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Abstract—The scarcity of reliable, extensive datasets hampers
the training of effective models for wearable healthcare tech-
nology. This data gap frequently introduces biases into training
sets, which then carry over into the models themselves. Such
inherent biases pose substantial fairness challenges, particularly
in sensitive healthcare scenarios. To this end, we propose AFairD-
Net, an effective active learning framework that utilizes a small
collection of annotated data to create an initial classifier, and
then continually refines it by incorporating synthesized ‘hard’
signals, representing areas where the model’s training is currently
insufficient. To ensure both creativity and ethical responsibility in
these generated signals, we enhance the signal generation process
using Chain of Thought (CoT) reasoning. The model employs
real-time iterative CoT refinement of the model’s text prompts
to condition the multisensor signal diffuser, ensuring that the
synthesized multisensor biosignals are not only of high quality
but also semantically faithful. Extensive evaluations using two
large publicly available multisensor emotion recognition datasets
demonstrate that by leveraging a small yet comprehensive collec-
tion of synthesized samples (i.e., around 1.4% of the total training
set), AFairDNet may boost a baseline classifier’s performance,
outperforming the state-of-the-art methods. More precisely, in
addition to achieving 1.5 − 3% higher accuracy than current
supervised and self-supervised baselines, AFairDNet also boasts
an impressive Total Fairness Score, signaling its potential for
more responsible and transparent AI-driven synthesized signal
generation.

Index Terms—Fairness, Chain-of-Thought, Wearables, Biosig-
nals, Conditional Diffusion, Emotion Recognition

I. INTRODUCTION
Recognizing and understanding human emotions [1] is a

critical first step in facilitating effective intra- and inter-
human, as well as human-computer interactions to ensure
personal objectives. A variety of physiological data (such
as electrocardiogram (ECG), photoplethysmography (PPG),
electrodermal activity (EDA), and skin temperature) generated
from a range of user-friendly wearable devices have sparked
significant research interest, due to their ability to uninterrupt-
edly measure and track bodily states without interruption that
reflect emotional conditions [2].

While significant progress has been made [3], [4], con-
tinuously monitoring multiple physiological signals remains
a complex task fraught with pragmatic challenges. Despite
the widespread presence of practical difficulties (e.g., scarcity,
noise, bias), the vast majority of existing literature, aside
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Fig. 1. Overview of Fairness-Aware Synthetic Multisensor Signal Generation
process, where the ‘initial prompt’ is converted into a ‘debiased prompt’ to
provide an improved context to the next iteration of the signal generation
process. For example, an ‘initial prompt’ described as “Step by Step generate
60-second length BVP, EDA, and TEMP signal, ensuring fair demographic
attributes may be considered. Avoid dominant attribute values and categories
in the dataset.” is automatically updated via fairness-aware Chain-of-Thought
(CoT) reasoning to a ‘debiased prompt’ as“Generate 60-second length BVP,
EDA, and TEMP signal, labeled with Arousal and Valence. Include only the
details of mean and standard deviation in the prompts.”

from a few recent works [5], [6], fails to address these
practical difficulties in algorithm building. This oversight
means that consistently achieving strong performance of the
majority of these state-of-the-art models may not translate
into various application settings due to several hurdles: First,
Emotional perception is subjective and may vary from person
to person depending on their personal social and demographic
backgrounds. Given this, the data-intensive nature of the
emotion recognition models risks propagating such societal
or demographic biases, potentially generating fundamentally
discriminatory results. To this end, large language models’
reasoning abilities offer a promising solution to reduce dis-
criminatory outputs. For instance, the WESAD dataset exhibits
a significant gender imbalance, with approximately 79.7% of
participants being male while only 20.3% female. This imbal-
ance can introduce bias and can lead to under-representation
of female physiological patterns. Secondly, imbalances in
class-specific data distributions in the training set present
another significant challenge, particularly for intricate tasks
like ours, i.e., recognizing and tracking human emotions.
For instance, the CASE dataset exemplifies this, exhibiting



a severely skewed distribution with only 4.44% negative,
81.2% neutral, and 14.36% positive samples across its three
categories. Finally, due to limited annotated samples, ensuring
model generalization is another persistent concern; To address
these, we propose AFairDNet, an effective active learning-
based framework that can upgrade a baseline classifier (both
in terms of decision accuracy and fairness) on the fly via
generating a fair set of synthesized samples. Its primary
contributions include:

1) A fairness-aware Chain-of-Thought (CoT) reasoning
within multiple mode-specific conditional signal dif-
fusion models to refine and guide the generation of
signals that closely mimic the identified rare patterns
of shortlisted ‘hard’ signals (i.e., signals which were
not correctly classified by the existing version of the
classifier) on the fly in a more equitable manner.

2) An iterative training approach highlights how continu-
ous model refinement excels in evolving problem en-
vironments and captures instance-level ”hardness” from
both modal and multimodal data.

3) Extensive evaluation proves that the proposed AFairD-
Net improves the baseline classifier’s performance to
supersede existing state-of-the-art supervised and self-
supervised methodologies in the identification of diverse
human mental health states, including stress and arousal.

II. PROPOSED METHOD
From a dataset D of multisensor signals (comprising M

sensor-specific 1D time sequences), our objective is to evaluate
the emotional state yi of a subject based on their biosignal
xi and its associated demographic description ci. In other
words, we have xi = {s1i , s2i , . . . , sMi }, where smi ∈ RN×1

and N is the signal length and m ∈ {1, ·,M}. The proposed
multisensor fusion network AFairDNet is comprised of four
modules: Signal Embedding; Multisensor Classifier; Active
Learning-based Model Training; and Fairness-Aware Synthetic
Multisensor Signal Generation (an overview is shown in
Figure 1).
A. Signal Embeddding

A Temporal Convolution Network (TCN) [7] encodes each
normalized si into an embedding ei ∈ RN×de , where de >> 1
is the embedding dimension set by final TCN layer’s filter size.
B. Multisensor Classifier

A multi-sensor signal xi, represented by M TCN-generated
sensor-specific encoders {e1i , e2i , . . . , eMi }, is compactly rep-
resented as ti = e1i ⊕e2i ⊕ . . . eMi . This ti, paired with ground
truth label yi, trains a classifier head (θ), which is a three-layer
perceptron with GeLU activation and dropout. We optimize
the model using the Cross Entropy (CE) loss between the
predicted output P (ti|θ) and yi.
C. Active Learning-based Model Training

To address the challenge of imbalanced datasets, where
certain minority classes or rare patterns are under-represented,
this paper proposes a classifier-agnostic active learning
method, which automatically identifies and shortlists a limited
number of ”hard” samples for the model to revisit during
subsequent training phases. An effective uncertainty sampling

strategy [8] is adopted to pinpoint ambiguous data patterns.
These shortlisted prototypes act as the inputs to the following
fairness-Aware Synthetic Multisensor Signal Generation mod-
ule. This module kicks off a fairness-aware Chain-of-Thought
(CoT) reasoning process, which can then fine-tune the mul-
tisensor signal diffusor composed of M sensor-specific, pre-
trained diffusers. The selection criteria for these ”hard” sam-
ples include: (1) instances the current classifier misidentifies;
(2) samples located near the classifier’s decision boundary;
and (3) data points where the confidence scores for different
possible labels are very similar. The uncertainty scores for
a sample xi ∈ D is computed as:U1(xi|θ) = max(P (ypi =
yi|x), P (ypi ̸= yi|x)) and U2(xi|θ) = |P (ypi = yi|x)−P (ypi ̸=
yi|x))|. For a given sample xi, y

p
i is the class label predicted

by the underlying classifier (θ). In our experiments, we labeled
a sample xi as ’hard’ if either U1(xi|θ) < β or U2(xi|θ) < η,
and we chose β = 0.7 and η = 0.5.

D. Fairness-Aware Synthetic Multisensor Signal Generation
1) Initial Signal Generation:: The proposed Multisensor

signal diffusor conditioned with the BERT embedding (Ci)
of a comprehensive metadata description (ci) of the input
multisensor signal (xi) as a prototype, is used to gener-
ate the initial set of synthetic signals Si := {xsynj

i }synj
,

where x
synj

i = {ssynj ,1
i , s

synj ,2
i , . . . , s

synj ,M
i } and s

synj ,m
i ∈

RN×1. This initial synthetic signal generation process provides
the input to the subsequent bias assessments and makes
refinements. In our experiments, the architecture of each of
the M sensor-specific conditional diffusion models is designed
using a mode-specific, finetuned version of the pretrained
BioDiffusion model [9].

Within each mode-specific U-Net architecture, the forward
phase involves augmenting each residual block with both the
text embedding vector Ci and the current diffusion timestep.
Conversely, in the backward phase, the mode-specific diffusion
model processes noise sampled from a normal distribution.
This noise is enhanced by two additional inputs: a textual
metadata description covering a variety of statistical features
(e.g., range, kurtosis, interquartile range) and an example sig-
nal whose pattern the model should replicate during synthesis.

2) Attribute Prediction:: For each key attribute (e.g., age,
gender), we design a two-layer perceptron that uses the
concatenated TCN-generated multisensor encoder tsyni as the
network input, GeLU activation (followed by dropout), and
the last Softmax layer. We apply the Cross Entropy classi-
fication loss on the model’s prediction. In our experiments,
we have used two genders (M/F) and four age baskets
[18, 25], [25, 35], [35, 50], [50, 100], which determine the num-
ber of units in the last Softmax layer in the attribute-specific
perceptron model.

3) Bias Evaluation:: To evaluate the existing bias within
the initial synthetic signal collection, we use normalized
entropy Ea,i = − 1

log(v)

∑V
v=1 p(av)(log(p(av)) and Li =

1
|Si|

∑
xsyn∈Si

cos(ϕ(ci), ϕ(c
syn
i )), where p(av) is the prob-

ability of av approximated from D ∪Si and V is the number
the possible values (or range of values) for the attribute av .



The term csyni is the metadata description of xsyn ∈ Si and ϕ
represents the CLIP’s text encoder [10]. Finally, we use a com-
prehensive fairness score FSi = α1

(∑
a∈{age,gender} Ea,i

)
+

α2(σ(Li)) to decide on the requirement of subsequent debias-
ing process, described below. The sigmoid function is denoted
by σ(). In all our experiments, we use α1 = α2 = 0.5.

4) Chain-of-Thought Debiasing and Finalizing the Signal
Collection: : The zeroshot debiasing approach adopted from
[11] is used for the initial iteration of Chain-of-Thought
with prompts like “Step by Step generate 60-second length
BVP, EDA, and TEMP signal, ensuring fair demographic
attributes may be considered. Avoid dominant attribute val-
ues and categories in the dataset.” However, if there is a
consistently low fairness score in the subsequent iterations,
the prompt is appropriately modified. for instance, if Eage,i

is consistently low, the prompt is modified as “think again,
focusing specifically on improving fairness on age attribute.”
This iterative improvement process is terminated using a pre-
defined stopping criterion (e.g., maximum number of iterations
is performed, consecutive iterations of improvement do not
change the fairness score).

TABLE I
DISTRIBUTION OF SAMPLES

Dataset Task Category (no. of samples)

WESAD Emotion-3 baseline (58692), stress (33221), amusement (18584)
CASE Valence-3 negative (3958), neutral (72283), positive (12785)
CASE Arousal-3 low (2228), medium (75738), high (11060)

III. EXPERIMENTS

The proposed AFairDNet is evaluated using the two largest
publicly available biosignal-based affective datasets - CASE
[12] and WESAD [13], which exhibit significant class imbal-
ances, as reported in table I. The WESAD dataset categorizes
physiological responses as amusement, stress, or baseline.
Complementing this, the CASE dataset supports two distinct
classification tasks: sorting physiological signals by three
valence levels (negative, neutral, positive) (aka. Valence-3)
or three arousal levels: low, medium, high (aka. Arousal-3).
Together, these resources establish a comprehensive frame-
work for studying the intricate links between physiological
signals and emotional states, pushing forward both affective
computing and physiological research.
A. Data Processing

To ensure a consistent sampling frequency, we downsam-
pled all physiological signals in both datasets to 4Hz. Fol-
lowing this, we segmented the data into 60-second windows.
These windows featured a high degree of overlap: 99.5%
for the WESAD dataset and 99% for the CASE dataset.
When a segment contained multiple labels, we assigned the
majority label to that segment, a method consistent with prior
research [14]. To mitigate inter-subject variability in physi-
ological responses, we applied Z-score normalization to each
subject’s recorded data, as detailed by [15]. This normalization
step helps ensure that differences in physiological signals
are primarily due to emotional states rather than individual
biological variations.

TABLE II
PERFORMANCE COMPARISON OF THE PROPOSED AFairDNet

NETWORK MODEL WITH MULTIPLE STATE-OF-THE-ART METHODS
USING THE Accuracy AND F1Score METRICS. THE Multisensor

Classifier METHOD USES THE CLASSIFIER DESCRIBED IN SECTION
II(B). IT IS TRAINED USING THE ACTIVE LEARNING BASED

METHOD EXPLAINED IN SECTION II(B), WHEREIN THE
SYNTHESIZED MULTISENSOR SIGNALS USING THE PRETRAINED
BIODIFFUSION MODEL [9] ARE DIRECTLY USED IN THE NEXT

ITERATION OF ACTIVE LEARNING, BUT NO FAIRNESS CHECK WAS
PERFORMED

Dataset Task Method Accuracy F1Score

WESAD Emotion-3

WESAD-Wrist [13] 75.21 64.12
SimpDCNN [16] 78.3 74.59

RF [13] 76.17 66.33
LDA [13] 68.85 58.18

SigRep [14] 78.13 77.35
SSL [3] 78.7 75.98

S&T [17] 69.84 73.86
Multisensor Classifier 77.41 74.50

AFairDNet (ours) 81.78 79.47

CASE Valence-3

SSL [3] 78.99 76.66
SimpDCNN [16] 59.2 51.95

SigRep [14] 64.83 60.25
MULT [18] 63.14 62.5

CorrNet [19] 65.14 53.00
S&T [17] 70.28 59.87

Multisensor Classifier 75.62 74.48
AFairDNet (ours) 80.12 78.36

CASE Arousal-3

SSL [3] 85.38 82.63
SimpDCNN [16] 56.8 53.85

SigRep [14] 65.07 61.08
MULT [18] 62.15 58.48

CorrNet [19] 58.22 55.00
S&T [17] 68.36 58.22

Multisensor Classifier 83.97 81.78
AFairDNet (ours) 86.97 84.84

B. Results
1) Comparative Study: We evaluated our model’s perfor-

mance using F1Score and Accuracy, aligning with standard
evaluation practices, wherein the objective is to recognize
diverse emotion and affective state categories demonstrated
by the subjects in different datasets. Following established
baseline methodologies [14], our primary evaluation employed
Leave-One-Subject-Out (LOSO) cross-validation. For the ab-
lation study, we adopted a more stringent evaluation protocol.
We randomly divided the data subject-wise into a 3 : 1 : 1
ratio. Average categorical prediction Accuracy and the average
F1Score calculated across all P iterations are reported in the
tables. The proposed AFairDNet is evaluated against multiple
state-of-the-art baseline models. Table 1 reports the com-
parative performance. Across multiple experimental settings,
AFairDNet consistently outperforms existing baseline meth-
ods, including the top-performing SSL model [3]. Specifically,
AFairDNet shows an approximate 1.5% F1-score improvement
for the Valence-3 task and a 2% F1-score improvement for
the Arousal-3 task on the CASE dataset. Furthermore, on
the WESAD dataset, ActDiffNet achieves roughly 3% higher
Accuracy and 4% higher F1Scores.

2) Ablation Study: : To evaluate the model’s effectiveness
in generating a useful and diverse set of samples that are
generated equitably, we use varying-sized synthetic sample
collections generated by the Fairness-Aware Synthetic Multi-
sensor Signal Generation module to fine-tune the multisensor
classifier head (please see Section II(B)), as described in



TABLE III
ABLATION STUDY THAT REPORTS THE PERFORMANCE OF

AFairDNet IN A VARIETY OF EXPERIMENTAL SETTINGS, WHEREIN
A VARIED NUMBER OF SYNTHETIC SAMPLES ARE GENERATED BY

THE Fairness-Aware Synthetic Multi- sensor Signal Generation
MODULE TO FINE-TUNE THE MULTISENSOR CLASSIFIER HEAD

Dataset(Task) #Syn. Samples Avg.
Fairness Score Accuracy F1Score

WESAD
(Emotion-3)

0 0.78 77.41 74.5
600 1.13 78.27 75.96

1200 1.17 79.18 77.08
2400 1.21 81.78 79.47

CASE
(Valence-3)

0 0.91 75.62 74.48
600 1.14 77.58 77.60

1200 1.13 78.17 77.04
2400 1.28 80.12 78.36

CASE
(Arousal-3)

0 0.92 83.97 81.78
600 1.17 84.34 83.92

1200 1.21 85.12 84.03
2400 1.33 86.97 84.84

Section II(D). Table 2 reports both correctness (Accuracy and
F1Score) and Avg. Fairness Score that is computed as the
average of the fairness scores for all identified prototypes used
for generating the synthesized signals in a given experimental
setting. As observed, by leveraging a small yet comprehensive
collection of synthesized samples, AFairDNet may boost a
baseline classifier’s performance significantly. More precisely,
via targeted fine-tuning with a set of only 1, 200 synthesized
signals mimicking the prototypes (i.e. around 1.4% of the
total training size), which were initially found as ‘hard’ by
the baseline classifier, the model achieves comparable perfor-
mance as reported by the best performing baseline SSL [3]
in all three experiments and finally with 2, 400 synthesized
samples, the proposed AFairDNet outperforms. As reported
in the table, the model not only demonstrates a dominating
precision performance but also shows a consistently robust
Avg. Fairness Score.

IV. CONCLUSION
In this work, we introduce AFairDNet, an innovative frame-

work that blends active learning, chain-of-thought reason-
ing, and fairness-driven synthetic data to tackle multisensor
emotion recognition. In particular, the model uses an inter-
nal chain-of-thought reasoning to guide its signal generation
module that may effectively address critical demographic
imbalances across attributes such as gender, age. This helps
not only in ensuring superior precision performance on public
datasets like CASE and WESAD but also promises impressive
fairness scores, underscoring its model-agnostic design to en-
sure compatibility with both priority and open-source systems.
An immediate future research would involve extending the
chain-of-thought prompting to be adaptive, so that the model’s
internal reasoning can adjust automatically for each new user’s
unique personal contexts.

V. ACKNOWLEDGEMENT

The project was partially funded by the National Science
Foundation, Award ID: 2347251

REFERENCES

[1] Vamsi Kumar Naidu Pallapothula, Sidharth Anand, Sreyasee Das Bhat-
tacharjee, and Junsong Yuan, “Generalized multisensor wearable signal
fusion for emotion recognition from noisy and incomplete data,” Smart
Health, p. 100571, 2025.

[2] Anubhav Bhatti, Behnam Behinaein, Paul Hungler, and Ali Etemad,
“Attx: Attentive cross-connections for fusion of wearable signals in
emotion recognition,” ACM Transactions on Computing for Healthcare,
vol. 5, no. 3, pp. 1–24, 2024.

[3] Yujin Wu, Mohamed Daoudi, and Ali Amad, “Transformer-based self-
supervised multimodal representation learning for wearable emotion
recognition,” IEEE Transactions on Affective Computing, vol. 15, no.
1, pp. 157–172, 2023.

[4] Sirat Samyoun, Md Mofijul Islam, Tariq Iqbal, and John Stankovic,
“M3sense: Affect-agnostic multitask representation learning using mul-
timodal wearable sensors,” Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, vol. 6, no. 2, pp. 1–32,
2022.

[5] Kleanthis Avramidis, Dominika Kunc, Bartosz Perz, Kranti Adsul,
Tiantian Feng, Przemysław Kazienko, Stanisław Saganowski, and
Shrikanth Narayanan, “Scaling representation learning from ubiquitous
ecg with state-space models,” IEEE Journal of Biomedical and Health
Informatics, 2024.

[6] Flavio Di Martino and Franca Delmastro, “Challenges and limitations
in the synthetic generation of mhealth sensor data,” arXiv preprint
arXiv:2505.14206, 2025.

[7] Colin Lea, Rene Vidal, Austin Reiter, and Gregory D Hager, “Temporal
convolutional networks: A unified approach to action segmentation,” in
Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands,
October 8-10 and 15-16, 2016, Proceedings, Part III 14. Springer, 2016,
pp. 47–54.

[8] Sreyasee Das Bhattacharjee, Ashit Talukder, and Bala Venkatram Bal-
antrapu, “Active learning based news veracity detection with feature
weighting and deep-shallow fusion,” in 2017 IEEE International
Conference on Big Data (Big Data). IEEE, 2017, pp. 556–565.

[9] Xiaomin Li, Mykhailo Sakevych, Gentry Atkinson, and Vangelis Met-
sis, “Biodiffusion: A versatile diffusion model for biomedical signal
synthesis,” arXiv e-prints, pp. arXiv–2401, 2024.

[10] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel
Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin,
Jack Clark, et al., “Learning transferable visual models from natural
language supervision,” in International conference on machine learning.
PmLR, 2021, pp. 8748–8763.

[11] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and
Yusuke Iwasawa, “Large language models are zero-shot reasoners,”
Advances in neural information processing systems, vol. 35, pp. 22199–
22213, 2022.

[12] Karan Sharma, Claudio Castellini, Egon L Van Den Broek, Alin Albu-
Schaeffer, and Friedhelm Schwenker, “A dataset of continuous affect
annotations and physiological signals for emotion analysis,” Scientific
data, vol. 6, no. 1, pp. 196, 2019.

[13] Philip Schmidt, Attila Reiss, Robert Duerichen, Claus Marberger, and
Kristof Van Laerhoven, “Introducing wesad, a multimodal dataset for
wearable stress and affect detection,” in Proceedings of the 20th ACM
international conference on multimodal interaction, 2018, pp. 400–408.

[14] Vipula Dissanayake, Sachith Seneviratne, Rajib Rana, Elliott Wen,
Tharindu Kaluarachchi, and Suranga Nanayakkara, “Sigrep: Toward
robust wearable emotion recognition with contrastive representation
learning,” IEEE Access, vol. 10, pp. 18105–18120, 2022.

[15] Pritam Sarkar and Ali Etemad, “Self-supervised ecg representation
learning for emotion recognition,” IEEE Transactions on Affective
Computing, vol. 13, no. 3, pp. 1541–1554, 2020.

[16] Aaqib Saeed, Tanir Ozcelebi, and Johan Lukkien, “Multi-task self-
supervised learning for human activity detection,” Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
vol. 3, no. 2, pp. 1–30, 2019.

[17] Aaqib Saeed, Victor Ungureanu, and Beat Gfeller, “Sense and learn:
Self-supervision for omnipresent sensors,” Machine Learning with
Applications, vol. 6, pp. 100152, 2021.

[18] Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang, J Zico Kolter, Louis-
Philippe Morency, and Ruslan Salakhutdinov, “Multimodal transformer
for unaligned multimodal language sequences,” in Proceedings of the
conference. Association for computational linguistics. Meeting. NIH
Public Access, 2019, vol. 2019, p. 6558.

[19] Tianyi Zhang, Abdallah El Ali, Chen Wang, Alan Hanjalic, and Pablo
Cesar, “Corrnet: Fine-grained emotion recognition for video watching
using wearable physiological sensors,” Sensors, vol. 21, no. 1, pp. 52,
2020.


