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Abstract

We analyze a family of large language models001
in such a lightweight manner that can be done002
on a single GPU. Specifically, we focus on the003
OPT family of models ranging from 125m to004
66b parameters and rely only on whether an005
FFN neuron is activated or not. First, we find006
that the early part of the network is sparse and007
represents many discrete features. Here, many008
neurons (more than 70% in some layers of the009
66b model) are “dead”, i.e. they never acti-010
vate on a large collection of diverse data. At011
the same time, many of the alive neurons are012
reserved for discrete features and act as token013
and n-gram detectors. Interestingly, their corre-014
sponding FFN updates not only promote next015
token candidates as could be expected, but also016
explicitly focus on removing the information017
about triggering them tokens, i.e., current in-018
put. To the best of our knowledge, this is the019
first example of mechanisms specialized at re-020
moving (rather than adding) information from021
the residual stream. With scale, models become022
more sparse in a sense that they have more dead023
neurons and token detectors. Finally, some neu-024
rons are positional: them being activated or not025
depends largely (or solely) on position and less026
so (or not at all) on textual data. We find that027
smaller models have sets of neurons acting as028
position range indicators while larger models029
operate in a less explicit manner.030

1 Introduction031

The range of capabilities of language models ex-032

pands with scale and at larger scales models be-033

come so strong and versatile that a single model can034

be integrated into various applications and decision-035

making processes (Brown et al., 2020; Kaplan et al.,036

2020; Wei et al., 2022; Ouyang et al., 2022; Ope-037

nAI, 2023; Anil et al., 2023). This increases inter-038

est and importance of understanding the internal039

workings of these large language models (LLMs)040

and, specifically, their evolution with scale. Unfor-041

tunately, scaling also increases the entry threshold042

for interpretability researchers since dealing with 043

large models requires a lot of computational re- 044

sources. In this work, we analyze a family of OPT 045

models up to 66b parameters and deliberately keep 046

our analysis very lightweight so that it could be 047

done using a single GPU. 048

We focus on neurons inside FFNs, i.e. individual 049

activations in the representation between the two 050

linear layers of the Transformer feedforward blocks 051

(FFNs). Differently from e.g. neurons in the resid- 052

ual stream, FFN neurons are more likely to repre- 053

sent meaningful features: the elementwise nonlin- 054

earity breaks the rotational invariance of this repre- 055

sentation and encourages features to align with the 056

basis dimensions (Elhage et al., 2021). When such 057

a neuron is activated, it updates the residual stream 058

by pulling out the corresponding row of the second 059

FFN layer; when it is not activated, it does not up- 060

date the residual stream (Figure 5).1 Therefore, we 061

can interpret functions of these FFN neurons in two 062

ways: (i) by understanding when they are activated, 063

and (ii) by interpreting the corresponding updates 064

coming to the residual stream. 065

First, we find that in the first half of the network, 066

many neurons are “dead”, i.e. they never activate 067

on a large collection of diverse data. Larger models 068

are more sparse in this sense: e.g., in the 66b model 069

more that 70% of the neurons in some layers are 070

dead. At the same time, many of the alive neurons 071

in this early network part are reserved for discrete 072

features and act as indicator functions for tokens 073

and n-grams: they activate if and only if the input 074

is a certain token or an n-gram. The role of the 075

updates coming from these token detectors to the 076

residual stream is also surprising: at the same time 077

as they promote next token candidates (which is to 078

be expected according to Geva et al. (2021, 2022)), 079

they are explicitly targeted at removing information 080

1Since OPT models have the ReLU activation function, the
notion of “activated” or “not activated” is trivial and means
non-zero vs zero.
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about current input, i.e. their triggers. This means081

that in the bottom-up processing where a repre-082

sentation of the current input token gets gradually083

transformed into a representation for the next token,084

current token identity is removed by the model ex-085

plicitly (rather than ends up implicitly “buried” as a086

result of additive updates useful for the next token).087

As far as we are aware, this is the first example of088

mechanisms specialized at removing (rather than089

adding) information from the residual stream.090

Finally, we find that some neurons are responsi-091

ble for encoding positional information regardless092

of textual patterns. Similarly to token and n-gram093

detectors, many of these neurons act as indicator094

functions of position ranges, i.e. activate for po-095

sitions within certain ranges and do not activate096

otherwise. Interestingly, neurons often collabo-097

rate: their indicated positional ranges are often in098

agreement so that together they efficiently cover all099

possible positions and no neuron is redundant. In100

a broader picture, positional neurons question the101

key-value memory view of the FFN layers stating102

that “each key correlates with textual patterns in103

the training data and each value induces a distribu-104

tion over the output vocabulary” (Geva et al., 2021,105

2022). Neurons that rely on position regardless of106

textual pattern indicate that FFN layers can be used107

by the model in ways that do not fit the key-value108

memory view. Overall, we argue that the roles109

played by these layers are still poorly understood.110

To sum up, we find neurons that:111

• are “dead”, i.e. never activate on a large di-112

verse collection of data;113

• act as token- and n-gram detectors that, in114

addition to promoting next token candidates,115

explicitly remove current token information;116

• encode position regardless of textual content117

which indicates that the role of FFN layers118

extends beyond the key-value memory view.119

Larger models have more dead neurons and token120

detectors and are less focused on absolute position.121

2 Data and Setting122

Models. We use OPT (Zhang et al., 2022), a suite123

of decoder-only pre-trained transformers that are124

publicly available. We use model sizes ranging125

from 125M to 66B parameters and take model126

weights from the HuggingFace model hub.2127

2https://huggingface.co/models

(a) (b)

Figure 1: (a) Percentage of “dead” neurons; (b) average
neuron activation frequency among non-dead neurons.

Data. We use data from diverse sources con- 128

taining development splits of the datasets used in 129

OPT training as well as several additional datasets. 130

Overall, we used (i) subsets of the validation and 131

test part of the Pile (Gao et al., 2020) includ- 132

ing Wikipedia, DM Mathematics, HackerNews, 133

(ii) Reddit (Baumgartner et al., 2020; Roller et al., 134

2021), (iii) code data from Codeparrot3. 135

For the experiments in Section 3 when talk- 136

ing about dead neurons, we use several times 137

more data. Specifically, we add more data from 138

Wikipedia, DM Mathematics and Codeparrot, as 139

well as new domains from the Pile4: EuroParl, 140

FreeLaw, PubMed abstracts, Stackexchange. 141

Overall, the data used in Section 3 has over 20M 142

tokens, in the rest of the paper – over 5M tokens. 143

Single-GPU processing. We use only sets of neu- 144

ron values for some data, i.e. we run only forward 145

passes of the full model or its several first layers. 146

Since large models do not fit in a single GPU, we 147

load one layer at a time keeping the rest of the 148

layers on CPU. This allows us to record neuron ac- 149

tivations for large models: all the main experiments 150

in this paper were done on a single GPU. 151

3 Dead Neurons 152

Let us start from simple statistics such as neuron 153

activation frequency (Figure 1). 154

Many neurons are “dead”. First, we find that 155

many neurons never activate on our diverse data, i.e. 156

they can be seen as “dead”. Figure 1a shows that 157

the proportion of dead neurons is very substantial: 158

e.g., for the 66b model, the proportion of dead 159

neurons in some layers is above 70%. We also see 160

that larger models are more sparse because (i) they 161

3https://huggingface.co/datasets/codeparrot/
codeparrot-clean

4https://huggingface.co/datasets/EleutherAI/
pile
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have more dead neurons and (ii) the ones that are162

alive activate less frequently (Figure 1b).163

Only first half of the model is sparse. Next, we164

notice that this kind of sparsity is specific only to165

early layers. This leads to a clear distinction be-166

tween the first and the second halves of the network:167

while the first half contains a solid proportion of168

dead neurons, the second half is fully “alive”. Ad-169

ditionally, layers with most dead neurons are the170

ones where alive neurons activate most rarely.171

Packing concepts into neurons. This difference172

in sparsity across layers might be explained by173

“concept-to-neuron” ratio being much smaller in the174

early layers than in the higher layers. Intuitively,175

the model has to represent sets of encoded in a176

layer concepts by “spreading” them across avail-177

able neurons. In the early layers, encoded concepts178

are largely shallow and are likely to be discrete179

(e.g., lexical) while at the higher layers, networks180

learn high-level semantics and reasoning (Peters181

et al., 2018; Liu et al., 2019; Jawahar et al., 2019;182

Tenney et al., 2019; Geva et al., 2021). Since the183

number of possible shallow patterns is not large184

and, potentially, enumerable, in the early layers the185

model can (and, as we will see later, does) assign186

dedicated neurons to some features. The more neu-187

rons are available to the model, the easier it is to do188

so – this agrees with the results in Figure 1. Differ-189

ently, the space of fine-grained semantic concepts190

is too large compared to the number of available191

neurons which makes it hard to reserve many dedi-192

cated neuron-concept pairs.5193

Are dead neurons completely dead? Note that194

the results in Figure 1a can mean one of the two195

things: (i) these neurons can never be activated (i.e.196

they are “completely dead”) or (ii) they correspond197

to patterns so rare that we never encountered them198

in our large diverse collection of data. While the199

latter is possible, note that this does not change200

the above discussion about sparsity and types of201

encoded concepts. On the contrary: it further sup-202

ports the hypothesis that models assign dedicated203

neurons to specific concepts.204

4 N-gram-Detecting Neurons205

Now, let us look more closely into the patterns206

encoded in the lower model halves and try to un-207

5There can, however, be a few specialized neurons in the
higher layers. For example, BERT has neurons responsible
for relational facts (Dai et al., 2022).

Figure 2: Neurons categorized by the number of uni-
grams (i.e., tokens) able to trigger them. First half of
the network, alive neurons only.

derstand the nature of the observed above sparsity. 208

Specifically, we analyze how neuron activations de- 209

pend on an input n-gram. For each input text with 210

tokens x1, x2, ..., xS , we record neuron activations 211

at each position and if a neuron is activated (i.e., 212

non-zero) at position k, we say that the n-gram 213

(xk−n+1, . . . , xk) triggered this neuron. 214

In Sections 4.1-4.4 we talk about unigrams (i.e., 215

tokens) and come to larger n-grams in Section 4.5. 216

4.1 Number of N-grams Triggering a Neuron 217

First, let us see how many n-grams are able to 218

trigger each neuron. For each neuron, we evaluate 219

the number of n-grams that cover at least 95% of 220

its activations. For the bottom model half, Figure 2 221

shows how neurons in each layer are categorized 222

by the number of covering them n-grams (we show 223

unigrams here and larger n-grams in Appendix A). 224

As anticipated, neurons in larger models are cov- 225

ered by fewer n-grams. Also, the largest models 226

have a substantial proportion of neurons covered 227

by as few as 1 to 5 tokens. This agrees with our 228

hypothesis: the model spreads discreet shallow pat- 229

terns across specifically dedicated neurons.6 230

4.2 Token-Detecting Neurons 231

Presence of neurons that can be triggered by only 232

a few (e.g., 1-5) tokens point to the possibility that 233

some neurons act as token detectors, i.e. activate 234

6Note that the 350m model does not follow the same pat-
tern as all the rest: we will discuss this model in Section 6.
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(a) (b)

Figure 3: (a) Number of token-detecting neurons;
(b) number of tokens that have a detecting them neuron:
solid line – per layer, dashed – cumulative over layers.

if and only if the input is one of the corresponding235

tokens, regardless of the previous context. To find236

such neurons, we (1) pick neurons that can be trig-237

gered by only 1-5 tokens, (2) gather tokens that are238

covered by this neuron (if the neuron activates at239

least 95% of the time the token is present), (3) if240

altogether, these covered tokens are responsible for241

at least 95% of neuron activations.7242

Figure 3a shows that there are indeed a lot of243

token-detecting neurons. As expected, larger mod-244

els have more of them and the 66b model has over-245

all 5351 token detectors. Note that each token246

detector is responsible for a group of tokens that,247

in most of the cases, are variants of the same word248

(e.g., with differences only in capitalization, the249

space-before-word special symbol, morphological250

form, etc.). Figure 6 (top) shows examples of token251

groups detected by these neurons.252

4.3 Ensemble-Like Behaviour of the Layers253

Now, let us look at “detected” tokens, i.e. tokens254

that have a specialized detecting them neuron. Fig-255

ure 3b shows the number of detected tokens in each256

layer and cumulatively over layers. We see that,257

e.g., the 66b model focuses on no more than 1.5k258

tokens in each layer but covers over 10k tokens259

overall. Thus, across layers, token-detecting neu-260

rons are responsible for largely differing tokens.261

Indeed, Figure 4 shows that in each following layer,262

detected tokens mostly differ from all the tokens263

covered below. This points to an ensemble-like264

(as opposed to sequential) behavior of the layers:265

layers collaborate in a divide-and-conquer-style266

manner which allows larger models to cover many267

tokens and use their capacity more effectively.268

Originally, such an ensemble-like behavior of269

deep residual networks was found in computer vi-270

7We exclude the begin-of-sentence token from these com-
putations because for many neurons, this token is responsible
for the majority of the activations.

Figure 4: Number of tokens covered in each layer with
indicated (i) new overall, and (ii) new compared to the
previous layer tokens.

sion (Veit et al., 2016). For transformers, previous 271

evidence includes simple experiments showing that 272

dropping or reordering layers does not hurt perfor- 273

mance much (Fan et al., 2020; Zhao et al., 2021). 274

4.4 Token Detectors Suppress Their Triggers 275

Finally, let us explain the role of token-detecting 276

neurons by interpreting how they update the resid- 277

ual stream. Throughout the layers, token represen- 278

tation in the residual stream gets transformed from 279

the token embedding for the current input token8 280

to the representation that encodes the next token. 281

This happens via additive updates coming from at- 282

tention and FFN blocks in each layer. Whenever an 283

FFN neuron is activated, the corresponding row of 284

the second FFN layer (multiplied by this neuron’s 285

value) is added to the residual stream (Figure 5). 286

By projecting this FFN row onto vocabulary, we 287

can interpret this update (and, thus, the role of this 288

neuron) in terms of its influence on the output dis- 289

tribution encoded in the residual stream. 290

Current token suppression: implicit or explicit? 291

Previously, this influence was understood only in 292

terms of the top projections, i.e. tokens that are 293

promoted (Geva et al., 2021, 2022). This reflects 294

an existing view supporting implicit rather than 295

explicit loss of the current token identity over the 296

course of layers. Namely, the view that the current 297

identity gets “buried” as a result of updates useful 298

for the next token as opposed to being removed 299

by the model explicitly. In contrast, we look not 300

only at the top projections but also at the bottom: 301

if these projections are negative, the corresponding 302

tokens are suppressed by the model (Figure 5). 303

Explicit token suppression in the model. We 304

find that often token-detecting neurons deliberately 305

suppress the tokens they detect. Figure 6 shows 306

8For OPT, along with an absolute positional embedding.
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Figure 5: Intuition behind concept suppression: we look
not only at the top projections of an FFN update on
vocabulary but also at the bottom. The concepts that are
added with a negative value are suppressed.

Figure 6: Examples of the top promoted and suppressed
tokens for token-detecting neurons (Ġ is a special sym-
bol denoting the space before word – in the OPT tok-
enizers, it is part of a word); OPT-66b model.

examples of these neurons along with the top pro-307

moted and suppressed concepts. While the top308

promoted concepts are in line with previous work309

(they are potential next token candidates as in Geva310

et al. (2021, 2022)), the top suppressed concepts311

are rather unexpected: they are exactly the tokens312

triggering this neuron. This means that vector up-313

dates coming from neurons play two different roles314

at the same time: (i) point in the direction of the315

next token candidates and (ii) point away from the316

tokens triggering the neuron. In total, for over 80%317

of token-detecting neurons their updates point in318

the negative direction from the triggering them to-319

kens (although, the triggering tokens are not always320

at the very top suppressed concepts as in Figure 5).321

To sum up, we show that models can have mech-322

anisms targeted at removing information; future323

work can explore this further.324

4.5 Beyond Unigrams325

In Appendix A, we show results for bigrams and326

trigrams that mirror our observations for unigrams:327

(i) larger models have more specialized neurons, 328

(ii) in each layer, models cover mostly new n-grams. 329

Interestingly, for larger n-grams we see a more 330

drastic gap between larger and smaller models. 331

5 Positional Neurons 332

When analyzing dead neurons (Section 3), we also 333

noticed some neurons that, consistently across di- 334

verse data, never activate except for a few first to- 335

ken positions. This motivates us to look further into 336

how position is encoded in the model and, specif- 337

ically, whether some neurons are responsible for 338

encoding positional information. 339

5.1 Identifying Positional Neurons 340

Intuitively, we want to find neurons whose activa- 341

tion patterns are defined by or, at least, strongly 342

depend on token position. Formally, we identify 343

neurons whose activations have high mutual infor- 344

mation with position. For each neuron, we evaluate 345

mutual information between two random variables: 346

• act – neuron is activated or not ({Y,N}), 347

• pos – token position ({1, 2, . . . , T}). 348

Formal setting. We gather neuron activations 349

for full-length data (i.e., T = 2048 tokens) for 350

Wikipedia, DM Mathematics and Codeparrot. Let 351

fr
(pos)
n be activation frequency of neuron n at posi- 352

tion pos and frn be the total activation frequency 353

of this neuron. Then the desired mutual informa- 354

tion is as follows:9 355

I(act, pos) =
1

T
·

T∑
pos=1

[
fr(pos)n · log fr

(pos)
n

frn
+ 356

(1− fr(pos)n ) · log 1− fr
(pos)
n

1− frn

]
. 357

Choosing the neurons. We pick neurons with 358

I(act, pos) > 0.05, i.e. high mutual information 359

with position – this gives neurons whose activation 360

frequency depends on position rather than content. 361

Indeed, if e.g. a neuron is always activated within 362

certain position range regardless of data domain, 363

we can treat this neuron as responsible for position; 364

at least, to a certain extent. 365

5.2 Types of Positional Neurons 366

After selecting positional neurons, we categorize 367

them according to their activation pattern, i.e. acti- 368

vation frequency depending on position (Figure 7). 369

9For more details, see appendix B.1.
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Figure 7: Types of positional neurons. Top row – “strong” pattern, bottom row – “weak” pattern.

Oscillatory. These neurons are shown in purple370

in Figure 7. When such a pattern is strong (top371

row), the activation pattern is an indicator function372

of position ranges: a neuron is activated if and373

only if the position falls into a certain set. Since374

the activation pattern does not change across data375

domains, it is defined solely by position and not the376

presence of some lexical or semantic information.377

Both types of activation extremes. These are the378

neurons whose activation pattern is not oscillatory379

but still has intervals where activation frequency380

reaches both “activation extremes”: 0 (never acti-381

vated) and 1 (always activated). Most frequently,382

such a neuron is activated only for positions less383

than or greater than some value and not activated384

otherwise. Similarly to oscillatory neurons, when385

such a pattern is strong (Figure 7, top row), it is386

also (almost) an indicator function.387

Only one type of activation extremes. Differ-388

ently from the previous two types, activation pat-389

terns for these neurons can reach only one of the390

extreme values 0 or 1 (Figure 7, green). While this391

means that they never behave as indicator functions,392

there are position ranges where a neuron being ac-393

tivated or not depends solely on token position.394

Other. Finally, these are the neurons whose ac-395

tivation patterns strongly depend on position but396

do not have intervals where activation frequency397

stays 0 or 1 (Figure 7, yellow). Typically, these398

activation patterns have lower mutual information399

with position than the previous three types.400

Strong vs weak pattern. We distinguish “strong”401

and “weak” versions of each type and show this402

with color intensity (Figure 7, top vs bottom rows).403

For the first three neuron types, the difference be-404

tween strong and weak patterns lies in whether on405

the corresponding position ranges activation fre-406

quency equals 0 (or 1) or close, but not equals, 0407

(or 1). For the last type, this difference lies in how 408

well we can predict activation frequency at some 409

position knowing this value at the neighboring po- 410

sitions (informally, “thin” vs “thick” graph). 411

5.3 Positional Neurons Across the Models 412

For each of the models, Figure 8 illustrates the 413

positional neurons across layers. 414

Small models encode position more explicitly. 415

First, we notice that smaller models rely substan- 416

tially on oscillatory neurons: this is the most fre- 417

quent type of positional neurons for models smaller 418

than 6.7b of parameters. In combination with many 419

“red” neurons acting as indicator functions for wider 420

position ranges, the model is able to derive token’s 421

absolute position rather accurately. In contrast, 422

larger models do not have oscillatory neurons and 423

rely on more generic patterns shown with red- and 424

green-colored circles. We can also see that from 425

13b to 66b, the model loses two-sided red neu- 426

rons and uses the one-sided green ones more. This 427

hints at one of the qualitative differences between 428

smaller and larger models: while the former en- 429

code absolute position more accurately, the latter 430

ones are likely to rely on something more meaning- 431

ful than absolute position. This complements re- 432

cent work showing that absolute position encoding 433

is harmful for length generalization in reasoning 434

tasks (Kazemnejad et al., 2023). Differently from 435

their experiments with same model size but vari- 436

ous positional encodings, we track changes with 437

scale. We see that, despite all models being trained 438

with absolute positional encodings, stronger mod- 439

els tend to abstract away from absolute position. 440

Positional neurons collaborate. Interestingly, 441

positional neurons seem to collaborate to cover the 442

full set of positions. For example, let us look more 443

closely at the 10 strongly oscillatory neurons in the 444

second layer of the 125m model (Figure 8, dark 445
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Figure 8: Positional neurons in each of the models. Each circle corresponds to a single neuron, colors and their
intensity correspond to the types of patterns shown in Figure 7.

Figure 9: Position ranges indicated by strong oscillatory
neurons in the second layer of the 125m model.

purple circles). Since they act as indicator func-446

tions, we can plot position ranges they indicate.447

Figure 9 shows that (i) indicated position ranges448

are similar up to a shift, (ii) the shifts are organized449

“perfectly”: together, these ten neurons cover all450

positions and none of these neurons is redundant.451

The two stages within the model. Finally, Fig-452

ure 8 reveals two stages of up-and-downs of posi-453

tional information within the model: roughly, the454

first third of the model and the rest. Interestingly,455

preferences in positional patterns also change be-456

tween the stages: e.g., preference for “red” neurons457

changes to oscillatory purple patterns for the 1.3b458

and 2.7b models, and “red” patterns become less459

important in the upper stage for the 13b and 30b460

models. Note that the first third of the model cor-461

responds to the sparse stage with the dead neurons462

and n-gram detectors (Sections 3, 4). Therefore, we463

can hypothesize that in these two stages, positional464

information is first used locally to detect shallow465

patterns and then more globally to use longer con-466

texts and help encode semantic information.467

Previously, the distinct bottom-up stages inside468

language models were observed in Voita et al.469

(2019a). The authors explained how the way repre-470

sentations gain and lose information across the lay-471

ers is defined by the training objective and why,472

among other things, positional information should473

(and does) get lost. This agrees with our results: 474

while there are many positional patterns in the sec- 475

ond stage, they are weaker than in the first stage. 476

5.4 Positional Neurons are Learned Even 477

Without Positional Encoding 478

Recently, it turned out that even without positional 479

encoding, autoregressive LMs still learn positional 480

information (Haviv et al., 2022). We hypothesize 481

that these “NoPos” models encode position via 482

positional neurons. To confirm this, we train 125m 483

models with and without positional encodings and 484

compare the types of their positional neurons. 485

Setup. We trained 125m models with the OPT 486

setup but smaller training dataset: OpenWebText 487

corpus (Gokaslan and Cohen, 2019), an open clone 488

of the GPT-2 training data (Radford et al., 2019). 489

This dataset contains 3B tokens (vs 180B for OPT). 490

Positional neurons without positional encoding. 491

We see that, indeed, the model without positional 492

encoding also has many strong positional patterns 493

(Figure 10). Note, however, that the NoPos model 494

does not have oscillatory neurons which, in com- 495

bination with other positional neurons, allow en- 496

coding absolute position rather accurately. This 497

means that the NoPos model relies on more generic 498

patterns, e.g. “red” neurons encoding whether a 499

position is greater/less than some value. 500

Oscillatory neurons require longer training. 501

Finally, we find that oscillatory patterns appear 502

only with long training. In Appendix B.3 we show 503

positional patterns learned by the baseline 125m 504

model trained for 50k, 150k and 300k steps and see 505

that all models have very strong positional patterns, 506

but only the last of them has oscillatory neurons. 507
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Figure 10: Positional neurons in 125m models: baseline vs model without positional encoding.

5.5 Doubting FFNs as Key-Value Memories508

Currently, it is widely believed that FFNs in trans-509

former-based language models operate as key-510

value memories. Specifically, “each key correlates511

with textual patterns in the training examples, and512

each value induces a distribution over the output513

vocabulary” (Geva et al. (2021, 2022); Dai et al.514

(2022); Meng et al. (2022), etc.). While in Sec-515

tion 4.4 we confirmed that this is true for some of516

the neurons, results in this section reveal that FFN517

layers can be used by the model in ways that do not518

fit the key-value memory view. Namely, activations519

of strong positional neurons are defined by position520

regardless of textual content, and the corresponding521

values do not seem to encode meaningful distribu-522

tions over vocabulary – the role of these neurons523

is different from matching textual patterns to next524

token candidates. Therefore, the roles played by525

FFN layers are still poorly understood.526

6 The 350m Model: The Odd One Out527

Note that the 350m model does not follow the same528

pattern as the rest: it does not have dead neurons529

and its neuron activations do not seem to be sparse530

with respect to triggering them n-grams.10 This531

might be explained by the difference in implemen-532

tation: the 350m model applies LayerNorm after533

attention and FFN blocks, while all the other mod-534

els – before.11 Apparently, even minor implemen-535

tation details can affect interpretability. Indeed,536

previous work also tried choosing certain modeling537

aspects to encourage interpretability, e.g. activation538

function (Elhage et al., 2022), sparse softmax vari-539

ants (Martins and Astudillo (2016); Niculae and540

Blondel (2017); Peters et al. (2019); Correia et al.541

(2019); Martins et al. (2020)), or explicit modular542

structure (Andreas et al. (2016); Hu et al. (2018);543

Kirsch et al. (2018); Khot et al. (2021)).544

7 Additional Related Work545

Historically, neurons have been a basic unit of anal-546

ysis. Early works started from convolutional net-547

10There are, however, positional neurons (Appendix B.2).
11https://github.com/huggingface/transformers/

blob/main/src/transformers/models/opt/modeling_
opt.py

works first for images (Krizhevsky et al., 2012) 548

and later for text classification (Jacovi et al., 2018). 549

Similar to our work, Jacovi et al. (2018) also find 550

n-gram detectors; although, for small convolu- 551

tional text classifiers this is an almost trivial ob- 552

servation compared to Transformer-based LLMs. 553

For recurrent networks, interpretable neurons in- 554

clude simple patterns such as line lengths, brackets 555

and quotes (Karpathy et al., 2015), sentiment neu- 556

ron (Radford et al., 2017), and others (Bau et al., 557

2019). For BERT, Dai et al. (2022) find that some 558

FFN neurons store factual knowledge. Larger units 559

of analysis include attention heads (Voita et al. 560

(2018, 2019b); Clark et al. (2019); Kovaleva et al. 561

(2019); Baan et al. (2019); Correia et al. (2019), 562

etc), feed-forward layers (Geva et al., 2021, 2022) 563

and circuits responsible for certain tasks (Wang 564

et al., 2022; Geva et al., 2023; Hanna et al., 2023). 565

8 Implications and Conclusions 566

Overall, neurons in LLMs can (i) be dead (never- 567

activating), (ii) act as token- and n-gram detectors, 568

(iii) encode position regardless of textual content. 569

Note that differently from most of the previous 570

influential mechanistic interpretability work, we 571

experiment with an entire family of models (in- 572

stead of a single model as in Geva et al. (2021); 573

Wang et al. (2022) among others) and consider very 574

large models up to 66b. We also provide a way to 575

analyze large models with very limited resources – 576

we believe this is of high value to academic commu- 577

nity. Finally, our main findings are not only about 578

the presence of certain neurons in the OPT models 579

but also about high-level conclusions regarding cur- 580

rent beliefs in the community. Specifically, (1) in- 581

formation can be explicitly removed (rather than 582

added) from the residual stream, (2) positional neu- 583

rons question the key-value memory view of FFNs, 584

(3) we explain how LMs trained without positional 585

information still encode position, (4) we show that 586

minor architecture changes can significantly influ- 587

ence interpretability, among others. On top of that, 588

our analysis can easily be extended to other models: 589

e.g., for other models later work validated our find- 590

ings regarding positional neurons and suppressed 591

concepts (Gurnee et al., 2024). 592

8

https://github.com/huggingface/transformers/blob/main/src/transformers/models/opt/modeling_opt.py
https://github.com/huggingface/transformers/blob/main/src/transformers/models/opt/modeling_opt.py
https://github.com/huggingface/transformers/blob/main/src/transformers/models/opt/modeling_opt.py


Limitations593

The experiments in this paper are restricted to the594

OPT model family, which incorporate the ReLU595

activation function. As a result, the results may not596

be generalizable to alternative architectures and ac-597

tivation functions. The analysis itself, however, can598

be extended to other models in a way we explained599

above.600

In our study, we define the term “neurons” to601

refer to the activations within the intermediate rep-602

resentation inside the feed-forward layers. While603

we provide rationale for focusing on these particu-604

lar representations, it is worth noting that we don’t605

explore other representations within the model.606

Additionally, it is important to emphasize that607

the largest model used in this work is a 66B param-608

eters model. Nevertheless, current Large Language609

Models exceed that parameter count, and may po-610

tentially exhibit different properties.611
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Figure 11: Neurons categorized by the number of bi-
grams able to trigger them. First half of the network,
alive neurons only.

Figure 12: Neurons categorized by the number of tri-
grams able to trigger them. First half of the network,
alive neurons only.

A N-gram-Detecting Neurons 948

A.1 Number of N-grams Triggering a Neuron 949

Figure 11 shows how neurons in each layer are 950

categorized by the number of covering them bi- 951

grams, Figure 12 – trigrams. As expected, neurons 952

in larger models are covered by less n-grams. 953

A.2 Trigram-Detecting Neurons 954

Similarly to token-detecting neurons in Section 4.2, 955

we also find neurons that are specialized on 3- 956

grams. Specifically, we (1) pick neurons that are 957

covered by only 1-50 trigrams, (2) gather trigrams 958

that are covered by this neuron (if the neuron ac- 959

tivated at least 95% of the time the trigram is 960

present), (3) if altogether, these covered trigrams 961

are responsible for at least 95% of neuron activa- 962
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(a) (b)

Figure 13: (a) Number of trigram-detecting neurons;
(b) number of trigrams that have a detecting them neu-
ron: solid line – per layer, dashed – cumulative over
layers.

Figure 14: Number of trigrams covered in each layer
with indicated (i) new overall, and (ii) new compared to
the previous layer tokens.

tions.963

Figure 13 shows the results. Overall, the results964

further support our main observations: larger mod-965

els have more neurons responsible for n-grams. In-966

terestingly, when looking at trigrams rather than to-967

kens, at 30b of parameters we see a drastic jump in968

the number of covered n-grams. This indicates that969

one of the qualitative differences between larger970

and smaller models lies in the expansion of the971

families of features they are able to represent.972

A.3 Ensemble-Like Layer Behavior973

Figure 14 shows the number of covered trigrams in974

each layer. We see that in each layer, models cover975

largely new trigrams.976

B Positional Neurons977

B.1 Mutual Information978

For each neuron, we evaluate mutual information979

between two random variables:980

• act – neuron is activated or not ({Y,N}),981

• pos – token position ({1, 2, . . . , T}).982

Formal setting. We gather neuron activations 983

for full-length data (i.e., T = 2048 tokens) for 984

Wikipedia, DM Mathematics and Codeparrot. Let 985

fr
(pos)
n be activation frequency of neuron n at posi- 986

tion pos and frn be the total activation frequency 987

of this neuron. 988

Then the desired mutual information is as fol-
lows:

I(act, pos) =

=
∑
act

T∑
pos=1

p(pos)p(act|pos) · log p(act|pos)
p(act)

=

Since we only feed full-length texts, all positions 989

appear with the same frequency: p(pos) = 1/T . 990

=
1

T
·

∑
act∈{Y,N}

T∑
pos=1

p(act|pos)·log p(act|pos)
p(act)

=

=
1

T
·

T∑
pos=1

p(act = Y |pos)·log p(act = Y |pos)
p(act = Y )

+

1

T
·
T∑

pos=1

(1−p(act = Y |pos))·log 1−p(act=Y |pos)
1− p(act = Y )

=

=
1

T
·

T∑
pos=1

[
fr(pos)n · log fr

(pos)
n

frn
+ 991

(1− fr(pos)n ) · log 1− fr
(pos)
n

1− frn

]
. 992

B.2 Positional Neurons for the 350m Model 993

The results are shown in Figure 15. 994

B.3 Oscillatory Neurons Require Longer 995

Training 996

Figure 16 shows positional patterns learned by the 997

baseline 125m model trained for 50k, 150k and 998

300k training batches. We see that all models have 999

very strong positional patterns, but only the last of 1000

them has oscillatory neurons. Apparently, learning 1001

absolute position requires longer training time. 1002
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Figure 15: Positional neurons in the 350m model. Each
circle corresponds to a single neuron, colors and their
intensity correspond to the types of patterns shown in
Figure 7.

Figure 16: Positional neurons in the base 125m model
trained with 50k, 150k and 300k batches.
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