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Abstract

Multiphase fluid dynamics, such as falling droplets and rising bubbles, is critical for many
industrial applications. However, simulating these phenomena efficiently is challenging
due to the complexity of instabilities, wave patterns, and bubble breakup. This paper
investigates the potential of scientific machine learning (SciML) to model these dynamics
using neural operators and foundation models. We apply sequence-to-sequence learning
techniques to a comprehensive dataset of 11,000 simulations, which includes over 1 million
time snapshots, generated using a well-validated, CUDA-accelerated Lattice Boltzmann
Method (LBM) framework. The results demonstrate the ability of machine learning models
to capture transient dynamics and intricate fluid interactions, paving the way for more
accurate and computationally efficient SciML-based solvers for multiphase applications.
Keywords: Scientific Machine Learning, Multiphase Flow Simulation, Neural Operators,
vision transformers (ViT), Bubble and Droplet Dynamics, Benchmark Dataset

1 Introduction

Flow behavior in multiphase systems is crucial for many industrial and chemical applications.
In drug delivery applications, two-phase flow can be used to create uniformly microspheres
or microcapsules. These microcapsules can provide controlled and sustained release of
drugs, improving therapeutic results (Hernot and Klibanov, 2008; Sattari et al., 2020).
Two-phase flows are also essential for rapid diagnostics and biochemical applications in lab-
on-a-chip technologies (Haeberle and Zengerle, 2007; Mark et al., 2010). Discrete bubbles in
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Figure 1: MPF-Bench includes 11,000 two-phase flow simulations. The top left panel displays
velocity results in both x and y directions and bubble shapes for two randomly selected 2D bubble
rising simulations. The top right panel presents 2D droplet falling simulations, depicting streamlines
colored by velocity magnitude and droplet shapes. The bottom left panel illustrates 3D simulation
outputs, highlighting time series outputs from our dataset. The bottom right panel shows 3D bubble
shapes for different Reynolds and Bond number combinations.

microchannels, generated via T-junctions (Thorsen et al., 2001), co-flowing systems (Cramer
et al., 2004), or flow-focusing techniques (Anna et al., 2003), have a high surface-to-volume
ratio, which improves the reaction efficiency and sensitivity. The shearing forces of the
continuous phase precisely control the size and formation of the bubble, which is crucial for
device performance. By thoroughly understanding the gas-liquid or liquid-liquid interactions,
engineers can optimize mixing conditions (Schwesinger et al., 1996; Stroock et al., 2002;
Tice et al., 2003) to enhance reaction rates, improve product consistency, and reduce energy
consumption.

Bubbles (lighter fluid volumes moving in a denser fluid medium) and droplets (heavier
fluid volumes moving in a lighter fluid medium) play an integral role in applications such
as drug delivery and lab-on-a-chip technologies. The dynamics of droplets and bubbles
exhibit significant complexity, primarily due to phenomena such as breakup, deformation,
and surface tension. Firstly, the breakup of droplets and bubbles is a highly nonlinear
and complex process governed by factors such as the viscosity ratio, density ratio, and
surface tension. For example, for high-inertia flows, the fast and irregular breakup results in
smaller and distributed droplets; at low Reynolds numbers, laminar flow leads to a more
even breakup and larger droplets (Eggers and Villermaux, 2008). Secondly, droplets can
be deformed by shear and pressure forces. Various studies have shown that the Capillary
number (Vananroye et al., 2008; Liu et al., 2022), Atwood number (Fakhari and Rahimian,
2010; Singh, 2020), and Reynolds number (Vontas et al., 2020; Xu et al., 2020; Seksinsky
and Marshall, 2021) all have a significant impact on droplet deformation.
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To better understand multiphase phenomena (both droplets and bubbles), researchers
often perform a canonical simulation/experiment called the bubble rising case (Bhaga and
Weber, 1981b; Hua and Lou, 2007; Hysing et al., 2009; Amaya-Bower and Lee, 2010; Aland
and Voigt, 2012; Yuan et al., 2017; Khanwale et al., 2023; Rabeh et al., 2024b), where a bubble
is placed in a higher density fluid so that the bubble moves up due to buoyancy. Conversely,
using a droplet of higher density causes the droplet to fall down due to gravity (Yang et al.,
2021; Jalaal and Mehravaran, 2012). This canonical study is essential since it provides
insights into bubble dynamics and shape evolution, which are critical factors for optimizing
industrial processes and improving numerical models in fluid dynamics research. Nonetheless,
capturing the bubble rising or droplet falling phenomenon is a multiscale problem with
forces acting at different scales, ranging from microscale molecular interactions to macroscale
fluid dynamics. Therefore, high-fidelity simulations are essential to accurately resolve these
interactions, particularly at the thin interfaces where precise capturing of surface tension
and interfacial dynamics is critical.

Scientific Machine Learning (SciML) represents a powerful approach to address multiphase
flow problems. SciML leverages the inherent physics to develop models that can learn from
complex data and produce reliable predictions (Karniadakis et al., 2021; Hassan et al., 2023;
M Silva et al., 2024; Rabeh et al., 2024a). A key ingredient for training and accessing
SciML solvers is a comprehensive dataset that can thoroughly test the ability of SciML
models (Tali et al., 2024). In this regard, MPF-Bench is a benchmark dataset that includes
wave patterns, bubble and droplet dynamics, as well as breakup phenomena.

There are several approaches to using machine learning to solve scientific problems,
including Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019) and neural
operators (Li et al., 2021; Raonié¢ et al., 2023; Lu et al., 2021). However, PINNs suffer
from hard convergence and high generalization error (Rathore et al., 2024). In this paper,
we focus on using neural operators and foundation models. MPF-Bench has three major
features:

e Scientific machine learning evaluations: We test our dataset on several neural
operators and foundation models using the sequence-to-sequence time series concatenation
technique. Our dataset serves as a good test for these models to evaluate their ability to
learn multiscale physics data.

¢ Extensive amount of data: Our dataset includes 11,000 simulations in 2D and 3D
with over 1 million time-series snapshots. This extensive volume of data allows for robust
training of SciML models, which will help in advancing the development of accurate and
reliable SciML models for multiphase flow dynamics.

e Multiphase simulations: We conduct simulations of rising bubbles and falling droplets,
solving the Navier-Stokes equations coupled with the Allen-Cahn equation. This approach
captures considerable physical phenomena, including breakup and deformation.

Our contributions: We summarize our main contributions below:

e We perform a comparative benchmark of six neural operators and foundation models
trained on our data, i.e., predicting interface, velocity, and pressure solution fields using
previous time snapshots as inputs to the models. Although recent works have applied
operator learning to bubble and droplet dynamics (Lin et al., 2021b,a; Sanchez-Gonzalez
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et al., 2020), there have been no prior comparative benchmarks that include foundation
models on a large-scale multiphase dataset to the best of our knowledge.

e Our dataset features 11,000 simulations and over 1 million time-series snapshots, with
variations in density ratio, viscosity ratio, Reynolds number, and Bond number. This
extensive dataset encompasses many phenomena, ranging from subtle surface deformations
in bubble oscillations to full bubble breakups driven by surface tension and density ratio
variations.

The richness and breadth of this dataset offer deep insights into the intricate dynamics of

multiphase flows, making it a valuable resource for advancing research in this field. We

provide our dataset as a benchmark for others interested in developing and evaluating SciML
models. Additional details can also be found in our website.

2 Related Work

The Stanford Multiphase Flow Database (SMFD) used in (Chaari et al., 2018), the flow
experiment dataset (Al-Dogail and Gajbhiye, 2021), and the BubbleML dataset (Hassan
et al., 2023) are resources for understanding multiphase flow dynamics. The SMFD features
5659 measurements across a range of gas and liquid properties, pipe characteristics, and
operational conditions. This dataset, derived from laboratory and field sources, supports
various pipe inclinations and flow patterns. SMFD covers different flow regimes, including
stratified, slug, and annular flows. However, it does not appear publicly available, so we
cannot identify the number of individual snapshots in this dataset.

The flow experiment dataset (Al-Dogail and Gajbhiye, 2021) focuses on the effects of
density, viscosity, and surface tension on two-phase flow regimes and pressure drops in

Table 1: Comparison of public Multiphase Flow Datasets. A sample refers to one full simulation
case, such as a single bubble-rising experiment. Each sample includes multiple snapshots, where a
snapshot is the solution field at one time step.

Ranges of material

Name Samples Snapshots Scope Sources properties
Horizontal
Flow pipes, effects of  Controlled p.- [[11’ é?]] grlil/cc,
Experiment 2904 2904  density, lab pe L o1 €
. : . Surface tension =
Dataset viscosity, environment (32, 70] mN/m
surface tension ’
. 9D and 3D e = 00042,
pool boiling, . p" = 0.0083,
flow boiling numerical pwr=1
BubbleML 79 7641 ’ simulations ’
and sub-cooled Pr = 8.4,
- based on
boiling Flash-X We =1,
) Fr = [1, 100]
., Droplet and 2D and 3D °.° [[110’1%)%?0}’
MPF-Bench 11,000 e bubble simulations g s ’
million dvnamics usine LBM Bo : [10,500],
Y & Re : [10,1000]
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horizontal pipes. The 2904 air-liquid system measurements reveal how fluid properties
affect flow regimes and pressure drops. This dataset’s flow regime classifications and
pressure contour maps improve understanding of fluid behavior in horizontal two-phase
flows. Additionally, the BubbleML dataset (Hassan et al., 2023) is a data collection focused
on multiphysics phase change phenomena generated through physics-driven simulations,
providing ground truth information for various boiling scenarios, including nucleate pool
boiling, flow boiling, and sub-cooled boiling. We summarize these and other databases
alongside our dataset in Table 1.

Recent operator-learning approaches have also focused on learning multiphase dynamics.
For example, Lin et al. (2021b) developed multiscale DeepONet architectures that accurately
infer bubble shape evolution across varying density and viscosity ratios, demonstrating
strong generalization even under out-of-distribution conditions. Similarly, Sanchez-Gonzalez
et al. (2020) employed graph-network—based simulators to learn fluid interactions in complex
physics domains, capturing local phase interfaces and long-range coupling effects. These
pioneering efforts illustrate the feasibility of operator learning for multiphase settings and
motivate our benchmark of multiple neural operators and foundation models on a large-scale
dataset.

3 Multi-phase flow (MPF) Bench

We present the MPF-Bench dataset, encompassing 5500 bubble rise and 5500 droplet flow
simulations, with each simulation containing 100 time-snapshots, making it, to our knowledge,
two orders of magnitude larger — in terms of number of time-snapshots — than any existing
multiphase flow dataset. This dataset features 2D and 3D transient simulations, capturing
a spectrum of flow behaviors influenced by surface tension and density/viscosity ratios.
MPF-Bench includes scenarios from bubble oscillations with minor surface deformations to
complete bubble breakup, offering a comprehensive resource for studying bubble rise and
droplet fall dynamics.

3.1 Problem Definition: Initial and Boundary Conditions, and outputs

We consider 2D and 3D simulations of bubble rise and droplet fall using the lattice Boltzmann
method. The computational domain spans [256, 512] lattice units in 2D and [128, 256, 128|
in 3D, corresponding to the (x,y) and (z,y, z) directions, respectively. In 2D, the bubble
is initially centered at (z,y) = (64,64), and the droplet at (128,384). In 3D, the bubble
is centered at (z,y,2z) = (64,64,64), and the droplet at (64,192,64). The initial diameter
Dyg is set to 128 lattice units in 2D and 64 lattice units in 3D for both problems. The
boundary conditions are set to free-slip on the side walls and periodic at the top and bottom
as illustrated in Figure 2. This problem is driven mainly by the density and viscosity ratio
of the two phases, along with the Reynolds and Bond numbers. The Reynolds number
measures the ratio of inertial forces to viscous forces, while the Bond number measures the
ratio of gravitational forces to surface tension forces. Below is the definition of these four
dimensionless numbers:
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Figure 2: Boundary conditions for the simulation of a falling droplet. The left panel illustrates the
3D case, while the right panel illustrates the 2D case.

(a) Rising Bubble (b) Falling Droplet

Figure 3: (a) Snapshot of a 3D rising bubble and (b) snapshot of a 3D falling droplet. The properties
of the fluids for each case are detailed in Table 2.

where h and [ indices refer to the heavy and light fluids, respectively. We uniformly sampled
the dimensionless numbers to cover the full defined range. The outputs of the simulations
are the interface indicator (c), velocity components (u, v, w), pressure (p), and density (p)
which provide insights into the dynamics of multiphase flow and the interactions between
the phases.

We selected a few representative cases from our dataset to illustrate the key physics of
droplet and bubble dynamics (see Table 2). As shown in Figure 3 and Figure 5, these cases
highlight how variations in Bond number, Reynolds number, and density ratio affect droplet
deformation and breakup patterns. Each case reveals distinct fluid behaviors, enhancing our
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(a) Rising Bubble (B1) (b) Falling Droplet (D1)

Figure 4: Streamlines of a 3D rising bubble (a) and a 3D falling droplet (b), with color indicating
the magnitude of velocity. The properties of the fluids for each case are detailed in Table 2.

understanding of the complex, nonlinear dynamics. The streamlines around the bubble and
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(a) Rising Bubble (b) Falling Droplet

Figure 5: (a) Snapshot of a 2D rising bubble and (b) snapshot of a 2D falling droplet. The properties
of the fluids for each case are detailed in Table 2.
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Table 2: Material properties and nondimensional numbers of three bubble rise simulations (B1, B2,
B3) and three droplet fall simulations (D1, D2, D3). The table shows the density ratio, viscosity
ratio, Reynolds number, and Bond number of all six simulations.

case B1 B2 B3 D1 D2 D3
Density Ratio (p*) 0 10 103 10 0% 103
Viscosity Ratio (u*) 102 102 102 1 102 102
Re 5x10% 10 10 103 103 10
Bo 5x102 10 5x10% 5x10*> 5x102 10

| &\\\\
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0.004
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(a) Rising Bubble (B1) (b) Falling Droplet (D1)

Figure 6: Streamlines of a 2D rising bubble (a) and a 2D falling droplet (b), with colors indicating
the magnitude of velocity.

droplet, depicted in Figure 4 and Figure 6, further illustrate how these physical parameters
influence droplet breakup and stability across 3D and 2D flows.
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3.2 Simulation Framework and Compute Effort

Our simulation framework employs CLIP, a CUDA-accelerated Lattice Boltzmann frame-
work that incorporates a phase-field two-phase model to capture complex interfacial dynam-
ics (Shadkhah et al., 2025). The code has been rigorously tested across various problems,
with validation results provided in Section A.3. For 2D simulations, we used a uniform
lattice grid of 256 x 512, while for 3D simulations, the domain was set to 128 x 256 x 128. We
achieved high parallelization by distributing the computation across 12 NVIDIA A100-SXM4
80GB GPUs. The total computational cost for 2D and 3D cases was approximately 4,000
GPU hours. We use the ParaView tool (Ayachit, 2015) to visualize and understand our
dataset.

3.3 MetaData

Input Fields: We use the following dimensionless quantities as inputs, as defined in
Section 3.1. These are the Density Ratio (p*), Viscosity Ratio (1*), Bond Number (Bo), and
Reynolds Number (Re). Since these are scalar values, we feed them to the neural network
by creating a constant field with a dimension consistent with the number of samples, in this
case, 10,000 in 2D and 1,000 in 3D.

Output Fields: In analyzing multiphase flow problems, we are interested in solving
the governing PDEs to obtain solutions at every point in the domain’s interior for certain
cardinal fields. For a 2D solution domain, these are: ¢ - interface indicator, u - velocity in
x direction, v - velocity in y direction, p - pressure. As this is a time-dependent problem,
each simulation is run for 400,000 time steps using a uniform lattice time step of At =1 (in
lattice units), with cardinal fields recorded as time series. For 2D simulations, we store one
output every 4,000 time steps, yielding 100 uniformly distributed snapshots per simulation.
For 3D simulations, outputs are stored every 8,000 time steps, resulting in 50 snapshots
per case. These time series capture the temporal evolution of key fields across the domain.
Readers interested in converting simulation time to physical time can refer to Equation 18
in the Section A, which provides the necessary dimensionless scaling.

Resolution: We maintained the original resolution of our datasets, matching the Lattice
Boltzmann simulation domain. This ensures the complete physics is presented to the neural
operator and allows direct comparison with Lattice Boltzmann method simulations. Our
datasets are published at 256 x 512 resolution for 2D and 128 x 256 x 128 for 3D simulations.

Dataset Format: For both the bubble and droplet datasets, we have released a single
file for each sample. This decision was taken to allow maximum flexibility in choosing which
time-steps to use for training, since these problems are inherently sequence-to-sequence. In
2D, the resulting .npz files take the form:

[T][C][H][W]

where T is the number of time steps, C is the number of channels (e.g., physical variables
such as velocity components or phase fields), H is the resolution in the vertical direction
(height or y-axis), and W is the resolution in the horizontal direction (width or z-axis). In
3D datasets, an additional dimension D is included to represent the depth or resolution in

the z-direction:
[T][C][D][H][W]
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Table 3: Formulaic description of the input and output tensors. 5000 - sample size for the dataset.
101 - number of time steps in the simulation. x,y - The x,y dimension of a field. E.g., Y[0,100,1,:,:]
indicates the pointwise v velocity over the entire grid of size 256 x 512 for the first sample at time
step 100.

Dataset Dim. Input Tensor Output Tensor
Droplet 2 X[5000][p*, u*, Bo, Re]  Y[5000][101][c, u, v, p, p][y][x]
Bubble 2 X [5000][p*, p*, Bo, Re] Y [5000][101][c, u, v, p, p][y][]
Droplet 3 X [500][p*, u*, Bo, Re]  Y[500][51][c, u,v,w, p, p][z][y][]
Bubble 3 X [500][p*, u*, Bo, Re]  Y[500][51][c, u,v,w, p, p[z][y][]

Table 4: Dataset parameters with difficulty levels for selecting appropriate cases based on Reynolds
number, density ratio, viscosity ratio, and Bond number.

Density Ratio Viscosity Ratio Bo Number Re Number Difficulty

High High High High Challenging
High High Low Low Easy

High High Low Low Moderate
High High Low High Moderate
High High High High Challenging
Low Low High High Challenging
Low Low Low Low Easy

Low Low High High Easy

Low Low Low High Moderate

In this study, we have released a total of 11,000 samples spread across two families of
datasets. Table 3 presents a detailed structural description of how the input and output
NumPy tensors are organized for both dataset families.

Level of Difficulty: We provide Table 4 to help users select datasets based on varying
difficulty levels. The dataset includes key parameters like Reynolds number (Re), Density
Ratio, Viscosity Ratio, and Bond Number (Bo), with a difficulty classification to guide
users. The classification into “High” and “Low” is based on a rough quantile-based estimate
using the parameter ranges provided in Table 2: the upper 40% of each parameter’s range is
labeled as “High,” and the lower 40% as “Low.” The remaining middle 20% is considered
transitional, where classification may vary. This categorization reflects the complexity of
interface deformations, making it easier to choose suitable cases for model training and
evaluation.

3.4 Evaluation Metrics and Test Dataset Analysis

We assess the performance of the trained neural operators and foundation models using two
primary metrics: Mean Squared Error (MSE) and relative Ly error. To capture the transient
behavior of the system, we employ both sequence-to-sequence and sequence-to-field mappings,
where solution fields at various time steps are concatenated and passed sequentially into the

10
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models. For training and evaluation, we randomly sampled 1,000 trajectories from the full
2D bubble dataset, focusing on cases labeled with “Easy” and “Moderate” difficulty levels.
The exact dataset splits used for scenarios S1-S6 are publicly available at Hugging Face.

The dataset consists of 100 temporal snapshots of bubble dynamics. However, to capture
stronger temporal variations, we choose every fourth time step, thereby reducing our time
series to 25 snapshots for each case. For instance, 3 in our evaluation aligns with the 12th
time step in the original 100-snapshot dataset. This approach ensures the input sequences
contain larger changes in the bubble’s shape and velocity fields, thereby increasing the
learning challenge for the machine learning models. By skipping every fourth timesteps, we
ensure the models learn from substantial temporal variations rather than minor changes,
ultimately making the learning problem more challenging for capturing multi-phase flow
dynamics.

The models are evaluated on six distinct input-output mappings (S1 through S6) as
outlined below:

e Sequence-to-field: We set up three different input scenarios for subsets S1, 52, and S3.
In these cases, the goal is to predict a single future time step given past information. The
input consists of solution fields at:

— t1, which represents the first time snapshot in the reduced dataset.

— A short sequence from ¢1 to ¢3.

— A longer sequence from t1 to 5.
For each case, the model predicts the immediate next timestep in the reduced dataset,
i.e., t2 for S1, t4 for S2, and t6 for S3.

e Sequence-to-sequence: In this case, the output is not a single time snapshot but a
sequence of solutions. The goal is to predict multiple future time steps, capturing the
evolving dynamics of the bubble rise. We input solution sequences of:

— t1 to t3, corresponding to the first three selected snapshots.
— t1 to t5, an extended sequence covering more temporal context.

— t1 to t8, further increasing the sequence length to capture longer-term dependencies.

For each case, the model predicts a sequence of three future timesteps. Specifically, the
outputs for S4, §5, and S6 are the next three consecutive time snapshots after the given
input sequence.

This evaluation framework allows us to test the models’ ability to generalize across
different temporal dependencies, ranging from short-term extrapolations in sequence-to-field
tasks to longer-term sequence predictions in sequence-to-sequence tasks.

The dataset used for these tasks (S1-56) is available on HuggingFace under the directory
2Dbubble/mpf_paper_dataset. This folder contains the following files corresponding to
each scenario from S1 through S6: d#X train pad flat.npz, d#Y train pad flat.npz,
d#X_test_pad flat.npz, and d#Y_test_pad_flat.npz.

11
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3.5 Dataset Format

We store all training and testing data for the six input-output mappings (S1 to S6) in .npz
files. Each .npz file contains a single NumPy array named Y of shape (N, C, H, W), where:

e N is the number of samples (800 for training, 200 for testing).

e (' is the total number of channels, determined by the number of time snapshots x
physical fields. For instance, in a sequence-to-sequence task with 8 input snapshots
(each containing 4 fields), C' = 8 x 4 = 32.

e H and W are the spatial dimensions, fixed at 256 x256 for these simulations.

For example, d6X_train pad_flat.npz has shape (800, 32,256, 256) because S6 requires
an 8-snapshot input (each snapshot with 4 channels). Similarly, the corresponding output
d6Y_train_pad_flat.npz has shape (800, 12,256, 256), where 12 channels correspond to 3
future snapshots x 4 fields each. The same mapping applies to d1X_train pad_flat.npz,
d1Y_train pad_flat.npz, etc., with varying numbers of channels depending on how many
time snapshots each mapping (S1 to S6) requires.

4 Experiments

Neural operators represent a class of deep learning methods designed to learn function
spaces of solutions to partial differential equations (PDEs). Unlike traditional deep learning
methods, which focus on finding a parametric solution for a fixed problem, Neural Operators
are capable of generalizing to solutions of PDEs. While these frameworks have demonstrated
notable success in modeling single-phase fluid flow, there is limited research on their ability to
capture multiphase flows. Multi-phase flows present additional challenges due to phenomena
like bubble or droplet breakup, coalescence, and shape oscillations. In this context, we aim
to evaluate the performance of several Neural Operators and foundation models in learning
these intricate fluid dynamics.

We provide baseline results by training a range of well-established neural PDE solvers,
commonly referred to as scientific machine learning (SciML) models. Specifically, we
examined the following neural operators and transformer-based foundation models on the 2D
bubble benchmark: (a) Fourier Neural Operator (FNO) (Li et al., 2021), (b) Convolutional
Neural Operators (CNO) (Raonié et al., 2023), (c) DeepONet (Lu et al., 2021), (d) UNet
(Ronneberger et al., 2015), (e) scOT (a randomly initialized vision-based transformer) (Li
et al., 2023), (f) Poseidon (a pre-trained, vision-based foundation model) (Herde et al.,
2024). For training, we closely followed the published code examples, and the code used for
training these models is available in the following GitHub repository: GitHub. All models
were trained for 200 epochs on a single A100 80GB GPU using the Adam optimizer, and
the hyperparameter settings for each model are detailed in Section B.1. The validation loss
for all models converged by 200 epochs, and the training and validation loss curves for two
representative models are shown in Section B.2.

Table 5 and Table 6 compare the Mean Squared Error (MSE) and relative Lo error for
sequence-to-field and sequence-to-sequence predictions across various models on the six bubble
rise datasets (S1-S6). These results highlight the performance differences between models in

12
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Table 5: Comparison of mean squared error (MSE) and relative Lo error for Sequence-to-Field
predictions using UNet, DeepONet, FNO, CNO, scOT, and Poseidon on Bubble Datasets (S1-53).

S1 S2 S3
Model Channel NISE o NISE o NISE i
c 2.60x 1072 259x1072| 840x 1072 807x 1073 | 956 x 1073  9.04 x 1073
UNet u 880 x 10 313 x10° | 8.00x10°% 2.04x10° | 1.00 x 10>  2.09 x 10°
v 1.00 x 107 1.56 x 10° | 1.00 x 107® 7.84 x 107! | 1.00 x 107 876 x 101
P 1.00x 107 274 %102 | 1.00x 107 3.23x 107 | 1.00x 10°%  5.17 x 10?
c 266 x 1072 265x10°2 | 1.01x 1071 1.01x107' | 1.18 x10°F 1.18 x 10!
DeepONet u 0.10x 10~° 6.71x10° | 1.27x1073 124 x10° | 1.71x 1073 9.18 x 107!
P v 1.00 x 107 868 x107T | 1.00x 10°® 535 x 10! | 1.00x 1075 889 x 1071
P 1.00x 107%  1.89x 102 | 1.00x 1078 243 x 107 | 1.00x 10°%  1.66 x 102
c 272x 1072 268 x 1072 | 9.73x107% 897 x 1073 | 210 x 1072  1.98 x 1072
FNO u 030 x 107° 856 x 10° | 1.00 x 107> 277 x 10° | 4.80 x 107°  5.29 x 107
v 1.00 x 107 343 x10° | 1.00x 107®  1.09 x 10° | 2.00 x 1075  2.02 x 10°
P 1.00x 107 718 x 102 | 1.00x 10 744 x 107 | 2.00x 10°%  1.04 x 10°
c 2.62x 1072 260x107! [ 589 %103 565x103|941x10"3 9.00x 103
CNO u 880 x 10~° 5.04x10° | 400x107% 1.60x10° | 1.00x 107>  1.79 x 107
v 1.00x 107 1.73x10° | 1.00x 107® 5.07x 107! | 1.00 x 1075 9.19 x 1071
P 1.00x 107 446 x 102 | 1.00x 1078 224 x 107 | 1.00 x 10°%  3.96 x 102
c 276 x 1072 268 x 1072 | 1.77x 1072 168 x 1072 | 223 x 1072 2.17 x 1072
scOT u 1.29 x 107 1.29 x 107 | 350x 107 391 x10° | 580 x 107°  2.82 x 107
v 5.24 x 10° 524 x 10 | 1.00 x 107® 231 x10° | 1.00x 107  1.75 x 10°
D 9.65 x 102 9.65 x 102 | 2.00x 1078  8.12x 107 | 2.00x 10°%  7.80 x 102
c 287x 1072 279x 107! | 334x1072 3.01x1072 | 249 x 1072 2.23 x 1072
Poseidon u 1.00 x 10°%  1.16 x 10T 114 x100% 131 x107 | 6.10x 1075  8.28 x 10°
v 2.00x 107% 586 x10° | 1.10x 107°  4.05 x 10° | 5.00 x 1075  2.83 x 10°
D 2.00x 107%  1.04x10° | 6.00x 107% 235 x10° | 4.00 x 107  1.94 x 10°

predicting the solution fields for different data subsets (S1-S6). All model predictions improve
as more time snapshots are incorporated, reinforcing the importance of temporal context in
learning transient phenomena. Additionally, CNO generally outperforms the other models
in predicting the concentration field, making it particularly effective for modeling sharp
gradients in the interface region. Another interesting observation is that scOT marginally
outperforms the pre-trained version of Poseidon. This suggests that Poseidon, having been
pretrained exclusively on single-phase flow, struggles to generalize to multi-phase phenomena,
highlighting the limitations of transfer learning when faced with physics characterized by
sharp gradients near the interface. This performance gap underscores the importance of
dataset diversity in foundation models designed for physics-informed learning.

Furthermore, Figure 7 and Figure 8 illustrate field predictions of the concentration
field C using UNet, CNO, DeepONet, and Poseidon for sequence-to-field and sequence-to-
sequence scenarios, respectively. These figures show that DeepONet performs poorly in both
the sequence-to-field and sequence-to-sequence scenarios. Additionally, UNet’s accuracy
declines as the prediction horizon extends to longer time sequences, as shown in Figure 8.
This suggests that convolution-based architectures may not effectively capture long-range
dependencies crucial for tracking evolving multi-phase interfaces over time. In contrast, CNO
consistently delivers the best performance in both sequence-to-field and sequence-to-sequence
predictions. Its strong performance may be attributed to its ability to blend convolutional
representations with continuous function approximations, allowing it to better capture
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Table 6: Comparison of mean squared error (MSE) and relative Lo error for Sequence-to-Sequence
predictions using UNet, DeepONet, FNO, CNO, scOT, and Poseidon on Bubble Datasets (S4-S6).

S4 S5 S6
Model Channel NISE o NISE o NISE i
c 3.27x 1072 287x1072 | 393x1072 331x1072 | 7.34x 1072 6.58 x 102
UNet u 135 x 10°% 354 x10° | 202x10°F  3.10x 10° | 6.65 x 10-F  3.90 x 107
v 1.00x 1075 1.38x10° | 1.00x 106 1.45x10° | 1.00x 107 9.54 x 10~ L
P 1.00x 107 6.76 x 102 | 1.00 x 107  6.30 x 10? | 1.00 x 10°%  7.79 x 102
c 1.64x 1071 1.60x 10T | 203 x 10T 1.99x 107! | 1.94x10°Y 1.92x 107!
DecpONet u 333x 1073  315x10° | 5.04x 1073 1.64 x10° | 457 x 103  1.32 x 107
v 1.00 x 1075 1.04x10° | 1.00x107% 759 x10°T | 1.00 x 1079 3.83x 10T
P 1.00x 107%  7.30x 102 | 1.00x 1078 353 x 107 | 1.00 x 10°%  3.17 x 10?
c 116 x 1072 1.10x 102 | 233x10°2 220x1072 | 4.24 x 1072  4.00 x 10~2
FNO u 1.70 x 107°  1.00 x 10° | 6.50 x 1075 298 x 10" | 2.28 x 10~%  1.13 x 10°
v 1.00x 1075 450x 10T | 1.00 x 107  1.28 x10° [ 1.00x 10% 3.98 x 10T
P 1.00x 107 1.38x 107 | 1.00 x 100 787 x 102 | 1.00 x 10°°  2.69 x 102
¢ 1.74x 1072 1.69x1072 [ 1.72x102 1.63x102 | 3.78 x10 2 3.53 x 102
CNO u 370 x 107 151 x10° | 3.60x107° 137 x10° | 1.76 x 10~*  1.74 x 107
v 1.00x 107 6.87x107T | 1.00x 10°® 6.85x 10! | 1.00 x 1075 598 x 1071
P 1.00x 100  284x 107 | 1.00x 100 293 x 102 | 1.00 x 10°°  4.22 x 102
c 3.85x 1072 369x1072 | 3.92x1072 379x1072 | 6.27x 1072  6.09 x 1072
scOT u 1.73x107%  6.73x10° | 1.80 x 10°* 573 x10° | 4.85x10°%  5.31 x 10°
v 3.00x107% 278 x10° | 3.00x10° % 212x10° | 200x10°%  1.93 x 10°
D 3.00 x 107° 1.48 x 103 3.00 x 1076 1.34 x 103 | 4.00 x 1076 1.21 x 103
c 3.06x1072 284x1072 | 333x1072 317x1072 | 599 x 1072 579 x 101
Poseidon u 1.01 x100%  826x10° | 1.26 x 10°* 649 x 10° | 430 x 10°%  7.79 x 10°
v 5.00x 1076 351 x10° | 4.00x10° % 247x10° | 5.00x 107  2.16 x 10°
P 5.00x 1076 1.71x10° | 4.00x 107%  1.48 x10° | 5.00 x 107  1.81 x 10°

sharp interface dynamics compared to other models. Additionally, Figure 8 demonstrates
that CNO is capable of capturing small bubble formation post-breakup, a key feature of
multi-phase flow that is often difficult to learn with purely spectral or transformer-based
architectures.

To complement our accuracy benchmarks, Table 7 reports the total number of trainable
parameters for each model. While parameter count is a useful descriptor, we stress that
enforcing equal parameter budgets across architectures -ranging from global Fourier operators
(FNO), convolutional operators (CNO), deep MLP-based DeepONet, to attention-based
transformers (scOT, Poseidon) - is both impractical and likely to obscure the inductive
biases we wish to compare. For example, FNO’s spectral convolution mechanism operates
fundamentally differently from the key-query-value projections of scOT /Poseidon, and CNO’s
upsampling convolutions are not directly scalable to transformer-style attention layers. As
theory and scaling laws show, each family achieves optimal performance on its own parameter
scale (Wang and Wu, 2023). Thus, rather than artificially “equalizing” parameter counts,
we compare each model in its best tuned form.

5 Conclusions

In summary, we have introduced a comprehensive time series dataset comprising 10,000
simulations in 2D and 1,000 simulations in 3D, focusing on bubble rise and droplet fall
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Figure 7: The figure presents a comparison of sequence-to-field predictions for the concentration
field C against the ground truth. The predictions are generated by four models: UNet, Convolutional
Neural Operator (CNO), DeepONet, and Poseidon, across three data subsets (S1, §2, and S3). Fach
row corresponds to a different subset (S1, S2, or S3), while each column displays the predictions made
by the respective models.

Table 7: Total trainable parameter counts for each benchmarked model, showing different architectural
paradigms operate at different parameters scales.

Model params (x10)
UNet 7.7
DeepONet 0.9
FNO 10.9
CNO 11.7
scOT 20.7
Poseidon 20.7

dynamics. This dataset captures a wide range of two-phase flow phenomena, including
simulations with density ratios as high as 1,000, Reynolds numbers up to 1,000, and Bond
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Ground Truth UNet CNO DeepONet Poseidon

t9

Figure 8: The figure presents sequence-to-sequence predictions for the concentration field C' compared
to the ground truth. Predictions are made by four models: UNet, Convolutional Neural Operator
(CNO), DeepONet, and Poseidon. Each row represents different time steps (t9, t10, and t11) from
dataset S6, while each column shows the predictions from the respective models.

numbers up to 500. Using a subsample of 1,000 samples from the bubble dataset, we
successfully trained neural operators and foundation models, demonstrating encouraging
results. By feeding in more time snapshots to models, they can more accurately predict
the trajectory of bubble dynamics. Specifically, we found that CNO outperformed other
models in capturing fine-scale interfacial details. We also concluded that the foundation
model Poseidon pre-trained on single-phase phenomena might not be effective in learning
multiphase flow, which demonstrates the need to train foundation models on multiphase
flow data.

Generalizability and Applications: Models trained on MPFBench perform well on held-
out test data, but real-world multiphase flows often deviate from those ideal conditions. For
example, industrial meshes vary adaptively, and fluid properties may be non-Newtonian or
temperature-dependent. Mitigation strategies include pretraining on more diverse multiphase
data and applying physics constraints. Beyond benchmarking, MPFBench’s trained operators
enable several practical uses. For example, the surrogate model can screen hundreds of
channel geometries for droplet breakup or bubble coalescence much faster than CFD, thus
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enhancing microfluidic design. Moreover, by providing reasonable initial guesses, neural

operators can reduce costly solver iterations, thus accelerating the CFD workflow.

Limitations: The dataset has the following constraints:

e Different orders of magnitude for solution fields: The dataset includes solution
fields that span different orders of magnitude. This is evident in the large disparity
between the mean squared error (MSE) and relative Ly errors for different solution fields.

e Limited 3D Simulations: Due to the substantial computational cost, only a small
number of 3D simulations (1,000 cases) were conducted, resulting in a more restricted set
of 3D cases in the dataset.

e Model fitting with a limited number of time steps: GPU memory limitations
constrained the number of time steps that could be fitted on a single GPU. As a result,
we had to use a limited number of time snapshots. An alternative approach could involve
using an auto-regressive model to model the time series for each sample, inputting the
predictions of previous time steps to predict the future time solutions to capture the full
trajectory of the bubble.

Reproducibility Statement

In this work, we introduce a dataset and provide detailed explanations of the methodology and
mathematical framework used for data generation in the Appendix Section A. To evaluate the
dataset, we applied various neural operators and foundation models, and the code for these
models is available on our GitHub page. The repository includes detailed instructions for
easy reproducibility of our results. All experiments were conducted on NVIDIA A100-SXM4
80GB. Please refer to the repository’s README.md for complete instructions on replicating
the model evaluations.
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Appendix A. Details of the CFD simulation framework

Our computational framework employs the CUDA platform to implement the algorithms
necessary for the Lattice Boltzmann Method (LBM). We achieve significant computational
performance enhancements by leveraging CUDA’s parallel processing capabilities. The
primary performance bottleneck in GPU architectures is often the data transfer between
GPU memory and unified CPU memory. To mitigate this, we minimize such data transfers,
conducting them only when necessary for convergence checks or final output retrieval.

We utilize a single one-dimensional array in conjunction with macro functions to handle
the substantial data volumes intrinsic to LBM simulations. This method optimizes memory
usage and computational efficiency on the GPU, ensuring that we fully exploit the GPU’s
computational power and memory bandwidth. This strategy allows for the high-performance
execution of LBM algorithms, crucial for large-scale simulations and complex fluid dynamics
problems.

A.1 Formulation of Navier-Stokes and Allen-Cahn equations

Several lattice Boltzmann models, such as the Cahn-Hilliard and Allen-Cahn models, utilize
interface tracking equations and are thus categorized as phase-field models (Penrose and
Fife, 1990; Jacqmin, 1999). These models describe multiphase flows using a diffuse interface,
with the Allen-Cahn equation commonly employed for this purpose (Allen and Cahn, 1976).
In some studies, this approach is called the conservative phase-field LB model (Fakhari et al.,
2019). The phase-field variable, ¢, which tracks the interface, ranges from 0 to 1, leading to
the following expression for the phase-field equation (Chiu and Lin, 2011):

aaf + V. (¢u)=V. | M(Ve—

where t represents time, u is the velocity, M denotes a positive constant for the mobility
parameter, £ is the interfacial thickness, and ¢g = % ¢ and ¢y, represent the interface
indicator values for the heavy and light fluids, respectively, set to 1.0 for the heavy fluid and
0.0 for the light fluid. The unit normal vector n for the interface can be defined as:

. Vo
Vo @
Note, the interface location at zg is initialized as (Yan and Zu, 2007):
¢ — PL |z — @o|
=¢oE tanh . 4
6 (@) = o & PP ranh(T ) @)

According to the phase-field model, the following equations exist for incompressible multi-
phase flows (Ding et al., 2007; Li et al., 2012):

dp
En + V- (pu) =0, (5a)
p(?:—l—u-Vu) =-Vp+V-(u[Vu+ (Vu)T]) + Fs + F,. (5b)
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In Equation 5a, p represents the density of fluids, p denotes the macroscopic pressure,
Fy is the body force, and Fs corresponds to the surface tension force. The equation for
calculating the surface tension force term is also expressed as (Jamet et al., 2002):

Fy= H¢v¢7 (6)

where
po =489 (¢ — 1) (6 — 1/2) — kV?9, (7)
denotes the chemical potential equation utilized for binary fluids (JACQMIN, 2000). Equa-

tion 8 establishes a relation between the coefficients 5 and k&, interface thickness &, and
surface tension o, as;

B=120/¢, Kk =30&/2. (8)

A.2 Lattice Boltzmann Method

Given that interfaces are typically of mesoscopic scale, the kinetic-based Lattice Boltzmann
Method (LBM) presents a more effective approach for simulating multiphase flows compared
to traditional Navier-Stokes solvers (Sukop and Thorne, 2006; Huang et al., 2015). The
Chapman-Enskog analysis validates the consistency between the LBM and the Navier-Stokes
equations (Kriiger et al., 2017). In this study, we investigate hydrodynamic properties such
as velocity and pressure using the standard form of the Lattice Boltzmann equation as
outlined in (Guo et al., 2002):

fu (@ + eabt, t+58) = fu (2,6) + Qula, ) + Fula, 1), (9)

In this context, f, denotes the velocity-based hydrodynamic distribution function for
incompressible fluids, 2, represents the collision operator, and F; signifies the force term.
This study employs the two-dimensional nine-velocity (D2Q9) model for 2D simulations and
the three-dimensional nineteen-velocity (D3Q19) model for 3D simulations.

To define the interface between phases, we employed the following Lattice Boltzmann
Equation (LBE) to accurately determine the interface between fluid phases (Geier et al.,
2015):

9o (2,t) — ga' (2,1)
7'¢+1/2

Ga (@ + a0t t + 0t) = go (z,1) — + E?(x,1). (10)

Here, g, represents the distribution function for the phase-field, and 7,4 denotes the
dimensionless phase-field relaxation time. The forcing term is calculated as follows:

1—4(¢ — ¢o)” Vo
We€q = =

£ |Vl
In Equation 11, w, and e, denote the weight coefficient and the mesoscopic velocity

set, respectively. Here, & denotes the thickness of the interface. As illustrated in Figure 9,
we carefully selected this parameter to ensure adequate lattice nodes within the interface.

F? (z,t) = ot

(11)
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This choice is critical for accurately capturing the complex physics in the rapid change
of material properties across the interface. The appropriate selection of £ ensures that
the computational mesh can effectively represent the gradients and variations within the
interface, thus enhancing the overall stability and accuracy of the simulation.

L

/ \

Figure 9: Illustration of the interface region captured by the computational mesh. The magnified
views show the distribution of lattice nodes within the interface, ensuring precise resolution of
interfacial dynamics and transitions. The careful selection of the interface thickness parameter £
ensures that the mesh adequately represents the gradients and variations in the interface region.

A.3 Validation

In this section, we validate our numerical model through benchmark tests covering a range
of two-phase flow phenomena. We include four distinct validation cases to comprehensively
assess the accuracy and robustness of our approach: (1) the capillary wave problem, which
evaluates the model’s capability to handle surface tension-driven flows; (2) the bubble
rising dynamics, which tests the interaction between buoyancy and viscous forces; (3) the
falling droplet dynamics, which examines the breakup mechanisms of liquid droplets under
gravity; and (4) the Rayleigh-Taylor instability, which explores the interfacial instability
between fluids of differing densities under gravitational influence. Each subsection compares
our simulation results and established experimental or numerical data, demonstrating the
model’s fidelity across various flow regimes.

A.3.1 CAPILLARY WAVE

To validate our Lattice Boltzmann Method (LBM) simulations of two-phase flow, we focus
on the dynamic behavior of capillary waves at the interface between two immiscible fluids.
In our study, a sinusoidal perturbation with a small amplitude ng and wave number & is
applied to the initially quiescent interface. This setup provides a rigorous test for the LBM
framework, as it has a well-established analytical solution for cases with identical kinematic
viscosities v but differing densities of the two fluids. The temporal evolution of the interface
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amplitude 7(t) is utilized as a benchmark for our simulations. The analytical expression for
the decay of the wave amplitude, n(t), is given by (Prosperetti, 1981):

2
Z wp 2_pk2)t
‘zime“z P erfe(ziVvt) - (12)

n(t) = 4(1 _ 47)V2k4 eI‘fC(\/@) + i

0 8(1 — 49)v2k* + wo

ok3
PH+PL

is the angular frequency, v = %

where wo = and Zi = H1§j§4(zj — ZZ‘).
%

J
The evaluation of the complementary error function erfc(z;) can be done by solving the
following algebraic equation:

2 a2 4 2(1 — 67) k222 + 4(1 — 37) (k)P 22 + (1 — 4y)wk? + w2 = 0. (13)

Our validation involves analyzing the propagation of capillary waves, an inherently
transient process that tests the model’s ability to accurately capture key physical parameters
such as density and viscosity ratios, along with surface tension effects. By varying these
parameters and the wavelength, we compare the simulation results with predictions from
linear theory. According to Figure 10, the lighter fluid with density p; overlays the heavier
fluid with density py, with the initial interface described by y = L + ng cos(2mx), where
7o is the initial perturbation amplitude. The decay of this wavy profile to a flat interface,
driven by viscosity and surface tension, without external forces like gravity, serves as a
critical validation test for our LBM approach. The computational domain is discretized

— LO E—

\—— No-slip
PL

2L() /\

Initial Perturbation

/ — Free-slip
y PH

L No-sli
. P

Figure 10: Schematic diagram of the capillary wave problem setup.

into a grid of 256 by 512 lattice nodes. Free-slip boundary conditions are applied in the
direction of wave propagation, while no-slip conditions are imposed at the top and bottom
boundaries. The simulation parameters are set as follows: 79 = 0.02, 0 = 1074, ¢ = 4, and
My = 0.02. Since the interface may not align exactly with the grid points, the values of 7(t)
are interpolated from ¢ values using the following relationship:
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B P(xro/2,Y)
n(t) =y — S@ro2y) — eromy — 1) P(xros2, y)P(xrose,y — 1) <0. (14)

The length (1) and time scales (t) are normalized by the initial amplitude ap and the
angular frequency wy, respectively, denoted as n* = n/ny and t* = twy.

It is worth noting that angular frequency is crucial for any wave system. It depends
on surface tension, viscosity, wave number, and density values. The equation is derived
assuming that both fluids have the same viscosity, set to v = 0.005,0.0005. Note that the
wavelength magnitude matches the grid size Ly = 256.

e Current LBM e Current LBM
— Prosperetti (1981) || 19 — Prosperetti (1981) ||

0.5 P,
*Q 0 —
—-0.5 .
1t . 1k i
| | | | | |
0 5 10 15 20 0 5 10 15 20
t* t*
(a) (b)

Figure 11: Comparison of the normalized interface amplitude n* as a function of normalized time t*
between the current LBM simulation and the analytical solution by Prosperetti (1981). (a) corresponds
to a viscosity of v = 0.0005, and (b) corresponds to a viscosity of v =0.005. The LBM results (blue
circles) closely match the analytical results (red line).

A.3.2 RISE OF A SINGLE BUBBLE IN QUIESCENT FLUID

The dynamics of a rising bubble have been extensively studied due to their significance
in various natural and industrial processes. When a bubble rises through a liquid, it is
subjected to several forces, including buoyancy, drag, and surface tension, which influences
its shape, velocity, and trajectory (Bhaga and Weber, 1981b; Amaya-Bower and Lee, 2010;
Hua and Lou, 2007; Khanwale et al., 2023). Our investigation focuses on the dynamics of a
bubble rising within a rectangular channel. The simulation begins with a circular bubble of
diameter D = Lo/5 placed at the coordinates (Lo/2, Lo/2) within a domain with a length of
Lo and a height of 4Lg. Boundary conditions are set such that the no-slip is applied at the
top and bottom, while free-slip boundary conditions are used for the lateral boundaries. The
fluids experience a volumetric buoyancy force Fj, = —(p — pp)gyJ, where g, represents the
gravitational acceleration in the y-direction. This study highlights four crucial dimensionless
parameters: the density ratio pp/p;, the viscosity ratio up/py, the gravity Reynolds number,
and the Eotvos (Bond) number.
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The gravity Reynolds number is defined as:

_ V9ypn(pn — p1) D?

Re 15
h o (15)
The E6tvos (Bond) number is defined as:
— p0\D?
o
In many studies, the Morton number is also considered, defined as:
_ 4
Mo — 9u(Pr — POty (17)

2
a3p;

The dimensionless time is also defined by:

= t\/gg (18)

The reference velocity scale needed in the Péclet number can be chosen for gravity-driven
flows as Uy = /gy D. Four sets of simulations are conducted at Four different E6tvos and
Morton numbers. The density and viscosity ratios are fixed at 1,000 and 100, respectively.
The numerical parameters are Lo = 512, Pe = 25 and Cn = 0.010, and the LBM simulation
results are shown in Figure 12.

To evaluate the accuracy and reliability of the proposed LBM, a comparison is made
between the results obtained from the LBM approach and those from the experiments and
FVM, as illustrated in Figure 12. In the spherical regime, surface tension dominates, resulting
in small bubbles that maintain a nearly spherical shape due to the strong cohesive forces
at the interface. As the bubble size increases, the shape transitions to an ellipsoidal form.
In this ellipsoidal regime, the inertial forces become more significant, causing the bubble
to deform. This deformation is influenced by the surrounding liquid’s viscosity and the
interface’s surface tension. The dynamics of this regime can be described using correlations
that account for the balance between inertial and surface tension forces (Amaya-Bower and
Lee, 2010). In the spherical cap regime, the bubbles are large enough that inertia forces
dominate, leading to further deformation into a cap shape. This regime is characterized by a
significant increase in terminal velocity, which is proportional to the size of the bubble (Bhaga
and Weber, 1981a). These patterns are consistent among all results.

A.3.3 FALLING DROPLET

The dynamics of a falling droplet under gravity is another fascinating two-phase flow
phenomenon that has been extensively studied in the literature (Yang et al., 2021; Jalaal and
Mehravaran, 2012). In this study, a liquid droplet with diameter D = Lg/5 is initially placed
at (Lo/2,6Lp/2) within a rectangular computational domain of length Ly and height 3Ly.
The same boundary conditions are applied as in the bubble rising simulations: the no-slip
boundary condition is applied at the top and bottom, while free-slip boundary conditions
are imposed at the lateral boundaries. The volumetric buoyancy force F, = —(p — p1)gyJ,
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Figure 12: Comparison of bubble shapes at constant rise velocity: Experimental results by (Bhaga
and Weber, 1981a), LBM results, and FVM results by (Gumulya et al., 2016) for various Bond
numbers (Bo) and Morton numbers (Mo).

where j is unit vector in y-direction and g, represents the gravitational acceleration in the
y-direction, acts on the fluids.

The dimensionless analysis identifies several key parameters that characterize the flow:
the density ratio pp/p;, the viscosity ratio up/py, the gravity Reynolds number, and the
E6tvos (Bond) number. The gravity Reynolds number is defined as:

_ V9ypr(pn — p1) D3
m

Rey,

(19)

Similarly, the E6tvos number, which represents the ratio of gravitational forces to surface
tension forces, is given by:

_ 9y(pn — 1) D
g

Eo (20)

Another important dimensionless group in the literature is the Morton number, which
characterizes the fluid properties affecting the bubble and droplet dynamics:

_ 4

2
a3p;
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The Ohnesorge number (Oh) is a dimensionless number that characterizes the relative
importance of viscous forces compared to inertial and surface tension forces in a fluid. It is
particularly relevant in the study of droplet dynamics and is defined as:

Hh

Oh JonoD (22)

The simulation is conducted at a moderate density ratio to capture the breakup mecha-
nisms of the falling droplet, allowing for comparisons with the VOF model. The simulation
considers an Eo6tvos number: Fo = 288, with density and viscosity ratios fixed at 10 and
1, respectively, and the Oh number set to 0.05. The numerical parameters are Pe = 5 and
Cn = 0.010. As mentioned in Section A.3.2, the reference velocity scale needed for the
Péclet number can be chosen as Uy = /gy D for gravity-driven flows. Also, dimensionless

time can be defined by:
* 9y
—¢./2Y 2
t'=t D (23)

Our simulation results exhibit excellent agreement with the findings of Jalaal and
Mehravaran (2012). As shown in Figure 13, the comparison of the deformation of a liquid
drop using both the Lattice Boltzmann Method (LBM) in 2D and the Volume of Fluid (VOF)
method in 3D demonstrates that the evolution of the drop shapes over time is remarkably
similar. For instance, at t* = 0.1647, both methods capture the formation of a curved
interface, and at t* = 0.3575, the drop breakup into smaller droplets is observed in both
approaches. This consistency across different numerical methods, with parameters set at
Fo =288, Ohyp, = Oh; = 0.05, and p* = 10, validates the robustness and accuracy of our
LBM simulations in replicating complex two-phase flow phenomena.

Overall, the dynamics of falling droplets involve complex interactions between buoyancy,
inertia, and surface tension forces, leading to various deformation and breakup patterns, such
as forming bags, ligaments, and secondary droplets. These phenomena are influenced signifi-
cantly by the E6tvés number, with higher values leading to more pronounced deformations
and faster breakup processes (Jalaal and Mehravaran, 2012).

A.3.4 RAYLEIGH-TAYLOR INSTABILITIES

The Rayleigh-Taylor instability (RTI) arises when a denser fluid is positioned above a less
dense fluid in the presence of a gravitational field, causing the interface between the two fluids
to become unstable. This phenomenon has been extensively studied due to its relevance in
various natural and engineering contexts (Khanwale et al., 2023; Ren et al., 2016; Zu and
He, 2013).

We consider a computational domain of size [0, Lo] x [0,4Lo] with Ly = 256 for our
simulations. The initial interface is defined as yo(z) = 2Lg + 0.1Lg cos(2mz/Lg). Periodic
boundary conditions are applied on the left and right boundaries, while no-slip conditions are
enforced at the top and bottom boundaries. The dimensionless numbers characterizing the
RTT include the Atwood number, Reynolds number, Capillary number, and Peclet number:

At =PH—PL (24)
PH + PL
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Figure 13: Comparison of the deformation of a liquid drop using the LBM and VOF methods:
Current results and those of Jalaal et al. (2012) (Jalaal and Mehravaran, 2012) for Eo = 288,
Ohy, = Ohy = 0.05, and p* = 10.

_ pruUoLo

Re , 25
12, (25)
where Uy = /gy Lo,
Ca = 11%. (26)
o

UpLy
Pe = . 27
e= (27)

In our study, we used a density ratio p* = 3, viscosity ratio u* = 1, Reynolds number
Re = 128, Atwood number At = 0.5, Peclet number Pe = 744, and interface width & = 5.
The results are compared with the findings from Ren et al. (2016) and Zu and He (2013) .
The dimensionless time is defined as t* = t/ty, where tg = \/Lo/(gAt) .

Snapshots of the interface evolution for the 2D Rayleigh-Taylor instability at different
times are shown in Figure 14. Initially, the interface undergoes a symmetrical penetration of
the heavier fluid into the lighter fluid, forming counter-rotating vortices. As time progresses,
the heavier fluid rolls up into mushroom-like shapes, and secondary vortices form at the
tails of the roll-ups. Our simulations’ interface patterns and vortex structures are consistent
with those reported in previous studies (Zu and He, 2013; Ren et al., 2016).

Appendix B. SciML Training
B.1 Model Hyperparameters

This section details the hyperparameters used for training the scientific machine learning
(SciML) models. These parameters were carefully selected through extensive tuning to
optimize model performance for the given datasets.
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Figure 14: Evolution of the interface pattern of the 2D Rayleigh- Taylor instability for two scenarios:
(a) p* =3, p* =1, Re =128, At = 0.500, Pe = 744, £ = 5; (b) p* = 1000, p* = 100, Re = 3000,
At =0.998, Pe =200, Ca =8.7, £ =5.
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Figure 15: (a) Schematic of the initial setup for the Rayleigh-Taylor instability simulation, showing
the boundary conditions and initial perturbation. (b) Comparison of the bubble front and spike tip
positions over time for the Rayleigh-Taylor instability case with parameters p* =3, p* =1, Re = 128,
At = 0.500, Pe =744, and § = 5. The current LBM results (solid line) are compared with the results
of Ren et al. (2016) (red circles) and Zu and He (2013) (blue triangles), showing excellent agreement
in capturing the evolution of the instability.

e Fourier Neural Operator (FNO)

— Number of Fourier modes in both directions: 64
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— Number of hidden channels: 32

Projection channels: 32

Number of layers: 10
— Learning rate: 0.0005

Convolutional Neural Operator (CNO)

— Number of layers: 4
— Number of residual blocks (Nyes): 6
— Learning rate: 0.0005

DeepONet

— Branch network layers: [512,512,512]
— Trunk network layers: [256, 256, 256]
— Number of modes: 128

— Learning rate: 0.0005

e U-Net

— Encoder channels: [16,32,64,128]
— Decoder channels: [128, 64,32, 16]
— Learning rate: 0.0005

Poseidon

Depths: [4,4,4,4]
— Embedding dimension: 48

Pretrained path: camlab-ethz/Poseidon-T
— Learning rate: 0.0005
e scOT

— Depths: [4,4,4,4]
— Embedding dimension: 48
— Learning rate: 0.0005

B.2 Training and Validation Loss

To further analyze the training performance, the evolution of training and validation loss for
four representative models (Poseidon-T and CNO) are shown in Figure 16.
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Figure 16: Training and validation loss (semi-log scale) for CNO (left) and Poseidon-T (right)
across four different input-output mappings S1, S3, S4, and S6.



	Introduction
	Related Work
	Multi-phase flow (MPF) Bench
	Problem Definition: Initial and Boundary Conditions, and outputs
	Simulation Framework and Compute Effort
	MetaData
	Evaluation Metrics and Test Dataset Analysis
	Dataset Format

	Experiments
	Conclusions
	Details of the CFD simulation framework
	Formulation of Navier-Stokes and Allen-Cahn equations
	Lattice Boltzmann Method
	Validation
	Capillary Wave
	Rise of a single bubble in quiescent fluid
	Falling Droplet
	Rayleigh-Taylor Instabilities


	SciML Training
	Model Hyperparameters
	Training and Validation Loss


