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Abstract

Computational histopathology has made significant strides in the past few years, slowly
getting closer to clinical adoption. One area of benefit would be the automatic generation
of diagnostic reports from H&E-stained whole slide images which would further increase
the efficiency of the pathologists’ routine diagnostic workflows. In this study, we compiled
a dataset (PatchGastricADC22) of histopathological captions of stomach adenocarcinoma
endoscopic biopsy specimens, which we extracted from diagnostic reports and paired with
patches extracted from the associated whole slide images. The dataset contains a variety of
gastric adenocarcinoma subtypes. We trained a baseline attention-based model to predict
the captions from features extracted from the patches and obtained promising results. We
make the captioned dataset of 262K patches publicly available.
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1. Introduction

Deep learning has enabled a large number of applications and advances in computational
histopathology encompassing tasks such as classification, cell segmentation, and outcome
prediction (Hou et al., 2016; Madabhushi and Lee, 2016; Litjens et al., 2016; Kraus et al.,
2016; Korbar et al., 2017; Luo et al., 2017; Coudray et al., 2018; Wei et al., 2019; Gertych
et al., 2019; Bejnordi et al., 2017; Saltz et al., 2018; Campanella et al., 2019); and it is slowly
getting closer to adoption in clinical workflows. While the detection and classification of
cancer is of high importance, pathologists typically write an associated diagnostic report
based on their findings from viewing Hematoxylin and Eosin (H&E) stained slides. The
automatic generation of diagnostic reports could make the prediction outputs from models
more amenable to interpretation, and provide the pathologists more information in their
decision making process.

Over the past few years there has been rapid progress in the development of vision
language models with architectures based on Recurrent Neural Networks (RNNs) or more
recent transformers (Mao et al., 2014; Xu et al., 2015; Li et al., 2019; Huang et al., 2019;
Cornia et al., 2020; Wang et al., 2021). See Stefanini et al. (2021) for a review on image
captioning. The typical architecture with RNN-based models involves a CNN for the feature
extraction and an RNN as a decoder for generating the text.

In the medical context, the generation of reports in radiology have been investigated
by several works (Shin et al., 2016; Jing et al., 2017). In particular, for histopathology,
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Zhang et al. (2017) aimed at generating structured pathology reports based on a bladder
cancer image dataset consisting of only 1,000 500x500 patches extracted from a cohort of
32 patients. More recently, Gamper and Rajpoot (2021) aimed at obtaining general image
features from pre-training on image captions using histopathology images extracted from
textbooks and compiled in the ARCH dataset; however, the ARCH dataset consists of im-
ages extracted from textbooks, which are of mixed quality, magnifications, and resolutions.
In our case, we aimed to specifically create a curated dataset of gastric adenocarcinoma
cases of consistent quality and resolution extracted directly from WSIs.

In this paper, we aimed at compiling a large dataset (PatchGastricADC22) consisting of
262,777 patches extracted from 991 Whole Slide Images (WSI) of H&E-stained gastric ade-
nocarcinoma specimens with associated diagnostic captions extracted directly from existing
medical reports. This roughly approximates the real-world setting where a single diagnos-
tic report is associated with a large WSI. In addition, we trained a few baseline attention
models for the prediction of captions from the associated patches. Dataset and code avail-
able at https://zenodo.org/record/6021442 and https://github.com/masatsuneki/

histopathology-image-caption, respectively.

2. Dataset

We obtained a dataset of 991 H&E-stained slides from distinct patients from the surgical
pathology files of International University of Health and Welfare, Mita Hospital (Tokyo,
Japan). The slides were digitised into WSIs at a magnification of x20. All of collected
cases were diagnosed as having adenocarcinoma and were reviewed by three pathologists
to confirm the diagnoses. We randomly selected the cases so as to reflect more closely the
clinical distribution of adenocarcinoma subtypes. We then extracted the histopathological
captions from their corresponding diagnostic reports. The reports were translated from
Japanese into English by two expert pathologists. The vocabulary consisted of 277 words
(see word cloud in Fig. B5) with a maximum sentence length of 50 words. All the cases
were obtained from a single hospital, and, therefore, some of the cases with similar diagnoses
had identical text descriptions with little variety – this was also reflected in the translation.
As the dataset collection was retrospective, the original reports were generated by different
pathologists at the hospital that were not involved in this study.

We then extracted 300x300px patches mostly from regions containing adenocarcinoma
lesions at two different magnifications x10 and x20. This was done by initially loosely
annotating the specimens only on the adenocarcinoma regions to minimise the extraction
of non-adenocaricoma regions. The specimens, as well as the adenocarcinoma regions within
the specimens, were of variable sizes; this resulted in a variable number of patches from each
WSI.

This resulted in a variable number of patches associated with a given caption. At a
magnification of x20, this resulted in 262,777 tiles and at x10, 67,125 tiles. Figure B6
provides the distribution of the number of patches per WSI. Figure 1 shows examples of
tiles extracted from WSIs and their corresponding text captions. We divided the dataset
randomly into 70% training, 10% validation, and 20% test, stratifying by the subtype. Table
1 provides a breakdown of the adenocarcinoma subtypes in the dataset.
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Figure 1: Examples of biopsy specimens with associated captions and 300x300px tiles ex-
tracted at x20 magnification.

count
subtype

Well differentiated tubular adenocarcinoma 283
Moderately differentiated tubular adenocarcinoma 265
Papillary adenocarcinoma 135
Moderately to poorly differentiated adenocarcinoma 81
Poorly differentiated adenocarcinoma, non-solid type 78
Poorly differentiated adenocarcinoma, solid type 68
Well to moderately differentiated tubular adenocarcinoma 61
Signet ring cell carcinoma 17
Mucinous adenocarcinoma 3

Table 1: Distribution of adenocarcinoma subtypes, which is roughly concordant with clini-
cal distribution
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3. Method

We trained a baseline attention-based model similar to Xu et al. (2015) which consists of a
CNN encoder, acting as a feature extractor, and an RNN decoder, which produces a caption
one word at a time conditioned on previous input. We defer the reader to Xu et al. (2015) for
more details and implementation details. In short, for the feature extractor, we used models
pre-trained on ImageNet (EfficientNetB3 (Tan and Le, 2019) and DenseNet121(Huang et al.,
2017)) to extract features from the penultimate layer. We performed a 3x3 average pooling
as well as a global average pooling, and then fed the extracted features into a single layer
embedding encoder to reduce the dimensionality of the embedding to 256 before providing
the features as input to the RNN decoder. The one-layer embedding encoder for reducing the
dimensionality and the decoder were trained simultaneously. The captions were tokenised
and stripped of any punctuation marks. From the extracted features, the captions were
generated word by word starting from a token start word followed by sequentially updating
the hidden state of the RNN model, and stopping at a token end word. The generation
of each new word involved the model focusing attention on different patches or different
subparts of the patches in case of the 3x3 average pooling.

We pre-extracted all the features using the pre-trained CNNs and cached them to use
for training the decoder. We also extracted and cached features from patches augmented
with random hue, saturation, brightness and horizontal and vertical flipping.

Figure 2 provides an overview of the inference stage. In the case of the EfficientNetB3
model, given n patches from a given WSI, the output from the feature extraction for a
single patch was n × 10 × 10 × 1536. The global average pooling results in an output of
n × 1 × 1 × 1536, while the 3x3 pooling results in an output of n × 3 × 3 × 1536. After
the embedding dimensionality reduction, this becomes n× 1× 1× 256 and n× 3× 3× 256,
respectively. These outputs are then flattened to become single dimensional vectors to be
fed as input in the RNN model. This is similar for the DenseNet121 model, except the
output from the CNN was n× 9× 9× 1024.

We trained the model using categorical cross entropy loss with Adam optimisation al-
gorithm (Kingma and Ba, 2014) with a learning rate of 0.001 and a decay rate of 0.99 every
epoch. Each WSI had a variable number of patches, resulting in a variable input size into
the RNN. We used a batch size of one. The model with the highest (bilingual evaluation
understudy) BLEU@4 score (Papineni et al., 2002) on the validation set was chosen as the
final model. The BLEU score is a commonly used metric for evaluating the quality of pairs
of texts or text which has been machine-translated from one natural language to another.
BLEU was one of the first metrics proposed and is reported to have a high correlation with
human judgements of quality. The BLEU@4 is a score between 0 and 1, and it indicates
how similar the candidate text is to the reference texts, with values closer to 1 represent-
ing more similar texts. Scores over 0.3 generally reflect understandable translations, and
scores over 0.5 represent adequate or high quality translations. Table A3 provides guideline
interpretations of the BLEU scores.

4. Results

Overall we ran a total of eight variations: two model architectures (DenseNet121 and Effi-
cientNetB3), two pooling strategies (3x3 and global average pooling, referred to p3x3 and
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Figure 2: Given patches from a WSI, we extract features using a pre-trained CNN, which
we then pool and reduce the dimensionality of. The caption is then generated by
feeding the features into an RNN model step by step while updating its hidden
state. In the case of the EfficientNetB3 model, given n patches from a given WSI,
the output from the feature extraction for a single patch was n× 10× 10× 1536.
The global average pooling results in an output of n×1×1×1536, while the 3x3
pooling results in an output of n×3×3×1536. After the embedding dimensionality
reduction, this becomes n× 1× 1× 256 and n× 3× 3× 256, respectively. These
outputs are then flattened to become single dimensional vectors to be fed as input
in the RNN model.
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Figure 3: Evaluation of BLEU@4 on the test set consisting of 198 cases

pavg), with/without augmentation, and two magnifications (x10 and x20). We ran each
experiment three times and reported the average of the three runs. We computed the
BLEU@4 score between the ground truth captions and the predicted captions. We also
computed a score measuring the average score of 1-gram and 2-gram (avg. 1/2-gram) word
overlaps of the occurrence of the subtype class in the predicted captions; this is to measure
if at least any of the shorter words that occur in the subtype name occured in the predicted
caption. We evaluated the models on the test set and summarised the results in Fig. 3, Fig.
4 and Tab. 2. The best model as indicated by Tab. 2 was the EfficinetNetB3 x20 with 3x3
average pooling, achieving a BLEU@4 score of 0.324 (± 0.354) and an average 1/2 gram of
0.744(± 0.269). Table C6 provides examples of prediction outputs on selected cases from
the test set.

5. Discussion

In this paper, we have explored the application of RNN-based attention models for the
task of generating captions from a collective set of patches, rather than just a single patch.
This setting corresponds to the use of existing data extracted from medical records rather
than actively creating an annotated captioned dataset from scratch, which tends to be
more time consuming. The occurrence of the subtype in the predicted caption is highly
encouraging (see 4), with the highest score achieved (in both BLEU@4 and 1/2-gram) by
the EfficientNetB3 model at x20 with augmentation and 3x3 pooling rather than global
average pooling. This potentially gives the model more granularity to focus on image
regions. In terms of caption prediction, there was a large spread of performance across
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Figure 4: Avg. 1/2-gram overlaps of the occurrence of the subtype class in the predicted
captions

BLEU@4, mean (SD) Avg 1/2-gram, mean (SD)

DenseNet121 x10 p3x3 0.283 (0.319) 0.695 (0.303)
DenseNet121 x10 pavg 0.273 (0.281) 0.696 (0.300)
DenseNet121 x20 p3x3 0.266 (0.300) 0.699 (0.298)
DenseNet121 x20 p3x3 aug 0.323 (0.356) 0.729 (0.295)
DenseNet121 x20 pavg 0.272 (0.311) 0.652 (0.311)
EfficientNetB3 x10 p3x3 0.302 (0.318) 0.689 (0.289)
EfficientNetB3 x10 pavg 0.229 (0.267) 0.643 (0.315)
EfficientNetB3 x20 p3x3 0.270 (0.313) 0.686 (0.297)
EfficientNetB3 x20 p3x3 aug 0.324 (0.354) 0.744 (0.269)
EfficientNetB3 x20 pavg 0.283 (0.334) 0.682 (0.292)

Table 2: BLEU@4 and avg. 1/2-gram scores for the different model variations.
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cases. The highest average BLEU@4 was 0.324 (0.354), which, based on the guideline
interpretations of BLEU, is an understandable to good match. However, the standard
deviation is quite high, with some caption having a score less that 0.1, which is quite low
and represents almost useless predictions. The higher average 1/2-gram indicates that the
subtype occurred more frequently in the predicted caption, and that mostly the errors in
prediction tended to be more in the morphological description. When grouping the scores
by subtypes, the subtypes that occured more frequently in the dataset, such as well and
moderately differentiated tubular adenocarcinoma, had higher BLEU@4 scores (see Tab. B4
and B5). Unsurprisingly, this indicates that a larger training dataset with well represented
subtypes would lead to a better expected performance. While we did not do this, the feature
extractor may benefit from further fine-tuning, potentially by using the subtype labels as
targets, which could make it more sensitive to the underrepresented subtypes.

While the results obtained in this paper are encouraging, it is still far from reaching a
level acceptable for use in a clinical setting. This study has a few limitations. One limitation
of the dataset is that there was only a single caption per WSI, some of which with nearly
identical phrasing, given that they originated from a single hospital, which limited the
variety of outputs from the model. Model training typically benefit from the presence
of multiple captions per WSI. This, nonetheless, highlights the potential challenging task
where the goal would be to train models from existing unstructured data which originates
from multiple sources without having to request from pathologists to manually re-annotate
thousands of images. Another limitation is that we did not explore in this paper the use
of the plethora of more recent advances in vision-language models (e.g. transformers),
which could potentially lead to some improvement in performance; however, we sought to
demonstrate the application of an out-of-the-box feature extractor and a baseline RNN
model for generating captions on a dataset of captions that we have extracted from medical
records. We have publicly released this dataset, and we hope that it will be useful for future
research. While the scope of this study was limited to adenocarcinoma, we envisage that
training a model on a large dataset of WSIs with diagnostic reports from different hospitals
and a wide variety of cancers could lead to improved performance and make it easier to
adopt such models in a clinical workflow.
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Appendix A. BLEU score

BLEU score Interpretation

<0.10 Almost useless
0.10 - 0.19 Hard to get the gist
0.20 - 0.29 The gist is clear, but has significant grammatical errors
0.30 - 0.40 Understandable to good translations
0.40 - 0.50 High quality translations
0.50 - 0.60 Very high quality, adequate, and fluent translations
>0.60 Quality often better than human

Table A3: Guideline interpretation of BLEU scores. Adapted from (goo, 2022)

Appendix B. Dataset
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Figure B5: Word cloud of commonly occurring words

Table B4: Well differentiated tubular adenocarcinoma
BLEU@4, mean (SD) Subtype ngram@2, mean (SD)

DenseNet121 x10 p3x3 0.344 (0.345) 0.798 (0.308)
DenseNet121 x10 pavg 0.297 (0.287) 0.754 (0.289)
DenseNet121 x20 p3x3 0.344 (0.343) 0.825 (0.279)
DenseNet121 x20 p3x3 aug 0.474 (0.402) 0.846 (0.262)
DenseNet121 x20 pavg 0.354 (0.343) 0.772 (0.325)
EfficientNetB3 x10 p3x3 0.383 (0.375) 0.741 (0.327)
EfficientNetB3 x10 pavg 0.185 (0.226) 0.575 (0.353)
EfficientNetB3 x20 p3x3 0.439 (0.400) 0.842 (0.278)
EfficientNetB3 x20 p3x3 aug 0.436 (0.401) 0.816 (0.269)
EfficientNetB3 x20 pavg 0.405 (0.393) 0.746 (0.301)
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Figure B6: Counts of patches per WSI. Each WSI has a single caption.

Table B5: Moderately differentiated tubular adenocarcinoma
BLEU@4, mean (SD) Subtype ngram@2, mean (SD)

DenseNet121 x10 p3x3 0.347 (0.353) 0.759 (0.294)
DenseNet121 x10 pavg 0.374 (0.357) 0.759 (0.336)
DenseNet121 x20 p3x3 0.367 (0.323) 0.783 (0.255)
DenseNet121 x20 p3x3 aug 0.388 (0.368) 0.849 (0.204)
DenseNet121 x20 pavg 0.408 (0.367) 0.750 (0.282)
EfficientNetB3 x10 p3x3 0.399 (0.329) 0.717 (0.286)
EfficientNetB3 x10 pavg 0.333 (0.334) 0.750 (0.310)
EfficientNetB3 x20 p3x3 0.259 (0.320) 0.675 (0.280)
EfficientNetB3 x20 p3x3 aug 0.375 (0.379) 0.811 (0.281)
EfficientNetB3 x20 pavg 0.392 (0.388) 0.783 (0.290)
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Appendix C. Example prediction results
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BLEU@4 Image id Original caption Predicted caption

0 026a5c88
b93b4669
b2c8d793
32feab7b

atypical l cells with atypical nu-
clei forming diffuse or irregu-
lar atypical ducts and infiltrating
poorly differentiated adenocarci-
noma solid type

in the superficial epithelium in the
superficial epithelium in the su-
perficial epithelium in the super-
ficial epithelium in the superficial
epithelium in the superficial ep-
ithelium in the superficial epithe-
lium in the superficial epithelium
in the superficial epithelium in the
superficial epithelium in the su-
perficial epithelium in the super-
ficial epithelium

0.1 e9b41535
519f4f60
848171ba
0a4fcabe

tumor tissue consisting of medium
sized cord like or irregular glandu-
lar infiltration is observed in the
superficial epithelium poorly dif-
ferentiated adenocarcinoma non
solid type or moderately differen-
tiated tubular adenocarcinoma

medium to small irregular ducts
is observed moderately differenti-
ated tubular adenocarcinoma

0.3 d36d795d
d5ab4833
b0022ccd
d025abc3

on the superficial epithelium tu-
mor tissue that infiltrates by
forming medium sized papillary or
small irregular ducts is observed
papillary adenocarcinoma

on the superficial epithelium tu-
mor tissue consisting of medium
sized irregular or large and small
ducts papillary adenocarcinoma

0.56 1c260429
f2ce4ee3
96093d43
26293315

from the superficial epithelium to
the muscularis mucosae tumor tis-
sue consisting of medium sized
and irregular glandular ducts in-
filtrating is observed well differen-
tiated tubular adenocarcinoma

from the superficial epithelium to
the muscularis mucosae tumor tis-
sue consisting of medium sized
and irregular invades by form-
ing medium sized to small irreg-
ular ducts is observed moderately
differentiated tubular adenocarci-
noma

0.92 7c6008a2
7bb3452b
b04045bd
5f96d864

in the superficial epithelium tu-
mor tissue that invades by form-
ing medium sized to small irreg-
ular ducts is observed moderately
differentiated adenocarcinoma

in the superficial epithelium tu-
mor tissue that invades by form-
ing medium sized to small irreg-
ular ducts is observed moderately
differentiated tubular adenocarci-
noma

1 df1656e6
20c44e15
abbfdebc
bcdc8e6b

tumor tissue consisting of cord
like or small irregular glandular
ducts fused and infiltrated is ob-
served in the superficial epithe-
lium poorly differentiated adeno-
carcinoma non solid type

tumor tissue consisting of cord
like or small irregular glandular
ducts fused and infiltrated is ob-
served in the superficial epithe-
lium poorly differentiated adeno-
carcinoma non solid type

Table C6: Example of caption prediction results ranging from 0 to 1 in the BLEU@4 score
on six cases used in the test set.
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