

000 001 002 003 004 005 006 007 008 009 010 011 012 CAN LLMs REFUSE QUESTIONS THEY DO NOT KNOW? MEASURING KNOWLEDGE-AWARE REFUSAL IN FACTUAL TASKS

013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) should refuse to answer questions beyond their knowledge. This capability, which we term *knowledge-aware refusal*, is crucial for factual reliability, while existing metrics fail to faithfully measure this ability. In this work, we propose the *Refusal Index (RI)*, a principled metric that measures how accurately LLMs refuse questions they do not know. We define RI as Spearman’s rank correlation between refusal probability and error probability. To make RI practically measurable, we design a lightweight two-pass evaluation method that efficiently estimates RI from observed refusal rates across two standard evaluation runs. Extensive experiments across 16 models and 5 datasets demonstrate that RI accurately quantifies a model’s knowledge-aware refusal capability in factual tasks. Notably, RI remains stable across different refusal rates and provides consistent model rankings independent of a model’s overall accuracy and refusal rates. More importantly, RI provides insight into an important but previously overlooked aspect of LLM factuality: while LLMs achieve high accuracy on factual tasks, their refusal behavior can be unreliable and fragile. This finding highlights the need to complement traditional accuracy metrics with the Refusal Index for comprehensive factuality evaluation.

Zb1L - W3

1 INTRODUCTION

Large Language Models (LLMs) are increasingly used for knowledge-intensive factual tasks, such as long-term reasoning (Chen et al., 2025) and specialized expert domains (Wang et al., 2025; Lin et al., 2024; Mahdavi et al., 2025). Despite these capabilities, LLMs are often poorly calibrated, frequently providing incorrect answers with high confidence (Huang et al., 2025). An intuitive solution is to enable models to refuse questions beyond their knowledge (Yin et al., 2023b). Recent work has explored and strengthened this ability by inducing more accurate refusals with prompting (Cheng et al., 2024; Kadavath et al., 2022b) or fine-tuning (Zhang et al., 2024; Kapoor et al., 2024). This capability is important for making models more reliable when answering factual questions.

In this paper, we formalize this ability, an LLM’s ability to refuse factual questions it does not know, as *knowledge-aware refusal*. A truly knowledge-aware refusal assesses a model’s judgment in two ways: how well a model refuses questions beyond its knowledge (avoiding *overconfidence*) and how well it avoids refusing questions it would answer correctly (avoiding *over-refusal*). Traditional factuality metrics fail to capture this property accurately, leaving knowledge-aware refusal insufficiently measured.

We propose a metric called the *Refusal Index (RI)* to measure knowledge-aware refusal in factual tasks, which features two key properties: **(1) accurate estimates of knowledge-aware refusal**: We formally define the Refusal Index as the Spearman correlation between refusal probabilities and error probabilities (Section 3). This definition is independent of refusal rate and directly targets refusal behavior, making it an unbiased measure. **(2) lightweight evaluation procedure**: Unlike previous calibration metrics that require expensive calibration processes, we only need two standard evaluation passes to compute RI, which is compatible with existing evaluation pipelines. Specifically, we first evaluate a model on a factual question-answering dataset, collecting correct answer rates and refusal rates. Then, we run a second evaluation pass to regenerate answers for refused questions. Finally, we compute RI using the correct answer rates and refusal rates from both evaluation passes.

hVoC - W1

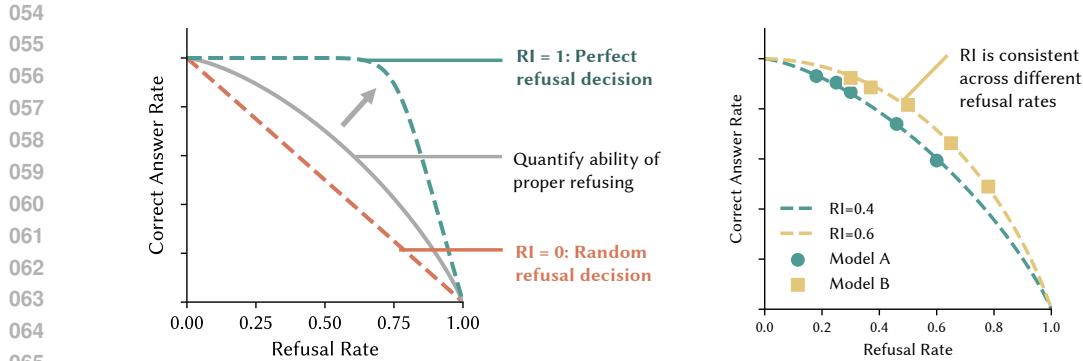


Figure 1: Illustration of Refusal Index (RI). Refusal Index quantifies a model’s internal capability to refuse questions beyond its knowledge by measuring the correlation between refusal decisions and answer incorrectness. Left: Refusal Index models how the correct answer rate drops with increasing refusal rate. Right: Empirical correct answer rates for the same model at different refusal rates align with the Refusal Index. [We further discuss the intuition behind these curves and their implications for knowledge-aware refusal in the Section 4.](#)

We perform extensive experiments and analyses to validate RI across 16 models on 5 datasets. We demonstrate that RI quantifies models’ capability to refuse questions they do not know. As shown in Figure 1, RI parameterizes the relationship between correct answer rates and refusal rates through an accuracy-refusal curve, whose convexity captures a model’s ability to minimize false refusals. This analytical model is supported by the empirical results, with consistent RI scores on the same model at different refusal rates, which align with the accuracy-refusal curve. We also discover that RI has high agreement with established calibration metrics and provides consistent model rankings independent of a model’s correctness and refusal rates.

Beyond RI’s efficacy in capturing knowledge-aware refusal, we leverage it to reveal a critical gap in current factuality evaluation: the disconnect between factual accuracy and knowledge-aware refusal capabilities. Our analysis reveals three key insights that traditional metrics overlook: **(1) RI identifies persistent capability gaps.** While LLMs achieve high accuracy on factual tasks, their refusal behavior is unreliable. This gap remains stable across different prompting strategies and cannot be resolved by simply improving accuracy or adjusting refusal rates; **(2) Training data and pipelines influence refusal behavior.** The model family emerges as the strongest predictor of knowledge-aware refusal ability, with certain families consistently outperforming others regardless of model scale; and **(3) Knowledge-aware refusal is sensitive to noisy context.** Models exhibit significantly degraded refusal performance when ground truth information is unavailable in the provided context, suggesting over-reliance on contextual cues. These findings demonstrate that RI captures an essential dimension of model reliability absent from existing factuality metrics, highlighting the need to incorporate knowledge-aware refusal measures for a more comprehensive factuality evaluation.

2 BACKGROUND

Knowledge-Aware Refusal. Knowledge-aware refusal measures whether a model can appropriately decline to answer questions it doesn’t know. When we define “knowing” as the ability to provide correct answers, knowledge-aware refusal capability can be quantified by the alignment between a model’s refusal decisions and its answer incorrectness. Specifically, a model good at knowledge-aware refusal shows low refusal rates for questions it can answer correctly, while showing high refusal rates for questions it cannot answer accurately. This knowledge-aware refusal ability is fundamental for reliable deployment of LLMs in factual tasks. Previous works have explored to evaluate this capability (Cheng et al., 2024; Kapoor et al., 2024). Among existing approaches, two types of metrics, refusal-rate-based and calibration-based metrics, have been employed to measure knowledge-aware refusal. However, both exhibit distinct limitations in accurately assessing this ability.

Zb1L - W1

Limitations of Refusal-Rate-Based Metrics. Refusal rate alone only measures the frequency of refusals, without capturing the correlation between refusal and answer correctness. For instance, one can prompt an LLM to be more cautious, thereby increasing the refusal rate without actually improving the model’s knowledge-aware refusal ability. To address this limitation, recent works have combined refusal rates with correct answer rates for evaluation(Wei et al., 2024a; Bang et al., 2025).

y9ka - W3

y9ka - W1

y9ka - Q7

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
Table 1: Baseline factuality metrics used for comparison. c and r denote correct answer rate among all questions and refusal rate among all questions, respectively.

Metric	Formula	Definition
Correct Answer Rate	c	Proportion of correct answers among all questions
Refusal Rate	r	Proportion of refusal answers among all questions
Correct given Attempted (C/A)	$c/(1 - r)$	Correct answer rate among answered questions
F-score	$2c/(2 - r)$	Harmonic mean of Correct Answer Rate and C/A
Weighted Score	$c - p(1 - r)$	Weighted difference of c and r
Refusal Index	Eq. (6)	Correlation between refusal and answer incorrectness

The underlying intuition is that if a model refuses more samples while maintaining its correct answer rate, it demonstrates a stronger ability to identify uncertain questions. For example, SimpleQA (Wei et al., 2024a) employs an F1 score between the correct answer rate within answered questions and the refusal rate to balance over-refusal and over-confidence. We list these combined metrics in Table 1. However, such combinations of refusal rates and correct answer rates are heuristics designed to penalize over-refusal, which fail to capture the fundamental correlation between refusal and incorrectness. As our experiments demonstrate in Section 4.2, these metrics do not measure a consistent underlying ability: when prompting models to increase or decrease their refusal rates, these metric values fluctuate significantly (e.g. F1 score used in SimpleQA varies by up to 70%)

Limitations of Calibration-Based Metrics. Other works employ calibration methods, which first estimate the uncertainty (or conversely, confidence score) of model outputs, then compute the correlation between confidence scores and answer correctness. Metrics such as Expected Calibration Error (ECE) and AUROC are commonly used to quantify this relationship. To apply calibration methods, previous works have designed various approaches to estimate the uncertainty of model outputs. For example, some methods (Xiong et al., 2023) instruct models to assign verbalized confidence scores to their own outputs, while others (Ulmer et al., 2024a) train auxiliary models to predict confidence from text outputs. A more faithful approach involves repeatedly sampling multiple outputs for a single question and using the frequency of refusal answers as an uncertainty measure (Wei et al., 2024a). However, the confidence scores derived from these methods cannot fully represent a model’s refusal probability. First, studies eliciting verbalized confidence report systematic overconfidence and high ECE, while asking the same model to vote across samples (e.g., SimpleQA) yields frequency-based curves much closer to the diagonal for larger models (Xiong et al., 2023; Wei et al., 2024a). Second, auxiliary calibrators such as APRICOT or rank-calibration frameworks can produce near-perfect ECE/AUROC (Ulmer et al., 2024a; Huang et al., 2024a), yet these numbers mainly reflect the auxiliary predictor or ranking procedure rather than the base model’s refusal behavior. Third, white-box confidence proxies like $P(\text{True})$ can even appear well calibrated on multiple-choice settings (Kadavath et al., 2022a), further showing that calibration verdicts swing with the chosen estimator. Therefore, while these methods provide valuable insights into calibration properties within LLMs, their uncertainty estimates do not directly reflect model refusal probability. In real-world applications, we expect models to abstain from providing uncertain answers. Thus, measuring the correlation between refusal behavior and incorrectness in black-box settings remains an unsolved yet crucial challenge for assessing the factual reliability of language models. Appendix L provides an empirical comparison of three representative calibrators ($P(\text{IK})$, APRICOT, and $P(\text{Answering})$) on Qwen3-32B, showing that they disagree and that only the sampling-based method exposes the over-confidence captured by RI.

Properties of Effective Measurement

We identify three key properties that an effective metric for knowledge-aware refusal should satisfy:

1. **Faithful:** Accurately quantify knowledge-aware refusal capability.
2. **Consistent:** Remain stable across different refusal rates induced by varying prompts or instructions.
3. **Direct:** Derive directly from black-box LLM refusal decisions, without relying on auxiliary models.

Zb1L - W2/Q1

y9ka - W2/W5

Zb1L - W3

162 **3 REFUSAL INDEX**

163
Scope. Our evaluation settings follow widely used factuality evaluations like SimpleQA and TruthfulQA (Wei et al., 2024a; Lin et al., 2022), where models provide atomic answers for short-form, 164 factual questions. Additionally, models can refuse to answer to avoid hallucination by producing 165 outputs such as “*I don’t have enough information...*”. Following SimpleQA, each model answer is 166 classified as correct, incorrect, or refused by comparing it against the ground truth. The classification 167 results are used to estimate the model’s factuality level, or in our case, the ability to make knowledge- 168 aware refusals. This formulation avoids subjective grading and partial correctness in LLM generation, 169 allowing more reliable measurement.

170
Notations. Formally, we denote the LLM as $f_{\text{LM}} : \mathcal{X} \rightarrow \mathcal{Y} \cup \{\perp\}$, where $x \in \mathcal{X}$ represents the 171 input question, $y \in \mathcal{Y}$ represents the output answer, and \perp denotes refusal. For the i -th question x_i 172 with ground truth y_i in dataset D , we define two indicators: $W_i = \mathbf{1}\{f_{\text{LM}}(x_i) \neq y_i\}$ for incorrect 173 outputs (including refusals) and $R_i = \mathbf{1}\{f_{\text{LM}}(x_i) = \perp\}$ for refusal responses. We define the error 174 probability $w_i = P(f_{\text{LM}}(x_i) \neq y_i)$ and the refusal probability $r_i = P(f_{\text{LM}}(x_i) = \perp)$. Conceptually, 175 a model with better knowledge-aware refusal should refuse more frequently as questions become more 176 difficult. We measure this ability with the *Refusal Index*. Inspired by rank-based calibration metrics 177 like AUROC (Niculescu-Mizil & Caruana, 2005), we define the Refusal Index as the correlation 178 between refusal probabilities and error probabilities:

179
Definition 3.1 (Refusal Index). Refusal Index ρ_S is defined as Spearman’s rank correlation between 180 the model’s refusal probability r_i and the error probability w_i as follows:

$$\text{Refusal Index} = \rho_S = \text{Corr}(\text{Rank}(r_i), \text{Rank}(w_i)). \quad (1)$$

181
The intuition behind the definition is that a model achieves *perfect knowledge-awareness* when its 182 refusal probability increases monotonically with error probability, making it more likely to refuse as 183 questions become more difficult:

$$w_i \leq w_j \iff P(f_{\text{LM}}(x_i) = \perp) \leq P(f_{\text{LM}}(x_j) = \perp). \quad (2)$$

184
Note that this differs from error-based calibration metrics like Expected Calibration Error (ECE), 185 which quantify absolute discrepancies between r_i and w_i . In contrast, our approach evaluates only the 186 rank discrepancies between r_i and w_i . We define RI as a discrimination property because it captures 187 the fundamental aspect of knowledge-aware refusal. **This is because absolute discrepancy-based** 188 **metrics are sensitive to changes in a model’s overall refusal rate, which can significantly affect the** 189 **metric value (an undesirable property).** In contrast, discriminative metrics like RI or AUROC measure 190 only the rank between different samples, making them more robust to changes in overall refusal rates. 191 Alternatively, it is generally easier for a model to adjust its overall refusal rate than to improve its 192 ability to rank questions by difficulty accurately. Next, we introduce how to estimate the Refusal 193 Index through a two-pass evaluation process (Section 3.1).

Zb1L - Q2

194 **3.1 TWO-PASS EVALUATION**

195 The naive way to measure RI would require the refusal probability $P(f_{\text{LM}}(x_i) = \perp)$ across questions 196 with varying error probabilities. However, in factuality evaluation, we only observe single text output 197 from the model, making refusal probabilities inaccessible. To address this issue, we propose a two- 198 pass evaluation process to infer the Spearman correlation between refusal and error probabilities from 199 binary observations. This approach models refusal decisions by first treating refusal and correctness 200 indicators as results of thresholding on their respective probabilities, and then modeling their joint 201 distribution with a Gaussian copula.

202
Formulating the Joint Distribution. We estimate ρ_S from the joint distribution of refusal and error 203 probabilities using a Gaussian copula model with correlation ρ as follows:

$$C(u, v) = \Phi_\rho(\Phi^{-1}(u), \Phi^{-1}(v)). \quad (3)$$

204
Here, $u = F_r(r_i)$ and $v = F_e(w_i)$ are the marginal CDFs, Φ^{-1} is the standard normal quantile 205 function, and Φ_ρ is the bivariate standard normal CDF with correlation ρ . **This Gaussian copula** 206 **specifies only the dependence on ρ and leaves the marginal distributions of r_i and w_i unrestricted.** The 207 function Φ_ρ depends only on rank correlation, remaining independent of the marginal distributions. 208 Next, we avoid modeling F_r and F_e directly and instead estimate ρ from R_i and W_i via maximum 209 likelihood. We then compute ρ_S from ρ using the standard conversion formula for Gaussian copulas:

5y9a - Q1

216 $\rho_S = \frac{6}{\pi} \arcsin\left(\frac{\rho}{2}\right)$ (Kendall & Stuart, 1979). Because ρ determines the corresponding rank correlations of r_i and w_i via a monotonic transformation, we could equivalently report other rank measures 217 such as Kendall's τ instead of ρ_S . We use Spearman's ρ for interpretability.
 218

220 Estimating ρ requires observing two binary in-
 221 dicators for each sample: R_i for refusal proba-
 222 bility r_i and W_i for error probability w_i , **while**
 223 **r_i and w_i themselves remain latent**. We achieve
 224 this through a two-pass evaluation that runs the
 225 model on the same dataset twice. The first
 226 pass observes refusal decisions R_i , using a stan-
 227 dard setup that allows the model to answer or
 228 refuse each question, classifying responses as
 229 correct, incorrect, or refused. The second pass
 230 observes correctness W_i by updating the sys-
 231 tem prompt to remove abstention options and
 232 requiring the model to answer all questions. We
 233 provide prompt details in Section B and an illus-
 234 tration in Figure 2. We run the second pass only
 235 on questions refused in the first pass, collecting
 236 correctness indicators W'_i for all refused questions.

Estimating Refusal Index. We define the aggregated correctness indicator $\hat{W}_i = R_i \cdot W'_i + (1 - R_i) \cdot W_i$ as the correctness when the model provided an answer. The empirical refusal rate is $r = \sum_{i=1}^{|D|} R_i / |D|$ and the error rate is $\mu = \sum_{i=1}^{|D|} \hat{W}_i / |D|$. Under our model, the pair (R, \hat{W}) results from thresholding a bivariate standard normal vector (Z_R, Z_W) with correlation ρ at, matching the standard tetrachoric setup implied by the copula.

$$\tau_R = \Phi^{-1}(1-r), \quad \tau_W = \Phi^{-1}(1-\mu). \quad (4)$$

Let n_{ab} be the counts of $(R = a, \hat{W} = b)$ for $a, b \in \{0, 1\}$. The cell probabilities are

$$\begin{aligned} p_{11}(\rho) &= \bar{\Phi}_2(\tau_R, \tau_W; \rho) = P(Z_R > \tau_R, Z_W > \tau_W), \\ p_{10}(\rho) &= r - p_{11}(\rho), \quad p_{01}(\rho) = \mu - p_{11}(\rho), \\ p_{00}(\rho) &= 1 - r - \mu + p_{11}(\rho). \end{aligned} \tag{5}$$

We estimate $\hat{\rho}$ by maximizing the multinomial log-likelihood and use $\hat{\rho}$ to compute ρ_S :

$$\hat{\rho} = \arg \max_{\rho \in (-1,1)} \ell(\rho), \quad \text{where} \quad \ell(\rho) = \sum_{a,b \in \{0,1\}} n_{ab} \log p_{ab}(\rho). \quad (6)$$

4 EXPERIMENTS & RESULTS

4.1 EXPERIMENTAL SETUP

Models. We evaluate RI on 16 models across different families, sizes, and architectures to ensure comprehensive coverage. Our open-source models include *Gemma-3-12B* (Gemma Team, 2025), *Qwen3-32B/235B* (Qwen Team, 2025) in both think and no-think modes, *Qwen2.5-72B-Instruct* (Qwen Team et al., 2024), *Llama 3.1 70B* (Grattafiori et al., 2024), *Mistral-Large-Instruct-2411* (Mistral AI, 2024), *GLM-4.5* and *GLM-4.5-Air* (GLM-4.5 Team et al., 2025) and *DeepSeek-V3-0324* (DeepSeek-AI et al., 2024). Our proprietary models include *Claude 3.5 haiku* (Anthropic, 2024), *Claude Sonnet 4* (Anthropic, 2025), *GPT4.1* and *GPT4.1 mini* (OpenAI, 2025) and *Gemini 2.5 Flash* and *Gemini 2.5 Flash Lite* (Comanici et al., 2025). We use temperature=0.7 and top-p=0.95 across all models. More implementation details are provided in Section C.

Datasets. We evaluate RI on three scenarios that require model to make accurate, knowledge-aware refusals: factual question answering, extrinsic hallucination detection (hallucination from training data), and intrinsic hallucination detection (hallucination from context). (1) We use factual question answering to test models’ ability to refuse unknown facts. Specifically, we use SimpleQA (Wei et al., 2024a), which contains verifiable, atomic factual questions that challenge even frontier LLMs. (2) We use extrinsic hallucination detection to test whether models correctly refuse to answer when they cannot recall knowledge from training data. For this scenario, we use PreciseWikiQA (Bang et al.,

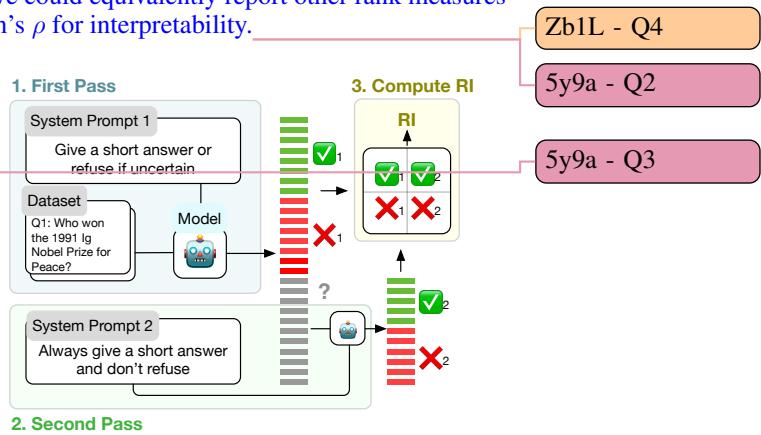


Figure 2: Illustration of two-pass evaluation process.

2025), a dynamically generated question-answering dataset from Wikipedia snippets. PreciseWikiQA
 271 tests whether models hallucinate information from their training data, assuming Wikipedia knowledge
 272 was included during training. We follow Bang et al. (2025) to generate 2000 questions for evaluation.
 273 (3) We use intrinsic hallucination detection to test whether models can faithfully recall information
 274 with noisy context. For this scenario, we use the 3 datasets from FaithEval (Ming et al., 2025).
 275 However, because the `Unanswerable` and `Inconsistency` subsets lack ground truth required
 276 for RI computation, we create a 1:1 mixed dataset of PreciseWikiQA and FaithEval to report RI.

277 **Baseline Metrics.** We compare RI against five established metrics for measuring knowledge-aware
 278 refusal (Table 1): Correct Answer Rate, Refusal Rate, Correct given Attempted (C/A), F-score, and
 279 Weighted Score. We pick $p = 0.2$ for the Weighted Score to balance the accuracy and refusal rate.
 280 We classify all model outputs into three categories following SimpleQA: (1) Correct, (2) Incorrect, or
 281 (3) Not Attempted (refusal).

282 **Adjusting Refusal Rates.** We test RI’s consistency by measuring how it changes when models
 283 exhibit different refusal rates. To this end, we use different system prompts to instruct models to be
 284 more conservative or active in answering questions. These prompts modify refusal tendencies without
 285 degrading the quality of refusal decisions, as shown in Section I. Specifically, we use four different
 286 system prompts to evaluate each model with varying refusal rates in the first pass, while keep one
 287 default prompt that instructs models to answer all questions in the second pass. The complete system
 288 prompts are provided in Section B.

289 4.2 REFUSAL RATE STABILITY ANALYSIS

290 Table 2: Score variability across different refusal rates. We run evaluation with different refusal
 291 tendencies on SimpleQA for each model. Δ_{Metric} denotes the normalized difference between most-
 292 refusal and least-refusal runs. We use $p = 0.2$ for the Weighted metric. Lower is better.

Type	Model	Δ_{Accuracy}	Δ_{Refusal}	$\Delta_{\text{C/A}}$	$\Delta_{\text{F-score}}$	Δ_{Weighted}	Δ_{RI}
Normalized Difference	Mistral-123B	-0.40	+0.93	+0.37	-0.16	-0.83	+0.06
	Qwen2-35B	-0.47	+0.95	+0.12	-0.31	-0.62	-0.19
	Qwen2.5-72B	-0.84	+0.43	+0.50	-0.60	-1.32	-0.07
	Qwen3-32B	-0.96	+0.54	+0.48	-0.71	-1.42	+0.14
	Gemma-3-12B	-1.31	+2.04	+0.96	-0.93	+1.79	+0.42
	Average	-0.80	+0.98	+0.49	-0.54	-0.48	+0.07
Model	CV_{Accuracy}	CV_{Refusal}	$CV_{\text{C/A}}$	$CV_{\text{F-score}}$	CV_{Weighted}	CV_{RI}	
Coefficient of Variation	Mistral-123B	0.16	0.35	0.14	0.06	0.31	0.04
	Qwen2-35B	0.22	0.47	0.06	0.14	0.32	0.09
	Qwen2.5-72B	0.35	0.17	0.19	0.26	0.53	0.03
	Qwen3-32B	0.35	0.19	0.17	0.28	0.51	0.07
	Gemma-3-12B	0.49	0.76	0.39	0.36	0.66	0.23
	Average	0.31	0.39	0.19	0.22	0.47	0.09

hVoC - W3

308 For each metric, we summarize stability across the four refusal prompts using two scale-normalized
 309 measures. The first is the normalized difference

$$\Delta_{\text{Metric}} = \frac{\text{Metric}_{\text{max}} - \text{Metric}_{\text{min}}}{|\text{Metric}_{\text{mean}}|}, \quad (7)$$

312 which captures how far the most- and least-refusal runs deviate relative to the average level of the
 313 metric. The second is the coefficient of variation (CV)

$$CV_{\text{Metric}} = \frac{\text{std}(\text{Metric})}{|\text{Metric}_{\text{mean}}|}, \quad (8)$$

316 which measures relative dispersion around the mean and allows us to compare variability across
 317 metrics with different scales.

hVoC - Q1.1

319 In this section, we validate the Refusal Index across different refusal rates to analyze its stability as
 320 a metric for knowledge-aware refusal. Our analysis shows two key findings: (1) the Refusal Index
 321 conceptualizes and captures intrinsic knowledge-aware refusal ability through an *accuracy-refusal*
 322 *curve*, and (2) the two-pass evaluation returns consistent RI regardless of a model’s refusal rate.

323 **RI Measures Knowledge-aware Refusal with Accuracy-Refusal Curve.** An accuracy-refusal curve
 324 quantifies knowledge-aware refusal by plotting correct answer rate against refusal rate for a model

324 on the same dataset. This trade-off emerges because refusing uncertain questions reduces incorrect
 325 answers but simultaneously decreases correct answer numbers due to false refusals. Consequently,
 326 models face a trade-off between maintaining correct answers and avoiding incorrect ones. As shown
 327 in Figure 3, fixing any metric constant gives a unique iso-score curve in the accuracy–refusal plane,
 328 which describes the accuracy–refusal trade-off relationship assumed by the metric.

329 Iso-RI curves demonstrate two key advantages over heuristic metrics. First, they represent re-
 330 alistic accuracy–refusal trade-offs that match expected model behavior (see Figure 1, left). All
 331 iso-RI curves share the same endpoints: maximum correct answers when refusal rate equals
 332 zero, and zero correct answers when refusal rate equals one. Correct answer rate continu-
 333 ously decreases as refusal rate increases. Second, RI focuses solely on curve convexity, re-
 334 maining independent of maximum correct answer rates and refusal rates. This design allows
 335 RI to capture how effectively a model preserves correct answers by minimizing false refusals.
 336

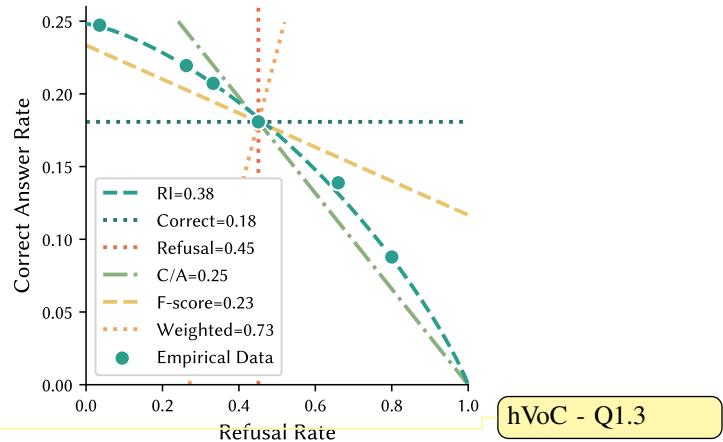
337 For example, when two models have identical maxi-
 338 mum correct answer numbers, the model with higher
 339 RI will retain more correct answers at any given re-
 340 fusional rate. The mathematical derivation of these prop-
 341 erties is provided in Section E. However, heuristic
 342 metrics fail to capture this distinction, instead im-
 343 posing linear accuracy–refusal relationships at fixed
 344 scores. Overall, the Refusal Index measures rank cali-
 345 bration in refusal decisions rather than simply reward-
 346 ing higher accuracy or lower refusal rates, making
 347 it distinct from existing metrics. **For an empirical**
 348 **view of these curves across multiple models and**
 349 **refusal prompts, Section F visualizes iso-RI contours**
 350 **together with observed accuracy–refusal points.**

351 RI remains consistent across different refusal 352 rates.

353 We then empirically validate RI by testing
 354 its consistency across varying refusal rates. We use 4
 355 system prompts described in Section 4.1 that progres-
 356 sively encourage higher refusal tendency, inducing
 357 different refusal rates when applied to the same model
 358 on the SimpleQA dataset. Complete results for all
 359 models on SimpleQA are provided in Section G. RI demon-
 360 strates high stability across different refusal
 361 rates while heuristic metrics show substantial variation. Table 2 shows that RI exhibits approxi-
 362 mately 70% lower variability than heuristic metrics. This stability suggests that prompt-induced changes
 363 in refusal rate shift the refusal probability distribution without altering the underlying correlation
 364 between refusal probability and error probability. In the Section D, we provide additional validation
 365 through goodness-of-fit tests for the Gaussian copula assumption.

366 4.3 ALIGNMENT WITH CALIBRATION METHODS

367 **RI is highly consistent with sampling-based calibration methods.** A potential concern arises
 368 because RI is defined as rank correlation between refusal probability and error probability, yet
 369 the two-pass evaluation may not faithfully capture this correlation. We address this concern by
 370 comparing RI values with AUROC scores computed using P(Answering) as an uncertainty estimation
 371 method, following Wei et al. (2024a). Specifically, we compute P(Answering) by sampling 100 times
 372 from each question under temperature=1, then setting the prediction probability to $1 - N_{\text{refusal}}/N$,
 373 where N_{refusal}/N is the ratio of refusal answers in the 100 generations. We then compute AUROC
 374 scores between P(Answering) and correctness labels. AUROC with P(Answering) provides a fair
 375 comparison because it shares RI’s uncertainty definition, measuring only the discriminative ability
 376 of refusal as a rank-calibration metric, while P(Answering) directly estimates prediction probability
 377 for model refusals. **See Appendix L for a complementary reliability-diagram comparison with**
linear-probe and APRICOT-style calibrators, and for Table 8, which summarizes representative
confidence-based methods and RI in terms of bias and computational cost. While there exist other
 378 calibration metrics like ECE, Brier Score, and various uncertainty estimation methods, AUROC with
 379 P(Answering) serves as a good reference for validating Refusal Index. RI demonstrates the strongest



375 Figure 3: Comparison of factuality met-
 376 rics with iso-score accuracy–refusal trade-off
 377 curves. C/A, F, and W correspond to Correct
 378 / Attempted, F-score, and Weighted score, re-
 379 spectively. Empirical data are from Qwen2.5-
 380 72B on SimpleQA.

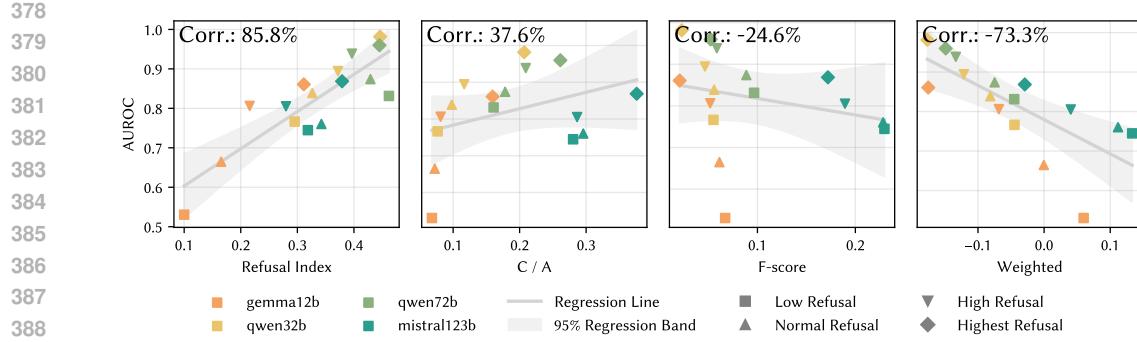


Figure 4: Correlation between factuality metrics and AUROC with P(Answering) on SimpleQA. RI shows the highest positive correlation with AUROC while being much cheaper to compute.

positive correlation with AUROC at 85%, outperforming all other evaluated metrics (Figure 4). This high agreement confirms that RI accurately reflects the correlation between refusal probability and error probability. Additionally, RI requires much lower computational overhead than estimating P(Answering) through multiple sampling.

y9ka - W4

4.4 MODEL RANKING STABILITY

We examine whether RI consistently measures knowledge-aware refusal across different models and datasets by analyzing model ranking stability. Ranking stability measures whether RI produces consistent model rankings across different datasets and evaluation settings. Higher ranking stability indicates that a metric captures robust, discriminative model properties. We calculate Kendall’s W (overall ranking agreement) and Winner Entropy (top-1 consistency) across 8 evaluation settings: 4 refusal-varying evaluations on SimpleQA plus 4 hallucination benchmarks. Because correct answer rate and refusal rate already provide high ranking stability on their own, we need to filter out their monotonic effects to isolate ranking stability of accuracy-refusal trade-off. Specifically, we perform isotonic regression on correct answer rate or refusal rate across different setups for each model, then remove the regressed values from each metric. These residuals represent metric components that cannot be explained by correct answer rate or refusal rate alone. We then calculate Kendall’s W and Winner Entropy on these residuals. We provide detailed procedures in Section K.

RI provides stable model rankings independent of accuracy and refusal rate. RI maintains high ranking stability when removing monotonic effects of correct answer rate or refusal rate, while heuristic metrics degrade to near-random stability (Table 3). Heuristic metrics like F-score and Weighted achieve strong ranking stability initially, but their Kendall’s W and Winner Entropy drop dramatically after removing monotonic effects from correct answer rate or refusal rate. This pattern reveals that heuristic metrics derive their ranking stability primarily from correct answer rate or refusal rate rather than the relationship between them. However, RI retains most of its ranking stability after removing these effects, demonstrating that it captures intrinsic knowledge-aware refusal properties that persist across different evaluation settings.

y9ka - Q8

Table 3: Ranking stability across different evaluation settings. –Correct and –Refusal show results after removing monotonic effects of correct answer rate and refusal rate with isotonic regression. –Both removes both correctness and refusal rates with additive isotonic regression.

Metric	Kendall’s $W \uparrow$				Winner Entropy \downarrow			
	Default	–Correct	–Refusal	–Both	Default	–Correct	–Refusal	–Both
Random Value	0.25	0.25	0.25	0.25	0.61	0.61	0.61	0.61
Correct Answer Rate	0.87	0.00	0.48	0.39	0.00	1.00	0.48	1.00
Refusal Rate	0.86	0.44	0.00	0.30	0.18	0.61	1.00	1.00
C / A	0.69	0.63	0.40	0.37	0.33	0.61	0.48	0.61
F-score	0.90	0.10	0.48	0.39	0.00	0.18	0.48	0.52
Weighted	0.87	0.60	0.25	0.32	0.33	0.33	0.37	0.61
RI	0.47	0.50	0.35	0.49	0.47	0.33	0.61	0.37

432 5 DISCUSSION

433 **Does prompting models to be more cautious mitigate miscalibration?** Our results show that
 434 prompting strategies have limited impact on knowledge-aware refusal capabilities. LLMs are no-
 435 torious for overconfidence, answering all questions by default even when they lack knowledge.
 436 Instructing models to reduce confidence and refuse more questions might seem to help this problem,
 437 but our RI analysis reveals otherwise. Table 2 shows that while increasing refusal rates improves the
 438 correct answer rate in answered questions (increasing C/A), RI remain stable and far from perfect.
 439 This means that, even when a model’s refusal rate matches its error rate (eliminating systematic bias),
 440 a significant gap persists between actual refusal decisions and perfect refusal decisions. RI quantifies
 441 this gap independent of specific refusal rates, providing a stable measure across different prompting
 442 strategies.

443 **What factors lead to better**
 444 **knowledge-aware refusal?** We

445 find that model family is the
 446 strongest predictor of knowledge-
 447 aware refusal ability, surpass-
 448 ing traditional factors like size
 449 and accuracy. We found no
 450 strong correlation between RI
 451 and model parameter sizes, accu-
 452 racy, or refusal rates within our
 453 tested models. Figure 5 plots the
 454 relationship between correct an-
 455 swer rate in SimpleQA and aver-
 456 age RI scores, with a regression
 457 line showing the expected rela-
 458 tionship. The correct answer rate
 459 shows only $R^2 = 0.235$ corre-
 460 lation with Refusal Index, indicating that higher factual accuracy does not necessarily improve
 461 knowledge-aware refusals. Notably, model family strongly predicts RI performance. Claude and
 462 Qwen models (except Qwen 235B) consistently perform above the regression line, demon-
 463 strating superior knowledge-aware refusal abilities. In contrast, all Gemini, GPT-4.1, and GLM-4.5 models
 464 fall below the regression line. Specifically, Claude models achieve the highest RI scores across both
 465 Claude-3.5 Haiku and Claude-4 Sonnet variants. These findings suggest that training pipelines and
 466 data distributions used by different model providers play a more critical role in knowledge-aware
 467 refusals than model scale or general accuracy.

468 **Is a model’s refusal ability af-**
 469 **fected by context?** We find
 470 that ground truth availability
 471 in context significantly impacts
 472 knowledge-aware refusal perfor-
 473 mance, with models struggling
 474 most when ground truth is un-
 475 available. We expand RI eval-
 476 uation to realistic settings where
 477 models generate answers con-
 478 ditioned on grounding context
 479 with FaithEval. Table 4 presents
 480 four scenarios testing different
 481 aspects of refusal ability: **PreciseWiki** requires models to recall information from training data;
 482 **Counterfactual** tests models’ ability to avoid hallucinating from misleading context; **Inconsistency**
 483 provides conflicting information requiring refusal; and **Unanswerable** offers no contextual answers.
 484 RI values for PreciseWiki are relatively close to those of SimpleQA, and models demonstrate strong
 485 ability to identify and avoid counterfactual context. However, when ground truth becomes unavailable
 (Inconsistency and Unanswerable scenarios), models exhibit substantially worse knowledge-aware
 refusal. This pattern suggests that knowledge-aware refusal relies on partial information about

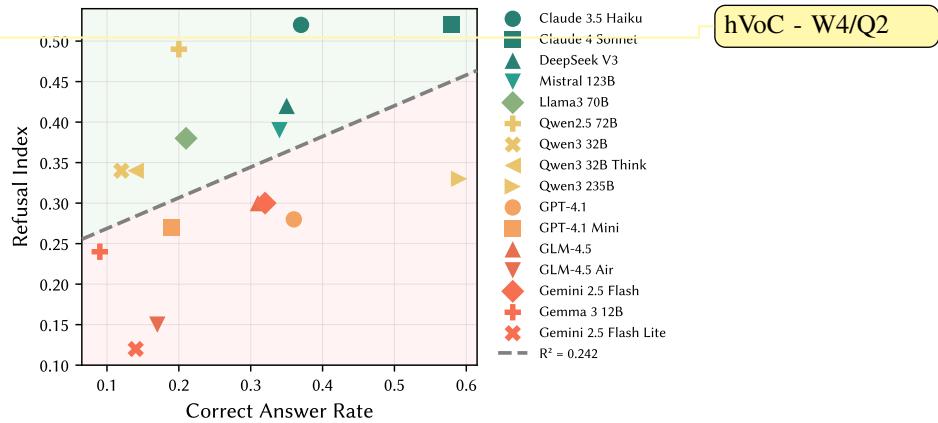


Figure 5: Scatter plot of Refusal Index vs. Correct Answer Rate.

Table 4: Refusal Index results on hallucination benchmarks.

Model	Truth Available		Truth Unavailable	
	Precise-Wiki	Counterfactual	Inconsistency	Unanswerable
Gemma-3-12b	0.36	0.56	0.22	0.12
Qwen3-32B	0.48	0.60	0.27	0.24
Qwen2.5-72B	0.54	0.56	0.22	0.40
Llama-3.1-70B	0.52	0.70	0.17	0.31
Mistral-Large	0.50	0.38	0.34	0.52
Average	0.48	0.56	0.24	0.32

486 answers from training data or context, and models make degraded refusal decisions when answers
 487 never appear in their provided context.

488 In summary, these findings demonstrate that RI captures an essential dimension of model reliability
 489 that is absent from existing factuality metrics. While current factuality evaluation and calibration
 490 studies show promising results in improving model accuracy and calibration (Kadavath et al., 2022b),
 491 RI reveals a different picture. Our results highlight the need to incorporate knowledge-aware refusal
 492 evaluation for comprehensive factuality assessment. We also provide a detailed discussion of the
 493 limitations of RI in Section A.

495 6 RELATED WORK

496 **Factuality evaluation of LLMs.** Factuality evaluation measures an LLM’s ability to generate
 497 correct answers. Previous methods compare LLM responses against external sources to assess
 498 factual correctness (Wei et al., 2024a; Min et al., 2023; Kwiatkowski et al., 2019). Many factuality
 499 evaluations focus on measuring hallucination, where models generate answers that contradict available
 500 information (Bang et al., 2025). Recent work in factuality evaluation recognizes that ground truth
 501 may not always be available to the model (Jing et al., 2025). Some works improve factuality by
 502 training models to refuse questions beyond their knowledge boundaries (Cao, 2024; Xu et al., 2024;
 503 Ouyang et al., 2022). Our metric evaluates calibration through refusal behavior rather than targeting
 504 hallucination rate directly.

505 **Calibration evaluation on black-box models.** Calibration measures the alignment between a
 506 model’s output probability and its actual probability of being correct (Guo et al., 2017). Calibration
 507 serves as a valuable factuality metric because it quantifies a model’s self-awareness of its own
 508 knowledge (Kadavath et al., 2022a; Yin et al., 2023a; Agrawal et al., 2023). Estimating calibration for
 509 black-box LLMs requires inferring uncertainty from text outputs. Previous works propose semantic
 510 similarity measures (Kuhn et al., 2023; Farquhar et al., 2024) or auxiliary models (Ulmer et al.,
 511 2024a) to estimate uncertainty, producing error-based or rank-based calibration metrics (Huang
 512 et al., 2024a). These methods require training a separate calibrator for each model, making them
 513 computationally expensive and model-dependent. Our metric measures the correlation between
 514 uncertainty and difficulty, representing a form of rank-based calibration. Because we do not estimate
 515 uncertainty directly, our approach is lightweight.

516 7 CONCLUSION

517 We propose Refusal Index (RI), a novel metric that measures LLMs’ knowledge-aware refusal
 518 ability through the correlation between refusal decisions and answer incorrectness, addressing critical
 519 limitations of existing factuality evaluation methods. Our two-pass evaluation framework provides
 520 a practical and lightweight approach to measure RI, enabling more reliable model comparisons
 521 independent of accuracy or refusal rate. This work opens new directions for developing better-
 522 calibrated AI systems and provides a foundation for evaluating self-knowledge in LLMs.

524 ETHIC STATEMENT

525 This work introduces the Refusal Index to measure knowledge-aware refusal in Large Language
 526 Models. Our research uses publicly available datasets (SimpleQA, PreciseWikiQA, FaithEval) and
 527 model APIs under their respective terms of service, with all evaluations conducted on established
 528 benchmarks without introducing personally identifiable information. While our metric could theoreti-
 529 cally inform strategies to manipulate model refusal behavior, we emphasize its intended use for safety
 530 evaluation and model development rather than adversarial exploitation. We encourage practitioners to
 531 integrate knowledge-aware refusal assessment alongside traditional accuracy metrics when deploying
 532 LLMs in factual question-answering systems, particularly in domains where incorrect information
 533 could have significant consequences.

534 REPRODUCIBILITY STATEMENT

535 There are mainly three suites of experiments needed for reproducing all of our results in the paper:
 536 computing RI with two-pass evaluation, evaluating RI with different refusal rates, and computing
 537 baseline metrics. For the first RI evaluation experiment, we have detailed the model scope, decoding
 538 settings and datasets used in the Section 4.1. We also provide full prompts in the Section B. All
 539 models and datasets we used are publicly available on Hugging Face. For computing RI, we have

540 provided the Python code snippet for computing RI from correct answer rates and refusal rates
 541 in the Section J. To reproduce our results of RI with different refusal rates, we have detailed the
 542 full prompts we used to induce different refusal rates in the Section B. For computing baseline
 543 metrics, we give formulas of all baseline metrics in the table and describe the process to compute
 544 AUROC with P(answer) in the Section 4.1. In summary, reproducing all of our results is relatively
 545 straightforward. We additionally provide source code for running and evaluating all metrics in the
 546 supplementary materials.

547

548 REFERENCES

549

550 Ayush Agrawal, Mirac Suzgun, Lester Mackey, and Adam Kalai. Do language models know when
 551 they’re hallucinating references? In *Proceedings of the 6th ACM Workshop on AI for Sci. and*
 552 *Open Source*, 2023.

553 Anthropic. Introducing computer use, a new claudie 3.5 sonnet, and claudie 3.5 haiku. <https://www.anthropic.com/news/3-5-models-and-computer-use>, 2024.

554 Anthropic. Claude sonnet 4 and claudie opus 4. <https://www.anthropic.com/claudie>,
 555 2025.

556 Yejin Bang, Ziwei Ji, Alan Schelten, Anthony Hartshorn, Tara Fowler, Cheng Zhang, Nicola Can-
 557 cedda, and Pascale Fung. HalluLens: LLM Hallucination Benchmark, 2025.

558 Lang Cao. Learn to refuse: Making large language models more controllable and reliable through
 559 knowledge scope limitation and refusal mechanism. In *Proceedings of the 2024 Conference on*
 560 *Empirical Methods in Natural Language Processing*, 2024.

561 Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
 562 Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
 563 thought for reasoning large language models, 2025. URL <https://arxiv.org/abs/2503.09567>.

564 Qinyuan Cheng, Tianxiang Sun, Xiangyang Liu, Wenwei Zhang, Zhangyue Yin, Shimin Li, Linyang
 565 Li, Zhengfu He, Kai Chen, and Xipeng Qiu. Can ai assistants know what they don’t know?, 2024.
 566 URL <https://arxiv.org/abs/2401.13275>.

567 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, et al. Gemini 2.5: Pushing the frontier with
 568 advanced reasoning, multimodality, long context, and next generation agentic capabilities. *arXiv*
 569 *preprint arXiv:2507.06261*, 2025.

570 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, et al.
 571 Deepseek-v3 technical report, 2024. URL <https://arxiv.org/abs/2412.19437>.

572 Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, Yarin Gal, and et al. Detecting hallucinations in
 573 large language models using semantic entropy. *Nature*, 630:625–630, 2024.

574 Gemma Team. Gemma 3 technical report, 2025. URL <https://arxiv.org/abs/2503.19786>. arXiv:2503.19786v1 [cs.CL].

575 GLM-4.5 Team, Aohan Zeng, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation models.
 576 *arXiv preprint arXiv:2508.06471*, 2025.

577 Aaron Grattafiori et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.

578 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
 579 networks. In *Proceedings of the 34th International Conference on Machine Learning*, 2017.

580 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
 581 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination in large
 582 language models: Principles, taxonomy, challenges, and open questions. *ACM Transactions on*
 583 *Information Systems*, 43(2):1–55, January 2025. ISSN 1558-2868. doi: 10.1145/3703155. URL
 584 <http://dx.doi.org/10.1145/3703155>.

594 Xinmeng Huang, Shuo Li, Mengxin Yu, Matteo Sesia, Hamed Hassani, Insup Lee, Osbert Bastani,
 595 and Edgar Dobriban. Uncertainty in language models: Assessment through rank-calibration. *arXiv*
 596 *preprint arXiv:2404.03163*, 2024a.

597 Xinmeng Huang, Shuo Li, Mengxin Yu, Matteo Sesia, Hamed Hassani, Insup Lee, Osbert Bastani,
 598 and Edgar Dobriban. Uncertainty in language models: Assessment through rank-calibration. *arXiv*
 599 *preprint arXiv:2404.03163*, 2024b.

600 Liqiang Jing, Jingxuan Zuo, and Yue Zhang. Fine-grained and explainable factuality evaluation for
 601 multimodal summarization. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 602 2025.

603 Saurav Kadavath, Tom Conerly, Amanda Askell, and et al. Language models (mostly) know what
 604 they know. In *Findings of the Association for Computational Linguistics: EMNLP 2022*, 2022a.

605 Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas
 606 Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, Scott Johnston, Sheer El-Showk,
 607 Andy Jones, Nelson Elhage, Tristan Hume, Anna Chen, Yuntao Bai, Sam Bowman, Stanislav Fort,
 608 Deep Ganguli, Danny Hernandez, Josh Jacobson, Jackson Kernion, Shauna Kravec, Liane Lovitt,
 609 Kamal Ndousse, Catherine Olsson, Sam Ringer, Dario Amodei, Tom Brown, Jack Clark, Nicholas
 610 Joseph, Ben Mann, Sam McCandlish, Chris Olah, and Jared Kaplan. Language Models (Mostly)
 611 Know What They Know, 2022b.

612 Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, et al.
 613 Language models (mostly) know what they know. In *Findings of the Association for Computational
 614 Linguistics: EMNLP 2022*, 2022c.

615 Sanyam Kapoor, Nate Gruver, Manley Roberts, Katie Collins, Arka Pal, Umang Bhatt, Adrian
 616 Weller, Samuel Dooley, Micah Goldblum, and Andrew G Wilson. Large language models must be
 617 taught to know what they don't know. *Advances in Neural Information Processing Systems*, 37:
 618 85932–85972, 2024.

619 Maurice G Kendall and Alan Stuart. *The Advanced Theory of Statistics, Volume 2: Inference and
 620 Relationship*. Griffin, London, 4th edition, 1979.

621 Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances
 622 for uncertainty estimation in natural language generation. In *Proceedings of the International
 623 Conference on Learning Representations*, 2023.

624 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
 625 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
 626 Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
 627 Petrov. Natural questions: A benchmark for question answering research. *Transactions of the
 628 Association for Computational Linguistics*, 7:452–466, 2019. doi: 10.1162/tacl_a_00276. URL
 629 <https://aclanthology.org/Q19-1026>.

630 Kai Lin, Shizhe Diao, Yanzhuo Lin, Yilun Xu, Jiamou Liu, Li Yuan, Sen Yang, and Xu Sun.
 631 Legalagentbench: Evaluating llm agents in legal domain. *arXiv preprint arXiv:2412.17259*, 2024.
 632 doi: 10.48550/arXiv.2412.17259.

633 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
 634 falsehoods, 2022. URL <https://arxiv.org/abs/2109.07958>.

635 Hamed Mahdavi, Alireza Hashemi, Majid Daliri, Pegah Mohammadipour, Alireza Farhadi, Samira
 636 Malek, Yekta Yazdanifard, Amir Khasahmadi, and Vasant Honavar. Brains vs. bytes: Evaluating
 637 llm proficiency in olympiad mathematics. *arXiv preprint arXiv:2504.01995*, 2025. doi: 10.48550/
 638 arXiv.2504.01995.

639 Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer,
 640 Luke Zettlemoyer, and Hannaneh Hajishirzi. FActScore: Fine-grained atomic evaluation of
 641 factual precision in long form text generation. In *Proceedings of the 2023 Conference on Empiri-
 642 cal Methods in Natural Language Processing*, pp. 12076–12100, Singapore, December 2023.
 643 Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.741. URL
 644 <https://aclanthology.org/2023.emnlp-main.741>.

648 Yifei Ming, Senthil Purushwarkam, Shrey Pandit, Zixuan Ke, Xuan-Phi Nguyen, Caiming Xiong,
 649 and Shafiq Joty. Faitheval: Can your language model stay faithful to context, even if "the moon is
 650 made of marshmallows", 2025. URL <https://arxiv.org/abs/2410.03727>.

651
 652 Mistral AI. Large enough. <https://mistral.ai/news/mistral-large-2407>, July
 653 2024. Blog post announcing Mistral Large 2.

654 Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabilities with supervised learning.
 655 *Proceedings of the 22nd international conference on Machine learning*, 2005.

656
 657 OpenAI. Introducing gpt-4.1 in the api. <https://openai.com/index/gpt-4-1/>, 2025.

658 Long Ouyang, Jeff Wu, Xu Jiang, and et al. Training language models to follow instructions with
 659 human feedback. In *Advances in Neural Information Processing Systems*, 2022.

660
 661 Qwen Team. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

662 Qwen Team, An Yang, et al. Qwen2.5 technical report, 2024. URL <https://arxiv.org/abs/2412.15115>.

663
 664 Dennis Ulmer, Martin Gubri, Hwaran Lee, Sangdoo Yun, and Seong Oh. Calibrating large language
 665 models using their generations only. In *Proceedings of the 62nd Annual Meeting of the Association
 666 for Computational Linguistics (Volume 1: Long Papers)*, pp. 15440–15459, 2024a.

667
 668 Dennis Ulmer, Martin Gubri, Hwaran Lee, Sangdoo Yun, and Seong Joon Oh. Calibrating large
 669 language models using their generations only. In *Proceedings of the 62nd Annual Meeting of the
 670 Association for Computational Linguistics (ACL)*, 2024b.

671
 672 Shansong Wang, Mingzhe Hu, Qiang Li, Mojtaba Safari, and Xiaofeng Yang. Capabilities of gpt-5
 673 on multimodal medical reasoning, 2025. URL <https://arxiv.org/abs/2508.08224>.

674 Jason Wei, Nguyen Karina, Hyung Won Chung, Yunxin Joy Jiao, Spencer Papay, Amelia Glaese,
 675 John Schulman, and William Fedus. Measuring short-form factuality in large language models,
 676 2024a. URL <https://arxiv.org/abs/2411.04368>.

677
 678 Jason Wei, Karina Nguyen, Hyung Won Chung, Joy Yunxin Jiao, Spencer Papay, Amelia Glaese,
 679 John Schulman, and William Fedus. Measuring short-form factuality in large language models.
 680 *arXiv preprint arXiv:2411.04368*, 2024b.

681 Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie Fu, Junxian He, and Bryan Hooi. Can llms
 682 express their uncertainty? an empirical evaluation of confidence elicitation in llms. *arXiv preprint
 683 arXiv:2306.13063*, 2023.

684 Hongshen Xu, Zichen Zhu, Situo Zhang, Da Ma, Shuai Fan, Lu Chen, and Kai Yu. Rejection
 685 improves reliability: Training llms to refuse unknown questions using rl from knowledge feedback.
 686 In *Proceedings of COLM 2024*, 2024.

687
 688 Xiangru Yin, Yelong Shen, Rohan Anil, and et al. Do large language models know what they don't
 689 know? In *Findings of the Association for Computational Linguistics: ACL 2023*, 2023a.

690 Zhangyue Yin, Qiushi Sun, Qipeng Guo, Jiawen Wu, Xipeng Qiu, and Xuanjing Huang. Do large
 691 language models know what they don't know? *arXiv preprint arXiv:2305.18153*, 2023b.

692
 693 Hanning Zhang, Shizhe Diao, Yong Lin, Yi R. Fung, Qing Lian, Xingyao Wang, Yangyi Chen, Heng
 694 Ji, and Tong Zhang. R-tuning: Instructing large language models to say 'i don't know', 2024. URL
 695 <https://arxiv.org/abs/2311.09677>.

696
 697
 698
 699
 700
 701

702 APPENDIX SUMMARY
703

704 This appendix provides essential background and technical details supporting our Refusal Index
705 evaluation framework. We first discuss the limitations of our approach in Section A, followed by
706 complete system prompts for the two-pass evaluation methodology in Section B. We then present
707 comprehensive experimental configurations in Section C and compare external calibration methods
708 in Section L. The theoretical foundations are established through validation of the Gaussian copula
709 assumption (Section D) and mathematical derivations of iso-RI curve properties (Section E). Complete
710 experimental results on SimpleQA are provided in Section G. Extended analyses include stability
711 assessments regarding sample size (Section H) and prompt design variations (Section I), along with a
712 ready-to-use Python implementation of our metric (Section J). We conclude with ranking stability
713 evaluation methodology (Section K) and an LLM usage declaration.

714
715 A LIMITATIONS OF REFUSAL INDEX
716

717 The Refusal Index has three key limitations that practitioners should consider. First, the two-pass
718 evaluation requires models capable of following instructions to either refuse questions or provide
719 forced answers, limiting applicability to relatively capable models. Second, our formulation targets
720 knowledge-aware refusal specifically and may not generalize to other refusal types or other applications,
721 such as safety-based refusals, or refusal behavior in non-factual tasks. Finally, knowledge-aware
722 refusal provides a relatively weak signal compared to metrics like correct answer rate, requiring larger
723 datasets for stable RI scores (Section H). Despite these limitations, RI offers a pragmatic metric for
724 an important capability that previous metrics overlooked.

725
726 B SYSTEM PROMPTS FOR TWO-PASS EVALUATION
727

728 We provide the complete system prompts used in our experiments to enable accurate reproduction.
729 These prompts use consistent formatting instructions to standardize outputs. We include in-context
730 learning examples to ensure stable model behavior and syntactically correct answers in the required
731 format.

732 **Second Pass System Prompt.** The second pass forces models to answer questions that were refused
733 in the first pass. We combine explicit instructions with in-context examples to enforce the output
734 format and minimize formatting errors. Most models rarely refuse when given such instructions, so
735 we simply instruct the model to always provide an answer. The in-context examples help the model
736 consistently produce the required XML-style tags. We show the complete second-pass system prompt
737 in Figure 6.

738 **First Pass System Prompt.** Our first-pass prompts use the same design and formatting as the
739 second-pass prompt. However, we make small, targeted changes to the instruction wording and the
740 mix of in-context examples to encourage appropriate refusal behavior. Figure 7 shows one complete
741 first-pass prompt variant. Other variants differ only in how strongly they encourage refusal and the
742 proportion of examples that show returning `<answer>UNANSWERED</answer>` when uncertain.

743 These first-pass variants differ from the second-pass prompt (Figure 6) in only two
744 ways: (1) how strongly the instruction encourages refusal and (2) the proportion of
745 `<answer>UNANSWERED</answer>` responses in the in-context examples. These changes control
746 the overall refusal tendency without otherwise changing the task.

747
748 C DETAILED EXPERIMENTAL SETUP
749

750 This section provides comprehensive details of our experimental methodology to enable reproduction
751 of our results.

752 **Model inference and generation settings.** To ensure fair comparison across different language
753 models, we maintained consistent decoding hyperparameters throughout our evaluation. Unless
754 explicitly stated otherwise, all models used nucleus sampling with temperature = 0.7, top-p = 0.95,
755 and a maximum generation length of 4096 tokens. We served all open-source models using vLLM

```

756 Second Pass Prompt
757
758 EXAMPLE 1
759 INPUT: In what year did Baleka Mbete become the Deputy President of South
760 Africa post-apartheid?
761 OUTPUT: <answer>2008</answer>
762
763 EXAMPLE 2
764 INPUT: Who was the mayor of Kathmandu who served from 1971 to 1976?
765 OUTPUT: <answer>Rajendra Man Suwal</answer>
766 [omitted for brevity]
767
768 EXAMPLE 10
769 INPUT: The book "Rhine" by Anselm Kiefer is from what year?
770 OUTPUT: <answer>1981</answer>
771 Reason through the following question and provide a brief answer in <
772 answer>...</answer> at the end. You always give an answer and you
773 never return <answer>UNANSWERED</answer>.
774 Question: {question}
775

```

Figure 6: Second-pass system prompt used to force answers on previously refused questions. The prompt standardizes output format and includes in-context examples to minimize formatting errors.

```

779 First Pass Prompt -- Highest Refusal Rate
780
781 EXAMPLE 1
782 INPUT: In what year did Baleka Mbete become the Deputy President of South
783 Africa post-apartheid?
784 OUTPUT: <answer>UNANSWERED</answer>
785 [omitted for brevity]
786
787 EXAMPLE 10
788 INPUT: The book "Rhine" by Anselm Kiefer is from what year?
789 OUTPUT: <answer>UNANSWERED</answer>
790 Reason through the following question and provide a brief answer in <
791 answer>...</answer> at the end. You are very cautious and need good
792 evidence before drawing conclusions. You prefer saying you don't know
793 by returning <answer>UNANSWERED</answer> rather than risking a wrong
794 answer.
795 Question: {question}
796

```

Figure 7: First-pass prompt variant that induces the highest refusal rate. The instruction and examples bias toward returning UNANSWERED when uncertain.

with eight NVIDIA A800 (80 GB) GPUs, while proprietary models were accessed through their official APIs using identical decoding parameters.

For Qwen3, we evaluated both “thinking” and “non-thinking” modes to assess the impact of chain-of-thought reasoning on knowledge-aware refusal. Qwen3 provides a soft switch mechanism: appending /think or /no_think to the prompt controls the generation of <think> reasoning blocks. Following the official Qwen documentation, we used /no_think to disable thinking mode for non-thinking evaluations.

810
811 Table 5: Summary of first-pass prompt variants. Only the refusal instruction and the proportion of
812 UNANSWERED responses differ across variants; all other elements match the second-pass prompt.
813 Ratios vary by model and dataset (see Section G); we report relative levels for brevity.

Type	Instruction	UNANSWERED ratio
Low Refusal	You only give an answer if you are confident; otherwise you return <answer>UNANSWERED</answer>.	0 / 10
Normal Refusal	You are cautious and may return UNANSWERED when unsure.	1 / 10
High Refusal	You make reasonable guesses from partial information but avoid speculation; return UNANSWERED if not very confident.	4 / 10
Highest Refusal	You are very cautious and prefer UNANSWERED rather than risking a wrong answer.	6 / 10

823
824 **Answer classification and automatic grading.** Our evaluation framework classifies model re-
825 sponses into either correct, incorrect, or refused to enable RI computation. We instruct each model
826 to generate responses with an <answer> tag containing either a factual answer or a refusal with
827 <answer>UNANSWERED</answer>. We first detect refusals by scanning for the exact substring
828 <answer>UNANSWERED</answer>. Remaining responses are classified using the same auto-
829 matic grading system as SimpleQA to ensure consistency with established benchmarks. We employ
830 the same model used in SimpleQA, GPT-4o-mini with default generation settings provided by OpenAI
831 as our automatic grader, which has demonstrated high reliability in SimpleQA evaluation. The grader
832 classifies each predicted answer as CORRECT, INCORRECT, or NOT_ATTEMPTED using the
833 prompt shown in Figure 8.

834 This LLM grader handles cases where models make refusals but did not return
835 <answer>UNANSWERED</answer>. In such cases, the grader classifies these responses as
836 NOT_ATTEMPTED based on the content of the predicted answer. In the second pass, we use the
837 same LLM grader but classify NOT_ATTEMPTED responses as INCORRECT, as we do not
838 expect refusals in the second pass. This LLM grader is used for all three evaluation scenarios.

839 **Benchmark datasets and evaluation scenarios.** Our evaluation encompasses three complementary
840 scenarios that test different aspects of knowledge-aware refusal: factual recall, extrinsic hallucination
841 detection, and intrinsic hallucination detection. This comprehensive approach ensures that RI captures
842 refusal behavior across diverse knowledge-intensive tasks.

843 **Factual question answering (SimpleQA):** We use SimpleQA to evaluate models' ability to refuse
844 unknown factual information. SimpleQA contains 4,326 carefully curated factoid questions spanning
845 science, geography, history, and popular culture. Each question has a single, indisputable answer
846 verified by two independent annotators with high inter-annotator agreement. This benchmark tests
847 whether models can appropriately refuse questions about facts they may not have learned during
848 training.

849 **Extrinsic hallucination detection (PreciseWikiQA):** We evaluate models' ability to refuse when
850 they cannot accurately recall information from their training data using PreciseWikiQA from the
851 HalluLens benchmark suite. PreciseWikiQA dynamically generates short factual questions from
852 Wikipedia snippets, assuming that Wikipedia content was included in model training. The evalua-
853 tion protocol first assesses model refusal decisions, then classifies non-refused answers as correct,
854 incorrect, or unverifiable using an LLM judge. We use the same LLM grader as in SimpleQA for this
855 task.

856 **Intrinsic hallucination detection (FaithEval):** We assess models' ability to refuse when provided
857 with insufficient or contradictory context using three tasks from FaithEval. This benchmark evaluates
858 knowledge-aware refusal in retrieval-augmented generation scenarios, constructed from ten diverse
859 QA datasets (SQuAD, NewsQA, TriviaQA, NaturalQuestions, SearchQA, HotpotQA, BioASQ,
860 DROP, RACE, and TextbookQA).

861 The three FaithEval tasks target different contextual challenges:

862 • **Unanswerable Context:** Context is modified to remove supporting evidence (2.4K examples
863 with >98% human-evaluator agreement on automatic checks)

```

864 Grade the predicted answer as CORRECT (A), INCORRECT (B), or
865 NOT_ATTEMPTED (C).
866
867 Grading Criteria:
868 - CORRECT: Answer contains all essential information from the gold target
869 ; may include hedging but no contradictions; capitalization/
870 punctuation/grammar don't matter.
871 - INCORRECT: Answer contradicts the gold target, even with hedging.
872 - NOT_ATTEMPTED: Answer lacks essential information but doesn't
873 contradict the gold target.
874
875 Rules:
876 - For numbers: Must be correct to the last significant figure of gold
877 target.
878 - Information implied by the question doesn't need repeating (e.g., "San
879 Francisco" is correct for "What city is OpenAI in?" when gold target
880 is "San Francisco, California").
881 - Minor typos in names are acceptable.
882 - Partial information for multi-part targets is acceptable if it directly
883 answers the question.
884 - If there is "UNKNOWN" or "UNANSWERED" or "NOT_ATTEMPTED" in the
885 predicted answer, you MUST grade as "C", no matter what the content
886 of the predicted answer is.
887
888 <Begin of Question>
889 {question}
890 <End of Question>
891
892 <Begin of Gold Target>
893 {answer}
894 <End of Gold Target>
895
896 <Begin of Predicted Answer>
897 {predicted_answer}
898 <End of Predicted Answer>
899
900 Return the letter "A", "B", or "C" with no other text. The grade is:
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2197
2198
2199
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2238
2239
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2248
2249
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2258
2259
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2278
2279
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2288
2289
2289
2290
2291
2292
2293
2294
2295
2296
2297
2297
2298
2298
2299
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2338
2339
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2348
2349
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2358
2359
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2368
2369
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2378
2379
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2388
2389
2389
2390
2391
2392
2393
2394
2395
2396
2397
2397
2398
2398
2399
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2438
2439
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2448
2449
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2478
2479
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2488
2489
2489
2490
2491
2492
2493
2494
2495
2496
2497
2497
2498
2498
2499
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2538
2539
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2548
2549
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2578
2579
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2588
2589
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2598
2599
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2648
2649
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2688
2689
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2698
2699
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2738
2739
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2748
2749
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2788
2789
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2798
2799
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2838
2839
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2848
2849
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2888
2889
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2938
2939
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2948
2949
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2969
2970
```

918
 919
 920
 921
 922 Table 6: Copula comparison on SimpleQA across model-prompt combinations (ties counted as 0.5).
 923 Left panel reports mean goodness-of-fit metrics across all combinations for each copula family. Right
 924 panel reports the fraction of combinations where the Gaussian copula outperforms each alternative.
 925
 926
 927

Goodness-of-Fit Metrics				Gaussian Win Rates			
Family	Log-likelihood	AIC	BIC	Versus	Log-likelihood	AIC	BIC
Gaussian	-1832.08	3666.16	3671.76	Student- <i>t</i>	1.000	1.000	1.000
Student- <i>t</i>	-1859.14	3722.27	3733.48	Clayton	0.676	0.647	0.647
Gumbel	-2086.86	4175.72	4181.32	Gumbel	0.632	0.618	0.618
Clayton	-2200.13	4402.26	4407.86				

928
 929 as alternatives, each capturing different forms of dependence structure. We evaluate which copula
 930 family best fits the observed refusal patterns across multiple models and prompts.
 931

932 **Evaluation Criteria.** We use two criteria to evaluate copula performance: goodness-of-fit and
 933 win-rate comparisons between the Gaussian copula and the alternatives.

934 Since the margins are fixed by construction in our two-pass evaluation setup, the natural goodness-of-
 935 fit criterion is the multinomial log-likelihood implied by each copula through the resulting 2×2 cell
 936 probabilities. Different copulas have varying numbers of parameters (e.g., Student-*t* has 2 parameters
 937 while Gaussian has only 1), so we must penalize model complexity to ensure fair comparison. We
 938 complement the raw log-likelihood with the Akaike Information Criterion (AIC) and Bayesian
 939 Information Criterion (BIC):
 940

$$AIC = 2k - 2\ell(\hat{\theta}), \quad (9)$$

$$BIC = k \log(n) - 2\ell(\hat{\theta}). \quad (10)$$

941 where k is the number of parameters, n is the sample size, and $\ell(\hat{\theta})$ is the maximized log-likelihood.
 942 These criteria penalize more complex dependence structures, providing a principled basis for model
 943 selection.

944 For the second criterion, we evaluate win rates by comparing how often the Gaussian copula out-
 945 performs each alternative across different model-prompt combinations. We compare the Gaussian
 946 copula with three standard alternatives that capture different forms of dependence. A Student-*t*
 947 copula adds a heavy-tail parameter to the Gaussian structure; a Clayton copula emphasizes lower-tail
 948 association and is asymmetric; and a Gumbel copula emphasizes upper-tail association and is also
 949 asymmetric. All candidates are fit by maximum likelihood with margins fixed at the empirical refusal
 950 and forced-answering error rates for each model-prompt combination. Win rates are computed across
 951 these individual model-prompt units to assess the relative performance of each copula family.
 952

953 **Experimental Setup.** We systematically evaluate and compare the maximum log-likelihood for each
 954 copula family on the SimpleQA dataset. Our evaluation covers all 16 models and 4 first-pass prompts
 955 used in the main evaluation (see Section G).
 956

957 For each model-prompt combination, we obtain a 2×2 contingency table with margins (r, μ)
 958 representing the refusal rate and error rate respectively. Each copula C maps these margins to
 959 cell probabilities $(p_{00}, p_{01}, p_{10}, p_{11})$, and we estimate the copula parameters by maximizing the
 960 multinomial likelihood of the observed counts as defined in Equation 11:
 961

$$\hat{\rho} = \arg \max_{\rho \in (-1, 1)} \ell(\rho), \quad (11)$$

$$\text{where } \ell(\rho) = \sum_{a,b \in \{0,1\}} n_{ab} \log p_{ab}(\rho).$$

962 This setup isolates the copula choice while maintaining consistency with the main evaluation frame-
 963 work.
 964

965 The results in Table 6 show that the Gaussian copula provides the strongest average fit. After
 966 accounting for complexity, it provides the best overall trade-off between parsimony and data fit.
 967 The Student-*t* copula, despite its additional heavy-tail parameter, does not improve the average log-
 968 likelihood and is uniformly worse once complexity penalties are applied. This aligns with intuition
 969

972 for 2×2 data with fixed margins, where heavy tails are weakly identified and tend to degenerate
 973 toward the Gaussian case. The asymmetric Clayton and Gumbel copulas trail substantially on both
 974 raw fit and information criteria, though they can win occasionally on individual units.

975 **Conclusion.** We choose the Gaussian copula for two primary reasons: (1) it provides the better
 976 average fit across model-prompt combinations as evidenced by superior log-likelihood, AIC, and
 977 BIC scores; and (2) it is the simplest and most interpretable copula family, requiring only a sin-
 978 gle correlation parameter while making minimal distributional assumptions about the dependence
 979 structure.

980 Consequently, the bivariate normal copula is both simple and sufficiently accurate for the refusal-
 981 incorrectness dependence considered here. Its combination of low assumptions and competitive fit
 982 makes it a natural default for estimating the Refusal Index.

y9ka - W6

984 E FIXED ENDPOINTS AND SHAPE OF ISO-RI CURVES

5y9a - W2

987 We derive two key properties of the accuracy-refusal curve used in the paper: (i) every iso-RI curve
 988 passes through the same two endpoints at refusal $r = 0$ and $r = 1$; and (ii) when the association
 989 between *wrongness* and the *refusal score* is stronger (i.e., larger RI), the curve is higher in its interior,
 990 creating more curvature relative to the straight line joining its endpoints.

991 Let (Z_R, Z_W) be jointly standard normal with correlation $\rho \in (-1, 1)$. Fix thresholds $\tau_r, \tau_w \in \mathbb{R}$
 992 and define

$$993 R := \mathbf{1}\{Z_R > \tau_r\} \quad (\text{refuse}), \quad W := \mathbf{1}\{Z_W > \tau_w\} \quad (\text{wrong under forced answering}).$$

994 The refusal rate is $r := \Pr(R = 1) = 1 - \Phi(\tau_r)$. The unconditional error rate is $\pi := \Pr(W = 1) =$
 995 $1 - \Phi(\tau_w)$, so the correct answer rate (at $r = 0$) is $\mu := 1 - \pi = \Phi(\tau_w)$, where Φ is the standard
 996 normal CDF. For a given $r \in (0, 1)$ we take $\tau_r = \Phi^{-1}(1 - r)$. We define the *correct answer rate* at
 997 refusal r as

$$998 a(r; \rho) := \Pr(\text{correct and answered}) = \Pr(W = 0, R = 0) = \Phi_2(\tau_r, \tau_w; \rho). \quad (12)$$

999 where $\Phi_2(\cdot, \cdot; \rho)$ is the bivariate standard normal CDF with correlation ρ . We orient the score so
 1000 that higher Z_R means “more refuse” for items more likely to be wrong (the intended setting for RI,
 1001 typically $\rho \geq 0$).

1002 **Proposition 1 (Endpoints).** For any ρ and τ_w ,

$$1004 a(0; \rho) = \mu \quad \text{and} \quad a(1; \rho) = 0.$$

1006 *Proof.* At $r = 0$ we have $\tau_r = +\infty$, hence $a(0; \rho) = \Phi_2(+\infty, \tau_w; \rho) = \Phi(\tau_w) = \mu$. At $r = 1$ we
 1007 have $\tau_r = -\infty$, hence $a(1; \rho) = \Phi_2(-\infty, \tau_w; \rho) = 0$. \square

1008 *Monotonicity in r .* Since $\tau_r = \Phi^{-1}(1 - r)$ is strictly decreasing in r and Φ_2 is increasing in each
 1009 argument, $a(r; \rho)$ is strictly decreasing in r for fixed ρ .

1010 This makes intuitive sense: at $r = 0$ we answer everything, so correct answer rate equals the model’s
 1011 overall accuracy μ . As $r \rightarrow 1$ we answer almost nothing, so the correct answer rate approaches 0.

1012 **Proposition 2 (Monotonicity in ρ).** Fix any interior refusal level $r \in (0, 1)$. Then $a(r; \rho)$ in
 1013 equation 12 is strictly increasing in ρ .

1015 *Proof.* With r fixed, τ_r is fixed, and $a(r; \rho) = \Phi_2(\tau_r, \tau_w; \rho)$. The standard identity $\frac{\partial}{\partial \rho} \Phi_2(x, y; \rho) =$
 1016 $\varphi_2(x, y; \rho) > 0$ implies $\frac{d}{d\rho} a(r; \rho) = \varphi_2(\tau_r, \tau_w; \rho) > 0$. \square

1018 **Corollary (Higher curves with higher RI).** All accuracy-refusal curves share endpoints $(r, a) =$
 1019 $(0, \mu)$ and $(1, 0)$ by Proposition 1. If $\rho_2 > \rho_1$ (i.e., higher RI), then by Proposition 2, $a(r; \rho_2) >$
 1020 $a(r; \rho_1)$ for every $r \in (0, 1)$. Thus the higher-RI curve lies strictly above the lower-RI curve
 1021 throughout the interior while meeting it at the endpoints, creating greater upward curvature relative to
 1022 the straight line between $(0, \mu)$ and $(1, 0)$.

1023 The intuition is straightforward: at a fixed refusal level, the key factor in equation 12 is the joint tail
 1024 probability $P_{11}(\rho)$. As ρ increases, wrong items and high-refusal items occur together more often,
 1025 making the kept (non-refused) set cleaner. This increases the correct answer rate at every interior r .
 Since the endpoints are fixed, the entire curve shifts upward.

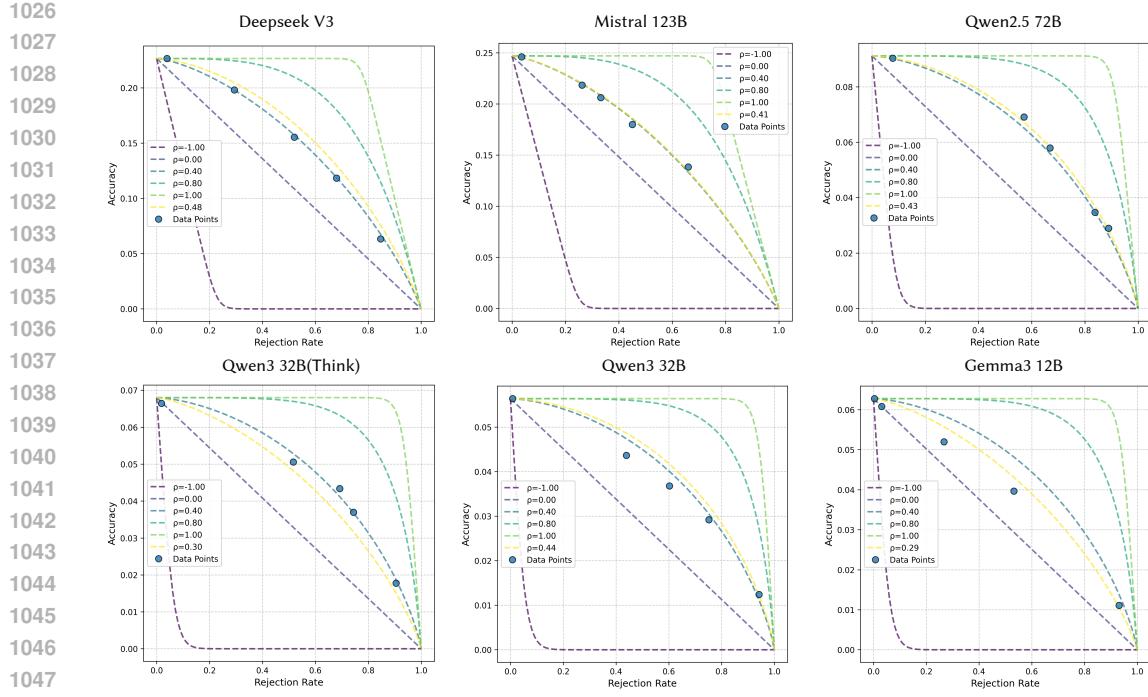


Figure 9: Extended iso-RI visualizations for six models on SimpleQA. Each panel plots empirical accuracy–refusal points from four refusal prompts (dots) together with iso-RI contours (background lines). Models whose points lie close to a single contour have stable Refusal Index across prompts, while widely spread points indicate less consistent refusal behaviour.

F EXTENDED ISO-RI VISUALIZATIONS AND FRONTIER MODELS

To complement the theoretical properties above, we provide extended iso-RI visualizations across multiple models. Figure 9 overlays empirical accuracy–refusal points from the four refusal prompts on top of iso-RI contours for six representative models: Gemma-3-12B, Qwen3-32B, Qwen3-32B-Think, Qwen2.5-72B, DeepSeek-V3-0324, and Mistral-123B. For each model, the four points trace out an accuracy–refusal trade-off curve whose curvature matches a single iso-RI contour when RI is stable, and deviates from it when the model’s refusal behaviour is less consistent. This visualization makes it easier to see which models preserve correct answers while increasing refusal rates and which ones lose many correct answers due to false refusals.

hVoC - Q1.3

We also update the frontier-model scatter plot in Figure 5 so that every point is annotated with the corresponding model name. This labeling lets readers directly identify which model families lie above or below the regression line relating RI to correct answer rate, clarifying how training pipelines and architectures influence knowledge-aware refusal.

G RESULTS ON SIMPLEQA

We provide metrics on all models on SimpleQA in Table 7, the 95% CI is computed by bootstrap with 1000 samples.

H IMPACT OF NUMBER OF QUESTIONS

The estimation of RI is derived from the accuracy and refusal rates of our two-pass evaluation. The stability of RI depends on the number of samples in the evaluation dataset. We assess the stability of RI by measuring its variance across subsets of the evaluation data. We create 50 randomly sampled subsets for various sample sizes (from 50 to 2000) and compute the coefficient of variation (CV) for each size, as shown in Figure 10.

1080
1081

Table 7: Results on SimpleQA with 95% CI.

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093

Model	Correct Answer Rate	Refusal	C / A	F-score	Weighted	Refusal Index
Gemma-3-12B	0.05 [0.04, 0.06]	0.16 [0.14, 0.17]	0.06 [0.05, 0.07]	0.06 [0.05, 0.07]	-0.79 [-0.81, -0.77]	0.25 [-0.07, 0.19]
Qwen2.5-72B	0.05 [0.04, 0.05]	0.74 [0.73, 0.75]	0.20 [0.18, 0.22]	0.07 [0.07, 0.08]	-0.21 [-0.22, -0.20]	0.49 [0.45, 0.53]
Qwen3-32B	0.03 [0.03, 0.03]	0.68 [0.67, 0.69]	0.12 [0.10, 0.15]	0.05 [0.04, 0.05]	-0.29 [-0.29, -0.28]	0.34 [0.28, 0.40]
Qwen3-32B-Think	0.04 [0.03, 0.04]	0.71 [0.70, 0.72]	0.14 [0.13, 0.16]	0.06 [0.05, 0.06]	-0.25 [-0.26, -0.24]	0.34 [0.29, 0.39]
Qwen3-235B	0.38 [0.37, 0.39]	0.36 [0.35, 0.37]	0.59 [0.58, 0.61]	0.45 [0.44, 0.46]	-0.27 [-0.28, -0.26]	0.33 [0.30, 0.37]
Mistral-123B	0.19 [0.18, 0.19]	0.43 [0.42, 0.44]	0.34 [0.32, 0.35]	0.23 [0.22, 0.24]	-0.39 [-0.40, -0.38]	0.39 [0.35, 0.42]
Llama-3.1-70B	0.03 [0.02, 0.04]	0.84 [0.83, 0.86]	0.21 [0.16, 0.26]	0.06 [0.04, 0.07]	-0.12 [-0.14, -0.11]	0.38 [0.28, 0.47]
GPT-4.1	0.34 [0.32, 0.37]	0.06 [0.05, 0.07]	0.36 [0.34, 0.39]	0.35 [0.33, 0.38]	-0.60 [-0.62, -0.58]	0.28 [0.19, 0.37]
GPT-4.1-mini	0.13 [0.12, 0.15]	0.31 [0.29, 0.33]	0.19 [0.17, 0.21]	0.16 [0.14, 0.17]	-0.56 [-0.58, -0.54]	0.27 [0.19, 0.34]
Claude-Sonnet-4	0.09 [0.07, 0.10]	0.85 [0.83, 0.86]	0.58 [0.52, 0.63]	0.15 [0.13, 0.17]	-0.06 [-0.07, -0.05]	0.52 [0.45, 0.60]
Claude-3.5-Haiku	0.02 [0.02, 0.03]	0.93 [0.92, 0.94]	0.37 [0.29, 0.45]	0.05 [0.03, 0.06]	-0.04 [-0.05, -0.03]	0.52 [0.41, 0.63]
Gemini-2.5-Flash	0.19 [0.17, 0.20]	0.42 [0.39, 0.44]	0.32 [0.29, 0.35]	0.24 [0.22, 0.26]	-0.40 [-0.42, -0.37]	0.30 [0.23, 0.36]
Gemini-2.5-Flash-Lite	0.08 [0.07, 0.09]	0.41 [0.38, 0.43]	0.14 [0.12, 0.16]	0.10 [0.09, 0.12]	-0.51 [-0.53, -0.49]	0.12 [0.03, 0.20]
DeepSeek-V3-0324	0.16 [0.14, 0.17]	0.50 [0.48, 0.53]	0.32 [0.29, 0.35]	0.21 [0.19, 0.23]	-0.34 [-0.36, -0.32]	0.42 [0.36, 0.49]
GLM-4.5	0.06 [0.05, 0.08]	0.79 [0.77, 0.81]	0.31 [0.26, 0.35]	0.11 [0.09, 0.12]	-0.15 [-0.16, -0.13]	0.30 [0.22, 0.37]
GLM-4.5-Air	0.05 [0.04, 0.06]	0.71 [0.69, 0.73]	0.17 [0.14, 0.20]	0.08 [0.06, 0.09]	-0.24 [-0.26, -0.23]	0.15 [0.06, 0.23]

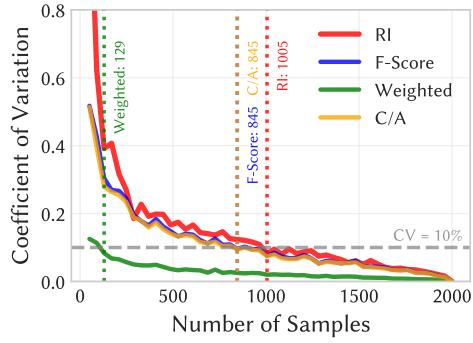
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113

Figure 10: Coefficient of variation of RI when evaluating on subsets of the full dataset.

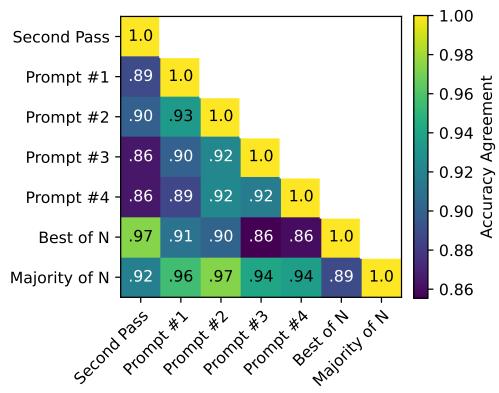


Figure 11: Accuracy agreement between different prompt strategies.

RI is less stable than other metrics with a small number of questions. However, its stability becomes comparable as the sample size increases. To achieve a CV of 0.1, RI requires about **25% more samples** than the C/A and F-score metrics. Consequently, a slightly larger number of samples is preferable for obtaining a stable RI estimate.

hVoC - Q1.2

1114
1115
1116
1117

I IMPACT OF PROMPT DESIGN

We examine how variations in prompt design affect the RI evaluation. Our experimental setup uses four distinct first-pass prompts, each with different few-shot examples and instructions, to induce varying refusal rates. For the second pass, a single, simpler prompt is used to compel the model to answer all previously refused questions. These prompts are designed to produce different refusal rates. However, we must verify that they do not introduce confounding effects on model accuracy, which would impact the RI calculation.

1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

We measure the accuracy agreement between pairs of prompt strategies to assess this. Agreement is calculated as the proportion of questions for which both prompts yielded the same correctness label, considering only the questions answered by both. The accuracy agreement between different first-pass prompts is consistently high (over 90%), as shown in Figure 11. This indicates that the choice of prompt strategy does not significantly alter the model’s underlying accuracy on the questions it chooses to answer. The high agreement involving the forced-answer (second-pass) prompt validates its use for effectively estimating the model’s baseline accuracy (μ).

1134 **J REFUSAL INDEX IMPLEMENTATION**
11351136 We provide a minimal Python code snippet for computing the Refusal Index (RI) using tetrachoric
1137 correlation. This code snippet demonstrates the calculation of RI from two-pass evaluation metrics as
1138 described in Section 3, and is shown in Figure 12.
1139

```

1140 # Refusal Index from two-pass evaluation metrics
1141 from math import log
1142 import numpy as np
1143 from scipy.stats import norm, multivariate_normal
1144 from scipy.optimize import minimize_scalar

1145 def RI(acc1: float, r: float, acc2: float, n: int = 2000) -> float:
1146     if r <= 0.0 or r >= 1.0:
1147         return 0.0
1148     mu = 1.0 - acc2 # wrong rate under forced answering
1149     acc_att = np.clip(acc1 / max(1e-12, 1.0 - r), 0.0, 1.0)
1150     mu_a = 1.0 - acc_att # wrong rate on attempted items
1151     mu_r = float(np.clip((mu - (1.0 - r) * mu_a) / r, 0.0, 1.0)) # wrong
1152     on_refused
1153     n_r = int(round(n * r)); n_a = n - n_r
1154     n11 = int(round(n_r * mu_r)); n10 = n_r - n11 # (R=1, W=1), (R=1, W=0)
1155     n01 = int(round(n_a * mu_a)); n00 = n_a - n01 # (R=0, W=1), (R=0, W=0)
1156     tau_r, tau_w = norm.ppf(1 - r), norm.ppf(1 - mu)

1157     def neg_ll(rho: float) -> float:
1158         rv = multivariate_normal(mean=[0, 0], cov=[[1, rho], [rho, 1]])
1159         p11 = 1 - norm.cdf(tau_r) - norm.cdf(tau_w) + rv.cdf([tau_r, tau_w])
1160         p10, p01, p00 = r - p11, mu - p11, 1 - r - mu + p11
1161         eps = 1e-12
1162         p11, p10, p01, p00 = [min(1 - eps, max(eps, p)) for p in (p11, p10,
1163         p01, p00)]
1164         return -(n11 * log(p11) + n10 * log(p10) + n01 * log(p01) + n00 *
1165             log(p00))

1166     rho = minimize_scalar(neg_ll, bounds=(-0.999, 0.999), method="bounded"
1167     ).x
1168     return 6 / np.pi * np.arcsin(rho / 2)
1169

```

1169 Figure 12: Minimal Python implementation of the Refusal Index estimator using maximum likelihood
1170 to fit the tetrachoric correlation implied by two-pass evaluation statistics.
11711172 The function takes three key parameters: `acc1` (accuracy on attempted questions in the first pass),
1173 `r` (refusal rate), and `acc2` (accuracy under forced answering in the second pass). The optional
1174 parameter `n` represents the total number of questions for statistical estimation. The implementation
1175 follows the mathematical framework described in Section 3, using maximum likelihood estimation to
1176 find the tetrachoric correlation coefficient that best explains the observed two-pass evaluation results.
11771178 **K RANKING STABILITY METRICS**
11791180 We use two complementary metrics to evaluate the stability of model rankings across different
1181 evaluation settings: Kendall’s W and Winner Entropy. These metrics capture different aspects of
1182 ranking consistency and are used in Table 3 to assess how reliably different factuality metrics rank
1183 models.
1184
1185
1186
1187

1188
1189

K.1 KENDALL’S W (COEFFICIENT OF CONCORDANCE)

1190
1191
1192

Kendall’s W measures the overall agreement among multiple rankings of the same set of items. It quantifies how consistently different evaluation settings (e.g., different refusal rates or benchmarks) rank the models.

1193
1194
1195

Given m evaluation settings ranking n models, let R_{ij} be the rank of model i in evaluation setting j . The sum of ranks for model i across all settings is:

1196
1197
1198

$$R_i = \sum_{j=1}^m R_{ij}$$

1199

Kendall’s W is defined as:

1200
1201
1202

$$W = \frac{12 \sum_{i=1}^n (R_i - \bar{R})^2}{m^2(n^3 - n)}.$$

1203
1204

where $\bar{R} = \frac{m(n+1)}{2}$ is the mean of the R_i values.

1205
1206
1207
1208
1209

Kendall’s W ranges from 0 to 1, where:

- $W = 1$ indicates perfect agreement among all rankings
- $W = 0$ indicates no agreement (rankings are essentially random)
- Higher values indicate stronger ranking consistency across evaluation settings

1210
1211
1212

In our evaluation, higher Kendall’s W values indicate that a metric produces more stable model rankings regardless of the specific evaluation conditions (e.g., different refusal prompts or datasets).

1213
1214

K.2 WINNER ENTROPY

1215
1216
1217

Winner Entropy measures the consistency of identifying the top-performing model across different evaluation settings. While Kendall’s W considers the entire ranking, Winner Entropy focuses specifically on which model ranks first.

1218
1219

Let p_i be the proportion of evaluation settings where model i ranks first. Winner Entropy is defined as:

1220
1221
1222

$$H_{\text{winner}} = - \sum_{i=1}^n p_i \log_n(p_i).$$

1223
1224

where we use base- n logarithm to normalize the entropy to the range $[0, 1]$.

1225
1226
1227
1228
1229

Winner Entropy interpretation:

- $H_{\text{winner}} = 0$ indicates perfect consistency (same model always ranks first)
- $H_{\text{winner}} = 1$ indicates maximum inconsistency (all models equally likely to rank first)
- Lower values indicate more consistent identification of the best model

1230
1231
1232

This metric is particularly important for practical applications where identifying the single best model is the primary concern, rather than the complete ranking.

1233
1234

K.3 APPLICATION IN OUR ANALYSIS

1235
1236
1237
1238
1239
1240
1241

In Table 3, we apply these metrics to evaluate how different factuality metrics rank models across 8 evaluation settings (4 refusal-varying evaluations on SimpleQA plus 4 hallucination benchmarks). To isolate the ranking stability attributable to accuracy-refusal trade-offs rather than simple accuracy or refusal rate differences, we remove monotonic effects using isotonic regression before computing these metrics. This ensures we measure genuine stability in how metrics capture knowledge-aware refusal rather than stability derived from consistent accuracy or refusal patterns.

1242 K.4 ISOTONIC REGRESSION PROCEDURE
12431244 To isolate the components of factuality metrics that cannot be explained by correct answer rate or
1245 refusal rate alone, we employ isotonic regression to remove monotonic effects from these baseline
1246 metrics. This procedure allows us to focus on how well each metric captures the intrinsic accuracy-
1247 refusal trade-off relationship.1248 **Individual Metric Regression** For each model i and factuality metric M , we have metric values
1249 $M_i^{(1)}, M_i^{(2)}, \dots, M_i^{(k)}$ across k evaluation settings. Similarly, we have corresponding correct answer
1250 rates $C_i^{(1)}, C_i^{(2)}, \dots, C_i^{(k)}$ and refusal rates $R_i^{(1)}, R_i^{(2)}, \dots, R_i^{(k)}$ for the same model across these
1251 settings.
12521253 To remove the monotonic effect of correct answer rate, we perform isotonic regression to find the
1254 isotonic function f_C that minimizes:

1255
$$\sum_{j=1}^k (M_i^{(j)} - f_C(C_i^{(j)}))^2$$

1256
1257

1258 subject to the constraint that f_C is non-decreasing (or non-increasing, depending on the expected
1259 monotonic relationship). The residual metric values after removing correct answer rate effects are:
1260

1261
$$M_i^{(j),-C} = M_i^{(j)} - f_C(C_i^{(j)})$$

1262

1263 Similarly, to remove refusal rate effects, we find isotonic function f_R and compute:

1264
$$M_i^{(j),-R} = M_i^{(j)} - f_R(R_i^{(j)})$$

1265
1266

1267 **Additive Isotonic Regression** To remove both correct answer rate and refusal rate effects simultaneously,
1268 we employ additive isotonic regression. This approach models the metric as the sum of
1269 monotonic functions of both variables plus a residual term:

1270
$$M_i^{(j)} = g_C(C_i^{(j)}) + g_R(R_i^{(j)}) + \epsilon_i^{(j)}$$

1271

1272 We find isotonic functions g_C and g_R that minimize:

1273
$$\sum_{j=1}^k (M_i^{(j)} - g_C(C_i^{(j)}) - g_R(R_i^{(j)}))^2$$

1274
1275
1276

1277 subject to monotonicity constraints on both g_C and g_R . This optimization is performed using coordinate
1278 descent, alternately optimizing g_C while holding g_R fixed, and vice versa, until convergence.
1279

1280 The residual metric values after removing both effects are:

1281
$$M_i^{(j),-Both} = M_i^{(j)} - g_C(C_i^{(j)}) - g_R(R_i^{(j)})$$

1282

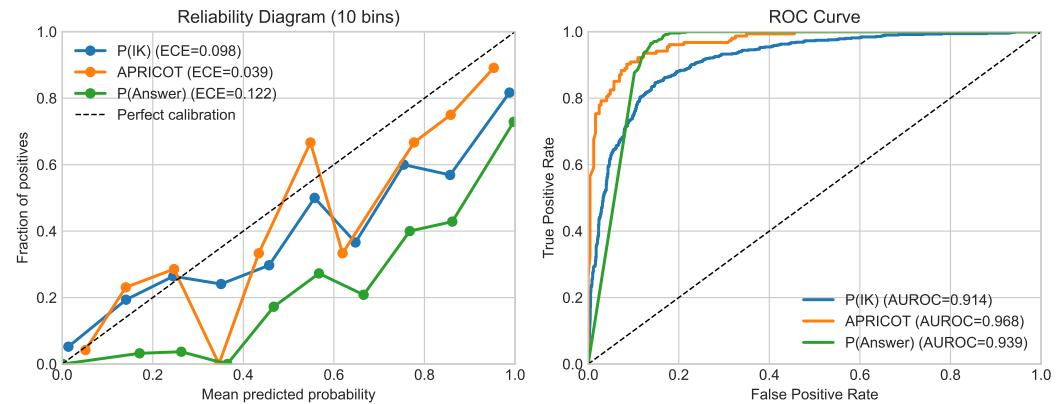
1283 These residuals represent the portion of each metric that cannot be explained by monotonic relationships
1284 with correct answer rate or refusal rate, allowing us to assess the intrinsic stability of how each
1285 metric captures knowledge-aware refusal properties. The ranking stability metrics (Kendall's W and
1286 Winner Entropy) are then computed on these residuals across all models and evaluation settings.
12871288 L COMPARISON WITH EXTERNAL CALIBRATION METHODS
12891290 Section 2 argues that external confidence calibrators—such as linear probes, auxiliary models, or
1291 sampling-based confidence—do not necessarily reflect the refusal decisions that a model actually
1292 makes. Here we provide a small ablation on Qwen3-32B to compare three representative confidence
1293 estimators on the same mixed factual QA set and relate them to the Refusal Index (RI).

1294 hVoC - W2/Q3

1295 y9ka - W5

1296
 1297 Table 8: Comparison of confidence-based calibration methods and Refusal Index (RI). N is the
 1298 number of evaluation questions, S is the number of samples per question, and N_{train} is the number of
 1299 training samples for auxiliary estimators.

Method	Typical calibration method(s)	Unbiased	Computational cost
Linear Probe	Train a linear classifier on hidden states	✗	$SN_{\text{train}}d$ probe training + N generations + N inferences
Black-box Estimator	Auxiliary classifier on output text	✗	Calibrator training on N_{train} samples + N generations + N inferences
Verbalized Confidence	Ask model to output numeric confidence	✗	N generations + N confidence-score generations
Sampling-based	Use refusal frequency to approximate refusal probability	✓	SN generations
Refusal Index (ours)	Two-pass evaluation, no auxiliary model	✓	$2N$ generations



1312
 1313 Figure 13: **Calibration comparison on Qwen3-32B.** Reliability diagrams (left, 10 bins, lower ECE
 1314 is better) and ROC curves (right, higher AUROC is better) for three confidence estimation methods:
 1315 a white-box linear probe $P(\text{IK})$ (Kadavath et al., 2022c), APRICOT (Ulmer et al., 2024b), and
 1316 sampling-based $P(\text{Answering})$ (Wei et al., 2024b).

1317
 1318 **Experimental setup.** We compare three representative calibration approaches. $P(\text{IK})$ represents
 1319 white-box methods, using a linear classifier trained on the model’s internal hidden states to predict
 1320 whether it knows the answer (Kadavath et al., 2022c). **APRICOT** represents auxiliary model-based
 1321 methods, estimating confidence by analyzing the model’s generated reasoning traces with a fine-tuned
 1322 external model (Ulmer et al., 2024b). $P(\text{Answering})$ represents sampling-based methods, estimating
 1323 confidence by measuring how frequently the model chooses to answer versus refuse across multiple
 1324 samples for the same question (Wei et al., 2024b). We evaluate all methods on the same held-out
 1325 questions to compare their calibration performance.

1326
 1327 **Observations.** Figure 13 shows that the three estimators agree on ranking (ROC curves with
 1328 $\text{AUROC} > 0.91$), but disagree strongly on calibration shape. The linear probe and APRICOT both
 1329 appear almost perfectly calibrated (ECE 0.098 and 0.039) and would suggest that Qwen3-32B is
 1330 very well calibrated. In contrast, $P(\text{Answering})$ exhibits a noticeably higher ECE (0.122) and a
 1331 reliability curve that drops below the diagonal at high predicted probabilities, revealing a clear
 1332 over-confidence bias in the high-confidence regime. This diagnosis matches the moderate RI of
 1333 Qwen3-32B on SimpleQA ($\text{RI} \approx 0.34$; see Table 7), which indicates substantial room for improving
 1334 knowledge-aware refusal.

1335
 1336 Taken together with prior work showing that verbalized confidence, sampling-based confidence,
 1337 and auxiliary calibrators can give inconsistent answers about the same model (Wei et al., 2024b;
 1338 Huang et al., 2024b), these results highlight two points: (1) different external calibrators can hide or

1350 expose over-confidence depending on how they are constructed, and (2) the sampling-based method
 1351 that directly uses refusal frequency is the only one whose calibration profile aligns with RI, but it
 1352 is substantially more expensive to compute. RI therefore provides a cheaper, calibrator-free way
 1353 to capture the same over-confidence behaviour, using only two standard evaluation passes without
 1354 additional probes, auxiliary models, or heavy sampling.

y9ka - W5

1355

1356 M LLMs USAGE STATEMENT

1357

1358 During the preparation of this paper, we used LLMs (e.g., ChatGPT) for limited assistance with: (1)
 1359 proofreading and suggesting edits for grammar issues; (2) formatting LaTeX tables from raw data;
 1360 (3) generating boilerplate code for dataset loading, logging, and plotting; and (4) identifying relevant
 1361 prior work during literature review. **LLMs were not used for generating paper content, developing**
 1362 **ideas or experimental designs, or implementing core evaluation code beyond standard auto-**
 1363 **completion. All research contributions, experimental results, and written content are the**
 1364 **authors' original work.**

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403