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Abstract. In this paper we present DCFE, a real-time facial landmark
regression method based on a coarse-to-fine Ensemble of Regression Trees
(ERT). We use a simple Convolutional Neural Network (CNN) to gen-
erate probability maps of landmarks location. These are further refined
with the ERT regressor, which is initialized by fitting a 3D face model
to the landmark maps. The coarse-to-fine structure of the ERT lets us
address the combinatorial explosion of parts deformation. With the 3D
model we also tackle other key problems such as robust regressor initial-
ization, self occlusions, and simultaneous frontal and profile face analysis.
In the experiments DCFE achieves the best reported result in AFLW,
COFW, and 300W private and common public data sets.
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1 Introduction

Facial landmarks detection is a preliminary step for many face image analysis
problems such as verification and recognition [25], attributes estimation [2], etc.
The availability of large annotated data sets has recently encouraged research
in this area with important performance improvements. However, it is still a
challenging task especially when the faces suffer from large pose variations and
partial occlusions.

The top performers in the recent 300 W benchmark are all based in deep
regression models [20,23,30,33] (see Table 1). The most prominent feature of
these approaches is their robustness, due to the large receptive fields of deep
nets. However, in these models it is not easy to enforce facial shape consistency
or estimate self occlusions.
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ERT-based models [6,7,18,24], on the other hand, are easy to parallelize
and implicitly impose shape consistency in their estimations. They are much
more efficient than deep models and, as we demonstrate in our experiments (see
Fig. 4), with a good initialization, they are also very accurate.

In this paper we present a hybrid method, termed Deeply-initialized Coarse-
to-Fine Ensemble (DCFE). It uses a simple CNN to generate probability maps of
landmarks location. Hence, obtaining information about the position of individ-
ual landmarks without a globally imposed shape. Then we fit a 3D face model,
thus enforcing a global face shape prior. This is the starting point of the coarse-
to-fine ERT regressor. The fitted 3D face model provides the regressor with a
valid initial shape and information about landmarks visibility. The coarse-to-fine
approach lets the ERT easily address the combinatorial explosion of all possible
deformations of non-rigid parts and at the same time impose a part shape prior.
The proposed method runs in real-time (32 FPS) and provides the best reported
results in AFLW, COFW, and 300 W private and common public data sets.

2 Related Work

Face alignment has been a topic of intense research for more than twenty years.
Initial successful results were based on 2D and 3D generative approaches such
as the Active Appearance Models (AAM) [8] or the 3D Morphable Models [4].
More recent discriminative methods are based on two key ideas: indexing image
description relative to the current shape estimate [12] and the use of a regressor
whose predictions lie on the subspace spanned by the training face shapes [7], this
is the so-called Cascade Shape Regressor (CSR) framework. Kazemi et al. [18]
improved the original cascade framework by proposing a real-time ensemble of
regression trees. Ren et al. [24] used locally binary features to boost the perfor-
mance up to 3000 FPS. Burgos-Artizzu et al. [6] included occlusion information.
Xiong et al. [31,32] use SIFT features and learn a linear regressor dividing the
search space into individual regions with similar gradient directions. Overall, the
CSR approach is very sensitive to the starting point of the regression process.
An important part of recent work revolves around how to find good initialisa-
tions [37,38]. In this paper we use the landmark probability maps produced by
a CNN to find a robust starting point for the CSR.

Current state-of-the-art methods in face alignment are based on CNNs. Sun
et al. [26] were pioneers to apply a three-level CNN to obtain accurate land-
mark estimation. Zhang et al. [36] proposed a multi-task solution to deal with
face alignment and attributes classification. Lv et al.’s [23] uses global and local
face parts regressors for fine-grained facial deformation estimation. Yu et al. [34]
transforms the landmarks rather than the input image for the refinement cas-
cade. Trigeorgis et al. [27] and Xiao et al. [30] are the first approaches that fuse
the feature extraction and regression steps of CSR into a recurrent neural net-
work trained end-to-end. Kowalski et al. [20] and Yang et al. [33] are among
the top performers in the Menpo competition [35]. Both use a global similar-
ity transform to normalize landmark locations followed by a VGG-based and
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a Stacked Hourglass network respectively to regress the final shape. The large
receptive fields of deep neural nets convey these approaches with a high degree of
robustness to face rotation, scale and deformation. However, it is not clear how
to impose facial shape consistency on the estimated set of landmarks. Moreover,
to achieve accuracy they resort to a cascade of deep models that progressively
refine the estimation, thus incrementing the computational requirements.

There is also an increasing number of works based on 3D face models. In
the simplest case they fit a mean model to the estimated image landmarks
position [19] or jointly regress the pose and shape of the face [17,29]. These
approaches provide 3D pose information that may be used to estimate landmark
self-occlusions or to train simpler regressors specialized in a given head orienta-
tion. However, building and fitting a 3D face model is a difficult task and the
results of the full 3D approaches in current benchmarks are not as good as those
described above.

Our proposal tries to leverage the best features of the previous approaches.
Using a CCN-based initialization we inherit the robustness of deep models. Like
the simple 3D approaches we fit a rigid 3D face model to initialize the ERT
and estimate global face orientation to address self occlusions. Finally, we use
an ERT within a coarse-to-fine framework to achieve accuracy and efficiency.

3 Deeply Initialized Coarse-to-Fine Ensemble

In this section, we present the Deeply-initialized Coarse-to-fine Ensemble method
(DCFE). It consists of two main steps: CNN-based rigid face pose computation
and ERT-based non-rigid face deformation estimation, both shown in Fig. 1.

Fig. 1. DCFE framework diagram. GS, Max and POSIT represent the Gaussian
smoothing filter, the maximum of each probability map and the 3D pose estimation
respectively.
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3.1 Rigid Pose Computation

ERT-based regressors require an acceptable initialization to converge to a good
solution. We propose the use of face landmark location probability maps like [3,
9,30] to generate plausible shape initialization candidates. We have modified
Honari et al.’s [16] RCN introducing a loss function to handle missing landmarks,
thus enabling semi-supervised training. We train this CNN to obtain a set of
probability maps, P(I), indicating the position of each landmark in the input
image (see Fig. 1). The maximum of each smoothed probability map determines
our initial landmark positions. Note in Fig. 1 that these predictions are sensitive
to occlusions and may not be a valid face shape. Compared to typical CNN-
based approaches, e.g., [33], our CNN is simpler, since we only require a rough
estimation of landmark locations.

To start the ERT with a plausible face, we compute the initial shape by
fitting a rigid 3D head model to the estimated 2D landmarks locations. To this
end we use the softPOSIT algorithm proposed by David et al. [10]. As a result, we
project the 3D model onto the image using the estimated rigid transformation.
This provides the ERT with a rough estimation of the scale, translation and 3D
pose of the target face (see Fig. 1).

Let x0 = g0(P(I)) be the initial shape, the output of the initialization func-
tion g0 after processing the input image I. In this case x0 is a L × 2 vector
with L 2D landmarks coordinates. With our initialization we ensure that x0 is
a valid face shape. This guarantees that the predictions in the next step of the
algorithm will also be valid face shapes [7].

3.2 ERT-based Non-rigid Shape Estimation

Let S = {si}N
i=1 be the set of train face shapes, where si = (Ii,x

g
i ,v

g
i ,w

g
i ,x

0
i ).

Each training shape si has its own: training image, Ii; ground truth shape, xg
i ;

ground truth visibility label, vg
i ; annotated landmark label, wg

i (1 annotated
and 0 missing) and initial shape for regression training, x0

i . The ground truth
(or target) shape, xg

i , is a L × 2 vector with the L landmarks coordinates. The
L × 1 vector vg

i holds the visibility binary label of each landmark. If the k-th
component of vg, vg(k) = 1 then the k-th landmark is visible. In our implemen-
tation we use shape-indexed features [21], φ(P(Ii),xt

i,w
g
i ), that depend on the

current shape xt
i of the landmarks in image Ii and whether they are annotated

or not, wt
i.

We divide the regression process into T stages and learn an ensemble of K
regression trees for the t-th stage, Ct(fi) = xt−1 +

∑K
k=1 gk(fi), where fi =

φ(P(I),xt−1,wg
i ) and xj are the coordinates of the landmarks estimated in

j-th stage (or the initialization coordinates, x0, in the first stage). To train
the whole ERT we use the N training samples in S to generate an augmented
training set, SA with cardinality NA = |SA|. From each training shape si we
generate additional training samples by changing their initial shape. To this
end we randomly sample new candidate landmark positions from the smoothed
probability maps to generate the new initial shapes (see Sect. 3.1).
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We incorporate the visibility label v with the shape to better handle occlu-
sions (see Fig. 5c) in a way similar to Burgos-Artizzu et al. [6] and naturally
handling partially labelled training data like Kazemi et al. [18] using ground-
truth annotation labels w ∈ {0, 1}. Each initial shape is progressively refined by
estimating a shape and visibility increments Cv

t (φ(P(Ii),xt−1
i ,wg

i )) where xt−1
i

represents the current shape of the i-th sample (see Algorithm 1). Cv
t is trained

to minimize only the landmark position errors but on each tree leaf, in addition
to the mean shape, we also output the mean of all training shapes visibilities,
vg

i , that belong to that node. We define Ut−1 = {(xt−1
i ,vt−1

i )}NA
i=1 as the set of

all current shapes and corresponding visibility vectors for all training data.

Algorithm 1. Training an Ensemble of Regression Trees
Input: Training data S, T

Generate augmented training samples set, SA

for t=1 to T do
Extract features for all samples, FA = {fi}NA

i=1 = {φ(P(Ii),x
t−1
i ,wg

i )}NA
i=1

Learn coarse-to-fine regressor, Cv
t , from SA, FA and Ut−1 = {(xt−1

i ,vt−1
i )}NA

i=1

Update current shapes and visibilities, {(xt
i,v

t
i) = (xt−1

i ,vt−1
i ) + Cv

t (fi)}NA
i=1

end for
Output: {Cv

t }T
t=1

Compared with conventional ERT approaches, our ensemble is simpler. It will
require fewer trees because we only have to estimate the non-rigid face shape
deformation, since the 3D rigid component has been estimated in the previous
step. In the following, we describe the details of our ERT.

Initial Shapes for Regression. The selection of the starting point in the ERT
is fundamental to reach a good solution. The simplest choice is the mean of the
ground truth training shapes, x̄0 =

∑N
i=1 x

g
i /N . However, such a poor initializa-

tion leads to wrong alignment results in test images with large pose variations.
Alternative strategies are running the ERT several times with different initial-
izations and taking the median [6], initializing with other ground truth shapes
x0

i ← xg
j where i �= j [18] or randomly deforming the initial shape [20].

In our approach we initialize the ERT using the algorithm described in
Sect. 3.1, that provides a robust and approximate shape for initialization (see
Fig. 2). Hence, the ERT only needs to estimate the non-rigid component of face
pose.

Feature Extraction. ERT efficiency depends on the feature extraction step. In
general, descriptor features such as SIFT used by [31,38] improve face alignment
results, but have higher computational cost compared to simpler features such
as plain pixel value differences [6,7,18,24]. In our case, a simple feature suffices,
since shape landmarks are close to their ground truth location.
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Fig. 2. Worst initial shapes for the 300 W training subset.

In DCFE we use the probability maps P(I) to extract features for the cas-
cade. To this end, we select a landmark l and its associated probability map
P l(I). The feature is computed as the difference between two pixels values in
P l(I) from a FREAK descriptor pattern [1] around l. Our features are similar to
those in Lee et al. [21]. However, ours are defined on the probability maps, P(I),
instead of the image, I. We let the training algorithm select the most informative
landmark and pair of pixels in each iteration.

Learn a Coarse-to-fine Regressor. To train the t-th stage regressor, Cv
t , we

fit an ERT. Thus, the goal is to sequentially learn a series of weak learners to
greedily minimize the regression loss function:

Lt(SA,FA,Ut−1) =
NA∑

i=1

||wg
i � (xg

i − xt−1
i −

K∑

k=1

gk(fi))||2, (1)

where � is the Hadamard product. There are different ways of minimizing Eq. 1.
Kazemi et al. [18] present a general framework based on Gradient Boosting for
learning an ensemble of regression trees. Lee et al. [21] establish an optimization
method based on Gaussian Processes also learning an ensemble of regression
trees but outperforming previous literature by reducing the overfitting.

A crucial problem when training a global face landmark regressor is the
lack of examples showing all possible combinations of face parts deformations.
Hence, these regressors quickly overfit and generalize poorly to combinations of
part deformations not present in the training set. To address this problem we
introduce the coarse-to-fine ERT architecture.

The goal is to be able to cope with combinations of face part deformations
not seen during training. A single monolithic regressor is not able to estimate
these local deformations (see difference between Figs. 3b and c). Our algorithm
is agnostic in the number of parts or levels of the coarse-to-fine estimation.
Algorithm 2 details the training of P face parts regressors (each one with a
subset of the landmarks) to build a coarse-to-fine regressor. Note that x0

i and
v0

i in this context are the shape and visibility vectors from the last regressor
output (e.g., the previous part regressor or a previous full stage regressor). In
our implementation we use P = 1 (all landmarks) with the first K1 regressors and
in the last K2 regressors the number of parts is increased to P = 10 (left/right
eyebrow, left/right eye, nose, top/bottom mouth, left/right ear and chin), see
all the parts connected by lines in Fig. 3c.



A Deeply-Initialized Coarse-to-fine Ensemble for Face Alignment 615

Algorithm 2. Training P parts regressors
Input: SA, FA, {(x0

i ,v
0
i )}NA

i=1, ν, K, P
for k=1 to K do

for p=1 to P do
// � is the Hadamard product, (p) selects elements of a vector in that part
Compute shape residuals {rki (p) = wg

i (p) � (xg
i (p) − xk−1

i (p)}NA
i=1

Fit a regression tree gp
k using the residuals {rki (p)} and FA(p)

// ν is the shrinkage factor to scale the contribution of each tree
Update samples {(xk

i (p),vk
i (p)) = (xk−1

i (p),vk−1
i (p)) + ν · gp

k(fi(p))}NA
i=1

end for
end for

Output: P part regressors {Cp}P
p=1, with K weak learners each Cp = {gp

k}K
k=1

Fit a Regression Tree. The training objective for the k-th regression tree
is to minimize the sum of squared residuals, taking into account the annotated
landmark labels:

Ek =
NA∑

i=1

||rk
i ||2 =

NA∑

i=1

||wg
i � (xg

i − xk−1
i )||2. (2)

We learn each regression binary tree by recursively splitting the training set into
the left (l) and right (r) child nodes. The tree node split function is designed
to minimize Ek from Eq. 2 in the selected landmark. To train a regression tree
node we randomly generate a set of candidate split functions, each of them
involving four parameters θ = (τ,p1,p2, l), where p1 and p2 are pixels coor-
dinates on a fixed FREAK structure around the l-th landmark coordinates
in xk−1

i . The feature value corresponding to θ for the i-th training sample is
fi(θ) = P l(Ii)[p1] − P l(Ii)[p2], the difference of probability values in the maps
for the given landmark. Finally, we compute the split function thresholding the
feature value, fi(θ) > τ .

Given N ⊂ SA the set of training samples at a node, fitting a tree node for
the k-th tree, consists of finding the parameter θ that minimizes Ek(N , θ)

arg min
θ

Ek(N , θ) = arg min
θ

∑

b∈{l,r}

∑

s∈Nθ,b

||rk
s − µθ,b||2 (3)

where Nθ,l and Nθ,r are, respectively, the samples sent to the left and right child
nodes due to the decision induced by θ. The mean residual µθ,b for a candidate
split function and a subset of training data is given by

µθ,b =
1

|Nθ,b|
∑

s∈Nθ,b

rk
s (4)

Once we know the optimal split each leaf node stores the mean residual, µθ,b,
as the output of the regression for any example reaching that leaf.
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4 Experiments

To train and evaluate our proposal, we perform experiments with 300W, COFW
and AFLW that are considered the most challenging public data sets. In addition,
we also show qualitative face alignment results with the Menpo competition
images.

– 300W. It provides bounding boxes and 68 manually annotated landmarks.
We follow the most established approach and divide the 300 W annotations
into 3148 training and 689 testing images (public competition). Evaluation is
also performed on the newly updated 300 W private competition.

– Menpo. Consist of 8979 training and 16259 testing faces containing 12006
semi-frontal and 4253 profile images. The images were annotated with the
previous set of 68 landmarks but without facial bounding boxes.

– COFW. It focuses on occlusion. Commonly, there are 1345 training faces
in total. The testing set is made of 507 images. The annotations include the
landmark positions and the binary occlusion labels for 29 points.

– AFLW. Provides an extensive collection of 25993 in-the-wild faces, with
21 facial landmarks annotated depending on their visibility. We have found
several annotations errors and, consequently, removed these faces from our
experiments. From the remaining faces we randomly choose 19312 images for
training/validation and 4828 instances for testing.

4.1 Evaluation

We use the Normalized Mean Error (NME) as a metric to measure the shape
estimation error

NME =
100
N

N∑

i=1

(
1

||wg
i ||1

L∑

l=1

(
wg

i (l) · ‖xi(l) − xg
i (l)‖

di

))

. (5)

It computes the euclidean distance between the ground-truth and estimated
landmark positions normalized by di. We report our results using different values
of di: the distance between the eye centres (pupils), the distance between the
outer eye corners (corners) and the bounding box size (height).

In addition, we also compare our results using Cumulative Error Distribu-
tion (CED) curves. We calculate AUCε as the area under the CED curve for
images with an NME smaller than ε and FRε as the failure rate representing
the percentage of testing faces with NME greater than ε. We use precision/recall
percentages to compare occlusion prediction.

To train our algorithm we shuffle the training set and split it into 90% train-
set and 10% validation-set.
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4.2 Implementation

All experiments have been carried out with the settings described in this section.
We train from scratch the CNN selecting the model parameters with lowest valida-
tion error. We crop faces using the original bounding boxes annotations enlarged
by 30%. We generate different training samples in each epoch by applying random
in plane rotations between ±30◦, scale changes by ±15% and translations by ±5%
of bounding box size, randomly mirroring images horizontally and generating ran-
dom rectangular occlusions. We use Adam stochastic optimization with β1 = 0.9,
β2 = 0.999 and ε = 1e−8 parameters. We train during 400 epochs with an initial
learning rate α = 0.001, without decay and a batch size of 35 images. In the CNN
the cropped input face is reduced from 160× 160 to 1× 1 pixels gradually divid-
ing by half their size across B = 8 branches applying a 2× 2 pooling1. All layers
contain 64 channels to describe the required landmark features.

We train the coarse-to-fine ERT with the Gradient Boosting algorithm [15].
It requires T = 20 stages of K = 50 regression trees per stage. The depth of
trees is set to 5. The number of tests to choose the best split parameters, θ, is
set to 200. We resize each image to set the face size to 160 pixels. For feature
extraction, the FREAK pattern diameter is reduced gradually in each stage (i.e.,
in the last stages the pixel pairs for each feature are closer). We generate several
initializations for each face training image to create a set of at least NA = 60000
samples to train the cascade. To avoid overfitting we use a shrinkage factor
ν = 0.1 in the ERT. Our regressor triggers the coarse-to-fine strategy once the
cascade has gone through 40% of the stages (see Fig. 3a).

Fig. 3. Example of a monolithic ERT regressor vs our coarse-to-fine approach. (a)
Evolution of the error through the different stages in the cascade (dashed line represents
the algorithm without the coarse-to-fine improvement); (b) predicted shape with a
monolithic regressor; (c) predicted shape with our coarse-to-fine approach.

For the Mempo data set training the CNN and the coarse-to-fine ensemble
of trees takes 48 h using a NVidia GeForce GTX 1080 (8 GB) GPU and an Intel
Xeon E5-1650 at 3.50 GHz (6 cores/12 threads, 32 GB of RAM). At runtime our
method process test images on average at a rate of 32 FPS, where the CNN takes
25 ms and the ERT 6.25 ms per face image using C++, Tensorflow and OpenCV
libraries.
1 Except when the 5 × 5 images are reduced to 2 × 2 where we apply a 3 × 3 pooling.
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4.3 Results

Here we compare our algorithm, DCFE, with the best reported results for each
data set. To this end we have trained our model and those in DAN [20], RCN [16],
cGPRT [21], RCPR [6] and ERT [18] with the code provided by the authors and
the same settings including same training, validation and bounding boxes. In
Fig. 4 we plot the CED curves and we provide AUC8 and FR8 values for each
algorithm. Also, for comparison with other methods in Tables 1, 2, 3, 4 we show
the original results published in the literature.

(a) 300W public (b) 300W private

(c) COFW (d) AFLW

Fig. 4. Cumulative error distributions sorted by AUC.

In Tables 1 and 2 we provide the results of the state-of-the-art methods in the
300 W public and private data sets. Our approach obtains the best performance
in the private (see Table 2) and in the common and full subsets of the 300 W
competition public test set (see Table 1). This is due to the excellent accuracy
achieved by the coarse-to-fine ERT scheme enforcing valid face shapes. In the
challenging subset of the 300 W competition public test set SHN [33] achieves
better results. This is caused by errors in initializing the ERT in a few images
with very large scale and pose variations, that are not present in the training set.
Our method exhibits superior capability in handling cases with low error since
we achieve the best NME results in the 300 W common subset by the largest
margin. The CED curves in Figs. 4a and b show that DCFE is better than
all its competitors that provide code in all types of images in both data sets.
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In the 300 W private challenge we obtain the best results outperforming Deng
et al. [11] and Fan et al. [13] that were the academia and industry winners of
the competition (see Fig. 4b).

Table 1. Error of face alignment methods on the 300 W public test set.

Method Common Challenging Full

Pupils Corners Pupils Corners Pupils Corners

NME NME NME NME NME NME AUC8 FR8

RCPR [6] 6.18 - 17.26 - 8.35 - - -

ESR [7] 5.28 - 17.00 - 7.58 - 43.12 10.45

SDM [31] 5.60 - 15.40 - 7.52 - 42.94 10.89

ERT [18] - - - - 6.40 - - -

LBF [24] 4.95 - 11.98 - 6.32 - - -

cGPRT [21] - - - - 5.71 - - -

CFSS [38] 4.73 - 9.98 - 5.76 - 49.87 5.08

DDN [34] - - - - 5.65 - - -

TCDCN [36] 4.80 - 8.60 - 5.54 - - -

MDM [27] - - - - - - 52.12 4.21

RCN [16] 4.67 - 8.44 - 5.41 - - -

DAN [20] 4.42 3.19 7.57 5.24 5.03 3.59 55.33 1.16

TSR [23] 4.36 - 7.56 - 4.99 - - -

RAR [30] 4.12 - 8.35 - 4.94 - - -

SHN [33] 4.12 - 7.00 4.90 - - - -

DCFE 3.83 2.76 7.54 5.22 4.55 3.24 60.13 1.59

We may appreciate the improvement achieved by the ERT by comparing
the results of DCFE in the full subset of 300W, 4.55, with Honari’s baseline
RCN [16], 5.41. It represents an 16% improvement. The coarse-to-fine strategy in
our ERT only affects difficult cases, with rare facial part combinations. Zooming-
in Figs. 3b and c you may appreciate how it improves the adjustment of the cheek
and mouth. Although it is a crucial step to align local parts properly, the global
NME is only marginally affected.

Table 3 and Fig. 4c compare the performance of our model and baselines using
the COFW data set. We obtain the best results (i.e., NME 5.27) establishing
a new state-of-the-art without requiring a sophisticated network, which demon-
strates the importance of preserving the facial shape and the robustness of our
framework to severe occlusions. In terms of landmark visibility, we have obtained
comparable performance with previous methods.
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Table 2. Error of face alignment methods on the 300 W private test set.

Method Indoor Corners Outdoor Corners Full Corners

NME AUC8 FR8 NME AUC8 FR8 NME AUC8 FR8

ESR [7] - - - - - - - 32.35 17.00

cGPRT [21] - - - - - - - 41.32 12.83

CFSS [38] - - - - - - - 39.81 12.30

MDM [27] - - - - - - 5.05 45.32 6.80

DAN [20] - - - - - - 4.30 47.00 2.67

SHN [33] 4.10 - - 4.00 - - 4.05 - -

DCFE 3.96 52.28 2.33 3.81 52.56 1.33 3.88 52.42 1.83

Table 3. COFW results.

Method Pupils Occlusion

NME AUC8 FR8 Precision/Recall

ESR [7] 11.20 - - -

RCPR [6] 8.50 - - 80/40

TCDCN [36] 8.05 - - -

RAR [30] 6.03 - - -

DAC-CSR [14] 6.03 - - -

Wu et al. [28] 5.93 - - 80/49.11

SHN [33] 5.6 - - -

DCFE 5.27 35.86 7.29 81.59/49.57

Table 4. AFLW results.

Method Height

NME

ESR [7] 4.35

CFSS [38] 3.92

RCPR [6] 3.73

Bulat et al. [5] 2.85

CCL [37] 2.72

DAC-CSR [14] 2.27

TSR [23] 2.17

DCFE 2.17

In Table 4 and Fig. 4d we show the results with AFLW. This is a challenging
data set not only because of its size, but also because of the number of samples
with self-occluded landmarks that are not annotated. This is the reason for the
small number of competitors in Fig. 4d, very few approaches allow training with
missing data. Although the results in Table 4 are not strictly comparable because
each paper uses its own train and test subsets, we get a NME of 2.17 that again
establishes a new state-of-the-art, considering that [14,23,37] do not use the two
most difficult landmarks, the ones in the ears.

Menpo test annotations have not been released, but we have processed their
testing images to visually perform an analysis of the errors. In comparison with
many other approaches our algorithm evaluates in both subsets training a unique
semi-supervised model through the 68 (semi-frontal) and 39 (profile) landmark
annotations all together. We detect test faces using the public Single Shot Detec-
tor [22] from OpenCV. We manually filter the detected face bounding boxes to
reduce false positives and improve the accuracy.
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In Fig. 5 we present some qualitative results for all data sets, including
Menpo.

Fig. 5. Representative results using DCFE in 300W, COFW, AFLW and Menpo testing
subsets. Blue colour represents ground truth, green and red colours point out visible
and non-visible shape predictions respectively. (Color figure online)

5 Conclusions

In this paper we have introduced DCFE, a robust face alignment method that
leverages on the best features of the three main approaches in the literature:
3D face models, CNNs and ERT. The CNN provides robust landmark estima-
tions with no face shape enforcement. The ERT is able to enforce face shape



622 R. Valle et al.

and achieve better accuracy in landmark detection, but it only converges when
properly initialized. Finally, 3D models exploit face orientation information to
improve self-occlusion estimation. DCFE combines CNNs and ERT by fitting
a 3D model to the initial CNN prediction and using it as initial shape of the
ERT. Moreover, the 3D reasoning capability allows DCFE to easily handle self
occlusions and deal with both frontal and profile faces.

Once we have solved the problem of ERT initialization, we can exploit its
benefits. Namely, we are able to train it in a semi-supervised way with miss-
ing landmarks. We can also estimate landmark visibility due to occlusions and
we can parallelize the execution of the regression trees in each stage. We have
additionally introduced a coarse-to-fine ERT that is able to deal with the combi-
natorial explosion of local parts deformation. In this case, the usual monolithic
ERT will perform poorly when fitting faces with combinations of facial part
deformations not present in the training set.

In the experiments we have shown that DCFE runs in real-time improving,
as far as we know, the state-of-the-art performance in 300W, COFW and AFLW
data sets. Our approach is able to deal with missing and occluded landmarks
allowing us to train a single regressor for both full profile and semi-frontal images
in the Mempo and AFLW data sets.
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