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Abstract

We study sequential decision-making in batched nonparametric contextual bandits, where
actions are selected over a finite horizon divided into a small number of batches. Motivated
by constraints in domains such as medicine and marketing, where online feedback is limited,
we propose a nonparametric algorithm that combines adaptive k-nearest neighbor (k-NN)
regression with the upper confidence bound (UCB) principle. Our method, BaNk-UCB, is
fully nonparametric, adapts to the context density, and is simple to implement. Unlike prior
works relying on parametric or binning-based estimators, BaNk-UCB uses local geometry of
the contexts to estimate rewards and adaptively balances exploration and exploitation. We
provide near-optimal regret guarantees under standard Lipschitz smoothness and margin
assumptions, using a theoretically motivated batch schedule that balances regret across
batches and achieves minimax-optimal rates. Empirical evaluations on synthetic and real-
world datasets demonstrate that BaNk-UCB consistently outperforms binning-based baselines.

1 Introduction

Many real-world decision-making problems involve using feedback from past interactions to improve future
outcomes, a hallmark of adaptive sequential learning. Contextual bandits are a standard framework for
modeling these problems, especially in personalized decision-making, where side information helps tailor
actions to individuals (Tewari & Murphy, 2017; Li et al., 2010). In this framework, a learner observes a
context, selects an action, and receives a reward, aiming to maximize cumulative reward over time through
adaptive policy updates.
However, in many practical applications such as clinical trials (Kim et al., 2011; Lai et al., 1983) and marketing
campaigns (Schwartz et al., 2017; Mao et al., 2018), adaptivity is limited due to logistical or cost constraints.
Decisions are made in batches, and feedback is only received at the end of each batch. This structure permits
limited adaptation and renders traditional online bandit algorithms ineffective, motivating new methods
tailored for low-adaptivity regimes with few batches.
While parametric bandits have been extended to the batched setting, they often rely on strong modeling
assumptions. Nonparametric models offer greater flexibility and robustness (Rigollet & Zeevi, 2010; Qian &
Yang, 2016; Reeve et al., 2018; Zhou et al., 2020), but their use in batched bandits remains limited. Existing
nonparametric batched bandit methods, such as BaSEDB (Jiang & Ma, 2025), rely on partitioning the context
space into bins and treating each bin as a local static bandit instance. While binning-based approaches are
effective under structured or uniformly distributed contexts, they rely on fixed spatial partitions that may
not adapt well to local variations in context density or geometry. In particular, low-density regions may
receive few samples, leading to poor reward estimation and imbalanced exploration across the space. These
limitations highlight the need for methods that adapt to the local geometry and data distribution, rather than
imposing a fixed spatial discretization, especially in a data-limited setting such as that of batched bandits.
To address this gap, we propose Batched Nonparametric k-nearest neighbor-Upper Confidence Bound
(BaNk-UCB), a nonparametric algorithm for batched contextual bandits that combines adaptive k-nearest
neighbor regression with UCB-based exploration. BaNk-UCB adapts neighborhood radii to local data density,
eliminating the need for manual bin design. Our method adapts neighborhood sizes based on the observed
data distribution, allowing for more flexible and data-driven reward estimation, particularly useful in high-
dimensional or heterogeneous settings, even when the global context density is uniformly lower bounded.
Under Lipschitz continuity and margin conditions, we prove minimax-optimal regret rates up to logarithmic
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factors. Empirical results on synthetic and real data show consistent improvements over binning-based
methods. Our main contributions are:

• We propose BaNk-UCB, a novel nonparametric algorithm for batched contextual bandits that integrates
adaptive k-nearest neighbor (k-NN) regression with upper confidence bound (UCB) exploration. The
method is simple to implement and avoids biases introduced by coarse partitioning of the context
space.

• We design a theoretically grounded batch schedule and establish minimax-optimal regret bound under
standard Lipschitz smoothness and margin conditions. This is, to our knowledge, the first such result
for a k-NN-based reward function estimation method in the batched non-parametric setting.

• We highlight how BaNk-UCB automatically adapts to the local geometry of the context distribution
without requiring explicit modeling assumption, due to the adaptive neighborhood choice in k-NN
regression.

• We demonstrate through extensive experiments on both synthetic and real-world datasets that
BaNk-UCB consistently outperforms binning-based baselines, particularly in high-dimensional or
heterogeneous contexts.

1.1 Related Work
Batched contextual bandits have received growing attention due to their relevance in settings with limited
adaptivity, such as clinical trials and campaign-based interventions (Perchet et al., 2016; Gao et al., 2019).
Prior work has explored both non-contextual bandits with fixed or adaptive batch schedules (Esfandiari et al.,
2021; Kalkanli & Ozgur, 2021; Jin et al., 2021), and contextual bandits, often under parametric assumptions.
In particular, linear (Han et al., 2020) and generalized linear models (Ren et al., 2022) have been popular
due to their analytical tractability, though such models may fail to generalize when the reward function is
nonlinear or misspecified.
Nonparametric bandits have been extensively studied in the fully sequential setting. Early work by Yang &
Zhu (2002) employed ϵ-greedy strategies with nonparametric reward estimation. Subsequent methods include
the Adaptively Binned Successive Elimination (ABSE) algorithm (Rigollet & Zeevi, 2010; Perchet & Rigollet,
2013), which partitions the context space adaptively and uses elimination-based strategies (Even-Dar et al.,
2006). Other approaches include kernel regression methods (Qian & Yang, 2016; Hu et al., 2020), nearest
neighbor algorithms (Reeve et al., 2018; Guan & Jiang, 2018; Zhao et al., 2024), and Gaussian process or
kernelized models (Krause & Ong, 2011; Valko et al., 2013; Arya & Sriperumbudur, 2023).
In the batched nonparametric setting, Jiang & Ma (2025) introduced BaSEDB, a batched variant of ABSE with
dynamic binning and minimax-optimal regret guarantees. Other recent directions include neural network-
based estimators (Gu et al., 2024), Lipschitz-constrained models (Feng et al., 2022), and semi-parametric
frameworks (Arya & Song, 2025), though each makes different structural assumptions.
Our work departs from these approaches by employing adaptive k-nearest neighbor regression to estimate
both reward functions and confidence bounds under batch constraints. Unlike binning-based methods which
bin the context space into bins of equal width at each batch, BaNk-UCB avoids discretization and instead
adapts to the local geometry of the context distribution through data-driven neighborhood selection. To our
knowledge, this is the first batched nonparametric algorithm based on locally adaptive method like k-NN
to achieve near-optimal regret guarantees. Empirically, we show that BaNk-UCB outperforms the baseline
BaSEDB across different scenarios, leveraging the well-known ability of k-NN to adapt to local geometry of the
context space (Kpotufe, 2011).

2 Setup
We consider a batched contextual bandit problem over a finite time horizon T , where decisions are grouped
into M batches to reflect limited adaptivity. At each round t ∈ {1, . . . , T}, a context Xt ∈ X ⊂ Rd is observed,
and the learner selects an action at ∈ A = {1, . . . , K}. The learner selects an action at ∈ A based on Xt and
receives a noisy reward:

Yt = fat(Xt) + ϵt, (1)

where fa(x) is an unknown mean reward function for a ∈ A and x ∈ X . The model noise is given by ϵt. We
make the following assumptions on the noise and context space.
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Assumption 1 (Sub-Gaussian noise). We assume that the noise terms {ϵt}T
t=1 are independent and σ2-sub-

Gaussian; that is, for all λ ∈ R and all t,

E
[
eλϵt

]
≤ e

1
2 λ2σ2

. (2)

Assumption 2 (Bounded context density). The context vectors Xt are drawn i.i.d. from a distribution with
density pX , which is supported on X ⊂ Rd. We assume that pX(x) ≥ c for some c > 0.
Unlike many existing nonparametric bandit algorithms, such as ABSE (Perchet & Rigollet, 2013) and its
batched variant BaSEDB (Jiang & Ma, 2025), which rely on uniform binning of the context space (typically
assuming a hypercube domain such as [0, 1]d), our proposed method accommodates arbitrary bounded domains
X ⊂ Rd with densities bounded away from zero. For instance, X may be a spherical or manifold-shaped
domain where uniform partitioning is either ill-defined or computationally inefficient. In contrast to binning-
based methods that depend on rigid geometric structure to define partitions and control coverage, our k-NN
based approach naturally adapts to the local data geometry, eliminating the need for explicit grid design
and enabling applicability to more general, heterogeneous settings. This adaptivity is particularly crucial in
data-limited regimes such as batched bandits, where learning can only occur at a small number of decision
points.
A policy πt : X → A for t = 1, . . . , T determines an action at ∈ A at t. Based on the chosen action at,
a reward Yt is obtained. In the sequential setting without batch constraints, the policy πt can depend
on all the observations (Xs, Ys) for s < t. In contrast, in a batched setting with M batches, where
0 = t0 < t1 < · · · < tM−1 < tM = T , for t ∈ [ti, ti+1), the policy πt can depend on observations from the
previous batches, but not on any observations within the same batch. In other words, policy updates can
occur only at the predetermined batch boundaries t1, . . . , tM . This reflects the constraint that feedback is
only revealed at the end of each batch.
Let G = {t0, t1, . . . , tM} represent a partition of time {0, 1, . . . , T} into M intervals, and π = (πt)T

t=1 be the
sequence of policies applied at each time step. The overarching objective of the decision-maker is to devise an
M -batch policy (G, π) that minimizes the expected cumulative regret, defined as RT (π) = E[RT (π)], where

RT (π) =
T∑

t=1
f∗(Xt)− f(πt(Xt))(Xt) (3)

where f∗(x) = maxa∈A fa(x) is the expected reward from the optimal choice of arms given a context x.
The cumulative regret serves as a pivotal metric, quantifying the difference between the cumulative reward
attained by π and that achieved by an optimal policy, assuming perfect foreknowledge of the optimal action
at each time step.
We make the following assumptions on the reward functions.
Assumption 3 (Lipschitz Smoothness). We assume that the link function fa : Rd → R for each arm is
Lipschitz smooth, that is, there exists L > 0 such that for a ∈ A,

|fa(x)− fa(x′)| ≤ L∥x− x′∥,

holds for x, x′ ∈ X .
Assumption 4 (Margin). For some 0 < α ≤ d and for all a ∈ A, there exists a δ0 ∈ (0, 1) and Dα > 0 such
that

PX(0 < f∗(X)− fa(X) ≤ δ) ≤ Dαδα,

holds for all δ ∈ [0, δ0].
The margin condition implies that the regions where the reward gap is small, i.e., where it is hard to
distinguish the best arm are not too large. The exponent α controls the rate at which the measure of such
regions shrinks as δ → 0. When α is small, suboptimal arms can be frequently indistinguishable from the
best arm, leading to slower learning; larger α implies faster decay and enables faster convergence.
Remark 1. Throughout this paper, we assume that α ≤ 1, because in the α > 1 regime, the context
information becomes irrelevant as one arm dominates the other (e.g., see Proposition 2.1 of Rigollet & Zeevi
(2010)).
The margin condition plays a crucial role in determining the minimax rate of regret in nonparametric bandit
problems, similar to its role in classification (Mammen & Tsybakov, 1999; Tsybakov, 2004).
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Notation: We use ∥ · ∥ to denote the Euclidean norm in Rd. We denote B(x, r) to denote a Euclidean ball
with center x ∈ Rd and radius r. We denote ≲ and ≳ to denote inequalities upto constants. The notation
f(n) = Θ(g(n)) indicates an asymptotic tight bound. Formally, there exist positive constants c1, c2 and n0
such that for all n ≥ n0, c1 · g(n) ≤ f(n) ≤ c2 · g(n). The notation Õ(g(n)) denotes an asymptotic upper
bound up to logarithmic factors. For a, b ∈ R, a ∨ b denotes the maximum of a and b, and a ∧ b denotes
minimum of a and b. For any batch m, let Ftm

be the filtration encoding the history up to batch m.

3 Batched Nonparametric k-Nearest Neighbor-UCB (BaNk-UCB) Algorithm

Recall that in the batched bandits setting, the decision at time t in batch m only depends on the information
observed up to the end of the (m− 1)th batch. We propose BaNk-UCB (Batched Nonparametric k-Nearest
Neighbors Upper Confidence Bound), described in Algorithm 1. The algorithm is based on an adaptive
k-nearest neighbor policy that tunes the neighborhood size k based on the local sub-optimality gap (margin)
and context density. This approach extends the adaptive k-NN UCB algorithm of Zhao et al. (2024) for the
online setting to the batched nonparametric bandit setting. Let us first define some useful notation. For
x ∈ X and some fixed k ≤ tm−1, let Ntm−1,k(x, a) be the set of k nearest neighbors of x where arm a was
chosen, i.e.,

Ntm−1,k(x, a) := {s ≤ tm−1 : as = a and Xs is among the k nearest to x}. (4)

For simplicity, we denote Nt,k(x, a) ≡ Ntm−1,k(x, a) for all times t within the batch interval (tm−1, tm]. Then
we define for t ∈ (tm−1, tm],

da,t,k(x) = max
s∈Ntm−1,k(x,a)

∥Xs − x∥, (5)

to be the radius of the k-NN ball around x for arm a. We adaptively select the number of neighbors, denoted
ka,t(x), based solely on observations available up to the end of batch (m− 1) and specifically associated with
arm a. This ka,t is then used in the proposed BaNk-UCB algorithm as described in Algorithm 1:

ka,t(x) = max
{

j | Lda,t,j(x) ≤

√
ln tm−1

j

}
. (6)

Note that, the left hand side Lda,t,j(x) controls the bias in the estimation of fa and the right-hand side√
ln tm−1/j controls the variance in the estimation, i.e., it ensures that we use large k if previous samples

are relatively dense around Xt, and vice versa. The adaptive selection of k in equation 6 requires that the
nearest observed context be sufficiently close. Specifically, we enforce Lda,t,1(Xt) ≤

√
ln tm−1; otherwise,

reliable estimation is not feasible, and we conservatively set the UCB to infinity: f̂a,t(x) =∞. Otherwise, for
t ∈ (tm−1, tm], we calculate the upper confidence bound (UCB) as follows:

f̂a,t(x) = 1
ka,t(x)

∑
s∈Ntm−1 (x,a)

Ys + ξa,t(x) + Lda,t,k(x), (7)

where da,t is as defined in equation 5 and ξa,t is defined as:

ξa,t(x) =

√
2σ2

ka,t(x) ln (dt2d+3
m−1 |A|). (8)
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Algorithm 1 BaNk-UCB for Batched Nonparametric Bandits
1: Input: Partition t0, t1, . . . , tM , with t0 = 0 and tM = T .
2: for m = 1, . . . , M do
3: for t = tm−1 + 1, . . . , tm do
4: Receive context Xt;
5: for a ∈ A do
6: if Lda,t,1(Xt) >

√
ln tm−1 then

7: Set f̂a,t(Xt)← +∞;
8: else
9: Compute ka,t(Xt) according to equation 6;

10: Compute f̂a,t(Xt) according to equation 7;
11: end if
12: end for
13: Choose action at = arg maxa∈A f̂a,t(Xt);
14: Pull arm at;
15: end for
16: Observe rewards {Yt, t ∈ tm−1 + 1, . . . , tm};
17: end for

Here, ξa,t(x) provides a high-probability bound for stochastic noise of the nearest-neighbor averaging, while
Lda,t(x) controls the estimation bias from finite-sample approximation. Both terms depend explicitly on
prior-batch data, highlighting the critical role batch design plays in balancing estimation accuracy and
cumulative regret. Finally, the algorithm selects arm at with the maximum UCB value,

at = arg max
a∈A

f̂a,t(Xt). (9)

Note that in equation 9, ties are broken arbitrarily at each time step t.
The adaptive choice of ka,t(x) in equation 6 simultaneously balances the bias-variance and exploration-
exploitation trade-offs in estimating fa. Specifically, the bias-variance trade-off is managed by selecting a
larger k when previously observed contexts are densely sampled around Xt, thereby reducing variance, and
choosing a smaller k otherwise, controlling bias. Moreover, due to the Lipschitz smoothness assumption,
contexts with larger optimality gaps (f∗(x)− fa(x)) naturally correspond to larger radii da,t,j(x), leading to
smaller chosen values of k and promoting targeted exploration in regions with high uncertainty.
Note that, a key distinction from Jiang & Ma (2025) lies in how structural assumptions influence the algorithm.
In their method, the design of the partition grid explicitly depends on the unknown margin parameter α. In
contrast, our adaptive choice of k in equation 6 in the k-NN estimator does not require direct knowledge of α,
making our approach more robust to unknown margin condition.

4 Minimax Analysis on the Expected Regret
In this section, we demonstrate that the BaNk-UCB algorithm achieves a minimax optimal rate on the
expected cumulative regret under an appropriately designed partition of grid points. Specifically, the rate
matches known minimax lower bound up to logarithmic factors. First we describe the choice of the batch
grid points and then state the upper and lower bounds on the expected regret.

4.1 Batch sizes
The choice of batch sizes plays a crucial role in the performance of the batched bandit algorithms. We partition
the time horizon into M batches, denoted by grid points G = {t1, t2, . . . , tM}, with t0 = 0. The special case
M = T recovers the fully sequential bandit setting, where policy updates occur at every step. Conversely,
smaller M imposes fewer policy updates, introducing a trade-off between computational/operational complexity
and regret accumulation. A key challenge in the batched setting is selecting the grid G. Intuitively, to
minimize total regret, no single batch should dominate the cumulative error, suggesting that the grid should
balance regret across batches. If one batch incurs higher regret, reassigning time steps can improve the
overall rate. This motivates a grid choice that equalizes regret across batches, up to order in T and d, as we
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formalize below. We choose:

t1 = ad, tm = ⌊atγ
m−1⌋, (10)

where γ = 1+α
2+d and a = Θ(T

1−γ

1−γM ) is chosen so that tM = T .

4.2 Regret bounds
In order to establish the regret rates, we first define the batch-wise expected sample density, motivated by
the formulation of Zhao et al. (2024). Let p

(m)
a : X → R is defined such that for all A ⊆ X ,

E

 tm∑
t=tm−1

1(Xt ∈ A, at = a)

 =
∫

A

p(m)
a (x)dx. (11)

First let’s consider the cumulative regret relate it to the batch-wise expected sample density.

Lemma 1. The expected cumulative regret in equation 3 is given by RT (π) =
∑

a∈A
∑M

m=1 R
(m)
a (π), where

R
(m)
a (π) is defined as:

R(m)
a (π) =

∫
X

(f∗(x)− fa(x))p(m)
a (x)dx. (12)

Proof. Consider,

RT (π) = E

[
T∑

t=1
(f∗(Xt)− fat(Xt))

]

= E

 M∑
m=1

tm∑
t=tm−1

(f∗(Xt)− fat(Xt))


=

∑
a∈A

M∑
m=1

E

 tm∑
t=tm−1

(f∗(Xt)− fat(Xt))1(at = a)


=

∑
a∈A

M∑
m=1

∫
X

(f∗(Xt)− fat
(Xt)) p(m)

a (x)dx.

Using the fact that the batch sizes are chosen to control for the regret to be balanced across batches, the idea
is to construct an upper bound on the batch-wise arm specific regret, R

(m)
a (π). Then, using Lemma 1, we

can bound the expected cumulative regret.
Theorem 1. Under Assumptions 1–4, and with the batch sizes as defined in equation 10 in Section 4.1, the
regret of the proposed BaNk-UCB algorithm (π) is bounded by,

RT (π) ≲ |A|MT
1−γ

1−γM (ln T )γ
, (13)

where γ = 1+α
2+d .

Proof Sketch for Theorem 1. For ϵ > 0, we split R
(m)
a into two terms:

R(m)
a =

∫
X

(f∗(x)− fa(x))p(m)
a (x)1(f∗(x)− fa(x) > ϵ)dx

+
∫

X
(f∗(x)− fa(x))p(m)

a (x)1(f∗(x)− fa(x) ≤ ϵ)dx. (14)
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The idea is to bound these two terms separately, where the second one can be bounded using the margin
assumption (i.e., Assumption 4). The ϵ is determined theoretically based on the bound on R

(m)
a . From

Lemmas 8 and 10 in the Appendix B, we get that:∫
X

(f∗(x)− fa(x))p(m)
a (x)1 (f∗(x)− fa(x) > ϵ) dx ≲ ϵα−d−1 ln tm−1 + tmϵ1+α. (15)

Furthermore, we can bound the second term in equation 14 by∫
X

(f∗(x)− fa(x))p(m)
a (x)1 (f∗(x)− fa(x) ≤ ϵ) dx

(†)
≤ tmϵ

∫
pX(x)1 (f∗(x)− fa(x) ≤ ϵ) dx

(‡)
≲ tmϵ1+α, (16)

where (†) follows from Lemma 2 and (‡) follows from the Margin condition. Now combining equation 15 and
equation 16, we get from equation 14:

R(m)
a ≲ ϵα−d−1 ln tm−1 + tmϵ1+α (17)

By the choice of our batch end points tm = ⌊atγ
m−1⌋, then it is easy to see using a geometric sum in the

exponent, tm = Θ(T
1−γm

1−γM ) with γ = 1+α
2+d . Now, balancing the two terms in equation 17 and solving for ϵ, we

get ϵ = [t−1
m−1 ln tm−1]

1
2+d . Therefore, we have:

R(m)
a ≲ tm[t−1

m−1 ln tm−1]
1+α
2+d ≲ T

1−γm

1−γM · T
−

(
1−γm−1

1−γM

)
( 1+α

2+d )
· (ln tm−1)

1+α
2+d = T

1−γ

1−γM (ln tm−1)γ
. (18)

Now, using Lemma 1,

RT (π) =
∑
a∈A

M∑
m=1

R(m)
a (π)

≲
∑
a∈A

M∑
m=1

T
1−γ

1−γM (ln tm−1)γ

≲ |A|MT
1−γ

1−γM (ln T )γ
.

Next, we state the minimax lower bound on the regret achievable by any M-batch policy (G, π) as established
by Jiang & Ma (2025) and show that it matches the upper bound in Theorem 1 up to logarithm factors.
Remark 2 (Comparison with Previous Work). Since Jiang & Ma (2025) is the only prior work that
addresses the batched nonparametric bandit setting, it is important to emphasize that our proof techniques
differ substantially from theirs. While their analysis builds on the binning-based framework of Perchet &
Rigollet (2013), our regret analysis requires non-trivial extensions of the adaptive k-NN UCB algorithm
of Zhao et al. (2024) to the batched setting. In particular, our analysis is fundamentally batch-aware: all
supporting lemmas and the final regret bound are developed by carefully balancing the batch endpoints and
are first established in a batch-wise fashion. Moreover, our supporting lemmas refine the analysis in Zhao
et al. (2024) by clarifying implicit assumptions and extending the argument to handle the batch-constrained
feedback setting. These technical developments are essential to handling the delayed feedback and restricted
policy updates that characterize the batched regime.
Our main contribution lies in achieving the same minimax-optimal regret rate as Jiang & Ma (2025), while
introducing a conceptually simpler and data-adaptive algorithm that consistently outperforms binning-based
methods in practice. In order to establish this, we present the fundamental limits of the batched nonparametric
bandit problem as characterized by Jiang & Ma (2025).
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Theorem 2 (Minimax lower bound for nonparametric batched bandits Jiang & Ma (2025)). Let F(L, α)
denote the class of functions that satisfy Lipschitz smoothness (Assumption 3) with Lipschitz constant L and
margin condition (Assumption 4). For any M -batch policy π deployed over T rounds, the minimax expected
cumulative regret satisfies:

inf
π

sup
f1,f2∈F(L,α)

RT (π) ≳ T
1−γ

1−γM , where γ = α + 1
2 + d

.

Theorem 2 characterizes the fundamental difficulty of learning within this class of problems and shows that
our BaNk-UCB algorithm’s upper bound matches this minimax lower bound up to logarithmic factors.
Note that, when M ≳ ln(ln T ) and the number of arms |A| ≲ ln T , the cumulative regret simplifies to RT (π) =
Õ(T 1−γ), recovering the known minimax optimal rate for fully sequential (non-batched) nonparametric bandits
(Perchet & Rigollet, 2013). This condition implies that, surprisingly, only a relatively modest increase in
the number of batches (log-logarithmic in the horizon T ) is sufficient to achieve the fully sequential optimal
rate. Additionally, the mild logarithmic restriction on the number of actions |A| reflects practical scenarios
where the action set is moderately large but not excessively growing with T , highlighting the efficiency of the
BaNk-UCB algorithm in nearly matching fully adaptive performance despite batching constraints.

5 Experiments
In this section, we present numerical simulations and real-data experiments to illustrate the performance of
the proposed Batched Nonparametric k-NN UCB algorithm (BaNk-UCB) in comparison to the nonparametric
analogue: Batched Successive Elimination with Dynamic Binning (BaSEDB) algorithm of Jiang & Ma (2025).

5.1 Simulated Data
We consider the following simulation settings:
Setting 1: Motivated by the construction of the function class for the regret lower bound in Jiang &

Ma (2025), we make the following choices for f1 and f2: f1(x) =
∑D

j=1 vjhI{x ∈ Bj}, x ∈ X , and f2(x) = 0,
where vj ∈ {−1, 1} for j = 1, . . . , D, Bj is a ball centered at cj with radius r. In Figure 1, we set X = [−1, 1]d
(with a uniform PX) with d = 2, r = 0.6, D = 6, with randomly generated centers for Bj and Rademacher
random variables vj , j = 1, . . . , 6. Note that, Setting 1 is derived from the regret lower bound construction
and represents a worst-case instance for nonparametric bandits under margin conditions.
Setting 2: As illustrated in Figure 1 consider the following choice of mean reward functions: f1(x) = ∥x∥2
and f2(x) = 0.5− ∥x∥2, where X is sampled uniformly from [−1, 1]d, with d = 2.
We set T = 10000, L = 1 for the Lipschitz constant in Assumption 3. We fix the number of batches to M = 5
to balance between frequent updates and computational efficiency, but the results remain consistent across
different choices of M . For the BaSEDB algorithm, we follow the specifications described in Jiang & Ma
(2025) for choosing grid points and bin-widths. For our proposed BaNk-UCB algorithm, we choose the same
batch grid for a fair comparison.
In Figure 1, we plot the cumulative regret averaged over 30 independent runs. In order to present an empirical
assessment of the variability inherent in our simulations, the shaded regions represent empirical confidence
intervals computed as ±1.96 times the standard error across these runs. The vertical dotted blue lines denote
the grid choices for the batches.
BaNk-UCB consistently outperforms BaSEDB across all experimental settings. Although our batch sizes were
selected based on empirical performance, they align closely with the theoretically motivated schedule in
Section 4.1. Importantly, we find that performance is robust to the specific number of batches, as long as
batch endpoints follow the prescribed growth pattern. This suggests that BaNk-UCB does not require precise
tuning of the batch schedule to perform well.
In Appendix B.1, we extend the comparison to higher-dimensional contexts (d = 3, 4, 5), where both methods
degrade in performance, yet BaNk-UCB maintains a consistent advantage over BaSEDB. A key practical benefit
of BaNk-UCB is its minimal tuning overhead. Unlike binning-based algorithms such as BaSEDB, which depend
on careful calibration of bin widths, refinement rates, and arm elimination thresholds—often requiring
knowledge of problem-specific parameters—BaNk-UCB relies on a fully data-driven nearest neighbor strategy.
Its adaptively chosen k automatically balances bias and variance based on local data density, without needing
explicit smoothness or margin parameters. This makes BaNk-UCB both more robust to misspecification and
easier to implement in practice.

8
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Figure 1: Top row (left to right): Reward functions for the two arms in Setting 1 and 2, respectively. Bottom
row: Cumulative regret comparison for BaSEDB and BaNk-UCB algorithms over 30 runs.

5.2 Real Data
We evaluate the performance of BaNk-UCB and BaSEDB algorithm on three publicly available classification
datasets: (a) Rice (Cammeo & Osmancik, 2020), consisting of 3810 samples with 7 morphological features
used to classify two rice varieties; (b) Occupancy Detection (Candanedo & Feldheim, 2016), with 8143 samples
and 5 environmental sensor features used to predict room occupancy; and (c) EEG Eye State (Biermann,
2014), with 14980 samples and 14 EEG measurements used to classify eye state. In all cases, we treat the
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Figure 2: Rolling average fraction of incorrect decisions across three real datasets. BaNk-UCB achieves lower
error and faster learning than BaSEDB.

9



Under review as submission to TMLR

true label as the optimal action and assign a binary reward of 1 if the selected action matches the label,
and 0 otherwise. We simulate a contextual bandit setting where the context xt is observed, the learner
selects an arm at ∈ {1, . . . , K}, and observes only the reward for the chosen arm. We set the number of
arms K equal to the number of classes (which is K = 2 for the three datasets considered) and choose the
number of batches to be 3, 4, and 6 respectively, based on dataset size. The number of batches was selected
based on the total number of samples to ensure reasonable granularity while maintaining batch sizes that
approximately align with our theoretically motivated geometric schedule. The rolling fraction of incorrect
decisions is computed using a windowed average over 30 independent random permutations of each dataset.
In Figure 2, we plot the rolling fraction of incorrect decisions with shaded regions (±1.96 standard errors)
for uncertainty quantification as a function of the number of observed instances. BaNk-UCB consistently
outperforms BaSEDB across all datasets. For the EEG dataset, which has the highest context dimensionality,
BaNk-UCB exhibits faster convergence and consistently lower error, suggesting its advantage in capturing
local structure in high-dimensional spaces. Batch sizes are chosen according to theoretical guidelines and are
identical for both algorithms.

6 Conclusion
We introduced BaNk-UCB, a nonparametric algorithm for batched contextual bandits that combines adaptive
k-nearest neighbor regression with the UCB principle. Unlike binning-based methods, BaNk-UCB leverages the
local geometry of the context space and naturally adapts to heterogeneous data distributions. We established
near-optimal regret guarantees under standard Lipschitz smoothness and margin conditions and proposed a
theoretically grounded batch schedule that balances regret across batches. In addition to its theoretical
robustness, empirically we illustrate that BaNk-UCB is resilient to batch scheduling choices and requires
minimal parameter tuning, making it suitable for practical deployment in real-world systems. Empirical
evaluations on both synthetic and real-world classification datasets demonstrate that BaNk-UCB consistently
outperforms existing nonparametric baselines, particularly in high-dimensional or irregular context spaces.

Despite these advantages, several open challenges remain. Although our regret guarantees show that k-NN
performs well in moderate dimensions, its statistical accuracy may deteriorate in very high-dimensional
regimes due to the regret bound’s dependence on the ambient context dimension d. However, prior work
on k-NN regression suggests that it can adapt to the intrinsic dimension of the context distribution, which
may mitigate this issue. Formalizing this adaptation in the batched bandit setting remains an exciting
direction for future work. Additionally, while our algorithm uses a theoretically motivated batch schedule,
real-world systems may impose scheduling constraints that deviate from the idealized setting. Although
our method performs well empirically under various batch schedules, deriving theoretical guarantees under
arbitrary batch schedules is another important extension. Future work may also explore adaptive strategies for
estimating smoothness and margin parameters, eliminating extraneous logarithmic factors in regret bounds,
and generalizing the framework to infinite or structured action spaces.

Broader Impact Statement
This work develops a theoretically grounded algorithm for sequential decision-making in batched settings,
with applications in domains such as personalized medicine, online education, and adaptive experimentation.
By improving statistical efficiency under limited feedback, our approach could contribute to safer and more
effective decision-making in resource-constrained or high-stakes environments. However, care should be taken
when applying such methods in sensitive domains, particularly in ensuring that fairness, transparency, and
domain-specific constraints are accounted for. Our analysis does not directly consider fairness or robustness
under distribution shift, and these remain important directions for future work.
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A Appendix
In this section, we provide the detailed proof for the regret upper bound for BaNk-UCB algorithm in Theorem
1. First we present the supporting lemmas for establishing the upper bound for the expected regret in Section
B.

B Proof for the Regret Upper Bound

Recall, the batch-wise expected sample density, p
(m)
a (x), from equation 11. In Lemma 2, we first construct an

upper bound for p
(m)
a (x) in terms of the context density pX(x).
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Lemma 2. The batch-wise expected sample density satisfies:

p(m)
a (x) ≤ (tm − tm−1)pX(x),

for almost all x ∈ X .

Proof. Note, since the event {Xt ∈ A} ⊆ {Xt ∈ A, at = a},

E

 tm∑
t=tm−1

1(Xt ∈ A, at = a)

 ≤ (tm − tm−1)
∫

A

pX(x)dx. (19)

From equation 11 and equation 19, we get that,∫
A

p(m)
a (x)dx ≤ (tm − tm−1)

∫
A

pX(x)dx,

for all A ∈ X . Therefore, p
(m)
a (x) ≤ (tm − tm−1)pX(x) for almost all x ∈ X .

Next, we build a concentration bound on the average model noise for the k-nearest neighbors around a point
x. Here, we will use the sub-Gaussianity of noise (Assumption 1) and the fact that we only observe data
until the last batch, i.e., for t ∈ [tm−1 + 1, tm], we can only utilize data until time tm−1 for estimation.
Lemma 3. Let Ntm−1,k(x, a) denote the set of k nearest neighbors among {Xi : i < tm−1, ai = a}. Then, for
all x ∈ X , a ∈ A, and k ≥ 1, we have that,

P

 sup
x,a,k

∣∣∣∣∣∣ 1√
k

∑
i∈Ntm−1,k(x,a)

ϵi

∣∣∣∣∣∣ > u

 ≤ dt2d+1
m−1 |A|e

− u2
2σ2 , (20)

where ϵi are independent sub-Gaussian noise terms with variance proxy σ2.

Proof of Lemma 3. From Lemma 4 of Zhao et al. (2024), we have that of a fixed k:

P

sup
x,a

∣∣∣∣∣∣ 1√
k

∑
i∈Ntm−1,k(x,a)

ϵi

∣∣∣∣∣∣ > u

 ≤ dt2d
m−1|A|e

− u2
2σ2 . (21)

Then we apply a union bound over all k ≤ tm−1 to get,

P

 sup
x,a,k

∣∣∣∣∣∣ 1√
k

∑
i∈Nt,k(x,a)

ϵi

∣∣∣∣∣∣ > u

 ≤ dt2d+1
m−1 |A|e

− u2
2σ2 .

Note, that Lemma 3 is for any batch m and we will use it to bound the batch-wise regret.
Definition 1. Define the event Em as

Em :=


∣∣∣∣∣∣ 1√

k

∑
i∈Ntm−1,k(x,a)

ϵi

∣∣∣∣∣∣ ≤
√

2σ2 ln(dt2d+3
m−1 |A|) ∀ x, a, k

 , (22)

Then, from Lemma 3, it follows that P(Em) ≥ 1− 1/tm.
Lemma 4. Under Em, we have that the following point-wise estimation error bound for x ∈ X and
t ∈ [tm−1 + 1, tm]:

fa(x) ≤ f̂a,t(x) ≤ fa(x) + 2ξa,t(x) + 2Lda,t(x), (23)

where ξa,t(x) and da,t(x) are as defined in equation 8 and equation 5, respectively.

13
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Proof. Observe that for t ∈ [tm−1 + 1, tm], under event Em and x ∈ X :∣∣∣f̂a,t(x)− (fa(x) + ξa,t(x) + Lda,t(x))
∣∣∣ (24)

≤

∣∣∣∣∣∣ 1
ka,t(x)

∑
i∈Nt(x,a)

(Yi − fa(x))

∣∣∣∣∣∣
≤ 1

ka,t(x)
∑

i∈Nt(x,a)

(Yi − fa(Xi)) + 1
ka,t(x)

∑
i∈Nt(x,a)

(fa(Xi)− fa(x))

≤ ξa,t(x) + Lda,t(x), (25)

where the last line uses the definition of Em in equation 22 and the Lipschitz (smoothness) property
(Assumption 3) of fa.

Quantities of interest: We define some important quantities of interest which are central to the proof.
This includes two population quantities:

ra(x) = 1
2L
√

C1
(f∗(x)− fa(x)), (26)

n(m)
a (x) = C1 ln tm−1

(f∗(x)− fa(x))2 , (27)

in which

C1 = max
{

4, 32σ2(2d + 3 + log(Md|A|))
}

. (28)

The quantity n
(m)
a (x) can be interpreted as a local sample complexity proxy, capturing the number of samples

required near x to estimate the reward function fa(x) with sufficient precision. Then, another quantity
of interest is a data-dependent quantity that measures the total number of observations until time tm−1
corresponding to arm a in a radius r ball around x. For any x ∈ X , a ∈ A define,

n(m)(x, a, r) :=
tm−1∑
t=1

1(∥Xt − x∥ < r, at = a). (29)

Next in Lemma 5, under the event Em, we show that the adaptive choice of ka,t from equation 6 in our k-NN
estimator is in fact upper bounded by n

(m)
a (x). Then, in Lemma 6, we show that n(m)(x, a, r) ≤ ka,t(x),

which then leads to the relationship between n
(m)
a (x) and n(m)(x, a, r) in Lemma 7.

Lemma 5. Under event Em for t ∈ [tm−1 + 1, tm],

ka,t(x) ≤ n(m)
a (x).

Proof. We prove this by contradiction. Let ka,t(x) > n
(m)
a (x). By definition of ka,t in equation 6:

Lda,t(x) = Lda,t,ka,t(x)(x) ≤

√
ln(tm−1)
ka,t(x) ≤

√
ln tm−1

n
(m)
a (x)

= 2Lra(x), (30)

From Lemma 4, under Em,

f̂at,t(x) ≤ fat
(x) + 2

√
2σ2

kat,t(x) ln(dMt2d+3
m−1 |A|) + 2Lrat

(x)

≤ fat
(x) + 2

√
2σ2

n
(m)
at (x)

ln(dMt2d+3
m−1 |A|) + 2Lrat

(x). (31)
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Since action at is selected at time t, from the proposed UCB algorithm (Algorithm 1), i.e., the choice of
at = arg maxa∈A f̂a,t(Xt) and from Lemma 4,

f̂at,t(x) ≥ f̂a∗(x),t(x) ≥ f∗(x). (32)

Combining equation 31 and equation 32 gives:

2
√

2σ2

n
(m)
at (x)

ln(dt2d+3
m−1 |A|) + 2Lrat

(x) ≥ f∗(x)− fat
(x). (33)

We now derive an inequality that contradicts with equation 33. From equation 27 and equation 28,

2
√

2σ2

n
(m)
at (x)

ln(dt2d+3
m−1 |A|) = 2

√
2σ2

C1 ln tm−1
ln(dt2d+3

m−1 |A|)(f∗(x)− fat
(x))2

≤ 1
2

√
ln(dt2d+3

m−1 |A|)
(2d + 3 + ln(d|A|)) ln(tm−1) (f∗(x)− fat

(x))

<
1
2(f∗(x)− fat(x)). (34)

From the definition of ra(x) in equation 26,

2Lrat
(x) = 1√

C1
(f∗(x)− fat

(x)) ≤ 1
2(f∗(x)− fat

(x)). (35)

From equation 34 and equation 35,

2
√

2σ2

n
(m)
at (x)

ln(dt2d+3
m−1 |A|) + 2Lrat(x) < f∗(x)− fat(x). (36)

Note that equation 33 contradicts equation 36. Hence, the desired conclusion follows.

Lemma 6. Under Em, let ra(x) ≥ 2LC1√
C1−2 and ka,t(x) ≳ ln T , then, we get

n(m)(x, a, ra(x)) ≤ ka,t(x),

where ra(x) is as defined in equation 26, n(m)(x, a, ra(x)) defined in equation 29 and ka,t as defined in
equation 6.

Proof of Lemma 6. We also prove Lemma 6 by contradiction. If n(m)(x, a, ra(x)) > ka,t(x), let

t = max{τ < tm−1 | ∥xτ − x∥ ≤ ra(x), Aτ = a}. (37)

be the last step falling in B(x, ra(x)) with action a. Then B(x, ra(x)) ⊆ B(Xt, 2ra(x)), and thus there are at
least ka,t(x) points in B(Xt, 2ra(x)). Therefore, for any x ∈ X , by the definition of da,t(x), i.e., the distance
of x to its kth nearest-neighbors in equation 5,

da,t(x) < 2ra(x). (38)

Denote a∗(x) = arg maxa fa(x) as the best action at context x. Again, note that at = a is selected only if the
UCB of action a is not less than the UCB of action a∗(x), i.e.,

f̂a,t(Xt) ≥ f̂a∗(Xt),t(Xt). (39)

From Lemma 4,

f̂a,t(Xt) ≤ fa(Xt) + 2ξa,t(Xt) + 2Lda,t(Xt), (40)
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and

f̂a∗(Xt),t(Xt) ≥ fa∗(Xt)(Xt) = f∗(Xt). (41)

From equation 39, equation 40, and equation 41,

fa(Xt) + 2ξa,t(Xt) + 2Lda,t(Xt) ≥ f∗(Xt). (42)

which yields,

da,t(Xt) ≥
f∗(Xt)− fa(Xt)− 2ξa,t(Xt)

2L

≥
f∗(Xt)− fa(Xt)− 2

√
2σ2 ln (dMT 2d+3|A|)

ka,t(x)

2L

≥
f∗(Xt)− fa(Xt)− 2

√
2σ2 ln (dMT 2d+3|A|)

ln T

2L

=
√

C1ra(Xt)−
1
L

√
2σ2 ln (dMT 2d+3|A|)

ln T

≥
√

C1ra(Xt)−
√

C1

L
≥ 2ra(Xt), (43)

using the fact that ra(x) ≥ 2LC1√
C1−2 and ka,t(x) ≳ ln T . Note that equation 43 contradicts equation 38.

Therefore n(m)(x, a, ra(x)) ≤ ka,t(x). That completes the proof of Lemma 6.

Lemma 7. For na(x) defined in equation 27 and n(m)(x, a, r) as defined in equation 29, under Em,

n(m)(x, a, ra(x)) ≤ n(m)
a (x).

Proof. Combining the results of Lemma 5 and 6 proves Lemma 7. 1

Bounding the batch-wise regret R
(m)
a : From Lemma 7 and from Lemma 3, we know that P(Ec

m) ≤ 1/tm

and n(m)(x, a, ra(x)) < tm on Em gives:

E
[
n(m)(x, a, ra(x)) | Ftm−1

]
≤ P(Em|Ftm−1)E

[
n(m)(x, a, ra(x)) | Em,Ftm−1

]
+ P(Ec

m|Ftm−1)E
[
n(m)(x, a, ra(x)) | Ec

m,Ftm−1

]
≤ n(m)

a (x) + 1. (44)

From the definition of p
(m)
a in equation 11,∫

B(x,ra(x))
p(m)

a (u)du ≤ n(m)
a (x) + 1. (45)

Recall R
(m)
a from equation 12. We first bound R

(m)
a for a given m to get a bound on the expected regret

using Lemma 1. To bound R
(m)
a , we introduce a new random variable Z follow a distribution with probability

density function (pdf) ϕ:

ϕ(z) = 1
CZ [(f∗(z)− fa(z)) ∨ ϵ]d

, (46)

1Lemmas 5 and 6 refine the argument used in Lemma 6 of Zhao et al. (2024), clarifying implicit assumptions and adapting
the result to accommodate batched feedback.
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where CZ is the normalizing constant. As discussed in Section 4, we split R
(m)
a into two regions: one where the

suboptimality gap is large (where concentration bounds dominate) and another where the margin condition
helps control the measure of near-optimal points,

R(m)
a =

∫
X

(f∗(x)− fa(x))p(m)
a (x)1(f∗(x)− fa(x) > ϵ)dx

+
∫

X
(f∗(x)− fa(x))p(m)

a (x)1(f∗(x)− fa(x) ≤ ϵ)dx.

The idea is to bound these two terms separately, where the second one can be bounded using the margin
assumption (i.e., Assumption 4). The ϵ is determined theoretically based on the bound on R

(m)
a . We tackle

the first integral term in the following Lemma 8.
Lemma 8. There exists a constant C2 > 0 such that for any a ∈ A,∫

X
(f∗(x)− fa(x))p(m)

a (x)1 (f∗(x)− fa(x) > ϵ) dx

≤ C2CZ E

[∫
B(Z,ra(Z))

p(m)
a (u) (f∗(u)− fa(u)) du

∣∣∣∣∣ Ftm−1

]
,

where Z ∼ ϕ is a density function defined over X .

Proof. Consider,

E

[∫
B(Z,ra(Z))

p(m)
a (u) (f∗(u)− fa(u)) du

∣∣∣∣∣Ftm−1

]
(47)

(a)=
∫

X

∫
B(u,2ra(u)/3)

ϕ(z)p(m)
a (u) (f∗(u)− fa(u)) dzdu

≥
∫

X

(
inf

∥z−u∥≤2ra(u)/3
ϕ(z)

) (
2
3

)d

rd
a(u)p(m)

a (u) (f∗(u)− fa(u)) du

(b)
≥

(
2
3

)d (
3
4

)d ∫
X

ϕ(u)rd
a(u)p(m)

a (u) (f∗(u)− fa(u)) du

= 1
2dCZ

∫
X

1
[(f∗(u)− fa(u)) ∨ ϵ]d

rd
a(u)p(m)

a (u) (f∗(u)− fa(u)) du

≥ 1
2dCZ

∫
X

1(f∗(u)− fa(u) > ϵ) 1
(f∗(u)− fa(u))d

(f∗(u)− fa(u))d

(4L)d

× p(m)
a (u) (f∗(u)− fa(u)) du

≥ 1
23dLdCZ

∫
X

p(m)
a (u) (f∗(u)− fa(u)) 1(f∗(u)− fa(u) > ϵ)du. (48)

For (a), if ∥u− z∥ ≤ ra(z), then from the definition of ra in equation 26 and using the Lipschitz assumption
(Assumption 3), we get that:

ra(u)
ra(z) = f∗(u)− fa(u)

f∗(z)− fa(z)

= f∗(u)− f∗(z) + fa(z)− fa(u) + f∗(z)− fa(z)
f∗(z)− fa(z)

≤ f∗(z)− fa(z) + 2Lra(z)
f∗(z)− fa(z)

= 1 + 1√
C1

≤ 3
2 . (49)
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For (b), we have that ∥z − u∥ ≤ 2ra(u)
3 , therefore we have that:

|f∗(u)− f∗(z)| ≤ 2
3ra(u), and |fa(u)− fa(z)| ≤ 2

3ra(u).

Therefore,

|f∗(z)− fa(z)− (f∗(u)− fa(u))| ≤ 4
3ra(u)

⇒ (f∗(z)− fa(z)) ∨ ϵ ≤
(

(f∗(u)− fa(u) + 4
3ra(u))

)
∨ ϵ.

Therefore, we get that,

ϕ(z)
ϕ(u) = [(f∗(u)− fa(u)) ∨ ϵ]d

[(f∗(z)− fa(z)) ∨ ϵ]d

≥ [(f∗(u)− fa(u)) ∨ ϵ]d[
(f∗(u)− fa(u)) + 4

3 Lra(u)
]d

≥
(

3
4

)d

. (50)

where equation 50 follows because,

f∗(u)− fa(u) + 4
3Lra(u) = f∗(u)− fa(u) + 4

3L · 1
2L
√

C1
(f∗(u)− fa(u))

= (f∗(u)− fa(u))
(

1 + 2
3
√

C1

)
.

Since
√

C1 ≥ 2, then equation 50 holds.

Next, we prove an inequality that plays a key role in bounding the regret contribution from contexts where
the reward gap is large.
Lemma 9. ∫

X
(f∗(z)− fa(z))−(d−1)1(f∗(z)− fa(z) > ϵ) dz ≲


ϵα+1−d if d > α + 1,

log
( 1

ϵ

)
if d = α + 1,

1 if d < α + 1.

(51)

Proof of Lemma 9. Consider∫
X

(f∗(z)− fa(z))−(d−1)1(f∗(z)− fa(z) > ϵ) dz (52)

(a)
≤ 1

c

∫
X

(f∗(z)− fa(z))−(d−1)1(f∗(z)− fa(z) > ϵ) pX(z) dz

(b)= 1
c
E

[
(f∗(X)− fa(X))−(d−1)1(f∗(X)− fa(X) > ϵ)

]
= 1

c

∫ ∞

0
P

(
ϵ < f∗(X)− fa(X) < t− 1

d−1

)
dt

≤ 1
c

∫ ϵ−(d−1)

0
P

(
f∗(X)− fa(X) < t− 1

d−1

)
dt (53)

(a) comes from Assumption 2, which requires that pX(x) ≥ c over the support. In (b), the random variable
X follows a distribution with pdf pX .

18
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If d > α + 1, then from Assumption 4,

equation 53 ≤ Dα

c

∫ ϵ−(d−1)

0
t− α

d−1 dt = Dα(d− 1)
c(d− 1− α)ϵα+1−d. (54)

If d = α + 1, then

equation 53 ≤ 1
c

∫ 1

0
dt + Dα

c

∫ ϵ−(d−1)

1
t− α

d−1 dt = 1
c

+ Dα(d− 1)
c

log
(

1
ϵ

)
. (55)

If d < α + 1, then

equation 53 ≤ 1
c

∫ 1

0
dt + Dα

c

∫ ϵ−(d−1)

1
t− α

d−1 dt ≤ 1
c

+ Dα(d− 1)
c(α + 1− d) . (56)

Therefore, combining results from equation 53, equation 54, equation 55, and equation 56 we obtain:

∫
X

(f∗(z)− fa(z))−(d−1)1(f∗(z)− fa(z) > ϵ) dz ≲


1
c ϵα+1−d if d > α + 1,
1
c log

( 1
ϵ

)
if d = α + 1,

1
c if d < α + 1.

(57)

This proves equation 51.

Lemma 10. Suppose Assumptions 1 and 2 hold. Then, for any batch m ∈ [M ], and for all arms a ∈ A, we
have:

E

[∫
B(Z,ra(Z))

p(m)
a (u)(η∗(u)− ηa(u)) du

∣∣∣ Ftm−1

]
≲

1
CZ

(
ϵα−d−1 log tm−1 + tmϵ1+α

)
.

Here CZ is the density lower bound constant from equation 46 and Ftm−1 is the history until the (m− 1)th

batch.

Proof. Consider:

E

[∫
B(Z,ra(Z))

p(m)
a (u)(f∗(u)− fa(u)) du

∣∣∣∣∣ Ftm−1

]
(a)
≤ 3

2E
[∫

B(Z,ra(Z))
p(m)

a (u)(f∗(z)− fa(z)) du

∣∣∣∣∣ Ftm−1

]
(b)
≤ 3

2E
[

((n(m)
a (Z) + 1) ∧ (tmpZ(z)rd

a(Z)))(f∗(Z)− fa(Z))
∣∣∣ Ftm−1

]
= 3

2

∫ (
(n(m)

a (z) + 1) ∧ (tmpZ(z)rd
a(Z))

)
(f∗(z)− fa(z)) 1

ϕZ [(f∗(z)− fa(z)) ∨ ϵ]d dz

= 3
2

∫ (
(n(m)

a (z) + 1) ∧ (tmpZ(z)rd
a(Z))

)
(f∗(z)− fa(z)) 1

ϕZ [(f∗(z)− fa(z))]d

× 1(f∗(z)− fa(z) > ϵ)dz

+ 3
2

∫ (
(n(m)

a (z) + 1) ∧ (tmpZ(z)rd
a(Z))

)
(f∗(z)− fa(z)) 1

ϕZϵd
1(f∗(z)− fa(z) ≤ ϵ)dz, (58)

For (a):

f∗(u)− fa(u) ≤ f∗(z)− fa(z) + 2Lra(z)

≤ f∗(z)− fa(z) + 1√
C1

(f∗(z)− fa(z))

≤ 3
2(f∗(z)− fa(z)). (59)
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We get (b) from Lemma 2 and equation 44. In equation 58, we split the domain based on whether (f∗(z)−fa(z))
is large or small, and use the margin assumption (Assumption 4) for the latter. Note that, If f∗(Z)−fa(Z) > ϵ,
then n

(m)
a (Z) = (log tm−1)(f∗(Z)− fa(Z))−2 is smaller, otherwise the bias dominates.

equation 58 = 3
2CZ

(∫ (
C1 ln tm−1

(f∗(z)− fa(z)) + f∗(z)− fa(z)
)

1
(f∗(z)− fa(z))d

1(f∗(z)− fa(z) > ϵ)dz

+
∫

tmpZ(z)rd
a(Z)(f∗(z)− fa(z)) 1

ϵd
1(f∗(z)− fa(z) ≤ ϵ)dz

)
≲

1
CZ

(
E

[
(f∗(Z)− fa(Z))−(d+1)1(f∗(Z)− fa(Z) > ϵ)

]
ln tm−1

+ tm

ϵd
E

[
(f∗(Z)− fa(Z))d+11(f∗(Z)− fa(Z) ≤ ϵ)

])
(c)
≲

1
CZ

(
ϵα−d−1 ln tm−1 + tmϵ1+α

)
,

where the first term in (c) comes from the dominating term in Lemma 9 and for the second term we use the
Margin assumption as follows:∫

X
(f∗(z)− fa(z))1(f∗(z)− fa(z) < ϵ)dz ≤ 1

c
E [(f∗(X)− fa(X))1(f∗(X)− fa(X) < ϵ)]

≤ L0

c
ϵα+1. (60)

This concludes the proof.

B.1 Additional Experiments in Higher Dimensions
We extend the numerical experiments from Section 5.1 to evaluate algorithm performance in higher-dimensional
contexts. Specifically, we consider d ∈ {3, 4, 5} while keeping the underlying data-generating mechanisms
for both experimental settings unchanged. As expected, the performance of both BaSEDB and BaNk-UCB
deteriorates with increasing dimension, consistent with the theoretical prediction from Theorem 1 and
Theorem 2 that regret decays more slowly when d is large due to the corresponding decrease in the parameter
γ.
Despite the increased difficulty, BaNk-UCB continues to outperform BaSEDB across all settings, including
the more challenging Setting 1. These results highlight the robustness of BaNk-UCB in moderate to high-
dimensional settings, where the benefits of adapting to local geometry become even more pronounced.
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Figure 3: Average cumulative regret over 30 runs for BaSEDB and BaNk-UCB under Settings 1 and 2 with
d ∈ {3, 4, 5}. Vertical dashed lines denote batch boundaries.
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