt, t))∥2
optimizer. step(λL1 + L2)

Although we can successfully use MaskedDiff for
sampling with Exceptional state and mask predictor,
optimizing the mask predictor with equation 10 is
still not trivial. To be specific, the mask predictor
should be capable of perceiving the sensible noise
change between time steps t − 1 and t. However,
the noise scale βt is relatively small when t is small,
especially if the diffusion step is larger than a thou-
sand. As a result, it is difficult to precisely predict
the mask. To reduce the complexity of the mask series (s1, s2, · · · , sT ) and accumulate more noise
on the same subgraph, SUBGDIFF generalizes the one-step mask sampling to k-step mask sam-
pling (Figure 5 in Appendix), in which the selected subgraph will be continuously diffused k steps.
After that, the difference between the selected and unselected parts will be distinct enough to help
the mask predictor perceive it. The forward process of k-step step Same-mask diffusion can be
written as (t > k, k ∈ N):

q(Rt|Rt−k) = N

Rt,

√√√√ t∏
i=t−k+1

(1− st−k+1βi)R
t−k, (1−

t∏
i=t−k

(1− st−k+1βi)I

. (13)

4.3.3 SUBGDIFF

With k-step same mask and mask estimation techniques, we propose a novel diffusion model called
SUBGDIFF. SUBGDIFF divides the entire diffusion step T into T/k diffusion intervals. In each
interval [ki, k(i+ 1)], the mask vectors {sj}k(i+1)

j=ki+2 are equal to ski+1.

6
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To eliminate the effect of {sik+1|i = 1, 2, . . .} and obtain the generative ability, SUBGDIFF also
adopts the expectation state at the split time step {ik|i = 1, 2, · · · }, that is, gets the expectation of
ERik at step ik w.r.t. sik+1. We therefore propose a new two-phase diffusion process. In the first
phase, the state 1 to state k⌊t/k⌋ use the expectation state diffusion, while in the second phase, state
k(⌊t/k⌋) + 1 to state t use the k-step same mask diffusion. The state transition refers to Figure 4.
With m := ⌊t/k⌋, the two phases can be formulated as follows,

Phase I: Step 0→ k⌊t/k⌋: Es1:km
Rkm =

√
ᾱmR0 + p

√∑m
l=1

ᾱm

ᾱl
(1−

∏kl
i=(l−1)k+1(1− βi))ϵ0,

where αj = (p
√∏kj

i=(j−1)k+1(1− βi) + 1− p)2 is a general forms of αj in equation 11 (in which

case k = 1) and ᾱt =
∏t

i=1 αi. In the rest of the paper, αj denotes the general version without
a special statement. Actually, the Es1:km

Rkm only calculate the expectation of random variable
{sik+1|i = 1, 2, · · · }.
Phase II: Step k⌊t/k⌋ + 1 → t: The phase is a (t − km)-step same mask diffusion. Rt =√∏t

i=km+1(1− βiskm+1)Es1:km
Rkm +

√
1−

∏t
i=km+1(1− βiskm+1)ϵkm. Let γi = 1 −

βiskm+1, γ̄t =
∏t

i=1 γi, and β̄t =
∏t

i=1(1 − βi), we can drive the single-step state transition:
q(Rt|Rt−1) = N (Rt;

√
γtR

t−1, (1− γt)I) and

q(Rt−1|R0) = N (Rt−1;

√
γ̄t−1ᾱm

γ̄km
R0,

(
γ̄t−1

γ̄km
p2

m∑
l=1

ᾱm

ᾱl
(1− β̄kl

β̄(l−1)k

) + 1− γ̄t−1

γ̄km

)
I). (14)

Then we can obtain µ1, σ1, µ2, σ2 in Lemma 4.1. Thus, the training objective of SUBGDIFF is:

Lsimple(θ, ϑ) = Et,R0,st,ϵ[∥diag(st)(ϵ− ϵθ(G,Rt, t))∥2 − λBCE(st, sϑ(G,Rt, t))], (15)

where Rt can be calculated by equation 14. Because sϑ shares the encoder with ϵθ, when using this
objective for pretraining, ϵϑ can be effectively trained to capture the substructure information.
Sampling. The sampling process does not fully correspond to the forward process. Although the
forward process uses the expectation state w.r.t s, we can only update the mask ŝt when t = ik, i =
1, 2, · · · . Eventually, the sampling process is shown below,

Rt−1 =
1
√
γt
(Rt −

ŝk⌊t/k⌋+1βt√
γt(

γ̄t−1

γ̄km
p2
∑m

l=1
ᾱm

ᾱl
(1− β̄kl

β̄(l−1)k
) + 1− γ̄t−1

γ̄km
) + ŝk⌊t/k⌋+1βt

ϵθ(R
t, t))

+

√
ŝk⌊t/k⌋+1βt

√
γ̄t−1

γ̄km
p2
∑m

l=1
ᾱm

ᾱl
(1− β̄kl

β̄(l−1)k
) + 1− γ̄t−1

γ̄km√
γt(

γ̄t−1

γ̄km
p2
∑m

l=1
ᾱm

ᾱl
(1− β̄kl

β̄(l−1)k
) + 1− γ̄t−1

γ̄km
) + ŝk⌊t/k⌋+1βt

z, (16)

Algorithm 2: Sampling from SUBGDIFF

Sample RT ∼ N (0, I)
for t = T to 1 do

z ∼ N (0, I) if t > 1, else z = 0
If t%k == 0 or t == T : ŝ← sϑ(G,Rt, t)
ϵ̂← ϵθ(G,Rt, t) ▷ Posterior
Rt−1 ← equation 16 ▷ sampling

end
return R0

where z ∼ N (0, I), m = ⌊t/k⌋ and
ŝk⌊t/k⌋+1 = sϑ(G, Rkm+1, km + 1).
It is clear that the subgraph selected by
ŝkm+1 will be generated preferentially.
The mask predictor can be viewed as
a discriminator of important subgraphs,
indicating the optimal subgraph should
be recovered in the next k steps. After
the key subgraph (substructure) is generated properly, the model can gently fine-tune the rest atoms
(cf. the video in supplementary material). This subgraph diffusion would intuitively increase the
robustness and generalization of the generation process, which is also verified by the experiments
in sec. 5.2. While the DDPM (or GEODIFF) generates the atomic coordinates altogether, which is
sub-optimal since some parts of the molecule shouldn’t be revised after well-generated. The training
and sampling algorithms of SUBGDIFF are summarized in Alg. 1 and Alg. 2.

4.4 MASK DISTRIBUTION

As mentioned in Subsection 4.2, the subgraphs (mask vectors) sampled from the mask distribution
should be connected. In this paper, we pre-define the mask distribution to be a discrete distribution,
with sample space χ = {Gi

sub}Ni=1, and pt(S = Gi
sub) = 1/N, t > 1, where Gi

sub is the subgraph
split by the Torsional-based decomposition methods (Jing et al., 2022). The decomposition approach
will cut off one torsional edge in a 3D molecule to make the molecule into two components, each
of which contains at least two atoms. The two components are represented as two complementary
mask vectors (i.e. s′ + s = 1). Thus n torsional edges in Gi

3D will generate 2n subgraphs. Finally,
for each atom v, the stv ∼ Bern(0.5), i.e. p = 0.5 in SUBGDIFF.

7
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5 EXPERIMENTS

We conducted experiments to address the following two questions: 1) Can substructure improve the
representation ability of the denoising network during self-supervised learning? 2) Can the SUB-
GDIFF outperform the conventional diffusion model in conformation generation? For the first ques-
tion, we employ SUBGDIFF as a denoising pretraining task. For the second question, we compare
SUBGDIFF with GEODIFF. We will pay more attention to the first question.
Table 1: Results on 12 quantum mechanics prediction tasks from QM9. We take 110K for training, 10K for
validation, and 11K for testing. The evaluation is mean absolute error (MAE), and the best and the second best
results are marked in bold and underlined, respectively. The backbone is SchNet.
Pretraining Alpha ↓ Gap ↓ HOMO↓ LUMO ↓ Mu ↓ Cv ↓ G298 ↓ H298 ↓ R2 ↓ U298 ↓ U0 ↓ Zpve ↓
Random init 0.070 50.59 32.53 26.33 0.029 0.032 14.68 14.85 0.122 14.70 14.44 1.698
Supervised 0.070 51.34 32.62 27.61 0.030 0.032 14.08 14.09 0.141 14.13 13.25 1.727
Type Prediction 0.084 56.07 34.55 30.65 0.040 0.034 18.79 19.39 0.201 19.29 18.86 2.001
Angle Prediction 0.084 57.01 37.51 30.92 0.037 0.034 15.81 15.89 0.149 16.41 15.76 1.850
3D InfoGraph 0.076 53.33 33.92 28.55 0.030 0.032 15.97 16.28 0.117 16.17 15.96 1.666
GeossL-RR 0.073 52.57 34.44 28.41 0.033 0.038 15.74 16.11 0.194 15.58 14.76 1.804
GeossL-InfoNCE 0.075 53.00 34.29 27.03 0.029 0.033 15.67 15.53 0.125 15.79 14.94 1.675
GeossL-EBM-NCE 0.073 52.86 33.74 28.07 0.031 0.032 14.02 13.65 0.121 13.70 13.45 1.677
MoleculeSDE 0.062 47.74 28.02 24.60 0.028 0.029 13.25 12.70 0.120 12.68 12.93 1.643

Ours 0.054 44.88 25.45 23.75 0.027 0.028 12.03 11.46 0.110 11.32 11.25 1.568

5.1 MOLECULAR PROPERTY PREDICTION

This experiment aims to verify whether the introduced mask in the diffusion can enhance the de-
noising network to perceive the structure of 3D molecules.
Table 2: Results for 2D molecular property prediction tasks (with 2D topology only). We report the mean (and
standard deviation) ROC-AUC of three random seeds with scaffold splitting for each downstream task. The
backbone is GIN. The best and second best results are marked bold and underlined, respectively.
Pre-training BBBP ↑ Tox21 ↑ ToxCast ↑ Sider ↑ ClinTox ↑ MUV ↑ HIV ↑ Bace ↑ Avg ↑
– (random init) 68.1±0.59 75.3±0.22 62.1±0.19 57.0±1.33 83.7±2.93 74.6±2.35 75.2±0.70 76.7±2.51 71.60
AttrMask 65.0±2.36 74.8±0.25 62.9±0.11 61.2±0.12 87.7±1.19 73.4±2.02 76.8±0.53 79.7±0.33 72.68
ContextPred 65.7±0.62 74.2±0.06 62.5±0.31 62.2±0.59 77.2±0.88 75.3±1.57 77.1±0.86 76.0±2.08 71.28
InfoGraph 67.5±0.11 73.2±0.43 63.7±0.50 59.9±0.30 76.5±1.07 74.1±0.74 75.1±0.99 77.8±0.88 70.96
MolCLR 66.6±1.89 73.0±0.16 62.9±0.38 57.5±1.77 86.1±0.95 72.5±2.38 76.2±1.51 71.5±3.17 70.79
3D InfoMax 68.3±1.12 76.1±0.18 64.8±0.25 60.6±0.78 79.9±3.49 74.4±2.45 75.9±0.59 79.7±1.54 72.47
GraphMVP 69.4±0.21 76.2±0.38 64.5±0.20 60.5±0.25 86.5±1.70 76.2±2.28 76.2±0.81 79.8±0.74 73.66
MoleculeSDE(VE) 68.3±0.25 76.9±0.23 64.7±0.06 60.2±0.29 80.8±2.53 76.8±1.71 77.0±1.68 79.9±1.76 73.15
MoleculeSDE(VP) 70.1±1.35 77.0±0.12 64.0±0.07 60.8±1.04 82.6±3.64 76.6±3.25 77.3±1.31 81.4±0.66 73.73

Ours 70.2±2.23 77.2±0.39 65.0±0.48 62.2±0.974 88.2±1.57 77.3±1.17 77.6±0.51 82.1±0.96 74.85

Dataset and Settings. For pretraining, we follow Liu et al. (2023a) and use PCQM4Mv2 (Hu et al.,
2020b). It’s a sub-dataset of PubChemQC (Nakata & Shimazaki, 2017) with 3.4 million molecules
with both the geometric conformations and topological graph. The downstream tasks are various
molecular property predictions. Regarding 3D fine-tuning, we take the QM9 dataset and follow the
literature (Schütt et al., 2017; 2021; Liu et al., 2023a), using 110K for training, 10K for validation
and 11k for testing. For 2D fine-tuning, we use eight 2D molecular property prediction tasks from
MoleculeNet (Wu et al., 2017).
Pretraining framework. To explore the potential of the proposed method in self-supervised learn-
ing tasks, we consider MoleculeSDE (Liu et al., 2023a), a SOTA pretraining framework, to be the
training backbone for pertaining 3D molecules, where the 2D → 3D model we use SUBGDIFF and
3D → 2D we simply extend the SUBGDIFF to process the node feature and graph adjacency. The
details can be found in the Appendix.
Baselines. For 3D tasks, we incorporate the three coordinate-MI-unaware SSL methods: (1) Type
Prediction; (2) Angle Prediction; (3) 3D InfoGraph (Stärk et al., 2022), and two contrastive base-
lines: (4) GeoSSL-InfoNCE (Oord et al., 2018) and (5) GeoSSL-EBM-NCE (Liu et al., 2021),
Additionally, we include two generative SSL baseline: (6) GeoSSL-RR (RR for Representation
Reconstruction) and (7) MoleculeSDE(Liu et al., 2023a) For 2D tasks, we consider AttrMask (Hu
et al., 2020a; Liu et al., 2019), ContexPred (Hu et al., 2020a), InfoGraph (Sun et al., 2020), Mol-
CLR (Wang et al., 2022b), 3D InfoMax, vanilla GraphMVP (Liu et al., 2021), and MoleculeSDE.
More details see Appendix F.1.
Results. The results shown in Table 1 and Table 2 suggest that SUBGDIFF outperforms
MoleculeSDE in most downstream tasks, demonstrating the introduced mask vector boosts the per-
ception of molecular substructure in the denoising network during pretraining. Further, SUBGDIFF
achieves SOTA performance compared to the baselines. This also reveals that the proposed masked-
based denoising objective is promising for molecular representation learning due to the involvement
of the prior knowledge concerning substructure during training.
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Table 4: Results on GEOM-QM9 dataset under different diffusion timesteps. DDPM (Ho et al., 2020) is the
sampling method used in GeoDiff. Our proposed sampling method (Algorithm 2) can be viewed as a DDPM
variant. ▲/▼ denotes SUBGDIFF outperforms/underperforms GEODIFF. The threshold δ = 0.5Å.

COV-R (%) ↑ MAT-R (Å) ↓ COV-P (%) ↑ MAT-P (Å) ↓
Models Timesteps Sampling method Mean Median Mean Median Mean Median Mean Median

GEODIFF 5000 DDPM 80.36 83.82 0.2820 0.2799 53.66 50.85 0.6673 0.4214
SUBGDIFF 5000 DDPM (ours) 90.91▲ 95.59▲ 0.2460▲ 0.2351▲ 50.16▼ 48.01▼ 0.6114▲ 0.4791▼

GEODIFF 500 DDPM 80.20 83.59 0.3617 0.3412 45.49 45.45 1.1518 0.5087
SUBGDIFF 500 DDPM (ours) 89.78▲ 94.17▲ 0.2417▲ 0.2449▲ 50.03▲ 48.31▲ 0.5571▲ 0.4921▲

GEODIFF 200 DDPM 69.90 72.04 0.4222 0.4272 36.71 33.51 0.8532 0.5554
SUBGDIFF 200 DDPM (ours) 85.53▲ 88.99▲ 0.2994▲ 0.3033▲ 47.76▲ 45.89▲ 0.6971▲ 0.5118▲

.

5.2 CONFORMATION GENERATION

To evaluate the generation efficiency and generation performance, we conduct the experiments with
various time steps, including 5000, 500 and 200, to compare SUBGDIFF with GeoDiff.

Table 3: Results on the GEOM-QM9 dataset. The
threshold δ = 0.5Å

COV-R (%) ↑ MAT-R (Å) ↓
Models Train data Mean Median Mean Median

CVGAE QM9 0.09 0.00 1.6713 1.6088
GRAPHDG QM9 73.33 84.21 0.4245 0.3973
CGCF QM9 78.05 82.48 0.4219 0.3900
CONFVAE QM9 77.84 88.20 0.4154 0.3739
GEOMOL QM9 71.26 72.00 0.3731 0.3731
GEODIFF Drugs 74.94 79.15 0.3492 0.3392

SUBGDIFF Drugs 83.50 88.70 0.3116 0.3075
.

Dataset. Following prior works (Xu et al., 2022;
2021a), we utilize the GEOM-QM9 (Ramakr-
ishnan et al., 2014) and GEOM-Drugs (Axelrod
& Gomez-Bombarelli, 2022) datasets. The for-
mer dataset comprises small molecules of up to
9 heavy atoms, while the larger drug-like com-
pounds. We reuse the data split provided by
Xu et al. (2022). For both datasets, the training
dataset comprises 40, 000 molecules, each with
5 conformations, resulting in 200, 000 conforma-
tions in total. The test split includes 200 distinc-
tive molecules, with 14, 324 conformations for Drugs and 22, 408 conformations for QM9.

Denoising networks. Following Xu et al. (2022), we use an equivariant convolutional network
GFN as the denoising network for conformation generation and self-supervised learning tasks. The
description of evaluation metrics and model architecture are deferred to the Appendix F.

Results. The results on the GEOM-QM9 dataset are reported in Table 4. From the results, we get
the following observations: (1): SUBGDIFF significantly outperforms the baselines on COV-R and
MAT-R, indicating the SUBGDIFF tends to explore more possible conformations. (2): SUBGDIFF
consistently outperforms GEODIFF when adopting 200 and 500 sampling steps, demonstrating the
competitive sampling efficiency of our method. Surprisingly, SUBGDIFF with 500 steps achieves
much better performance than GEODIFF with 5000 steps on 5 out of 8 metrics, which implies our
method can accelerate the sampling efficiency (10x).

Domain generalization. We design two cross-domain tasks: (1) Training on QM9 (small molecular
with up to 9 heavy atoms) and testing on Drugs (medium-sized organic compounds); (2) Training
on Drugs and testing on QM9. The results are depicted in Table 3 and Table 10 (refer to Appendix),
respectively. The results suggest that SUBGDIFF consistently outperforms GEODIFF by a large
margin, demonstrating the introduced mask effectively enhances the robustness and generalization
of the denoising network.

6 CONCLUSION

We first present a masked diffusion framework, which involves the subset constraint in the diffusion
model by introducing the mask vector to the forward process. The framework is a model-agnostic
approach that can used for any diffusion model built on European space. Further, a novel diffusion
model SUBGDIFF is developed for molecular conformation generation and self-supervised repre-
sentation learning. SUBGDIFF is the first diffusion method that fuses the substructure into training
and sampling. Benefiting from the substructure, SUBGDIFF effectively boosts the perception of
molecular substructure in the denoising network, thereby achieving state-of-the-art performance at
conformation generation and 3D property prediction tasks. There are several exciting avenues for
future work. The mask distribution is so flexible that we can incorporate chemical prior knowledge
into efficient subgraph sampling. Besides, the proposed SUBGDIFF can be generalized to proteins
such that the denoising network can learn meaningful secondary structures.
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ETHICS STATEMENT

In this work, we propose a novel diffusion model for molecular conformation and representation
learning, where no human subject is related.

REPRODUCIBILITY STATEMENT

We summarize the efforts made to ensure reproducibility in this work. (1) Datasets: we use the
public datasets QM9 where the processing details are included in sec 5 and Appendix F. (2) Model
Training: We provide the training details (including hyper-parameters settings) in Appendix F.1 and
the procedure of training in Algorithms 1 and the procedure of sampling in Algorithms 2.
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A MORE RELATED WORKS

Conformation generation. Recently, various deep generative models have been proposed for con-
formation generation. CVGAE (Mansimov et al., 2019) first proposed a VAE model to directly
generate 3D atomic coordinates. GRAPHDG (Simm & Hernandez-Lobato, 2020) and CGCF (Xu
et al., 2021a) proposed to predict the interatomic distance matrix by VAE and Flow respectively,
and then solve the geometry through the Distance Geometry (DG) technique (Liberti et al., 2014).
CONFVAE further improves this pipeline by designing an end-to-end framework via bilevel opti-
mization (Xu et al., 2021b). CONFGF (Shi et al., 2021; Luo et al., 2021) proposed to learn the
gradient of the log-likelihood w.r.t coordinates via denoising score matching (DSM) (Song & Er-
mon, 2019; 2020). GEOMOL (Ganea et al., 2021) proposed to reconstruct the local and global
structures of the conformation from a set of geometric quantities (i.e. length and angles). Most
recently, diffusion-based methods have shown competitive performance. Torsional Diffusion (Jing
et al., 2022) raises a diffusion process on the hypertorus defined by torsion angles. However, it is not
suitable as a self-supervised learning technique due to the lack of local information (length and angle
of bonds). GEODIFF (Xu et al., 2022) and EDM (Hoogeboom et al., 2022) generated 3D molecular
by doing a conventional diffusion model (Ho et al., 2020) on atomic coordinates or atom feature.
However, these methods view the atoms of molecules as separate particles, without considering the
critical dependence between atoms, especially the substructure (Marinova et al., 2018).

Remark A.1 (discussion with MDM, MDSM and SSSD )

Previous works also share the similar idea of masked diffusion, such as MDM (Pan et al., 2023),
MDSM (Lei et al., 2023) and SSSD (Alcaraz & Strodthoff, 2022). However, the difference between
our MaskedDiff and them mainly lies in the following two aspects: i) Usage: the mask matrix/vector
in SSSD and MDSM is fixed in all training steps, which means some segments of the data (time series
or images) will never be diffused. But our method samples the st ∼ pst(S) at each time step, hence a
suitable discrete distribution p(S) can ensure that almost all nodes can be added noise. ii) Purpose:
MDSM and MDM concentrate on self-supervised pre-training, while MaskedDiff serves as a potent
generative model (see next subsection) and self-supervised pre-training algorithm. Notably, when
st = s0,∀t, MaskedDiff can recover to MDSM.
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Dissusion with D3FG,DIffPAck and GraphARM

• Compare to D3FG (Lin et al., 2023): D3FG adopts three different diffusion models
(D3PM,DDPM,and SO(3) Diffusion) to generate three different parts of molecules(linkerr
types, center atom position, and functional group orientations), respectively. In general,
these three parts can also be viewed as three subgraphs(subset). Essentially, D3FG firstly
selects the subgraph and only injects noise on the fixed subgraph during the entire diffu-
sion process, while our method is capable of selecting different subgraphs from a mask
distribution in each time step during the forward process. Further, our model is actually
a single diffusion model that can enhance the denoising network to perceive substructure
information by fusing a mask variable in it.

• Compare to DiffPACK(Zhang et al., 2023): DIffPAck is an Autoregressive generative
method that predicts the torsional angle χi(i = 1, 2, .., 4) of protein side-chains with the
condition χ1,...,i−1, where χi is a predefined subset of atoms. It uses a torsional-based
diffusion model to approximate the distribution p(χi|χ1,...,i−1), in which every subset χi

needs a separate score network to estimate. Essentially, it can be viewed as selecting a sub-
set first and then only adding noise on the fixed subset during the entire diffusion process.
In contrast, our method proposes to randomly sample a subset from mask distribution p(S)
in *each time-step* during the forward process, which is more flexible and cost-effective
(requires only a score network and a subgraph predictor).

• Compare to GraphARM (Kong et al., 2023b): Kong et al. (2023b) proposes an autore-
gressive diffusion model GraphARM, which absorbs one node in each time-step by mask-
ing it along with its connecting edges during the forward process. Differently from
GraphARM[3], our SugGDiff selects a subgraph in each time step to inject the Gaussian
noise, which is equivalent to masking several nodes during the forward process. In addi-
tion, the number of steps in GraphARM must be the same as the number of nodes due to
the usage of the absorbing state, while our method can set any time-step during diffusion
theoretically since we use the real-value Gaussian noise.

B PROOF OF LAMMA 4.1

Lemma 4.1 Assume the forward and reverse processes of the diffusion model are both Markov
chains. Given the forward Gaussian distribution q(Rt|Rt−1, R0) = N (Rt;µ1R

t−1, σ2
1I),

q(Rt−1|R0) = N (Rt−1;µ2R
0, σ2

2I) and ϵ0 ∼ N (0, I), the distribution q(Rt−1|Rt, R0) is

q(Rt−1|Rt, R0) ∝ N (Rt−1;
1

µ1
(Rt − σ2

1√
µ2
1σ

2
2 + σ2

1

ϵ0),
σ2
1σ

2
2

µ2
1σ

2
2 + σ2

1

I). (5)

Parameterizing pθ(R
t−1|Rt) in the reverse process as N (Rt−1; 1
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(Rt −
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1√

µ2
1σ

2
2+σ2

1

ϵθ(R
t, t)),

σ2
1σ

2
2

µ2
1σ

2
2+σ2

1
I) , the training objective of the DPM can be written as

L(θ) = Et,R0,ϵ

[ σ2
1

2µ2
1σ

2
2

∥ϵ− ϵθ(µ1µ2R
0 +

√
µ2
1σ

2
2 + σ2

1ϵ, t)∥2
]
, (6)

and the sampling (reverse) process is

Rt−1 =
1

µ1

(
Rt − σ2

1√
µ2
1σ

2
2 + σ2

1

ϵθ(R
t, t)

)
+

σ1σ2√
µ2
1σ

2
2 + σ2

1

z, z ∼ N (0, I) (7)

Proof: Given the forward Gaussian distribution q(Rt|Rt−1, R0) = N (Rt;µ1R
t−1, σ2

1I) and
q(Rt−1|R0) = N (Rt−1;µ2R

0, σ2
2I), we have

q(Rt|R0) = q(Rt|Rt−1, R0)q(Rt−1|R0) = N (Rt;µ1µ2R
0, (σ2

1 + µ2
1σ

2
2)I) (17)
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From the DDPM, we know training a diffusion model should optimize the ELBO of the data

log p(R) ≥ Eq(R1:T |R0)

[
log

p(R0:T )

q(R1:T |R0)

]
(18)

= Eq(R1|R0)

[
log pθ(R

0|R1)
]︸ ︷︷ ︸

reconstruction term

−DKL(q(R
T |R0) ∥ p(RT ))︸ ︷︷ ︸

prior matching term

−
T∑

t=2

Eq(Rt|R0)

[
DKL(q(R

t−1|Rt,R0) ∥ pθ(Rt−1|Rt))
]︸ ︷︷ ︸

denoising matching term

(19)

To compute the KL divergence DKL(q(R
t−1|Rt,R0) ∥ pθ(R

t−1|Rt)), we first rewrite
q(Rt−1|Rt,R0) by Bayes rule
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=
N (Rt;µ1R

t−1, σ2
1I)N (Rt−1;µ2R

0, σ2
2I)

N (Rt;µ1µ2R0, (σ2
1 + µ2

1σ
2
2)I)

(21)

∝ exp
{
−
[
(Rt − µ1R

t−1)2

2σ2
1

+
(Rt−1 − µ2R

0)2

2σ2
2

− (Rt − µ1µ2R
0)2

2(σ2
1 + µ2

1σ
2
2)

]}
(22)

= exp
{
−1

2

[
(Rt − µ1R

t−1)2

σ2
1

+
(Rt−1 − µ2R

0)2

σ2
2

− (Rt − µ1µ2R
0)2

σ2
1 + µ2

1σ
2
2

]}
(23)

= exp
{
−1

2

[
(−2µ1R

tRt−1 + µ2
1(R

t−1)2)

σ2
1

+
((Rt−1)2 − 2µ2R

t−1R0)

σ2
2

+ C(Rt, R0)

]}
(24)

∝ exp
{
−1

2

[
−2µ1R

tRt−1

σ2
1

+
µ2
1(R

t−1)2

σ2
1

+
(Rt−1)2

σ2
2

− 2µ2R
t−1R0

σ2
2

]}
(25)

= exp
{
−1

2

[
(
µ2
1

σ2
1

+
1

σ2
2

)(Rt−1)2 − 2

(
µ1R

t

σ2
1

+
µ2R

0

σ2
2

)
Rt−1

]}
(26)

= exp
{
−1

2

[
σ2
1 + µ2

1σ
2
2

σ2
1σ

2
2

(Rt−1)2 − 2

(
µ1R

t

σ2
1

+
µ2R

0

σ2
2

)
Rt−1

]}
(27)

= exp

−1

2

(
σ2
1 + µ2

1σ
2
2

σ2
1σ

2
2

)(Rt−1)2 − 2

(
µ1R

t

σ2
1

+ µ2R
0

σ2
2

)
σ2
1+µ2

1σ
2
2

σ2
1σ

2
2

Rt−1

 (28)

= exp

−1

2

(
σ2
1 + µ2

1σ
2
2

σ2
1σ

2
2

)(Rt−1)2 − 2

(
µ1R

t

σ2
1

+ µ2R
0

σ2
2

)
σ2
1σ

2
2

σ2
1 + µ2

1σ
2
2

Rt−1

 (29)

= exp

−1

2

 1
σ2
1σ

2
2

σ2
1+µ2

1σ
2
2

[(Rt−1)2 − 2
µ1σ

2
2R

t + µ2σ
2
1R

0

σ2
1 + µ2

1σ
2
2

Rt−1

] (30)

∝ N (Rt−1;
µ1σ

2
2R

t + µ2σ
2
1R

0

σ2
1 + µ2

1σ
2
2︸ ︷︷ ︸

µq(Rt,R0)

,
σ2
1σ

2
2

σ2
1 + µ2

1σ
2
2

I︸ ︷︷ ︸
Σq(t)

) (31)

We can rewrite our variance equation as Σq(t) = σ2
q (t)I, where:

σ2
q (t) =
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1σ

2
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σ2
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2
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From equation 17, we have the relationship between Rt and R0:
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Substituting this into µq(R
t, R0), we can get
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Thus,
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Parameterizing pθ(R
t−1|Rt) in the reverse process as N (Rt−1; 1
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I) , and the corresponding optimization problem becomes:
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Therefore, the training objective of the DPM can be written as

L(θ) = Et,R0,ϵ[
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During the reverse process, we sample Rt−1 ∼ pθ(R
t−1|Rt). Formally, the sampling (reverse)

process is
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C DERIVATIONS OF TRAINING OBJECTIVES

C.1 MASKEDDIFF

Here, we utilize the binary characteristic of the mask vector to derive the ELBO for MaskedDiff,
and we also provide a general proof in sec. C.2:

log p(R0) ≥ Eq(R1:T ,s1:T |R0)

[
log

p(R0:T , s1:T )

q(R1:T |R0, s1:T )q(s1:T )

]
(46)
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= Eq(R1:T ,s1:T |R0)

[
log

p(RT )
∏T

t=1 pθ(R
t−1, st|Rt)∏T

t=1 q(R
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]
(47)
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log
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log
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]
︸ ︷︷ ︸

mask prediction term
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]

(50)
(51)

The first term is mask prediction while the second term is similar to the ELBO of the classical
diffusion model. The only difference is the st in q(Rt|Rt−1, st). According to Bayes rule, we can
rewrite each transition as:

q(Rt|Rt−1, R0, st) =

{
q(Rt−1|Rt,R0)q(Rt|R0)

q(Rt−1|R0) , if st = 1

δRt−1
(Rt). if st = 0

(52)

where δa(x) := δ(x− a) is Dirac delta function, that is, δa(x) = 0 if x ̸= a and
∫∞
−∞ δa(x)dx = 1.

Without loss of generality, assume that s1 and sT both equal 1. Armed with this new equation, we
drive the second term:
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= Eq(R1:T ,s1:T |R0)

[
log

p(RT )pθ(R
0|R1)

∏T
t=2 pθ(R

t−1|Rt)

q(R1|R0)
∏T

t=2 q(R
t|Rt−1, st)

]
(54)

= Eq(R1:T ,s1:T |R0)

[
log

p(RT )pθ(R
0|R1)

∏T
t=2 pθ(R

t−1|Rt)

q(R1|R0)
∏T

t=2 q(R
t|Rt−1, R0, st)

]
(55)

= Eq(R1:T ,s1:T |R0)

[
log

pθ(R
T )pθ(R

0|R1)

q(R1|R0)
+ log

T∏
t=2

pθ(R
t−1|Rt)

q(Rt|Rt−1, R0, st)

]
(56)

= Eq(R1:T ,s1:T |R0)

log p(RT )pθ(R
0|R1)

q(R1|R0)
+ log

∏
t∈{t|st=1}

pθ(R
t−1|Rt)

q(Rt−1|Rt,R0)q(Rt|R0)
q(Rt−1|R0,s1)

+ log
∏

t∈{t|st=0}

pθ(R
t−1|Rt)

δRt−1(Rt)


(57)

= Eq(R1:T |R0)

log p(RT )pθ(R
0|R1)

q(R1|R0)
+ log

∏
t∈{t|st=0}

pθ(R
t−1|Rt)

δRt−1(Rt)
+ log

∏
t∈{t|st=1}

pθ(R
t−1|Rt)

q(Rt−1|Rt,R0)����q(Rt|R0)

(((((
q(Rt−1|R0)


(58)

= Eq(R1:T |R0)

log ∏
t∈{t|st=0}

pθ(R
t−1|Rt)

δRt−1(Rt)
+ log

p(RT )pθ(R
0|R1)

�����
q(R1|R0)

+ log �����
q(R1|R0)

q(RT |R0)
+ log

∏
t∈{t|st=1}

pθ(R
t−1|Rt)

q(Rt−1|Rt, R0)


(59)

= Eq(R1:T |R0)

 ∑
t∈{t|st=0}

log
pθ(R

t−1|Rt)

δRt−1(Rt)
+ log

p(RT )pθ(R
0|R1)

q(RT |R0)
+

∑
t∈{t|st=1}

log
pθ(R

t−1|Rt)

q(Rt−1|Rt, R0)


(60)

=
∑

t∈{t|st=0}

Eq(R1:T |R0)

[
log

pθ(R
t−1|Rt)

δRt−1(Rt)

]
+ Eq(R1:T |R0)

[
log pθ(R

0|R1)
]

(61)

+Eq(R1:T |R0)

[
log

p(RT )

q(RT |R0)

]
+

∑
t∈{t|st=1}

Eq(R1:T |R0)

[
log

pθ(R
t−1|Rt)

q(Rt−1|Rt, R0)

]
(62)
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=
∑

t∈{t|st=0}

Eq(R1:T |R0)

[
log

pθ(R
t−1|Rt)

δRt−1(Rt)

]
+ Eq(R1|R0)

[
log pθ(R

0|R1)
]

(63)

+Eq(RT |R0)

[
log

p(RT )

q(RT |R0)

]
+

∑
t∈{t|st=1}

Eq(Rt,Rt−1|R0)

[
log

pθ(R
t−1|Rt)

q(Rt−1|Rt, R0)

]
(64)

=
∑

t∈{t|st=0}

Eq(R1:T |R0)

[
log

pθ(R
t−1|Rt)

δRt−1(Rt)

]
︸ ︷︷ ︸

decay term

+Eq(R1|R0)

[
log pθ(R

0|R1)
]︸ ︷︷ ︸

reconstruction term

(65)

−DKL(q(R
T |R0) ∥ p(RT ))︸ ︷︷ ︸

prior matching term

−
∑

t∈{t|st=1}

Eq(Rt|R0)

[
DKL(q(R

t−1|Rt, R0) ∥ pθ(Rt−1|Rt))
]︸ ︷︷ ︸

denoising matching term

(66)

Here, the decay term represents the terms with st = 0, which are unnecessary to minimize when we
set pθ(Rt−1|Rt) := δRt−1(Rt). Eventually, the ELOB can be rewritten as follows:

log p(R0) ≥
T∑

t=1

Eq(R1:T |R0)

[
log

pϑ(st|Rt)

q(st)

]
︸ ︷︷ ︸

mask prediction term

+Eq(R1|R0)

[
log pθ(R

0|R1)
]︸ ︷︷ ︸

reconstruction term

−DKL(q(R
T |R0) ∥ p(RT ))︸ ︷︷ ︸

prior matching term

−
∑

t∈{t|st=1}

Eq(Rt|R0)

[
DKL(q(R

t−1|Rt, R0) ∥ pθ(Rt−1|Rt))
]︸ ︷︷ ︸

denoising matching term

(67)

The mask prediction term can be implemented by a node classifier and the denoising matching term
can be calculated via Lemma 4.1. In detail,

q(Rt|Rt−1, R0) = N (Rt−1,
√
1− βtstR

t−1, (βtst)I), (68)

q(Rt−1|R0) = N (Rt−1,
√
γ̄t−1R

0, (1− γ̄t−1)I). (69)

Thus, the training objective of MaskedDiff is:

L(θ, ϑ) = Et,R0,ϵ

[
stβt

2(1− stβt)(1− γ̄t−1)
∥ϵ− ϵθ(

√
γ̄tR

0 +
√

(1− γ̄t)ϵ, t,G)∥2 + λBCE(st, sϑ(G,Rt, t))

]
(70)

In order to recover the existing work, we omit the mask prediction term (i.e. Let pθ(st|Rt) := q(st))
of MaskedDiff in the main text.

C.2 ELBO

Here, we can derive the ELBO for SUBGDIFF:

log p(R0) = log

∫ ∫
p(R0:T , s1:T )dR

1:Tds1:T (71)

= log

∫ ∫
p(R0:T , s1:T )q(R

1:T , s1:T |R0)

q(R1:T , s1:T |R0)
dR1:Tds1:T (72)

= log

∫ ∫ [
p(R0:T , s1:T )q(R

1:T |R0, s1:T )q(s1:T )

q(R1:T , s1:T |R0)

]
dR1:T ds1:T (73)

= logEq(s1:T )Eq(R1:T |R0,s1:T )

[
p(R0:T , s1:T ))

q(R1:T , s1:T |R0)

]
(74)

≥ Eq(R1:T |R0,s1:T )

[
logEq(s1:T )

p(R0:T , s1:T )

q(R1:T |R0, s1:T )q(s1:T )

]
(75)

≥ Eq(R1:T ,s1:T |R0)

[
log

p(RT )
∏T

t=1 pθ(R
t−1, st|Rt)∏T

t=1 q(R
t|Rt−1, st)q(st)

]
(76)

= Eq(R1:T ,s1:T |R0)

[
log

p(RT )
∏T

t=1 pθ(R
t−1|Rt)pθ(st|Rt)∏T

t=1 q(R
t|Rt−1, st)q(st)

]
(77)
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= Eq(R1:T ,s1:T |R0)

[
log

∏T
t=1 pθ(st|Rt)∏T

t=1 q(st)
+ log

p(RT )
∏T

t=1 pθ(R
t−1|Rt)∏T

t=1 q(R
t|Rt−1, st)

]
(78)

= Eq(R1:T ,s1:T |R0)

[
T∑

t=1

log
pθ(st|Rt)

q(st)

]
︸ ︷︷ ︸

mask prediction term

+Eq(R1:T ,s1:T |R0)

[
log

p(RT )
∏T

t=1 pθ(R
t−1|Rt)∏T

t=1 q(R
t|Rt−1, st)

]

(79)
(80)

According to Bayes rule, we can rewrite each transition as:

q(Rt|Rt−1, R0, s1:t) =
q(Rt−1|Rt, R0, s1:t)q(R

t|R0, s1:t)

q(Rt−1|R0, s1:t−1)
, (81)

Armed with this new equation, we drive the second term:

Eq(R1:T ,s1:T |R0)

[
log

p(RT )
∏T

t=1 pθ(R
t−1|Rt)∏T

t=1 q(R
t|Rt−1, st)

]
(82)

= Eq(R1:T ,s1:T |R0)

[
log

p(RT )pθ(R
0|R1)

∏T
t=2 pθ(R

t−1|Rt)

q(R1|R0, s1)
∏T

t=2 q(R
t|Rt−1, st)

]
(83)

= Eq(R1:T ,s1:T |R0)

[
log

p(RT )pθ(R
0|R1)

∏T
t=2 pθ(R

t−1|Rt)

q(R1|R0, s1)
∏T

t=2 q(R
t|Rt−1, R0, s1:t)

]
(84)

= Eq(R1:T ,s1:T |R0)

[
log

pθ(R
T )pθ(R

0|R1)

q(R1|R0, s1)
+ log

T∏
t=2

pθ(R
t−1|Rt)

q(Rt|Rt−1, R0, s1:t)

]
(85)

= Eq(R1:T ,s1:T |R0)

log p(RT )pθ(R
0|R1)

q(R1|R0, s1)
+ log

T∏
t=2

pθ(R
t−1|Rt)

q(Rt−1|Rt,R0,s1:t)q(Rt|R0,s1:t)
q(Rt−1|R0,s1:t−1)

 (86)

= Eq(R1:T ,s1:t|R0)

log p(RT )pθ(R
0|R1)

q(R1|R0, s1)
+ log

T∏
t=2

pθ(R
t−1|Rt)

q(Rt−1|Rt,R0,s1:t)(((((
q(Rt|R0,s1:t)

(((((((
q(Rt−1|R0,s1:t−1)

 (87)

= Eq(R1:T ,s1:t|R0)

[
log

p(RT )pθ(R
0|R1)

((((((q(R1|R0, s1)
+ log ((((((q(R1|R0, s1)

q(RT |R0, s1:T )
+ log

T∏
t=2

pθ(R
t−1|Rt)

q(Rt−1|Rt, R0, s1:t)

]
(88)

= Eq(R1:T ,s1:t|R0)

[
log

p(RT )pθ(R
0|R1)

q(RT |R0, s1:T )
+

T∑
t=2

log
pθ(R

t−1|Rt)

q(Rt−1|Rt, R0, s1:t)

]
(89)

= Eq(R1:T ,s1:t|R0)

[
log pθ(R

0|R1)
]

(90)

+Eq(R1:T ,s1:t|R0)

[
log

p(RT )

q(RT |R0, s1:T )

]
+

T∑
t=2

Eq(R1:T ,s1:t|R0)

[
log

pθ(R
t−1|Rt)

q(Rt−1|Rt, R0, s1:t)

]
(91)

= Eq(R1,s1|R0)

[
log pθ(R

0|R1)
]

(92)

+Eq(RT |R0,s1:T )q(s1:T )

[
log

p(RT )

q(RT |R0, s1:T )

]
+

T∑
t=2

Eq(Rt,Rt−1,s1:t|R0)

[
log

pθ(R
t−1|Rt)

q(Rt−1|Rt, R0, s1:t)

]
(93)

= Eq(R1,s1|R0)

[
log pθ(R

0|R1)
]︸ ︷︷ ︸

reconstruction term

(94)

−Eq(s1:t)DKL(q(R
T |R0, s1:T ) ∥ p(RT ))︸ ︷︷ ︸

prior matching term

−
T∑

t=2

Eq(Rt,s1:t|R0)

[
DKL(q(R

t−1|Rt, R0, s1:t) ∥ pθ(Rt−1|Rt))
]︸ ︷︷ ︸

denoising matching term

(95)
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Eventually, the ELOB can be rewritten as follows:

log p(R0) ≥
T∑

t=1

Eq(Rt,st|R0)

[
log

pϑ(st|Rt)

q(st)

]
︸ ︷︷ ︸

mask prediction term

+ Eq(R1,s1|R0)

[
log pθ(R

0|R1)
]︸ ︷︷ ︸

reconstruction term

(96)

−Eq(s1:t)DKL(q(R
T |R0, s1:T ) ∥ p(RT ))︸ ︷︷ ︸

prior matching term

−
T∑

t=2

Eq(Rt,s1:t|R0)

[
DKL(q(R

t−1|Rt, R0, s1:t) ∥ pθ(Rt−1|Rt))
]︸ ︷︷ ︸

denoising matching term

(97)

The mask prediction term can be implemented by a node classifier sϑ. For the denoising matching
term, by Bayes rule, the q(Rt−1|Rt, R0, s1:t) can be written as:

q(Rt−1|Rt, R0, s1:t) =
q(Rt|Rt−1, R0, s1:t)q(R

t−1|R0, s1:t−1)

q(Rt|R0, s1:t)
, (98)

In maskedDiff, we have

q(Rt|Rt−1, R0, s1:t) := N (Rt−1,
√

1− βtstR
t−1, (βtst)I), (99)

q(Rt−1|R0, s1:t−1) := N (Rt−1,
√
γ̄t−1R

0, (1− γ̄t−1)I). (100)

Then the denoising matching term can also be calculated via Lemma 4.1 (let q(Rt|Rt−1, R0) :=
q(Rt|Rt−1, R0, s1:t) and q(Rt−1|R0) := q(Rt−1|R0, s1:t−1)). Thus, the training objective of
MaskedDiff is:

L(θ, ϑ) = Et,R0,ϵ

[
stβt

2(1− stβt)(1− γ̄t−1)
∥ϵ− ϵθ(

√
γ̄tR

0 +
√

(1− γ̄t)ϵ, t,G)∥2 + λBCE(st, sϑ(G,Rt, t))

]
(101)
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C.2.1 EXPECTATION OF s1:T

The denoising matching term in equation 97 can be calculated by only sampling (Rt, st) instead of
(Rt, s1:t). Specifically, we substitute equation 98 into the denoising matching term:

Eq(Rt,Rt−1,s1:t|R0)

[
log

pθ(R
t−1|Rt)

q(Rt−1|Rt, R0, s1:t)

]
(102)

= Eq(Rt,Rt−1,s1:t|R0)

log pθ(R
t−1|Rt)

q(Rt|Rt−1,R0,s1:t)q(Rt−1|R0,s1:t−1)
q(Rt|R0,s1:t)

 (103)

= Eq(Rt,Rt−1,s1:t|R0)

log pθ(R
t−1|Rt)

q(Rt|Rt−1,R0,st)
q(Rt|R0,s1:t)

− log q(Rt−1|R0, s1:t−1)

 (104)

≥ Eq(Rt,Rt−1,|R0,s1:t)

Eq(s1:t) log
pθ(R

t−1|Rt)
q(Rt|Rt−1,R0,s1:t)

q(Rt|R0,s1:t)

 (105)

−Eq(st)

logEq(s1:t−1)q(R
t−1|R0, s1:t−1)︸ ︷︷ ︸

:=q(EsRt−1|R0)

+ logEq(s1:t−1)q(R
t|Rt−1, R0, s1:t)︸ ︷︷ ︸

:=q(Rt|EsRt−1,R0,st)

 (106)

= Eq(Rt,Rt−1,|R0,s1:t)

Eq(s1:t) log
pθ(R

t−1|Rt)
q(Rt|Rt−1,R0,st)

q(Rt|R0,s1:t)

− Eq(st) log q(EsR
t−1|R0)− Eq(st) log q(R

t|EsR
t−1, R0, st)


(107)

= Eq(Rt,Rt−1,|R0,s1:t)

Eq(s1:t) log
pθ(R

t−1|Rt)
q(Rt|EsRt−1,R0,st)q(EsRt−1|R0)

q(Rt|R0,s1:t)

 (108)

= Eq(Rt,Rt−1,s1:t|R0)

log pθ(R
t−1|Rt)

q(Rt|EsRt−1,R0,st)q(EsRt−1|R0)
q(Rt|R0,s1:t)


︸ ︷︷ ︸

denoising matching term

(109)

= Eq(Rt,Rt−1,s1:t|R0)

[
log

pθ(R
t−1|Rt)

q̂(Rt−1|Rt, R0, s1:t)

]
(110)

= Eq(Rt,s1:t|R0)

[
DKL(q̂(R

t−1|Rt, R0, s1:t) ∥ pθ(Rt−1|Rt))
]︸ ︷︷ ︸

denoising matching term

(111)

Thus, we should focus on calculating the distribution of

q̂(Rt−1|Rt, R0, s1:t) :=
q(Rt|EsR

t−1, R0, st)q(EsR
t−1|R0)

q(Rt|R0, s1:t)
(112)

By lemma 4.1, if we can gain the expression of q(Rt|EsR
t−1, R0, st) and q(EsR

t−1|R0), we can
get the training objective and sampling process.

C.3 DIFFUSION PROCESS WITH SINGLE STEP MASK.

C.3.1 TRAINING

I: Step 0 to Step t − 1 (R0 → Rt−1): The state space of the mask diffusion should be the mean
of the random state.

EsR
t ∼ N (EsR

t;
√

1− βtEsR
t−1, βtI) (113)

q(Rt|R0, s1:t) = N (Rt,
√
γ̄tR

0, (1− γ̄t)I). (114)
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Form equation 114, we have:

Rt =
√
1− stβtR

t−1 +
√
stβtϵt−1 (115)

ERt = (p
√
1− βt + 1− p)ERt−1 + p

√
βtϵt−1 (116)

= (p
√
1− βt + 1− p)(p

√
1− βt−1 + 1− p)ERt−2 + (p

√
1− βt + 1− p)p

√
βt−1ϵt−2 + p

√
βtϵt−1

(117)

= (p
√

1− βt + 1− p)(p
√

1− βt−1 + 1− p)ERt−2 +

√
[(p
√

1− βt + 1− p)p
√
βt−1]2 + [p

√
βt]2ϵt−2

(118)
= .... (119)

=

t∏
i=1

(p
√
1− βi + 1− p)R0 +

√√√√[

t∏
j=2

(p
√

1− βj + 1− p)p
√
β1]2 + [

t∏
j=3

(p
√
1− βj + 1− p)p

√
β2]2 + ...+ϵ0

(120)

=

t∏
i=1

(p
√
1− βi + 1− p)R0 +

√√√√ t∑
i=1

[

t∏
j=i+1

(p
√

1− βj + 1− p)p
√

βi]2 (121)

=

t∏
i=1

√
αiR

0 +

√√√√ t∑
i=1

[

t∏
j=i+1

√
αip
√

βi]2ϵ0 (122)

=

t∏
i=1

√
αiR

0 + p

√√√√ t∑
i=1

t∏
j=i+1

αjβiϵ0 (123)

=
√
ᾱtR

0 + p

√√√√ t∑
i=1

ᾱt

ᾱi
βiϵ0 (124)

(125)

where αi := (p
√
1− βi + 1− p)2 and ᾱt =

∏t
i=1 αi.

q(ERt|R0) = N (Rt;
√
ᾱtR

0, p2
t∑

i=1

ᾱt

ᾱi
βiI) (126)

II: Step t − 1 to Step t (Rt−1 → Rt): We build the step t − 1 → t is a discrete transition from
q(Rt−1|R0), with

q(EsR
t−1|R0) = N (Rt−1;

t−1∏
i=1

√
αiR

0, p2
t−1∑
i=1

t−1∏
j=i+1

αjβiI) (127)

q(Rt|EsR
t−1, st) = N (Rt;

√
1− stβtERt−1, stβtI) (128)
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Rt =
√
1− stβtERt−1 +

√
stβtϵt−1 (129)

=
√
1− stβt

√ᾱt−1R
0 + p

√√√√t−1∑
i=1

ᾱt−1

ᾱi
βiϵ0

+
√
stβtϵt−1 (130)

=
√
1− stβt

√
ᾱt−1R

0 + p
√
1− stβt

√√√√t−1∑
i=1

ᾱt−1

ᾱi
βiϵ0 +

√
stβtϵt−1 (131)

=
√

1− stβt
√
ᾱt−1R

0 +

√√√√p2(1− stβt)

t−1∑
i=1

ᾱt−1

ᾱi
βi + stβtϵ0 (132)

Step 0 to Step t (R0 → Rt):

q(Rt|R0) =

∫
q(Rt|ERt−1)q(ERt−1|R0)dERt−1 (133)

= N (Rt;
√
1− stβt

√
ᾱiR

0, (p2(1− stβt)

t−1∑
i=1

ᾱt−1

ᾱi
βi + stβt)I) (134)

Thus, from subsection C.2.1, the training objective of 1-step SUBGDIFF is:

Lsimple(θ, ϑ) = Et,R0,st,ϵ[st∥ϵ− ϵθ(R
t, t)∥2 − BCE(st, sϑ(Rt, t))] (135)

where BCE(st, sϑ) = st log sϑ(R
t, t) + (1 − st) log (1− sϑ(R

t, t)) is Binary Cross Entropy loss.
However, training the MaskedDiff is not trivial. The challenges come from two aspects: 1) the mask
predictor should be capable of perceiving the sensible noise change between (t−1)-th and t-th step.
However, the noise scale βt is relatively small when t is small, especially if the diffusion step is
larger than a thousand, thereby mask predictor cannot precisely predict. 2) The accumulated noise
for each node at (t− 1)-th step would be mainly affected by the mask sampling from 1 to t− 1 step,
which heavily increases the difficulty of predicting the noise added between (t− 1)-step to t-step.

C.3.2 SAMPLING

Finally, the sampling can be written as:

Rt−1 =

(
(1− stβt)p

2
∑t−1

i=1
ᾱt−1

ᾱi
βi + stβt

)
Rt −

(
stβt

√
p2(1− stβt)

∑t−1
i=1

ᾱt−1

ᾱi
βi + stβt

)
ϵθ(R

t, t)
√
1− stβt(stβt + (1− stβt)p2

∑t−1
i=1

ᾱt−1

ᾱi
βi)

+ σtz

(136)

=
1√

1− stβt

Rt −

(
stβt

√
p2(1− stβt)

∑t−1
i=1

ᾱt−1

ᾱi
βi + stβt

)
√
1− stβt(stβt + (1− stβt)p2

∑t−1
i=1

ᾱt−1

ᾱi
βi)

ϵθ(R
t, t) + σtz (137)

=
1√

1− stβt
Rt − stβt

√
1− stβt

√
stβt + (1− stβt)p2

∑t−1
i=1

ᾱt−1

ᾱi
βi

ϵθ(R
t, t) + σtz (138)

(139)

where st = sϑ(R
t, t) and

σt =
sϑ(R

t, t)βtp
2
∑t−1

i=1
ᾱt−1

ᾱi
βi

sϑ(Rt, t)βt + p2(1− sϑ(Rt, t)βt)
∑t−1

i=1
ᾱt−1

ᾱi
βi

(140)

Compare with Eq. 4, this sampling process is
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Figure 5: An example of k-step same mask diffusion, where the mask vectors are same as skm+1 from step
km to (m+ 1)k, m ∈ N+ .

D MEAN STATE DISTRIBUTION

The state space of the mask diffusion should be the mean of the random state.

EstR
t ∼ N (ERt;

√
1− βtEst−1R

t−1, βtI) (141)

Form equation 114, we have:

Rt =
√
1− stβtR

t−1 +
√

stβtϵt−1 (142)

ERt = (p
√
1− βt + 1− p)ERt−1 + p

√
βtϵt−1 (143)

= (p
√
1− βt + 1− p)(p

√
1− βt−1 + 1− p)ERt−2 (144)

+ (p
√
1− βt + 1− p)p

√
βt−1ϵt−2 + p

√
βtϵt−1 (145)

= (p
√

1− βt + 1− p)(p
√
1− βt−1 + 1− p)ERt−2 (146)

+

√
[(p
√
1− βt + 1− p)p

√
βt−1]2 + [p

√
βt]2ϵt−2 (147)

= .... (148)

=

t∏
i=1

(p
√

1− βi + 1− p)R0 (149)

+

√√√√[
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j=2

(p
√
1− βj + 1− p)p

√
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j=3

(p
√
1− βj + 1− p)p

√
β2]2 + ...+ϵ0

(150)

=

t∏
i=1

(p
√
1− βi + 1− p)R0 +

√√√√ t∑
i=1

[

t∏
j=i+1

(p
√
1− βj + 1− p)p

√
βi]2 (151)

=
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i=1

√
αiR

0 +

√√√√ t∑
i=1

[

t∏
j=i+1

√
αip
√

βi]2ϵ0 (152)

=

t∏
i=1

√
αiR

0 + p

√√√√ t∑
i=1

t∏
j=i+1

αjβiϵ0 (153)

=
√
ᾱiR

0 + p

√√√√ t∑
i=1

ᾱt

ᾱi
βiϵ0 (154)

(155)

where αi := (p
√
1− βi + 1− p)2 and ᾱt =

∏t
i=1 αi.

Finally, the Mean state distribution is:

q(ERt|R0) = N (ERt;

t∏
i=1

√
αiR

0, p2
t∑

i=1

t∏
j=i+1

αjβiI) (156)
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E THE DERIVATION OF SUBGDIFF

When t is an integer multiple of k,

ERt =

t/k∏
j=1

(p

√√√√ kj∏
i=(j−1)k+1

(1− βi) + 1− p)R0 (157)

+

√√√√√ t/k∑
l=1

 t/k∏
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√√√√ kj∏
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√√√√1−
kl∏
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2

ϵ0 (158)

=
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√
αjR

0 + p
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=
√
ᾱt/kR
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√√√√√ t/k∑
l=1

ᾱt/k

ᾱl
(1−

kl∏
i=(l−1)k+1

(1− βi))ϵ0 (160)

where αj = (p
√∏kj

i=(j−1)k+1(1− βi) + 1− p)2.

When t ∈ N, we have

Rt =

√√√√ t∏
i=k⌊t/k⌋+1
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ᾱ⌊t/k⌋

ᾱl
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where γi = 1− βis⌊t/k⌋.

q(Rt|R0) = N (Rk⌊t/k⌋;

√√√√ t∏
i=k⌊t/k⌋+1

γi
√
ᾱ⌊t/k⌋R

0, (166)
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ᾱ⌊t/k⌋

ᾱl
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Let m = ⌊t/k⌋ , γ̄i =
∏i

t=1 γt, and β̄t =
∏t

i=1(1− βi)

q(Rt|R0) = N (Rkm;

√
γ̄t
γ̄km

√
ᾱmR0,
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p2
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ᾱm

ᾱl
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β̄(l−1)k

) + 1− γ̄t
γ̄km

)
I) (168)

E.0.1 SAMPLING

µ1 =
√
1− skm+1βt, (169)

σ2
1 = skm+1βt (170)

µ2 =

√
γ̄t−1

γ̄km

√
ᾱm (171)

σ2
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According to the Lemma 4.1, we have
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ᾱl
(1−

∏kl
i=(l−1)k+1(1− βi)) + 1− γ̄t−1

γ̄km
) + skm+1βt

ϵθ(R
t, t))

(175)

+

√
skm+1βt

√
γ̄t−1

γ̄km
p2
∑m

l=1
ᾱm
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Algorithm 3: Training SUBGDIFF

Input: A molecular graph G3D, k for same mask diffusion, the
Sample t ∼ U(1, ..., T ) , ϵ ∼ N (0, I)
Sample st ∈ pst(S) ▷ Sample a masked vector (subgraph node-set)
Rt ← q(Rt|R0) ▷ equation 14
L1 = BCE(st, sϑ(G,Rt, t) ▷ Mask prediction loss
L2 = ∥diag(st)(ϵ− ϵθ(G,Rt, t))∥2 ▷ Denoising loss
optimizer. step(λL1 + L2) ▷ Optimize parameters θ, ϑ

Algorithm 4: Sampling from SUBGDIFF

Sample RT ∼ N (0, I) ▷ Random noise initialization
for t = T to 1 do

z ∼ N (0, I) if t > 1, else z = 0 ▷ Random noise
If t%k == 0 or t == T : ŝ← sϑ(G,Rt, t) ▷ Mask vecter prediction
ϵ̂← ϵθ(G,Rt, t) ▷ Posterior
Rt−1 ← equation 16 ▷ sampling

end
return R0
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F ADDITIONAL EXPERIMENTS

Table 5: Additional hyperparameters of our SUBGDIFF.

Task β1 βT β scheduler T k (k-same mask) τ Batch Size Train Iter.

QM9 1e-7 2e-3 sigmoid 5000 250 10Å 64 2M
Drugs 1e-7 2e-3 sigmoid 5000 250 10Å 32 6M

Table 6: Additional hyperparameters of our SUBGDIFF with different timesteps.

Task β1 βT β scheduler T k (k-same mask) τ Batch Size Train Iter.

500-step QM9 1e-7 2e-2 sigmoid 500 25 10Å 64 2M
200-step QM9 1e-7 5e-2 sigmoid 200 10 10Å 64 2M
500-step Drugs 1e-7 2e-2 sigmoid 500 25 10Å 32 4M

1000-step Drugs 1e-7 9e-3 sigmoid 500 50 10Å 32 4M

F.1 DETAILS OF SETTINGS.

All models are trained with SGD using the ADAM optimizer.

F.1.1 CONFORMATION GENERATION

Evaluation metrics for conformation generation. To compare the generated and ground truth con-
former ensembles, we employ the same evaluation metrics as in a prior study (Ganea et al., 2021):
Average Minimum RMSD (AMR) and Coverage. These metrics enable us to assess the quality of
the generated conformers from two perspectives: Recall (R) and Precision (P). Recall measures the
extent to which the generated ensemble covers the ground-truth ensemble, while Precision evaluates
the accuracy of the generated conformers.

The four metrics built upon root-mean-square deviation (RMSD), which is defined as the normalized
Frobenius norm of two atomic coordinates matrices, after alignment by Kabsch algorithm (Kabsch,
1976). Formally, let Sg and Sr denote the sets of generated and reference conformers respectively,
then the Coverage and Matching metrics (Xu et al., 2021a) can be defined as:

COV-R(Sg, Sr) =
1

|Sr|

∣∣∣{C ∈ Sr|RMSD(C, Ĉ) ≤ δ, Ĉ ∈ Sg

}∣∣∣, (177)

MAT-R(Sg, Sr) =
1

|Sr|
∑
C∈Sr

min
Ĉ∈Sg

RMSD(C, Ĉ), (178)

where δ is a threshold. The other two metrics COV-P and MAT-P can be defined similarly but with
the generated sets Sg and reference sets Sr exchanged. In practice, Sg is set as twice of the size of
Sr for each molecule.

Settings. For GEODIFF (Xu et al., 2022) with 5000 steps, we use the checkpoints released in public
GitHub to reproduce the results. For 200 and 500 steps, we retrain it and do the DDPM sampling.

Comparison with GEODIFF using Langevin Dynamics sampling method. In order to verify
that our proposed diffusion process can bring benefits to other sampling methods, we conduct the
experiments to compare our proposed diffusion model with GEODIFF by adopting a typical sampling
method Langevin dynamics (LD sampling)(Song & Ermon, 2019) :

Rt−1 = Rt + αtϵθ(G,Rt, t) +
√
2αtzt−1 (179)

where zt ∼ N (0, I) and hσ2
t . h is the hyper-parameter referring to step size and σt is the noise

schedule in the forward process. We use various time-step to evaluate the generalization and robust-
ness of the proposed method, and the results shown in Table 7 indicate that our method significantly
outperforms GEODIFF, especially when the time-step is relatively small (200,500), which implies
that our training method can effectively improve the efficiency of denoising.
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Table 7: Results on GEOM-QM9 dataset with different time steps. Langevin dynamics (Song & Ermon,
2019) is a typical sampling method used in DPM. ▲denotes SUBGDIFF outperforms GEODIFF. The threshold
δ = 0.5Å.

COV-R (%) ↑ MAT-R (Å) ↓ COV-P (%) ↑ MAT-P (Å) ↓
Steps Sampling method Models Mean Median Mean Median Mean Median Mean Median

5000 Langevin dynamics GEODIFF 88.35 92.55 0.2166 0.2154 52.67 50.00 0.4398 0.4264
5000 Langevin dynamics SUBGDIFF 88.76▲ 94.23▲ 0.2343↓ 0.2244↓ 50.28↓ 49.62↓ 0.4728↓ 0.4549↓
500 Langevin dynamics GEODIFF 87.80 93.66 0.3179 0.3216 46.25 45.02 0.6173 0.5112
500 Langevin dynamics SUBGDIFF 91.40▲ 95.39▲ 0.2543▲ 0.2601▲ 51.71▲ 48.50▲ 0.5035▲ 0.4734▲

200 Langevin dynamics GEODIFF 86.60 93.09 0.3532 0.3574 42.98 42.60 0.5563 0.5367
200 Langevin dynamics SUBGDIFF 90.36▲ 95.93▲ 0.3064▲ 0.3098▲ 48.56▲ 46.46▲ 0.5540▲ 0.5082▲

.
Table 8: Results on GEOM-QM9 dataset. The threshold δ = 0.5Å.

COV-R (%) ↑ MAT-R (Å) ↓ COV-P (%) ↑ MAT-P (Å) ↓
Models Mean Median Mean Median Mean Median Mean Median

CVGAE 0.09 0.00 1.6713 1.6088 - - - -
GRAPHDG 73.33 84.21 0.4245 0.3973 43.90 35.33 0.5809 0.5823
CGCF 78.05 82.48 0.4219 0.3900 36.49 33.57 0.6615 0.6427
CONFVAE 77.84 88.20 0.4154 0.3739 38.02 34.67 0.6215 0.6091
GEOMOL 71.26 72.00 0.3731 0.3731 - - - -
CONFGF 88.49 94.31 0.2673 0.2685 46.43 43.41 0.5224 0.5124
GEODIFF 80.36 83.82 0.2820 0.2799 53.66 50.85 0.6673 0.4214
SUBGDIFF 90.91 95.59 0.2460 0.2351 50.16 48.01 0.6114 0.4791

.

Comparison with SOTAs. i) Baselines: We compare SUBGDIFF with 7 state-of-the-art baselines:
CVGAE (Mansimov et al., 2019), GRAPHDG (Simm & Hernandez-Lobato, 2020), CGCF (Xu
et al., 2021a), CONFVAE (Xu et al., 2021b), CONFGF (Shi et al., 2021) and GEODIFF (Xu et al.,
2022). For the above baselines, we reuse the experimental results reported by Xu et al. (2022). For
GEODIFF (Xu et al., 2022), we use the checkpoints released in public GitHub to reproduce the re-
sults. ii)Results: The results on the GEOM-QM9 dataset are reported in Table 8. From the results,
we get the following observation: SUBGDIFF significantly outperforms the baselines on COV-R, in-
dicating the SUBGDIFF tends to explore more possible conformations. This implicitly demonstrates
the subgraph will help fine-tune the generated conformation to be a potential conformation.
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Table 9: Results on the GEOM-Drugs dataset under different diffusion timesteps. DDPM (Ho et al., 2020)
is the sampling method used in GeoDiff and Langevin dynamics (Song & Ermon, 2019) is a typical sampling
method used in DPM. Our proposed sampling method (Algorithm 2) can be viewed as a DDPM variant. ▲/▼
denotes SUBGDIFF outperforms/underperforms GEODIFF. The threshold δ = 1.25Å.

COV-R (%) ↑ MAT-R (Å) ↓
Models Timesteps Sampling method Mean Median Mean Median

GEODIFF 500 DDPM 50.25 48.18 1.3101 1.2967
SUBGDIFF 500 DDPM (ours) 76.16▲ 86.43▲ 1.0463▲ 1.0264▲

GEODIFF 500 LD 64.12 75.56 1.1444 1.1246
SUBGDIFF 500 LD (ours) 74.30▲ 77.87▲ 1.0003▲ 0.9905▲

.
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Table 10: Results on the GEOM-Drugs dataset. The threshold δ = 1.25Å
Train COV-R (%) ↑ MAT-R (Å) ↓

Models data Mean Median Mean Median

CVGAE Drugs 0.00 0.00 3.0702 2.9937
GRAPHDG Drugs 8.27 0.00 1.9722 1.9845
GEODIFF QM9 7.99 0.00 2.7704 2.3297

SUBGDIFF QM9 24.01 9.93 1.6128 1.5819

Model Architecture. We adopt the graph field network (GFN) from Xu et al. (2022) as the GNN
encoder for extracting the 3D molecular information. In the l-th layer, the GFN receives node
embeddings hl ∈ Rn×b (where b represents the feature dimension) and corresponding coordinate
embeddings xl ∈ Rn×3 as input. It then produces the output hl+1 and xl+1 according to the
following process:

ml
ij = Φl

m

(
hl
i,h

l
j , ∥xl

i − xl
j∥2, eij ; θm

)
(180)

hl+1
i = Φl

h

(
hl
i,
∑

j∈N (i)

ml
ij ; θh

)
(181)

xl+1
i =

∑
j∈N (i)

1

dij
(Ri −Rj) Φ

l
x

(
ml

ij ; θx
)

(182)

where Φ are implemented as feed-forward networks and dij denotes interatomic distances. The
initial embedding h0 is composed of atom embedding and time step embedding while x0 represents
atomic coordinates. N (i) is the neighborhood of ith node, consisting of connected atoms and other
ones within a radius threshold τ , helping the model capture long-range interactions explicitly and
support disconnected molecular graphs.

Eventually, the Gaussian noise and mask can be predicted as follows (C.f. Figure 6):

ϵ̂i = xL
i (183)

ŝi = MLP(hL
i ) (184)

where ϵ̂i is equivalent and ŝi is invariant.

F.2 DOMAIN GENERELIZAION

The results of Training on QM9 (small molecular with up to 9 heavy atoms) and testing on Drugs
(medium-sized organic compounds) can be found in table 10.

F.3 SELF-SUPERVISED LEARNING

F.3.1 MODEL ARCHITECTURE

We use the pretraining framework MoleculeSDE proposed by Liu et al. (2023a) and extend our
SUBGDIFF to multi-modality pertaining. The two key components of MoleculeSDE are two
SDEs(stochastic differential equations Song et al. (2020)): an SDE from 2D topology to 3D con-
formation (2D → 3D) and an SDE from 3D conformation to 2D topology (3D → 2D). In practice,
these two SDEs can be replaced by discrete diffusion models. In this paper, we use the proposed
SUBGDIFF to replace the SDEs.

2D topological molecular graph. A topological molecular graph is denoted as g2D = G(V,E,X),
where X is the atom attribute matrix and X is the bond attribute matrix. The 2D graph representation
with graph neural network (GNN) is:

x ≜ H2D = GIN(g2D) = GIN(X,X), (185)

where GIN is the a powerful 2D graph neural network (Xu et al., 2018) and H2D = [h0
2D, h

1
2D, . . .],

where hi
2D is the i-th node representation.

3D conformational molecular graph. The molecular conformation is denoted as g3D :=
G3D(G,R). The conformational representations are obtained by a 3D GNN SchNet (Schütt et al.,
2017):

y ≜ H3D = SchNet(g3D) = SchNet(G,R), (186)
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where H3D = [h0
3D, h

1
3D, . . .], and hi

3D is the i-th node representation.

An SE(3)-Equivariant Conformation Generation The first objective is the conditional genera-
tion from topology to conformation, p(y|x), implemented as SUBGDIFF. The denoising network
we adopt is the SE(3)-equivariance network (S2D→3D

θ ) used in MoleculeSDE. The details of the
network architecture refer to Liu et al. (2023a).

Therefore, the training objective from 2D topology graph to 3D confirmation is:

L2D→3D = Ex,R,t,stERt|R[∥∥∥diag(st)(ϵ− S2D→3D
θ (x,Rt, t))

∥∥∥2

2
+BCE(st, s

2D→3D
ϑ (x,Rt, t))

]
,

(187)

where s2D→3D
ϑ (x,Rt, t) gets the invariant feature from Sθ and introduces a mask head (MLP) to

read out the mask prediction.

An SE(3)-Invariant Topology Generation. The second objective is to reconstruct the 2D topol-
ogy from 3D conformation, i.e., p(x|y). We also use the SE(3)-invariant score network S3D→2D

θ
proposed by MoleculeSDE. The details of the network architecture refer to Liu et al. (2023a). For
modeling S3D→2D

θ , it needs to satisfy the SE(3)-invariance symmetry property. The inputs are 3D
conformational representation y, the noised 2D information xt at time t, and time t. The output
of S3D→2D

θ is the Gaussian noise, as (ϵX, ϵE). The diffused 2D information contains two parts:
xt = (Xt,Et). For node feature X, the training objective is

LX
3D→2D = EX,yEt,stEXt|X (188)[∥∥∥diag(st)(ϵ− S3D→2D

θ (y,Xt, t))
∥∥∥2
2
+BCE(st, s

3D→2D
ϑ (y,Xt, t))

]
. (189)

For edge feature E, we define a mask matrix S from mask vector s: Sij = 1 if si = 1 or sj = 1,
otherwise, Sij = 0. Eventually, the ojective can be written as:

LE
3D→2D = EE,yEt,stEEt|E (190)[∥∥∥St ⊙ (ϵ− S3D→2D

θ (y,Et, t))
∥∥∥2
2
+BCE(st, s

3D→2D
ϑ (y,Et, t))

]
, (191)

Then the score network S3D→2D
θ is also decomposed into two parts for the atoms and bonds: SXt

θ (xt)

and SEt

θ (xt). Similarly, the mask predictor s3D→2D
ϑ is also decomposed into two parts for the atoms

and bonds: sXt

ϑ (xt) and sEt

ϑ (xt).

Similar to the topology to conformation generation procedure, the s3D→2D
ϑ (x,Rt, t) gets the invari-

ant feature from S3D→2D
θ and introduces a mask head (MLP) to read out the mask prediction.

Learning. Following MoleculeSDE, we incorporate a contrastive loss called EBM-NCE Liu et al.
(2021). EBM-NCE provides an alternative approach to estimate the mutual information I(X;Y )
and is anticipated to complement the generative self-supervised learning (SSL) method. As a result,
the ultimate objective is:

Loverall = α1LContrastive + α2L2D→3D + α3(LX
3D→2D + LE

3D→2D), (192)

where α1, α2, α3 are three coefficient hyperparameters.

F.3.2 DATASET AND SETTINGS

Dataset. For pretraining, following MoleculeSDE, we use PCQM4Mv2 (Hu et al., 2020b). It’s a
sub-dataset of PubChemQC (Nakata & Shimazaki, 2017) with 3.4 million molecules with both the
topological graph and geometric conformations.

Baselines for 3D property prediction We begin by incorporating three coordinate-MI-unaware
SSL methods: (1) Type Prediction, which aims to predict the atom type of masked atoms; (2) Angle
Prediction, which focuses on predicting the angle among triplet atoms, specifically the bond angle
prediction; (3) 3D InfoGraph, which adopts the contrastive learning paradigm by considering the
node-graph pair from the same molecule geometry as positive and negative otherwise. Next, in
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Figure 6: The model architecture for denoising SUBGDIFF.

accordance with the work of (Liu et al., 2023b), we include two contrastive baselines: (4) GeoSSL-
InfoNCE (Oord et al., 2018) and (5) GeoSSL-EBM-NCE (Liu et al., 2021). We also incorporate a
generative SSL baseline named (6) GeoSSL-RR (RR for Representation Reconstruction). The above
baselines are pre-trained on a subset of 1M molecules with 3D geometries from Molecule3D (Xu
et al., 2021c) and we reuse the results reported by Liu et al. (2023b) with SchNet as backbone.

Baselines for 2D topology pretraining. We pick up the most promising ones as follows. Attr-
Mask (Hu et al., 2020a; Liu et al., 2019), ContexPred (Hu et al., 2020a), InfoGraph (Sun et al.,
2020), and MolCLR (Wang et al., 2022b).

Baselines for 2D and 3D multi-modality pretraining. We include MoleculeSDE(Liu et al.,
2023a)(Variance Exploding (VE) and Variance Preserving (VP)) as a crucial baseline to verify the
effectiveness of our methods due to the same pertaining framework. We reproduce the results from
the released (Code).

Compared with GEODIFF. We directly reuse the pre-trained model of the molecular confor-
mation generation in sec. 5.2 for fine-tuning, to compare our method with GEODIFF from naive
denoising pretraining perspective (Zaidi et al., 2023). The results are shown in Table 11.

Results on MD17. Regarding 3D fine-tuning on MD17, we follow the literature (Schütt et al.,
2017; 2021; Liu et al., 2023b) of using 1K for training and 1K for validation, while the test set (from
48K to 991K) is much larger. The results can be seen in Table 12.

Table 11: Results on 12 quantum mechanics prediction tasks from QM9. We take 110K for training, 10K for
validation, and 11K for testing. The evaluation is mean absolute error (MAE), and the best and the second best
results are marked in bold and underlined, respectively. The backbone is SchNet.
Pretraining Alpha ↓ Gap ↓ HOMO↓ LUMO ↓ Mu ↓ Cv ↓ G298 ↓ H298 ↓ R2 ↓ U298 ↓ U0 ↓ Zpve ↓
GEODIFF 0.078 51.84 30.88 28.29 0.028 0.035 15.35 11.37 0.132 15.76 15.24 1.869

SUBGDIFF 0.076▲ 50.80▲ 31.15▼ 26.62▲ 0.025▲ 0.032▲ 14.92▲ 12.86▲ 0.129▲ 14.74▲ 14.53▲ 1.710▲

Table 12: Results on eight force prediction tasks from MD17. We take 1K for training, 1K for validation, and
48K to 991K molecules for the test concerning different tasks. The evaluation is mean absolute error, and the
best results are marked in bold and underlined, respectively.

Pretraining Aspirin ↓ Benzene ↓ Ethanol ↓ Malonaldehyde ↓ Naphthalene ↓ Salicylic ↓ Toluene ↓ Uracil ↓
– (random init) 1.203 0.380 0.386 0.794 0.587 0.826 0.568 0.773
Type Prediction 1.383 0.402 0.450 0.879 0.622 1.028 0.662 0.840
Distance Prediction 1.427 0.396 0.434 0.818 0.793 0.952 0.509 1.567
Angle Prediction 1.542 0.447 0.669 1.022 0.680 1.032 0.623 0.768
3D InfoGraph 1.610 0.415 0.560 0.900 0.788 1.278 0.768 1.110
RR 1.215 0.393 0.514 1.092 0.596 0.847 0.570 0.711
InfoNCE 1.132 0.395 0.466 0.888 0.542 0.831 0.554 0.664
EBM-NCE 1.251 0.373 0.457 0.829 0.512 0.990 0.560 0.742
3D InfoMax 1.142 0.388 0.469 0.731 0.785 0.798 0.516 0.640
GraphMVP 1.126 0.377 0.430 0.726 0.498 0.740 0.508 0.620
GeoSSL-1L 1.364 0.391 0.432 0.830 0.599 0.817 0.628 0.607
GeoSSL 1.107 0.360 0.357 0.737 0.568 0.902 0.484 0.502
MoleculeSDE (VE) 1.112 0.304 0.282 0.520 0.455 0.725 0.515 0.447
MoleculeSDE (VP) 1.244 0.315 0.338 0.488 0.432 0.712 0.478 0.468

Ours 0.880 0.252 0.258 0.491 0.325 0.572 0.362 0.420
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