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Abstract

This paper presents the official release of the Digital Typhoon dataset, the longest
typhoon satellite image dataset for 40+ years aimed at benchmarking machine
learning models for long-term spatio-temporal data. To build the dataset, we de-
veloped a workflow to create an infrared typhoon-centered image for cropping
using Lambert azimuthal equal-area projection referring to the best track data.
We also address data quality issues such as inter-satellite calibration to create a
homogeneous dataset. To take advantage of the dataset, we organized machine
learning tasks by the types and targets of inference, with other tasks for me-
teorological analysis, societal impact, and climate change. The benchmarking
results on the analysis, forecasting, and reanalysis for the intensity suggest that
the dataset is challenging for recent deep learning models, due to many choices
that affect the performance of various models. This dataset reduces the barrier for
machine learning researchers to meet large-scale real-world events called tropical
cyclones and develop machine learning models that may contribute to advancing
scientific knowledge on tropical cyclones as well as solving societal and sustain-
ability issues such as disaster reduction and climate change. The dataset is publicly
available at http://agora.ex.nii.ac.jp/digital-typhoon/dataset/ and
https://github.com/kitamoto-lab/digital-typhoon/.

1 Introduction

Tropical cyclones, also known as typhoons and hurricanes in certain regions, have been the critical
target of research due to their substantial societal impact [11]. To reduce the impact of tropical
cyclones, the meteorological community, along with other earth science communities, has been
developing both a theoretical and an empirical understanding of tropical cyclones through efforts such
as advancing satellite remote sensing and atmospheric simulation models of higher spatial, temporal,
and spectral resolutions for better analysis and forecasting.

Meteorologists have also developed an empirical method, known as the Dvorak technique [10, 54],
to estimate the intensity of a tropical cyclone based on time-series observation data collected from
worldwide ground sensor networks, meteorological satellites, and reconnaissance flights. This
technique consists of a manual procedure to estimate tropical cyclone intensity based on the cloud
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Figure 1: Overview of the Digital Typhoon dataset.

patterns of satellite images and a temporal model for intensity change. The method was originally
developed in the United States in the 1970s and later adopted by meteorological agencies worldwide
to become the standard procedure. However, experts are aware of its heuristic and subjective nature,
as it relies on empirical, rather than theoretical, human interpretation of observation data. Solutions
to this problem include more objective and automated versions of the Dvorak technique[39, 38] and a
citizen science project to take advantage of collective intelligence [15].

It is clear that the Dvorak technique naturally fits into the machine learning framework by using
images as input and intensity values as output. Hence there is a growing interest in both the machine
learning community [42, 8, 36, 33] and the meteorology community [18, 5] to take advantage of the
big data of tropical cyclones for developing data-driven approaches. One of the authors, Asanobu
Kitamoto, started the Digital Typhoon project in 1999 with the aim of applying machine learning to
typhoon analysis and forecasting [21, 26]. The first step was to develop a homogeneous satellite image
dataset for machine learning as in Figure 1. The second step was to apply machine learning algorithms
available at the time, such as SVM [24], Generative Topographic Mapping [22], and content-based
image retrieval[23], which is later evolved into deep learning-based models for classification and
regression tasks [46, 41], combined with fisheye preprocessing [16]. The third step was to release the
website "Digital Typhoon" in 2003 for browsing and searching datasets [25]. The remaining problem
was the lack of public datasets for machine learning. There have been attempts to download the
dataset via scraping of the website (e.g. [53]), but the dataset created in this way is of lower quality.

Here we introduce the Digital Typhoon dataset, the longest typhoon satellite image dataset. This
dataset reduces the burden of researchers to start machine learning on tropical cyclones without solid
domain knowledge of meteorology and satellite remote sensing. We also illustrate the variety of tasks
so that researchers can concentrate on building and evaluating machine-learning models.

2 Related Work

2.1 Track Datasets

The track data includes the ’annotation’ of tropical cyclones, such as location, intensity, and wind
circles, based on the interpretation of meteorological experts following the established procedure (e.g.
Dvorak Technique). The best estimate, obtained from a retrospective analysis after collecting all the
information from the start to the end of life, is called the best track dataset.

The Digital Typhoon dataset targets the Western North Pacific basin, and the Japan Meteorological
Agency (JMA) is designated as the regional center to maintain the best track dataset. Globally, the
International Best Track Archive for Climate Stewardship (IBTrACS) [28] collects the best track
from meteorological agencies worldwide and creates a comprehensive track dataset since 1842.

IBTrACS shows an interesting variation of the best track; namely the location and intensity of the
same tropical cyclone show discrepancies across meteorological agencies [48]. This fact suggests
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Figure 2: Visualization of statistics of the Digital Typhoon dataset.

that the interpretation of the observation data is not unique, or not the ground truth in a strict sense.
Nonetheless, we regard the best track as the ground truth for most machine learning tasks, because it
is the best estimate available. In a reanalysis task, however, we could critically evaluate the quality of
the best track [17].

2.2 Image Datasets

The image dataset has information about the spatial distribution of physical properties such as
cloud patterns as grid data. The observation dataset [27, 30] is derived from sensor observation that
measures the physical properties of the atmosphere, while the simulation dataset, both typhoon-related
[37] and the global atmosphere [44, 1, 3, 43], is generated as the representation of the atmosphere in a
simulation model. Observation datasets and simulation datasets are linked through data assimilation,
which is a statistical method to integrate observation datasets into a simulation model.

The Digital Typhoon dataset is an observation dataset, and it offers a richer detail of tropical cyclones
with higher temporal and spatial resolutions than the simulation dataset. In addition, data quality
issues in the observation dataset, such as sensor noise, missing data, and long-term sensor calibration,
are handled properly so that machine learning models are not significantly affected by those issues.

3 Digital Typhoon Dataset

3.1 Dataset Overview

The Digital Typhoon dataset is created from the comprehensive satellite image archive of the Japanese
geostationary satellite series, Himawari, from Himawari-1 to Himawari-9. Although those images
are not copyrighted, some data are not accessible for free, and old satellite images have old formats
for which open-source parsers are difficult to find. Hence we developed our own parsers for all
generations of satellites, and the workflow to create typhoon-centered images by referring to the best
track, as shown in Figure 1.

Using this workflow, we created the Digital Typhoon dataset by integrating metadata and images.
The metadata contains hourly best-track data with additional information about the file name and
each image’s quality. The formatting of the best track data aligns with the original best track data
sourced from the JMA. On the other hand, the images feature a 2D array of brightness temperatures
around the typhoon’s center, formatted in HDF5.

As a result, the dataset comprises a total of 1,099 typhoons and 189,364 images. Figure 2 visualizes
some of the statistics of the dataset. It is a complete record of typhoons occurring in the Western North
Pacific region (ranging from 100 to 180 degrees east of the northern hemisphere), from the 1978
season through the 2022 season, with missing typhoons in 1979 and 1980 due to the unavailability
of satellite data. The length of the dataset, spanning 44 typhoon seasons (years), is the longest
typhoon image dataset. We call it the longest dataset because Japanese geostationary satellite images
for typhoons before 1978 were lost forever, and our dataset went back to the oldest satellite image
preserved. Hence it provides a unique opportunity to challenge long-term datasets.
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Table 1: Comparison between the Digital Typhoon dataset and the HURSAT dataset.
Digital Typhoon dataset HURSAT dataset

Temporal coverage 1978-2022 (present) 1978-2015
Temporal resolution one hour three hours
Target satellites Himawari SMS, GOES, Meteosat, Himawari,

FY2
Spatial coverage Western North Pacific basin All basins (Global)
Spatial resolution 5km 8km
Image coverage 512×512 pixels (1250km from the

center)
301×301 pixels (1100km from the
center)

Spectral coverage infrared (others on the Website) visible, infrared, water vapor, near
IR, split window

Map projection Azimuthal equal-area projection Equirectangular projection
Calibration Recalibration ISCCP
Data format HDF5 NetCDF
Best track Japan Meteorological Agency IBTrACS
Dataset browsing Digital Typhoon website Download only

The Digital Typhoon dataset can reduce the burden of machine learning researchers to study tropical
cyclones. First, it opens up access to tropical cyclone data processed from long-term satellite
data. Second, it offers a homogeneous dataset created by the image processing workflow based
on expertise in meteorology and satellite remote sensing. Third, massive computations to process
hundreds of terabytes of original satellite data to create a machine-learning dataset are not necessary.
A comprehensive explanation of the workflow for the creation of the dataset is provided in the
Appendix.

The Digital Typhoon dataset is available at the official page http://agora.ex.nii.ac.jp/
digital-typhoon/dataset/ with an open data license, namely the Creative Commons Attri-
bution 4.0 International (CC BY 4.0) License.

3.2 Comparison with the HURSAT Dataset

Among satellite image datasets of tropical cyclones, Hurricane Satellite Data (HURSAT) dataset
[27, 30] from The National Oceanic and Atmospheric Administration (NOAA) is the most notable
dataset in size and coverage. Table 1 provides a comparative summary of the Digital Typhoon and
HURSAT datasets. There are distinct variations between the two as enumerated below.

Temporal coverage The Digital Typhoon dataset is continually updated, and is the longest tropical
cyclone image dataset worldwide. On the other hand, the HURSAT dataset stopped updating in 2015.

Temporal resolution The Digital Typhoon dataset has a temporal resolution of one hour which is
higher than the HURSAT dataset’s three-hour resolution. A high-frequency change such as rapid
intensification is more sensitive to temporal resolution.

Spatial coverage The Digital Typhoon dataset specifically targets the Western North Pacific basin,
whereas the HURSAT dataset encompasses all basins.

Spatial resolution The Digital Typhoon dataset possesses a spatial resolution of approximately
5km, superior to the HURSAT dataset’s roughly 8km (0.07 degree). A small-scale structure such as
the eye of a tropical cyclone is more sensitive to spatial resolution.

Spectral coverage The Digital Typhoon dataset incorporates the infrared (IR) channel, while the
HURSAT dataset has more channels. It should be noted, however, that the Digital Typhoon website
has the same spectral coverage, and the dataset can be easily extended to cover these channels.

Map projection The Digital Typhoon dataset utilizes the Lambert azimuthal equal-area projection,
maintaining the spherical shape of the tropical cyclone, while the HURSAT dataset employs the
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equirectangular (lat/long) grid, causing shape distortion in higher latitude or peripheral areas. Figure 1
shows an example of distortion when a typhoon is observed in the north.

Dataset browsing The Digital Typhoon dataset can be browsed via the Digital Typhoon website,
which offers additional data. In contrast, the HURSAT dataset is solely available for download.

3.3 Design Choices

The dataset has several design choices, such as spectral coverage, spatial resolution, temporal
resolution, and spatial coverage. In the following, we explain the reasons behind our choices.

Spectral coverage The current dataset includes only the Infrared channel (IR1) (wavelength of
around 11µm) but does not include any other channels available on the Digital Typhoon website. The
following is the summary of the availability of each channel on the website.

• IR1 (infrared): the data has been available since the beginning (1978).
• VIS (visible): the data has been available since the beginning (1978), but images from early

satellites were too noisy and not appropriate for a machine learning dataset. In addition, the
visible channel is meaningful only during the daytime.

• IR2 (infrared) and WV (water vapor): the data has been available since 1995 (Himawari-5).
• NIR (near infrared) and other channels: the data has been available since 2005 (2nd genera-

tion) or 2015 (3rd generation).

As summarized, the IR1 is the only channel that is the longest and with fewer data quality issues, and
this is the reason we included only the IR1 channel in our first version of the dataset. Future inclusion
of multispectral data may offer additional tasks such as multispectral classification and regression.

Spatial resolution The spatial resolution of about 5km per pixel reflects the spatial resolution of
the IR1 channel for the first-generation satellites from Himawari-1 to Himawari-5. This resolution
has improved to 4km for the second generation and 2km for the third generation. In spite of these
progresses in technology, we chose a 5km resolution because it is the best choice to create a long-term
homogeneous dataset. An interesting task in the future is to transfer a machine-learning model
from long-term lower-resolution datasets to short-term higher-resolution datasets so that we can take
advantage of recent technology for better forecasting.

Temporal resolution The temporal resolution of one hour reflects the temporal resolution of one
hour for some of the first-generation satellites after Himawari-3. From Himawari-1 to Himawari-2,
the temporal resolution was more than one hour, or typically every three hours. For this reason, the
data before 1987 has many missing data points as an hourly dataset. This resolution has improved
to 30 minutes for the second generation and 10 minutes for the third generation. In spite of these
progresses in technology, we chose one hour because it is a representative interval for many types of
meteorological observations.

Spatial coverage The current dataset only covers the Western North Pacific basin in the northern
hemisphere (NH), but the Digital Typhoon website offers the same types of images for the southern
hemisphere (SH) in the Australian basin using the best track from the Bureau of Meteorology,
Australia. Here an interesting question is how a model trained in NH can be transferred to SH.
From a meteorological point of view, tropical cyclones in various basins are considered the same
meteorological phenomena, so theoretically, the dataset can be created similarly, and machine learning
results are transferable. However, we also need to consider many details that may have an impact on
the actual results, such as different quality of the best track data, and different sensor characteristics
and calibration methods for different satellites. A future version of our datasets and benchmarks may
address these issues.

4 Machine Learning Tasks

The Digital Typhoon dataset serves two important roles. First, it offers a practical real-world dataset
and tasks for the machine learning community to explore new models and solutions. Second, it
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provides a tool for meteorologists to apply data-driven approaches in studying tropical cyclones. The
following is a summary of tasks in multiple dimensions. Other lists of tasks can be found in the
review [7, 55, 45].

4.1 Types of Inference

Analysis The task is to estimate current values using the current and past data. For instance,
estimating the intensity of a typhoon falls into an analysis task, as it produces information about
the typhoon’s intensity using both current and past data. Supervised learning within this task can
be further categorized into either a classification task or a regression task, contingent on whether
the target variable is categorical or numerical. Additionally, unsupervised tasks can be designed for
clustering or identifying typhoons with similar characteristics.

Forecasting The task is to produce future predictions based on current and past data. The forecasts
can be evaluated with the actual outcomes from the real event which become available over time.
The forecasting task has a sub-task called nowcasting, aimed at making short-term forecasting
spanning several hours using data-driven extrapolation. Note, however, that weather forecasting is
theoretically constrained by the atmosphere’s chaotic nature, which states that a minor difference in
initial conditions can escalate over time.

We call this task ’forecasting’ instead of ’prediction’ because prediction is ambiguous in machine
learning. In meteorology, prediction is strictly used to mean future values, but in machine learning
prediction could mean the output of a machine learning model without temporal dimension. To avoid
confusion across disciplines, we use forecasting throughout the paper.

Reanalysis The task is to produce the best estimate given all obtainable data. This task is especially
relevant to producing a uniform dataset spanning a long period of time, such as detecting trends in
tropical cyclone activity to study the effects of climate change. As addressed in Section 2.1, the best
track dataset may contain errors due to technological limitations or inconsistencies from different
human experts. Machine learning can potentially aid in evaluating the quality of annotated data.

4.2 Targets of Inference

Intensity The task makes inferences on the strength and size of a typhoon. The categorical grade is
used to classify both the strength and type of a tropical cyclone. A classification task uses these grades
as target variables. On the other hand, the intensity of tropical cyclones is measured numerically by
central pressure and maximum sustained wind. An intensity regression task uses either pressure or
wind as the target variable. In addition, the metadata includes the radius of the strong wind circle that
represents the size of a tropical cyclone, so we can also design a regression task for size using the
radius as the target variable.

Track The task makes inferences on the geographical location of a typhoon. The cyclone’s center,
as estimated by human experts, is represented by latitude and longitude coordinates with a precision of
0.1 degrees. A regression task for predicting the typhoon’s location uses these latitude and longitude
coordinates as target variables.

Formation The task makes inferences on the birth of a tropical cyclone, which typically occurs in
tropical regions. Among the numerous cloud clusters actively evolving in tropical regions, determining
which one will evolve into a tropical cyclone presents a challenging forecasting task, making it a
target for machine learning applications [6].

Transition The task makes inferences on the transition from a tropical cyclone to an extra-tropical
cyclone, which typically occurs in mid-latitude regions. Two types of cyclones are conceptually
distinct from a meteorological perspective, but as a natural phenomenon, they are continuous. The
data-driven modeling of a continuous transition process connecting two discrete concepts is a
machine-learning task.
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Table 2: The statistics of target values.
Target value Range Mean Standard deviation

Central pressure 870-1018 (hPa) 983.8 22.5

Maximum sustained wind 35-140 (knots) 59.2 19.8

4.3 Meteorological Analysis

Machine learning can also be applied to analyze meteorological events on tropical cyclones, such as
rapid intensification [2], eyewall replacement [14], and overshooting cloud tops [20]. These events
may be linked with the forecasting of tropical cyclones, yet their underlying mechanisms are not
entirely understood. Data-driven methodologies could potentially provide insights that contribute to
the development of a novel theoretical framework for understanding these phenomena.

4.4 Analysis for Societal Impact

The Digital Typhoon dataset represents the atmospheric observation of a tropical cyclone, but its
societal impacts are measured by different sources and modalities. For example, hazards are measured
by heavy rainfall or strong winds, disasters are measured by landslides and flooding, and damages are
measured by human casualties and financial loss. To construct a machine learning model to analyze
and forecast the societal impact, real-world datasets from many sources should be integrated with
meteorological datasets. This would enable a more comprehensive understanding of the full range of
impacts arising from tropical cyclones.

4.5 Analysis for Climate Change

Understanding how a long-term tropical cyclone activity is impacted by climate change is a crucial
topic in society [32, 29, 31, 47]. Technological and methodological evolution that occurred during
the 40+ years lifespan introduces many types of biases in the dataset. While certain biases may
be removed by sensor calibration, others are harder to detect such as annotation errors by human
experts. The reanalysis of historical data and the creation of a homogeneous dataset can contribute to
advancing our knowledge of the relationship between tropical cyclones and climate change.

5 Benchmarks

5.1 Overview of Benchmarks

Task Machine learning tasks can be combined to create benchmarks for machine learning. We
propose three benchmarks, 1) Analysis, 2) Forecasting, and 3) Reanalysis of the intensity of typhoons.
The following summarizes some of the technical choices for benchmarking.

Data splitting In meteorological time series, data are auto-correlated and one has to be careful
how to split the data before starting to train a model [49]. At least, a random split for the image level
must not be used to avoid overestimating the performance due to data leakage in the same typhoon
sequence. Our assumption is that every sequence is independent, and we do not have to consider any
leakage across sequences. So, as long as each sequence is treated as atomic when splitting the dataset,
there is no limitation to using the entire dataset. Hence we apply random splits to the sequence
level (split-by-sequence) or the season level (split-by-season). More complex splits can be designed,
such as split by satellite generations (1978-2004, 2005-2014, 2015-2022). These designed splits are
especially useful for the reanalysis task in Section 5.4.

Performance metric The following benchmarks evaluate the performance by the absolute error of
target values because this is easier for domain experts to understand the result. However, for machine
learning experts, the relative error of target values is more intuitive. Instead of showing absolute and
relative errors for each benchmark, we summarize the statistics of target values so that relative errors
can be roughly estimated. For example, the best result of 10.06± 0.09 hPa RMSE in Table 3 is less
than one standard deviation of error.
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Table 3: The result of the pressure regression task for two architectures and three types of input.
RMSE (hPa) Full (512× 512) Resized (224× 224) Cropped (224× 224)

ResNet18 10.51 (±0.11) 10.47(±0.20) 10.06 (±0.09)

ResNet50 11.12 (±0.41) 11.63 (±0.35) 10.09 (±0.04)

Table 4: The result of the wind regression task for two architectures and three types of input.
RMSE (kt) Full (512× 512) Resized (224× 224) Cropped (224× 224)

ResNet18 10.21 (±0.19) 10.09 (±0.08) 9.25 (±0.25)

ResNet50 10.05 (±0.26) 10.21 (±0.14) 9.13 (±0.11)

Software and hardware To perform the benchmarks, we developed a Python-based software library
pyphoon2, downloadable from https://github.com/kitamoto-lab/digital-typhoon/.
pyphoon2 comes with a data loader and components to help build machine learning pipelines.
All the experiments were performed on the internal cluster with 6 GPUs consisting of NVIDIA
Quadro RTX 6000, NVIDIA Quadro RTX 8000, and NVIDIA Quadro RTX A6000.

5.2 Analysis for the Intensity

We propose classification tasks, which take an image as input and estimate grade as output, and
regression tasks, which take an image as input and estimate a pressure or wind value as output. In
the JMA best track, grades 3, 4, and 5 denote a tropical cyclone, among which grade 5 is the most
intense according to the maximum sustained wind. Grade 2 signifies a tropical depression, a type of
cyclone weaker than a tropical cyclone. Moreover, grade 6 corresponds to an extra-tropical cyclone,
a type of cyclone having a different structure from a tropical cyclone. Central pressure in hectopascal
(hPa) is recorded for all grades, while the maximum sustained wind in knot (kt) is recorded only for
grades 3, 4, and 5. In the following, we describe the result of the regression task, and the result of the
classification task is described in the appendix.

We explored three types of comparisons. First, we compared three architectures, namely VGG [51],
ResNet [13] and Vision Transformer [9]. Second, we compared models trained on 1) full-resolution
images (512×512), 2) resized images (224×224), and 3) cropped images (224×224). In 2), the full
region of the image is resized, while in 3), the central region of the image is cropped without resizing.
The latter is inspired by the Dvorak technique, which focuses on many relevant image features found
around the typhoon center. Third, we compared two target values, namely pressure, and wind.

We used the TorchVision [35] ResNet18 and ResNet50 models with a learning rate (LR) of 10−4,
batch size of 16, and for 50 epochs. An 80/20 train/test split by sequence was used. The ResNet18
and ResNet50 models were trained five and two times respectively. To evaluate, we measured the root
mean square error (RMSE) of the prediction from ground truth and their standard deviations (± std).

Table 3 and Table 4 summarize the results. Firstly, ResNet50 yielded similar results to ResNet18.
Secondly, cropping the images around the typhoon center yielded a lower RMSE than other choices,
indicating that cropping is better than resizing in preserving features around the typhoon center, or
removing non-relevant features far from the center. Training a model on the full images did not
perform well due to their larger number of pixels. Furthermore, Figure 3 illustrates that regression
performs better for weaker typhoons, but worse for stronger typhoons.

5.3 Forecasting for the Intensity

Our previous work used Recurrent Neural Network (RNN) to forecast the pressure directly from
images and showed comparable performance with SHIPS [41]. In this paper, we chose another
approach using a convolutional LSTM [50] to predict the next n image frames of a typhoon given
the previous 12 image frames and analyze the pressure from the predicted image. We adapted an
implementation [40], and used a 3-layer ConvLSTM with 128 hidden dimensions. Due to resource
limitations, we used 128× 128 downsampled images from only the first 24 hours of a given typhoon.
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(a) Plots for wind regression by ResNet18 for
cropped images.

(b) Plots for pressure regression by ResNet18 for
cropped images.

Figure 3: Prediction plots for pressure and wind regressions.

Figure 4: Results of image forecasting by ConvLSTM.

To forecast n hours into the future (starting at t = 1), the 12 preceding frames (t = [−11, 0]) are
passed into the model, which outputs a single image serving as its forecast at t = 1. Then, images
from t = [−10, 1], including the predicted image, are passed back into the model to get the prediction
for t = 2. This process is repeated n times to forecast n hours into the future. As a result, Figure 4
shows that the first predicted frame is perceptively blurred and rapidly deteriorates as t advances.

We then trained a ResNet18 model on predicted images, as well as the first 24 images of every
typhoon, to predict the pressure given a 128× 128 image. As a result, Table 5 shows that the model
produces a larger RMSE and error as t advances due to the blur of predicted images. A future
adaptation may be to train both the ConvLSTM and ResNet in a black box, such that the loss is
minimized by image reproduction and pressure prediction.

Both models were trained on the same 80/20 train/test split by sequence. The ConvLSTM was trained
once for 230 epochs with a starting LR of 10−4, and used a CosineAnnealing scheduler [34] with
100 steps. The ResNet model used a modified first convolutional layer with a kernel and stride size of
(2, 2) and (1, 1). It was trained five times with an LR of 10−5 for 34 epochs. These hyperparameters
were chosen as they produced more consistent results given the smaller image sizes.

5.4 Reanalysis for the Intensity

The goal of this paper is to create a homogeneous long-term dataset, and the purpose of the reanalysis
task is to identify biases and inconsistencies in the dataset due to factors such as technological
evolution arising from satellite sensors, or methodological evolution arising from the improvement
of the Dvorak technique to annotate tropical cyclones. One approach to this challenge is to design
special data splits to analyze historical factors.
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Table 5: Results of pressure forecasting for 12-hours by ResNet18 (values in hPa).
t 1 2 3 6 12

RMSE 10.24± 0.73 10.52± 0.79 11.00± 0.87 12.10± 0.85 14.69± 0.91

Table 6: The results of regression tasks for each satellite generation (values in hPa).
RMSE Train the First Train the Second Train the Third

Test the First 10.04 (±0.17) 9.92 (±0.09) 10.03 (±0.10)

Test the Second 12.80 (±0.19) 11.05 (±0.10) 11.17 (±0.10)

Test the Third 10.34 (±0.17) 10.03 (±0.08) 9.94 (±0.16)

Our previous work studied this task by training the model using recent data and testing on past
data to analyze the trend of model performance, indicating that old satellite data may have different
characteristics [41]. In this paper, we split the dataset into three buckets by satellite generations,
namely the first generation (1978-2004), the second generation (2005-2014), and the third generation
(2015-2022), and train and test a ResNet18 model for the regression task.

Input images were resized to 224× 224 in the same way as the analysis task. 208 sequences (the size
of the smallest generation) were then randomly sampled from each generation five times and split
into 80/20 train/test sets. A ResNet18 model was trained on each bucket, each for 101 epochs with a
batch size of 16 and a learning rate of 10−4; these parameters were chosen for their consistent results.
Each of the three models was then tested on the test set of each bucket, such that a model trained on
the first bucket was tested on the first, second, and third buckets.

Table 6 shows that all three models performed roughly similarly on all three buckets, and no dataset
bias was immediately reflected in the quality of the models. An expansion on the reanalysis task
experiment we performed is described in the Appendix.

5.5 Comparison with Other Approaches

Machine learning is not the only approach for data-driven analysis and forecasting of tropical
cyclones. For the analysis of intensity, the Dvorak technique has been the most popular method among
meteorologists. In addition, for the forecasting of intensity, computational approaches represent a
typhoon in a simulation model and compute the future based on the theory of the atmosphere. This
approach, however, has limitations due to spatial and temporal resolutions, and intensity forecasting
is still considered a difficult challenge. Instead, meteorologists have developed empirical methods,
such as SHIPS [12, 56] with linear regression on hand-crafted meteorological features, or a similar
approach using XGBoost [4]. This paper focused on the comparison of machine learning models, but
the real challenge for domain experts is comparing not only machine learning approaches but also
computational, empirical, or manual approaches in the context of real-world solutions for tropical
cyclones, such as disaster reduction. This paper is a starting point for this grand challenge.

6 Conclusion

We have introduced the Digital Typhoon dataset for machine learning and meteorology communities
to promote data-driven research on tropical cyclones. Our dataset offers a unique opportunity to
benchmark various types of machine learning models, especially spatio-temporal models for long-
term time-series images. A solution is not only valuable for machine learning benchmarking but
also has the potential to contribute to advancing scientific knowledge on tropical cyclones as well as
solving societal and sustainability issues such as disaster reduction and climate change.
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