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ABSTRACT

Some extremely low-dimensional yet crucial geometric eigen-lengths often deter-
mine whether an object can be fitted in the environment or not. For example, the
height of an object is important to measure to check if it can fit between the shelves
of a cabinet, while the width of a couch is crucial when trying to move it through
a doorway. Humans have materialized such crucial geometric eigen-lengths in
common sense since they are very useful in serving as succinct yet effective, highly
interpretable, and universal object representations. However, it remains obscure
and underexplored if learning systems can be equipped with similar capabilities of
automatically discovering such key geometric quantities in doing robotic fitting
tasks. In this work, we therefore for the first time formulate and propose a novel
learning problem on this question and set up a benchmark suite including the tasks,
the data, and the evaluation metrics for studying the problem. We explore poten-
tial solutions and demonstrate the feasibility of learning such eigen-lengths from
simply observing successful and failed fitting trials. We also attempt geometric
grounding for more accurate eigen-length measurement and study the reusability
of the learned geometric eigen-lengths across multiple tasks. Our work marks the
first exploratory step toward learning crucial geometric eigen-lengths and we hope
it can inspire future research in tackling this important yet underexplored problem.

1 INTRODUCTION

Fit under the table: 
height and width

Place into the box: 
width and length

Put into and close the drawer: 
height, width, and lengthStack plates: diameter

(a) (b) (c) (d)

Figure 1: Example tasks and the hypothesized crucial geometric measurements by humans.

Consider a robot tasked with placing many small objects on warehouse shelves, where both the
objects and the shelves have diverse geometric configurations. While the robot can simply try to
accomplish the task by trial-and-error, to us as humans, it is clear that certain placements should not
be attempted because they will obviously fail. For example, we should not attempt to place a tall
object on a shelf whose height is too low. We base this judgement on the estimation of a critical
geometric eigen-length or measurement, the height of the object and the shelf, whose comparison
allows a quick estimate of task feasibility.

While object height is an example of important eigen-lengths of an object that is crucial for the above
shelf placement task, it is not hard to think of many other types of object eigen-lengths for other
fitting tasks. Figure 1 presents some other example tasks together with the presumable geometric
eigen-lengths based on human common sense. For example, the geometric eigen-length diameter is
important for the task of stacking plates in different sizes (Figure 1, (a)), while the width and length
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of an object are crucial geometric eigen-lengths for deciding if one can put an arbitrary shape object
into an open box (Figure 1, (c)).

Having such extremely low-dimensional yet crucial geometric eigen-lengths extracted as the repre-
sentations for objects is certainly beneficial for designing learning systems for robotic fitting tasks.
One telling evidence is that we humans have naturally built up the vocabulary of geometric key
quantities, such as height, width, and diameter, when perceiving and modeling everyday objects, and
used them to perform various object fitting tasks. Besides being succinct yet effective abstractions of
objects for quickly estimating the feasibility for the downstream fitting tasks, such crucial geometric
eigen-lengths are also highly interpretable, which exposes the principled reasoning process behind
the feasibility checking, and universal, as they are generally applicable to objects with arbitrary shape
and useful across different downstream tasks.

Current research in representation learning for computer vision and robotics has mostly been focusing
on learning high-dimensional latent codes or injecting human knowledge as inductive bias for
learning structured representations. While learning high-dimensional latent codes provides total
flexibility learning any useful feature for mastering the downstream tasks, these latent codes are high-
dimensional, hard to interpret, and may be prone to overfitting to the training domain. For structured
representations, though researchers have explored using different kinds of object representations, such
as bounding boxes (Tulsiani et al., 2017) and key points (Manuelli et al., 2019), to accomplish various
downstream tasks in computer vision and robotics, these structure priors are manually specified based
on human knowledge about the tasks. In contrast, we aim to explore the automatic discovery of
low-dimensional yet crucial geometric quantities for robotic fitting tasks while injecting the minimal
human prior knowledge – only assuming that we are measuring eigen-lengths of the input objects.

In this paper, we first propose to study a novel learning problem on discovering low-dimensional
geometric eigen-lengths crucial for fitting tasks and set up the benchmark suite for studying the
problem. As illustrated in Figure 2, given a fitting task (putting the bowl inside the drawer of the
table) that involves a scene geometry (the table) and an object shape (the bowl), we are interested
in predicting whether the object can fit in the scene accomplishing the task or not, via discovering
a few crucial geometric eigen-lengths and composing them into a task program which outputs the
final task feasibility estimation. To study the problem, we also define a set of commonly seen robotic
fitting tasks, generate large-scale data for the training and evaluating on each task, and set up a set
of quantitative metrics for evaluating and analyzing the method performance and if the emergent
geometric eigen-lengths match the desired ones humans usually use.

We also explore potential solutions to the proposed learning problem and present several of our key
findings. First of all, we will show that learning such low-dimensional key geometric eigen-lengths are
achievable from only using weak supervision signals such as the success or failure of training fitting
trials. Secondly, the learned crucial geometric eigen-lengths can be more accurately measured if
geometric grounding is allowed and attainable for certain fitting tasks. Finally, we make an initial stab
at exploring how to share and re-use the learned geometric eigen-lengths across different tasks and
even for novel tasks. Marking the first step defining and exploring this important yet underexplored
problem, we hope our work can draw people’s attention to this task and inspire future research in
designing solutions tackling it.

To summarize, this work makes the following contributions:

• We propose a novel learning problem on discovering low-dimensional geometric eigen-lengths
crucial for fitting tasks;

• We set up a benchmark suite for studying the problem, including a set of fitting tasks, the dataset
for each task, and a range of quantitative and qualitative metrics for thorough performance
evaluation and analysis;

• We explore potential solutions to the proposed learning problem and present some key take-away
messages summarizing both the successes and unresolved challenges.

2 RELATED WORK

Learning Geometry Abstraction. A long line of research has focused on learning low-dimensional
and compact abstraction for input geometry. Given as input a 2D or 3D shape, past works have studied
learning various geometric abstraction as the shape representation, such as bounding boxes (Tulsiani
et al., 2017; Sun et al., 2019), convex shapes (Deng et al., 2020), Gaussian mixtures (Genova et al.,
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Figure 2: Proposed Learning Paradigm where we first predict a set of geometric eigen-lengths
from the input geometries, then compose them using a task program to get the final task output.

2019; 2020), superquadratics (Paschalidou et al., 2019; 2020), parametric curves (Reddy et al., 2021)
and surfaces (Sharma et al., 2020; Smirnov et al., 2020), etc.. Most of these works use geometry
fitting as the primary objective. Our work, however, focuses on discovering geometric abstraction
that can help solve the downstream manipulation tasks instead of reconstruction.

There are also previous works exploring ways to learn task-specific geometry representation for
manipulation tasks. For example, researchers have tried to learn key points (Manuelli et al., 2019; Qin
et al., 2020; Wang et al., 2020; Chen et al., 2020; Jakab et al., 2021; Chen et al., 2021) and affordance
information (Kim & Sukhatme, 2014; Mo et al., 2021a;b; Turpin et al., 2021; Deng et al., 2021) for
robotic manipulation tasks. These works mostly pre-define the types of geometry abstraction and the
downstream policies to use the extracted shape summaries, and the abstraction is mostly dense or
high dimensional. In this paper, we aim for useful geometric eigen-lengths and ways to automatically
discover and compose them for solving manipulation tasks.

Disentangled Visual Representation Learning. Another line of work focuses on unsupervised
representation learning techniques that pursue disentangled and compositional latent representations
for visual concepts. For example, InfoGAN (Chen et al., 2016), beta-VAE (Higgins et al., 2017),
and many more works (Higgins et al., 2016; Siddharth et al., 2017; Yang et al., 2020) discover
disentangled features, each of which controls a certain aspect of visual attributes, usually with
reconstruction as the objective. In contrast to their primary objectives of controllable reconstruction
or generation, we explore the problem of learning geometric eigen-lengths driven by the goal of
accomplishing downstream fitting tasks. Also, our task involves reasoning over two geometric inputs
and comparing the extracted eigen-lengths on both inputs, while these previous works on disentangled
visual representation learning factor out visual attributes for a single input datum.

3 LEARNING PROBLEM FORMULATION

Given a robotic fitting task T ∈ T , we aim to learn very few but the crucial geometric eigen-lengths
LT (e.g., width, length, height) of the object shape O ∈ O and the environment geometry E ∈ E
that are useful for checking the feasibility of fitting O into E under the task T . Figure 2 presents an
example of the proposed learning problem where the task is to put the bowl (O) inside the drawer
of the cabinet (E). In this example, the width, length, height of the drawer and the bowl are the
crucial desired geometric eigen-lengths (LT ) and we can compose them in a task program to output
the final task feasibility prediction. We consider each eigen-length L ∈ LT as a function mapping
from the input object shape O or the environment geometry E to a scalar value for the eigen-length
measurement, i.e. L : O ∪ E → R. After obtaining the eigen-length measurements for both the
object and environment inputs, i.e. {L(O)|L ∈ LT } and {L(E)|L ∈ LT }, we perform pairwise
comparisons between the corresponding eigen-lengths checking if L(O) < L(E) holds for every
L ∈ LT . The task of fitting O in E under the task T is predicted as successful if all the conditions
hold and as failed if any condition does not hold. This format of task program is based on the
intuition that in fitting tasks, we require the object to be “smaller” than the parts of the environment
affording the action. Durining training, the learning systems see many fitting trials over different
objects and environment geometric configurations together with their ground-truth fitting feasibility,
i.e. {(Oi, Ei,Successful/Failed)|i = 0, 1, 2, · · · }. The goal is to learn eigen-length functions based
on which correct prediction of task feasibility given test input (Otest, Etest) can be made.
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4 CAN GEOMETRIC EIGEN-LENGTHS BE LEARNED FROM BINARY TASK
SUPERVISION?

In this work, we are interested in learning geometric eigen-lengths that are crucial for downstream
tasks. We hope to achieve automatic discovery of these eigen-lengths from doing tasks as it requires
the least human prior and allows maximum flexibility. Therefore, we start with the minimum form of
supervision and explore the following question: given only binary task success/failure supervision, is
it possible to learn geometric eigen-lengths of input geometries that are sufficient for the task?

4.1 TESTBED FOR EIGEN-LENGTH LEARNING

(d) Container Fitting (e) Countertop Placing(a) Tube Passing (b) Cylinder Fitting
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Figure 3: Summary of tasks and their human-hypothesized key measurements/eigen-lengths.

We start by curating a set of tasks as the testbed for the learning problem, as summarized in Fig. 3.
For each task, we build a large-scale dataset comprising diverse shapes and configurations.
Task Design Principles We design the tasks to (1) cover a wide range of geometries, including
synthetic, simple primitive shapes and more complex ones like ShapeNet objects; (2) facilitate
the analysis and interpretation of learned eigen-lengths. Specifically, here we base the analysis on
comparisons to human-hypothesized eigen-lengths: given a task, humans can identify related key
eigen-lengths (referred to as “ground truth” in the following), e.g., object height when putting them
on shelves. Comparing the learned eigen-lengths to these “ground truth” may provide important
insights. To achieve this, we need accessible ground truth eigen-lengths to begin with. Primitive
shapes like cylinders are ideal as they are parameterized by eigen-lengths like radius and height.

Task Specifications In all tasks, we aim to determine whether a placement/motion of the object
exists in a certain environment, specifically:

(a) Tube passing. (Tube) Pass an object through a rectangular tube. A tube is a cuboid without the
front and back faces. Width and height of the tube/object are the key eigen-lengths to compare.

(b) Cylinder fitting. (Cylinder) Place an object into a cylindrical container. Bounding sphere
radius of the object in XY plane and its height, as well as the radius and height of the cylinder
container are the key eigen-lengths.

(c) Sphere fitting. (Sphere) Place an object into a spherical container. Radius of the bounding
sphere of the object and the container is the key eigen-length.

(d) Container fitting. (Fit) Place an object into cavities in another ShapeNet container object.
Example cavities include drawers or shelves (See Fig. 3d) of furniture. Most cavities have
cuboid-like shapes. Thus, key eigen-lengths are width, length and height of cavities and objects.

(e) Countertop placing. (Top) Place an object on top of another ShapeNet environment object,
such that its projection along the gravity axis is fully enclosed by the environment countertop.
Width and length of the countertop surface and the object are key eigen-lengths.

(f) Mug hanging. (Mug) Hang a mug on a mug holder by its handle. The holder is a cylinder-
shaped rod. Key eigen-lengths are the distance between sides of the mug handle and the diameter
(or equivalently, the radius) of the mug holder rod.

Data Generation Details For objects to be fitted in tasks (a)-(e), we use ∼1200 common household
object models from 8 training and 4 testing categories in ShapeNet (Chang et al., 2015), following
Mo et al. (2021b). During data generation, we apply random scaling to the object model, then sample
N = 1024 points from the object surface. Note that we also apply a random rotation to the object.
In (d),(e), we use furniture and appliances from ShapeNet as the environment geometry, including
∼550 shapes from 7 object categories. In (f), we use ∼200 ShapeNet mugs. We randomly sample the
parameters of primitive shapes and the scaling factors of ShapeNet shapes, then sample M = 1024
points from their surfaces. For all tasks, we generated 75k training and 20k testing environment-object
pairs. Please refer to Appendix A.3 for more data generation details.
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Figure 4: Network architectures. (a) A minimal eigen-length learning pipeline where we separately
encode environment and object into eigen-length values, perform pair-wise comparison, and take
the logical AND of results. (b) A geometry-grounded framework where we first predict vectors and
points as the geometry grounding, then compute eigen-lengths from them.
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Figure 5: Correlation Analysis. Each plot shows the relationship between one learned eigen-length
(Y coord.) and its matching “ground truth” measurement (X coord.). Higher R2 values imply a
stronger correlation.

4.2 A MINIMAL NETWORK ARCHITECTURE

Intuitively, we can measure the object and the environment separately and see if the object is “smaller"
than the environment. Thus we come up with the minimal network architecture shown in Fig. 4 (a).
We separately map the object and environment geometries into two sets of eigen-lengths, perform
pairwise comparisons between them, and compose comparison results using logical AND.

Concretely, we encode object point cloud O and environment point cloud E using two Point-
Net (Qi et al., 2017) networks, ObjNet and EnvNet. Both networks output S-dim vectors
⃗Lobj = (Lobj

1 , Lobj
2 , . . . , Lobj

S ), ⃗Lenv = (Lenv
1 , Lenv

2 , . . . , Lenv
S ). We then compute task success

as T̂ (E,O) =
∧S

s=1[L
env
s (E) > Lobj

s (O)]. During training, we use a differentiable approximation
T̃ (E,O) =

∏S
s=1 σ((L

env
s (E)− Lobj

s (O))/τ), where τ is a learnable parameter. We set S = 1 for
(c) Sphere, (f) Mug, S = 2 for (a) Tube, (b) Cylinder, S = 3 for (d) Fit, (e) Top.

4.3 ANALYSIS OF LEARNED EIGEN-LENGTHS

We analyze the eigen-lengths learned by the network by comparing them to “ground truth” eigen-
lengths as shown in Fig. 3. For each task, we randomly sample N = 512 test data points and
obtain the corresponding N eigen-length predictions {Lpred

s,i }i=0,...,N−1 for each of the S learned
eigen-lengths, as well as N values {Lgt

s′,i}i=0,...,N−1 for each of the S′ “ground truth” eigen-lengths.

For each pair of predicted and “ground truth” eigen-lengths (s, s′), we draw a scatter plot of points
(Lgt

s′,i, L
pred
s′,i ) and perform least squares linear regression over them to get corresponding R2-scores.

We match the predictions and groundtruths by maximizing the sum of R2-scores and show the scatter
plots of matched pairs in Fig. 5. Note that in (e) Top, since we predict S = 3 eigen-lengths while
there are only S′ = 2 groundtruth eigen-lengths, we show the unmatched prediction with its most
correlated groundtruth. For complete S × S′ plots, please refer to Appendix B.2.
Learned eigen-lengths are strongly correlated with human-hypothesized measurements. As
Fig. 5 shows, R2 values between predictions and “ground truths” are close to or greater than 0.9
except for the redundant prediction slot 3 in (e) Top. They also have clear one-to-one correspondences
with ground truth in tasks with multiple eigen-lengths, suggesting good disentanglement is learned.
Knowing the number of eigen-lengths beforehand is not a requirement for successful learning.
The number S of eigen-lengths to learn is a hyperparameter set before learning. However, it does
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not have to be the exact number of relevant eigen-lengths. As shown in (e) Top, when we have more
slots for eigen-lengths than needed, “ground truth” eigen-lengths are still captured by the first two
predictions. The third prediction does not strongly correlate with any “ground truth”. A further probe
reveals that comparisons of this eigen-length almost never (only in 0.4% of the cases) contribute to the
final result, outputting True most of the time. The network learns a pair of degenerate eigen-lengths
as there is no more necessary information to capture.

5 CAN GEOMETRY GROUNDINGS BE DISCOVERED FOR EIGEN-LENGTHS?

While Fig. 5 shows strong correlation between learned eigen-lengths and “ground truth”, their
relationship is not always perfectly linear, as can be observed in (d) Fit and (e) Top with complex
geometries. Even in more linear cases, the scaling and offset make the raw eigen-length value hard
to understand, e.g., negative “length” values are less intuitive. As eigen-lengths can be seen as
measurements of the object, many of them have sparse supports or geometry groundings on the
objects, e.g., height is the distance between the base plane supporting the object and its highest
point. These geometry groundings anchor the corresponding eigen-length values, provide an intuitive
explanation of these values, and usually carry geometric/semantic importance themselves. We are
therefore interested in the following question: can we ground the eigen-lengths on geometry? From
a high level, instead of directly predicting eigen-length values, if we first predict some geometric
entities like points, vectors, and planes, then derive eigen-lengths from them, is it possible to learn
meaningful eigen-lengths and geometry groundings?

5.1 GROUNDING EIGEN-LENGTH PREDICTIONS ON GEOMETRIC PRIMITIVES

length < L ?

𝚷p = (v, p)

𝚷q = (v, q)

vector v
1 vector v 0

vector v2

vector v
1 vector v 0

vector v2length = L

height=H

v

Figure 6: Eigen-Length Geometry Groundings. We ground each eigen-length L with a unit vector
v and two parallel planes Πp,Πq with normal v. L is computed as the distance between Πp,Πq .

Consider fitting tasks like (d) Container Fitting and (e) Countertop Placing where the spaces affording
the task can be roughly described by a set of parallel planes. 1 To compute the success label of
the task, say fitting an object into a nightstand, we can measure the size of the spaces of interest
in the environment (the drawer part) along important directions (its main axes) and comparing it
to the measurement of the object. Inspired by this, we ground a pair of eigen-lengths on a tuble of
unit vector and two planes (v⃗,Πp,Πq) as illustrated in Fig. 6: we measure both the object and the
environment along v⃗. We take the object measurement as the diameter of the projection of the object
point cloud O on the vector v⃗, i.e. Lobj(O) = maxp∈O v⃗T p−minp∈O v⃗T p. For the environment, we
use a pair of parallel planes Πp,Πq with normal v⃗ to separate out a certain region relevant to the task
(the drawer), then measure the distance between the planes. In practice, we adopt the (point, normal)
plane representation and predict a point pair (p, q) that determines the plane pair. The environment
eigen-length is then computed as Lenv(E) = v⃗T (q − p).

Figure 4 (b) illustrates our network architecture. In VectorNet, we employ a PointNet classification
backbone to extract global feature of the environment point cloud E ∈ RM×3, then use an MLP to
predict S 3D vectors {v⃗s}s=1,2,...,S . In WeightNet, we employ a PointNet segmentation backbone
to extract per-point features, then use S × 2 MLPs with to predict S pairs of probability distributions
W p

s ,W
q
s over the point cloud. The point coordinates of (ps, qs) are then computed as the weighted

average of original point cloud coordinates, namely ps = W p
s
TE, qs = W q

s
TE.

1Note that other tasks may require other inductive bias. We focus on this type of tasks to study the feasibility
of geometry-grounded eigen-length learning. We leave a more versatile system as future work.
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5.2 ANALYSIS OF LEARNED GEOMETRIC PRIMITIVES AND EIGEN-LENGTH VALUES
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Figure 7: Geometry Grounding Visualizations. We plot the learned vectors (as arrows) and planes
(as disks) on top of input environment point clouds. We also show the object model next to point
clouds for clearer view of object structure. For (d) Fit, we visualize predictions in two views for
clarity. Please refer to Appendix B.1 for more visualizations.
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Figure 8: Improved correlation after using geometry groundings. We show scatter plots of
predicted eigen-length (Y coord.) and their matching “ground truth” (X coord.) in (d) Fit and (e) Top.
We perform the same correlation analysis and visualize the results in Fig. 8. Compared to Fig. 5,
learned eigen-lengths are now almost equal to “groundtruth” thanks to the anchoring effect of the
geometry grounding. The extra predicted eigen-length in (e) Top also behaves differently, capturing
the same “ground truth” as another learned eigen-length. This suggests the regularization from
geometry grounding makes learned eigen-lengths more likely to be meaningful measurements. It
also reaffirms the fact that the number S of eigen-lengths we set in advance can be different from the
actual number of necessary eigen-lengths. Please see Appendix E.4 for detailed discussion.

We also visualize the learned geometry groundings in Fig. 7. The learned vectors align with the main
axes of object geometry. The learned planes overlap with tube surfaces in (a) Tube, surround the edge
of countertops in (e) Top, and separate out the region of interest in (d) Fit, e.g. the higher one out of
two storage spaces. These meaningful geometric entities provide a clear interpretation of learned
eigen-lengths, e.g. in (e) Top’s case, red and green predictions coincide with each other and both
capture the back-to-front length of the countertop.

5.3 A STUDY ON THE ROBUSTNESS AND DATA EFFICIENCY OF GEOMETRY-GROUNDED
EIGEN-LENGTHS

Geometry grounding of eigen-lengths can be seen as a form of regularization. We are therefore
curious how the introduction of geometry groundings may influence the robustness of models in
extreme test setups, as well as their data efficiency. We compared the performance of (1) Direct, a
no-eigen-length approach, where an MLP directly predicts the final label from the concatenation
of object and environment latent features. (2) Implicit, the minimal eigen-length-based pipeline
introduced previously; and (3) Grounded, the geometry-grounded version.

Table 1 shows test performances in extreme test conditions with low resolution point clouds or with
extraordinary object scalings. Eigen-length-based approaches exhibit much higher robustness.

Fig. 9 shows the trend of test performances as we change the size of training data. We also plot
the difference between “ground truth” eigen-length measurement directions (local up and right) and
predicted vectors as a way to quantify eigen-length quality. Results suggest that geometry-grounded
version is more data efficient if meaningful geometry groundings emerge. When the training data
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Table 1: Performance on extreme test cases.
All methods are trained on size = 1024 point
clouds with width w and height h sampled from
U([0.4, 1.0]).

Direct Implicit Grounded

Default 99.00 99.15 99.65
# Points = 64 76.80 93.50 96.17
w, h ∼ U([0.2, 0.4]) 72.10 98.78 99.72
w, h ∼ U([2.0, 3.0]) 82.44 98.82 99.63

10
2

10
3

10
4

# Training Samples

0.8

0.9

1.0

Ac
cu

ra
cy

Grounded
Direct

10
2

10
3

10
4

# Training Samples

0

10

20

30

40

An
gl

e 
to

 G
T 

(°
)

Grounded

Figure 9: Trend of Left: test accuracy and Right: av-
erage angle between learned vector groundings and
“groud truth” directions w.r.t. # training samples.

is limited (< 3000 samples), however, the predicted directions of groundings are far from ground
truth measurement directions, suggesting that the model fails to learn meaningful groundings for
eigen-lengths, and thus the final accuracy is lower than Direct.

6 CAN EIGEN-LENGTHS BE LEARNED IN MULTI-TASK SETTINGS AND
APPLIED TO NEW TASKS?

As humans, we are able to develop a library of useful measurements/eigen-lengths like height
from past experience. Given a new task, instead of trying cluelessly, we would start with known
measurements and investigate their role in the task. In this section, we ask if learned eigen-lengths
can work in a similar way, i.e., given a set of training tasks, is it possible to learn a set of eigen-lengths
from them? Further, given a novel task, can we learn to select a subset of learned eigen-lengths that
are sufficient for it? In other words, can agents accumulate and transfer knowledge in the form of
eigen-lengths?

6.1 MULTI-TASK TESTBED

We design a set of tasks that share key eigen-lengths as the testbed for multi-task learning. As shown
in Fig.10(a), we consider box-fitting tasks where the box only has a subset of six faces. Each mode of
face existence corresponds to a different task with different geometric constraints. For example, to
be able to fit, an object has to be narrower than the box in task 2 and shorter than the box in task 3.
We set aside the box with all six faces present as the test task. We expect to learn width, height, and
length from the training task set, and learn to use all of them during testing. By boxes with partial
faces, we aim to mimic different types of cavities in the furniture, e.g., closed drawer as a box with
all faces, an open space on the shelf as a box without the front face, etc.

Env Measure: 
L1

env, L2
env,..., LS

env

Obj Measure: 
L1

obj, L2
obj,..., LS

obj

σ((L1
env - L1

obj)/𝛕) 

σ((L2
env - L2

obj)/𝛕)  

σ((LS
env - LS

obj)/𝛕)

𝚷
(AND)

Pred 
Label

✕

✕

✕

Test Task Train Task 1 Train Task 2 Train Task 3

(a) Task Setting (b) Multi-Task Learning Framework

Figure 10: (a) Multi-Task Setting where each train task uses boxes with certain faces missing as the
environment geometry, and test task uses a complete box; and (b) Learning Framework, where we
use trainable masks to select eigen-length comparison results.

6.2 MULTI-TASK LEARNING FRAMEWORK

Fig. 10(b) shows the multi-task learning framework we experiment with. From a high level, we
learn a set of S eigen-lengths and allow each task to select relevant ones from them. This selection
step is implemented as a learnable binary mask {mk

s}s=1,2,...,S over eigen-lengths for each task
Tk. We simply insert the mask in the AND-composition and compute the outcome for Tk as∏S

s=1 m
k
s · σ((Lenv

s (E)− Lobj
s (O))/τ).
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Table 2: Multi-Task learning, novel task adaptation results. We finetune eigen-length-based methods
on novel task for 1 epoch and compare them to the direct method trained from scratch for 1 and 100
epochs.

(Single Task) Direct (Eigen-Length) Implicit (Eigen-Length) Grounded

Epoch 1 100 1 1

Test Accuracy 73.14 88.47 97.71 99.48

During training, we optimize both the eigen-length prediction networks and a continuous version of
per-task masks m̃k ∈ [0, 1]. At test time, we freeze network weights and only learn a mask to choose
from eigen-lengths learned during training. Notably, we limit the size of test task data to 10 batches
(320 samples) to examine if learned eigen-lengths help in few-shot adaptation scenarios.

6.3 MULTI-TASK LEARNING AND FEW-SHOT TEST TASK ADAPTATION

We experiment with both implicit and geometry-grounded eigen-length prediction networks. To
analyze the learned eigen-lengths and per-task masks, we visualize learned geometry groundings that
are selected (ms > 0.5) in each task in Fig. 11. Meaningful groundings are learned and correctly
selected for each task, including the test task.

To explore whether eigen-lengths learned during training help quicker adaptation to new tasks, we
compare the test task performance of Implicit, Grounded to Direct trained from scratch on the test task.
All methods are limited to 10 batches of test task samples. As shown in Table 2, within one epoch of
finetuning, methods based on the reuse of learned eigen-lengths already achieve high performance,
surpassing Direct trained from scratch by a large margin, even when the latter has been trained for
100 epochs.

Training Tasks Test Task

Figure 11: Learned Geometry Grounding in Multi-Task Setting. We only show learned geometry
grounding (vectors as arrows, planes as disks) selected by the mask in each task.

7 CONCLUSION

In this work, we formulate a novel learning problem of automatically discovering low-dimensional
geometric eigen-lengths crucial for fitting tasks. We set up a benchmark suite comprising a curated
set of fitting tasks and corresponding datasets, as well as metric and tools for analysis and evaluation.
We demonstrate the feasibility of learning meaningful eigen-lengths as sufficient geometry summary
only from binary task supervision. We show that proper geometry grounding of the eigen-lengths
contributes to their accuracy, interpretability, and robustness. We also make an initial attempt at
learning shared eigen-lengths in multi-task settings and applying them to novel tasks.

Our exploration suggests broad opportunities in this new research direction and reveals many chal-
lenges. For example, grounding eigen-length predictions on geometries requires reasonable choice of
geometric primitives, which relies on inductive bias of the specific tasks considered. It would be a
challenging future direction to build a universal framework that accommodates a wide range of tasks
by leveraging all kinds of geometric primitives and inductive biases. In many task instances, we may
have access to signals beyond binary success or failure, e.g., a possible placement position of the
object. How to leverage these task signals in eigen-length learning remains an open problem. As a
first-step attempt at defining and exploring the challenging problem of eigen-length learning, we do
hope our work can inspire more researchers to work on this important yet underexplored direction.
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A IMPLEMENTATION DETAILS

A.1 NETWORK ARCHITECTURE

The framework in Section 4 consists of a PointNet and an MLP output head that maps the PointNet
global feature to S scalar values. The architecture is outlined below, where the numbers in the
parenthesis refer to the number of channels in each layer. We use batch normalization and LeakyReLU
after all FC layers, except for the output layer.

PointNet


Per-Point MLP(3 → 64 → 128 → 1024)

↓
Max Pooling

↓
MLP(1024 → 256 → S)

Output: S scalars.

The framework in Section 5 consists of VectorNet and WeightNet. VectorNet consists of a PointNet
classification backbone and an MLP output head, as outlined below.

PointNet


Per-Point MLP(3 → 64 → 128 → 1024)

↓
Max Pooling

↓
MLP(1024 → 256 → 3S)

Output: S vectors.

WeightNet consists of a PointNet segmentation backbone and 2S parallel MLP output heads, each
outputs a weight distribution over all points, as outlined below.

PointNet


Per-Point MLP(3 → 64[per-point feature] → 128 → 1024)

↓
Max Pooling[global feature]

Concat(per-point feature, global feature)
↓

MLP((1024 + 64) → 512 → 256 → 128)

↓
Output Weight MLPi(128 → 256 → 1), i = 1, 2, . . . , 2S

↓
SoftMax

Output: 2S sets of per-point weights.

We use LeakyReLU and batch normalization after each FC layer except for the output layers.

A.2 TRAINING DETAILS

All networks are implemented using PyTorch and optimized by the Adam optimizer, with a learning
rate starting at 10−3 and decay by half every 10 epochs. Each batch contains 32 data points; each
epoch contains around 1600 batches. We train models for ∼ 100 epochs on all tasks. The learnable
parameter τ is initialized with τ = 1. All experiments are run on a single NVIDIA TITAN X GPU.

A.3 DATASET DETAILS

Table 3 and 4 summarizes the statistics of environment/object shapes used in our dataset. Each shape
is drawn with probability in inverse proportion to the number of shapes in its category, such that each
object category appears with similar frequency in the final dataset.
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Table 3: Environment Shape Statistics.

Box Microwave Refrigerator Safe Storage Furniture Table Washing Machine Total

Train 21 9 34 21 272 70 13 440
Test 7 3 9 7 73 25 3 127

Table 4: Object Shape Statistics.

Train

Basket Bottle Bowl Box Can Pot Mug TrashCan Total
77 16 128 17 65 16 134 25 478

Test

Bucket Dispenser Jar Kettle Total
33 9 528 26 554

During data generation for the tasks where both the environment and the object are ShapeNet objects,
we apply random scaling s ∼ U([0.9, 1.1]) to the environment objects, set all joints to closed state
and sample M = 1024 points from the object model. Given an object-environment pair, we randomly
sample T = 1000 candidate positions in the environment point cloud, and check whether placement
of the object at each candidate satisfy the task specification using SAPIEN (Xiang et al., 2020)
simulation. If all candidates fail, we label the pair as negative, otherwise as positive. Specifically, the
candidate positions are sampled from “applicable and possible regions" following Mo et al. (2021b)’s
definition. For example, we only consider points with upward facing normals, and for task (e) only
consider points with close to highest z coordinates. We generated around 75K training data and 20K
testing data for each task.

B ADDITIONAL RESULTS

B.1 GEOMETRIC GROUNDING VISUALIZATION AND FAILURE CASE DISCUSSION

Fig. 12 and 13 show more visualizations of the learned eigen-lengths in the three tasks from the main
paper. Our framework is able to learn reasonable eigen-lengths that measure along crucial directions.
These eigen-lengths are also grounded by planes that suggest the relevant part of object which
supports the task. In experiments with primitive shapes as environments, the learned planes almost
overlap with the box/tube faces. In experiments with ShapeNet container objects as environments,
especially task (d) (Fit, or container fitting) as shown in Fig. 13, locating the relevant part becomes
more challenging. As this usually involves finding cavities in a shape and selecting the largest one.
Fig. 13 shows examples of our learned eigen-lengths, most of which make sense, as shown in (a)-(o).
We are able to ignore irrelevant parts, e.g. the legs of tables, and find the part of object that affords
the "containment" task, e.g. the drawer in (b), the closet in (c). When there are many cavities that
afford the same task, the network picks the largest one, e.g. in (d) and (k).

Failure Cases. We also observe some failure cases where the learned eigen-lengths are inaccurate.
Fig. 13(p)-(t) shows the most representative ones. (p) shows a relatively complex shape, where the
network struggles to find the correct width of the drawer. (q) and (r) show cases where the network
finds the wrong cavity. According to our task definition, the object can only be placed in the drawer
part in (q). Instead, the network finds the part on top of the drawer. In (r), the network finds the second
largest cavity instead of the largest one at the bottom. (s) shows an extreme case where the height of
the pizza box is much smaller than the other two extents. As objects usually have correlated extents,
comparing height suffices most of the time. The network probably lacks the motivation to precisely
capture the width and the length of the pizza box, resulting in the underestimation of width and length
in (s). Finally, our formulation, i.e. the AND clause of three eigen-length comparisons, can not fully
and precisely describe the nature of this task. The washing machine in (t) has a cylinder-shaped
cavity, which our network tries to approximate by a cuboid, which is reasonable within the range
of its expressive power but not accurate. Also, there could be shapes that do not have a "largest"
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Figure 12: Additional qualitative results. We visualize the learned vectors and planes for (a) Tube
Passing and (e) Countertop Placing. We show all eigen-lengths in the front(a)/top(e) view. We also
show the underlying instances in task (e) countertop placing for a clearer understanding of the object
structure. Note that though some joints are "open" for visualization purpose, all instances in the
dataset are at their rest state.

cavity, e.g. some drawers in a closet may be designed for tall and narrow things, while others are
designed for flat things. To deal with arbitrary objects, the extents of both types of drawers are useful.
Introducing more complex and flexible formulations, e.g. in Section D, would help better capture the
complexity of the task.

B.2 CORRELATION ANALYSIS RESULTS

We show here the scatter plots and correlation R2 values between all prediction eigen-lengths and all
presumable geometric measurements. R2 value, or coefficient of determination, is a metric in [0, 1]
reflecting linear correlation between two variables. The closer R2 is to 1, the more linearly correlated
the two variables are. Given two set of samples xi, yi, where i = 1, 2, . . . , n, R2 is defined between
yi and the least squares linear regression of yi on xi, ỹ(xi):

R2 = 1−
∑

i (yi − ỹ(xi))
2∑

i (yi − ȳ)
2 ,

where ȳ = 1
n

∑
i yi is the mean value of yi.

Results from Eigen-Length-Implicit are shown in Fig. 14. Results from Eigen-Length-Grounded
are shown in Fig. 15. We can clearly see the one-to-one correspondence between predictions and
presumable measurements. R2 is close to or greater than 0.9 where the prediction is the match for
the measurements, otherwise the value is much smaller. It is more apparent in the Eigen-Length-
Grounded variant, where R2 values are close to the theoretical bound 1 when it matches. The models
can learn a compact and appropriate set of eigen-lengths from binary task supervision. Also note
that the extraneous prediction slot in task (e) (Top, or countertop placing) become degenerate with
another prediction slot, as has mentioned before in main text.

C APPLYING RANDOM ROTATIONS TO INPUT ENVIRONMENT GEOMETRIES

C.1 FORMULATION AND IMPLEMENTATION

While the object shape is randomly rotated in all experiments in the main paper, we take environment
geometry directly from ShapeNetChang et al. (2015) where shapes are axis-aligned. In this section,
we consider a more challenging setting where the environment geometry is also randomly rotated.
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Specifically, we consider a “rotated” version of the Container Fitting task and Tube Passing task in
the main paper. For each original data point, i.e. a container/tube-object pair with a boolean label
((object point cloud Po, environment point cloud Pe), success label L), we sample a random rotation
R and apply it to both the container and the object. We feed (RPo, RPe) to the network described in
Section 5 and supervise the network with the same label L.

C.2 CORRELATION ANALYSIS AND RESULT VISUALIZATION

We show the correlation analysis of learned eigen-lengths in Fig. 16. A strong, disentangled
correlation between learned eigen-lengths and human-hypothesized ones can still be observed.

We also visualize the learned geometry groundings in Fig. 17. The predicted planes roughly align
with the main cavities of the objects. From the results, we can see that the proposed problem setting
is still valid and the studied methods can still be applicable and produce reasonable results.

D EXTENDING AND CLAUSES TO DISJUNCTIVE NORMAL FORM (DNF)

D.1 FORMULATION

We employ the AND clause formulation for all tasks shown in the main paper. Namely, after learning
a library of paired object/environment eigen-lengths {(Lenv

s , Lobj
s )}s, we compose them by

T̂ (E ,O) =
∧

s=1,2,...,S

[Lenv
s (E) > Lobj

s (O)],

(selection mask m is omitted for clarity), approximated by

T̃ (E ,O) =
∏

s=1,2,...,S

σ((Lenv
s (E)− Lobj

s (O))/τ).

Here we show we can extend this formulation to the more general Disjunctive Normal Form (DNF),
where an OR connects multiple AND clauses. Each AND clause composes eigen-length comparison
results of a subset of eigen-lengths. The result of each AND clause is then aggregated by an OR
operator. More precisely,

T̂ (E ,O) =
∨

Ua∈U

∧
s∈Ua

[Lenv
s (E) > Lobj

s (O)].

U = {Ua}a specifies the subset Ua of eigen-lengths in each AND clause. We similarly use a
differentiable approximation during training:

T̃ (E ,O) = 1−
∏

Ua∈U
(1−

∏
s∈Ua

σ((Lenv
s (E)− Lobj

s (O))/τ)).

The introduction of two-level logic and the OR operator helps express more complex reasoning and
deal with a wider range of tasks. For example, many realistic tasks have multiple solutions. OR
captures the relationship that the task can be executed if any, not necessarily all, of the solutions work.

D.2 TASK AND IMPLEMENTATION DETAILS

To demonstrate our framework’s compatibility with this new formulation, we experiment with the
Multi-Tube Passing task. This is a variant of task (a) (Tube, or tube passing) in the main paper, where
we have two tubes of random sizes placed next to each other. As long as the object can be translated
and passed through any of these tubes, the task is considered as successful.

Similar to tube passing, we randomly sample the extents of the tubes, the shape, scale, and rotation of
the object. The center of the two tubes are always at two fixed positions on the y-axis.

We set the number of eigen-lengths to learn as S = 4 and split them into two disjoint AND groups,
namely U = {{1, 2}, {3, 4}}. Ideally, the learned eigen-lengths should correspond to the height and
width of the tubes. Also, the height and width of the same tube should be in the same AND group.
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D.3 RESULT VISUALIZATION

Fig. 18 visualizes the learned eigen-lengths, where green and yellow belong to one group, purple and
red belong to another group. We successfully learn eigen-lengths that measure along the height/width
directions of the tubes. We also learn them in correct groups, where width and height of the same
tube are paired together.

E DISCUSSION AND FUTURE WORK

E.1 DEFINITION OF EIGEN-LENGTHS AND APPLICATION SCOPE OF THE EXPLORED
FRAMEWORK

In our setting, an eigen-length is whatever scalar measurement (i.e., just a 1D scalar) the network
invents to best perform its stated downstream task. While this definition for eigen-dimensions is quite
general and could be applicable to any object as long as there exist certain 1D eigen-lengths that are
crucial and useful for checking the feasibility of accomplishing a downstream task, we are assuming
in our current experiments that having such sets of 1D eigen-lengths are sufficient for the tasks.
Therefore, our current setting would not apply to the tasks where having only such low-dimensional
eigen-lengths is not sufficient, such as the tasks of geometric contour matching and object collision
checking.

E.2 BROADER IMPLICATION OF THE STUDIED APPROACH FOR AI AND ROBOTICS

We believe the general approach we suggest can have very general applicability in AI and robotics,
where the solution to downstream tasks suggests the emergence of generally useful geometric concepts
such as length, height, width, and radius in unsupervised ways. As we described in the introduction,
learning such compact useful geometric eigen-lengths is beneficial in the ways that 1) they are highly
interpretable, while most of the current learned representations in neural networks are opaque and
learned as black-box hidden features which may be unreliable or untrustworthy, 2) they could be
shared and reused across different tasks, enabling fast adaptation to novel test-time tasks, and 3) the
proposed learning formulation may discover novel yet crucial geometric eigen-lengths that are even
unknown to us humans given the new test-time tasks. Furthermore, there could be more geometric
concepts of great interest and importance that future work can explore in this direction. Examples can
be 1) symmetry, as a result of trying to complete 3D shapes, 2) regular object arrangements and poses
as a tool for efficient search, and 3) tracking, as an essential capability for predicting the outcome
of sports games. In other words, we want learning networks to invent the notions so symmetry,
regularity, or tracking. If such capabilities could emerge from purely unsupervised learning, we no
longer need to rely on black-box-like neural networks and human annotations for this geometric
information over 3D objects.

E.3 ROTATION OF OBJECTS DURING TASK EXECUTION

In our experiments, we are primarily concerned with translational motion during task execution. This
setting stems from practical concerns: in many robotic manipulation scenarios, the rotation of the
object is often given as the desired target to achieve by robot planners or unchangeable during robotic
grasping and manipulation. For example, the robot gripper may only be able to grasp, hold and move
the mug without spilling the content and with steady grasping in certain poses for a pick-and-place
task and the robot may not be able to freely rotate the object as the arm kinematics may not allow.

That being said, our cylinder fitting task does allow rotation along the up-axis for the object and
similarly, the sphere fitting task allows the full SO(3)-space rotation, while for other tasks, in the
case that multiple poses of the object are possible, we can simply pass the object in different poses
into the same network for multiple times to query the joint fitting feasibility.

E.4 DETERMINING THE NUMBER OF EIGEN-LENGTHS TO LEARN

The number of eigen-lengths to learn, i.e. S, is a hyperparameter of our learning framework and
has to be set in advance. However, it should be interpreted as the upper bound on the number of
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eigen-lengths the system can learn, and does not have to be the “groundtruth” number of relevant
eigen-lengths. As shown in Sec. 4.3 and Sec. 5.2, when we set S = 3 for the countertop fitting task
where only two eigen-lengths matter, the extra “slot” either degenerates or coincides with other slots.
Such cases can be easily detected and filtered, and the actual number of relevant eigen-lengths can
be discovered. Setting a maximum number for an unknown number of targets is also a common
practice in problems like object detection Redmon & Farhadi (2017). That being said, a more flexible
mechanism that allows an arbitrary number of eigen-lengths would be desirable, especially for objects
with complex compositional structures like robotic arms or closets with many drawers. We leave this
as a future direction.

F NEGATIVE SOCIAL IMPACT

Our work joins the initial efforts of eigen-length emergence in unsupervised learning settings with
many other works along this direction. There could be several bias in the data and training objectives,
but this is a general concern shared by most works in this field. Our work may also share the
controversial arguments with other works that the future AI agents may have the capability of
thinking by themselves causing threats for human beings. However, the results demonstrated in our
work are way far from that. Other than these potential issues mentioned above, we do not see any
other major concerns our work particularly introduces.
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Figure 13: Additional qualitative results in Container Fitting. We show eigen-lengths in two
views together with the underlying object following Fig. 12 (d). (a)-(o) are successful cases where
the learned planes correctly separate out the largest cavity in the object. (p)-(t) show failure cases.
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Figure 14: Full correlation plots and respective R2 values between ground truth measurements
and predicted eigen-lengths from Eigen-Length-Implicit.
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Figure 15: Full correlation plots and respective R2 values between ground truth measurements
and predicted eigen-lengths from Eigen-Length-Grounded.
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Figure 16: Full correlation plots and respective R2 values between human-hypothesized measure-
ments and predicted eigen-lengths in rotated Tube Passing and rotated Container Fitting, respectively.
Correspondences between predicted eigen-lengths and human-hypothesized ones can be observed.
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Figure 17: Visualization of learned geometry groundings in rotated Tube Passing and rotated
Container Fitting, respectively. Vectors are visualized as arrows, and planes are visualized as disks.
For Container Fitting, we also show the underlying geometry (before rotation) for better reference.
The learned vectors and planes roughly align with the rotated object. Regions of interest like drawers
are also selected by planes.

Figure 18: Visualization of the eigen-lengths learned with OR-AND clauses. Green and yellow,
purple and red eigen-lengths belong to the same AND-group. It turns out that each group attends to
one of the tubes and captures its width and height.
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