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Abstract

We present 3DGrid-LLM, a multimodal foundation model designed to integrate1

natural language with three-dimensional electron density grids for applications in2

molecular and materials science. The architecture extends a large decoder-only3

language model by incorporating discrete volumetric representations obtained4

through a 3D VQGAN, enabling joint token-level processing of spatial and textual5

modalities within a unified framework. Pre-trained on a diverse corpus of molecular6

and materials datasets, 3DGrid-LLM supports bidirectional text–grid generation,7

multimodal question answering, and retrieval-augmented 3D reconstruction. Com-8

prehensive evaluations demonstrate consistent improvements over baseline methods9

in multimodal VQA, chemically informed text generation, and property-aligned10

retrieval tasks, yielding outputs that are both accurate and physically consistent.11

1 Introduction12

Understanding the structure–property relationships of molecules and materials remains a fundamental13

challenge in computational chemistry and materials science [1, 2, 3]. Central to this problem is14

the electron density—a three-dimensional (3D) spatial function that encodes both the geometric15

configuration and electronic structure of a system [4, 5]. Electron density grids, whether obtained from16

ab initio simulations such as density functional theory (DFT) or reconstructed from crystallographic17

sources (e.g., CIF files), offer a physically grounded and information-rich representation [6, 7, 8].18

However, their potential remains largely underexploited in machine learning pipelines for molecular19

and materials modeling [9, 10].20

Despite recent advances in deep learning for molecules and materials, most approaches rely on21

1D or 2D representations such as SMILES strings [11, 12, 13], graphs [14, 15, 16], or engineered22

descriptors [17, 18, 19], which often omit detailed 3D information. Methods that incorporate structure23

typically do so through atomistic point clouds or geometric graphs [20, 21, 22], abstractions that24

operate at the atomic level and struggle to capture the fine-grained spatial and electronic features25

encoded in the full density distribution. Moreover, many existing models are optimized for narrow26

tasks or domains, limiting their ability to generalize across applications [23].27

Recent multimodal foundation models in chemistry have begun to address these limitations [24, 25].28

However, most adopt late fusion architectures, processing each modality independently with dedicated29

encoders or decoders before combining them at a later stage [26, 27, 28]. This separation can limit30

the model’s capacity to learn joint representations and capture interactions between spatial (e.g.,31

3D structure) and textual (e.g., scientific language) modalities. In this work, we introduce 3DGrid-32

LLM, a family of early-fusion multimodal foundation models capable of bidirectional generation33

and reasoning over scientific text and 3D electron density grids. These grids, derived from small34

molecules or inorganic materials, are tokenized using a 3D-VQGAN [29]. The model accepts fused35

input sequences of grid tokens and language prompts, and supports both 3D-to-text (e.g., property36
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description) and text-to-3D (e.g., density grid generation and retrieval) tasks. This unified framework37

enables downstream applications such as scientific question answering, grid-based retrieval, and38

inverse design.39

Extensive evaluations demonstrate that 3DGrid-LLM performs effectively across a diverse set of tasks.40

We evaluate the model on multimodal visual question answering (VQA), text generation, and grid-41

based retrieval benchmarks. More importantly, 3DGrid-LLM enables novel capabilities not supported42

by prior models, including bidirectional generation and multimodal reasoning over scientific text43

and 3D electron density grids. This flexibility positions 3DGrid-LLM as a unified interface for both44

interpretability and generation tasks across molecular and materials science domains.45

2 Overview of the proposed approach46

This section outlines the core methodology behind 3DGrid-LLM, highlighting its architecture, pre-47

training datasets, training pipeline, and generative capabilities. Figure 3 illustrates the general schema48

for pre-training and multimodal generation of 3DGrid-LLM.49

Figure 1: During training, a pre-trained large language model is equipped with LoRA adapters
and fine-tuned on paired inputs consisting of 3D electron density grids—derived from either small
molecules or inorganic materials—tokenized using a 3D VQGAN, and corresponding natural lan-
guage prompts. Tokens from both modalities are fused at the input level, enabling early integration
of spatial and textual information within a unified embedding space. After fine-tuning, the model
supports both 3D-to-text and text-to-3D generation.

2.1 General architecture50

3D VQGAN represents 3D-grids, in addition to text, as a series of discrete tokens and takes advantage51

of the scaling properties of auto-regressive Transformers as in Fig. 3. Below, we define the different52

tokenizers used in the schema.53

3D-Grid tokenizer: To tokenize 3D electron density grids, we employ a 3D extension of the54

VQGAN architecture for 3D grids introduced by [29]. Given a volumetric input grid, the encoder55

produces a latent representation ze ∈ R(
H
s )×(

W
s )×(

D
s )×k, where H , W , and D denote the spatial56

dimensions, k is the number of latent channels, and s is the spatial downsampling factor. Each latent57

vector is then quantized via a learned codebook Z, replacing it with the nearest embedding vector.58

The decoder reconstructs the original grid from the quantized latents. The model is trained to59

minimize a composite objective:60

Ltotal = Lrec + βLcommit + γLcodebook,

where Lrec denotes the reconstruction loss, Lcommit penalizes the encoder for deviation from the61

codebook vectors, and Lcodebook updates the codebook embeddings. To extend the original 2D62
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VQGAN to 3D volumetric data, we adopt architectural modifications from [30, 31], replacing all 2D63

convolutions with their 3D counterparts.64

We support two types of 3D electron density grids. For small molecules, we generate re-optimized65

conformations using the MINDO/3 semi-empirical method as implemented in the PySCF electronic66

structure package [32]. Specifically, the five lowest-energy conformations are optimized, and the67

one with the lowest energy is selected for further calculations. This conformation is then evaluated68

using restricted Hartree–Fock (RHF) at the STO-3G minimal basis set level to compute the ab initio69

electron density. The resulting continuous charge distribution is discretized into a volumetric grid70

format, yielding a voxelized representation of the electron density suitable for 3D modeling.71

For crystalline materials, we generate 3D electron density grids directly from Crystallographic72

Information Files (CIFs) as described in [33]. Each CIF is parsed using pymatgen to obtain the73

atomic structure and lattice geometry. We then compute a continuous electron density field over a74

cubic grid by placing a Gaussian distribution centered at each atomic site. The contribution of each75

atom is weighted by its atomic number Z, and the total electron density at each voxel is computed as76

the sum of atomic contributions, assuming a fixed standard deviation σ for all atoms. This process77

yields a resolution-controlled, voxelized representation of the electron density, stored as a .npy78

tensor. The approach preserves periodic boundary conditions via the PeriodicSite formalism and79

supports batch conversion across large datasets of CIF files.80

Text tokenizer: To tokenize natural language prompts and responses, we use the tokenizer associ-81

ated with a pre-trained large language model (name omitted for double-blind review). The tokenizer82

is extended with a special separator token <grid>, used to delimit different input modalities, and a83

vocabulary of grid tokens <g0> to <g2047> representing the VQGAN-encoded 3D volumetric grids.84

The tokenizer operates without modality-specific preprocessing, enabling seamless early fusion of85

spatial and textual information within a unified token sequence. Tokenization is performed without86

special tokens for answers, and truncation is applied to ensure the total sequence length does not87

exceed 8192 tokens. This unified vocabulary allows the model to handle multimodal inputs as flat88

token sequences, enabling bidirectional generation and reasoning over both 3D grids and scientific89

text.90

Model and Training Configuration: We build upon the (name omitted for double-blind review)91

foundation model, a 8 billion parameter decoder-only causal language model pretrained on a mixture92

of scientific and general-domain corpora. For our task, we augment this model with lightweight93

Low-Rank Adaptation (LoRA) modules [34] to enable efficient fine-tuning on multimodal molecular94

property QA pairs.95

We introduce LoRA adapters with a rank r = 8, scaling factor α = 32, and dropout rate of 0.05.96

The adapters are applied to the attention projection layers (q_proj, k_proj, v_proj, o_proj,97

gate_proj) and the input token embedding layer (embed_tokens).98

To enable processing of volumetric 3D electron density inputs, we extend the tokenizer vocabulary99

with 2048 discrete grid tokens (<g0> to <g2047>) corresponding to VQGAN-encoded spatial tokens,100

along with a special separator token <grid> used to mark modality boundaries. The tokenizer101

operates without any modality-specific preprocessing, supporting early fusion of spatial and textual102

information within a flat token sequence. Maximum input length is capped at 8192 tokens.103

The model is trained using the Hugging Face Trainer API with the following hyperparameters: 3104

epochs, batch size of 1 per GPU, gradient accumulation over 1 step, and a learning rate of 6.25×10−6.105

Optimization uses AdamW with weight decay of 0.01 and mixed-precision disabled. Training is106

performed on a multi-GPU setup using data parallelism with fixed seed for reproducibility.107

To process the 3D modality, we encode electron density grids using a pretrained 3DGrid-VQGAN108

[29], resized to 1283 resolution and log-transformed via log(1 + x). The encoded grid tokens109

are prepended to the user prompt, separated by the <sep> token. The model is trained in an110

autoregressive fashion, with only the response portion supervised. a) Given a 3D electron density grid111

of a molecule, the model generates structured textual descriptions of quantum mechanical properties112

such as rotational constants, dipole moment, polarizability, and HOMO–LUMO gap, grounded in the113

spatial information encoded in the grid. b) When provided with a CIF-derived 3D density grid, the114

model infers structural (e.g., crystal system, space group), electronic, magnetic, and porosity-related115

properties of the material in natural language. c) In generative-retrieval mode, the model takes a116
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textual description of desired physicochemical or structural properties and generates discrete grid117

tokens, which are decoded into 3D electron density grids and compared—via learned contrastive118

embeddings. The top retrieved matches are presented with similarity scores.119

2.2 Pre-training data120

For supervised fine-tuning, we organize our dataset into three distinct categories: (i) all-properties,121

containing QA pairs covering multiple molecular properties; (ii) single-property, focusing on isolated122

property descriptions; and (iii) functional-group, which targets questions related to specific chemical123

substructures. These datasets are used to train the model on both 3D-grid-to-text and text-to-3D-grid124

tasks, enabling bidirectional understanding and generation across modalities as illustrated in Fig. 5.125

The text–3D-grid data for pre-training is a combination of publicly available sources, including QM9,126

QMOF, and PubChem, transformed to accommodate multimodal fine-tuning. Each 3D electron127

density grid is resized to 1283 voxels and tokenized with 3DGrid-VQGAN. Across all sources, the128

corpus reaches 8.15 billion tokens (text + 3D-grid) spanning 12.5 million text–grid pairs. Table 1129

summarizes token statistics and sample counts for each dataset.130

Table 1: Token statistics for the text–3D-grid fine-tuning dataset, separated by text and grid tokens
across QM9, QMOF, and PubChem.

Dataset Text Tokens Grid Tokens Total Tokens #Samples

QM9 836M 1.7B 2.5B 2.5M
QMOF 9.5M 91.8M 101.3M 179.2K
PubChem 454M 5.05B 5.50B 9.87M

Total 1.30B 6.85B 8.15B 12.5M

3 Experiments131

To evaluate the proposed 3DGrid-LLM, we design a comprehensive benchmark suite spanning both132

Visual Question Answering (VQA) and Multimodal Retrieval tasks. Our goal is to assess the model’s133

ability to interpret and reason over 3D electron density grids in conjunction with textual prompts, as134

well as its capacity to perform cross-modal alignment.135

For the VQA setting, we compile a diverse set of 32 supervised tasks, grouped into three categories136

based on their original dataset source:137

• PubChem: Tasks related to molecular complexity, weight, and topological properties.138

• QM9: Tasks derived from quantum chemistry simulations, involving rotational constants,139

dipole moments, electronic, and thermodynamic properties.140

• QMOF: Tasks pertaining to structural and electronic features of crystalline materials.141

The 32 VQA tasks are detailed in the Appendix, due to limit of pages.142

To assess the effectiveness of our proposed 3DGrid-LLM model in generating chemically meaningful143

volumetric representations from property-centric prompts, we introduce a retrieval-augmented eval-144

uation framework grounded in a multimodal embedding space. The pipeline, illustrated in Fig. 3,145

performs generation, decoding, embedding, and retrieval entirely in 3D space—bypassing reliance on146

molecular graph intermediates and enabling direct reasoning over electron density distributions.147

Given a textual prompt describing a desired physicochemical profile, 3DGrid-LLM autoregressively148

generates a sequence of discrete tokens representing a latent 3D electron density grid. These tokens149

are decoded into a dense volumetric field (128× 128× 128) using a frozen 3DGrid-VQGAN decoder.150

The resulting grid is then passed through a contrastively trained encoder, 3DGrid-CLIP, which151

embeds it into a learned representation space optimized for structural and semantic alignment. We152

perform retrieval by comparing the embedding of the generated grid against a held-out database of153

experimentally or computationally derived materials, using cosine similarity to identify the top-k154

most similar entries.155
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Figure 2: Schematic of the retrieval-augmented generation (RAG) pipeline. Given a textual prompt,
3DGrid-LLM generates a discrete token sequence that is decoded into a 3D grid. This grid is
embedded via 3DGrid-CLIP and compared against a catalog of known materials for retrieval based
on structural and semantic similarity.

While traditional retrieval tasks in language and vision domains typically rely on ranking precision156

or cosine similarity, these metrics are insufficient in scientific applications where preserving latent157

physical structure, property consistency, and functional diversity is critical. To address this, we report158

a suite of complementary metrics that evaluate both semantic fidelity and property alignment:159

• Top-1 and Top-k Similarity: Cosine similarity between the query and retrieved embeddings.160

• Soft Recall@k: Fraction of prompts retrieving at least one candidate from the correct161

property cluster.162

• Jaccard Similarity: Overlap of discretized property bins (e.g., low/medium/high dipole163

moment).164

• BERTScore (F1): Semantic similarity between textual descriptions of the query and165

retrieved molecules.166

• Property Overlap (%): Percentage of shared qualitative property categories between the167

generated grid and the retrieved candidates.168

We evaluate this framework on a benchmark set of 100 diverse textual prompts designed to elicit169

a range of structural and electronic characteristics. Each prompt is evaluated against a held-out170

catalog of 1,000 precomputed 3D electron density grids from the QMOF dataset, which provides rich171

property annotations and physically grounded representations of metal-organic frameworks. This172

setup allows us to measure how well the generated grids enable retrieval of known materials with173

matching physical attributes, offering a rigorous proxy for evaluating generative utility in inverse174

design contexts.175

4 Results176

4.1 Multimodal Visual Question Answering177

Table 5 reports accuracy across 32 VQA tasks spanning general molecular, quantum-chemical, and178

crystallographic properties. Overall, the 3DGrid-LLM surpasses the 3DGrid-VQGAN baseline, with179

mean accuracy increasing from 0.5789 to 0.6766 under five-shot conditioning.180

General Molecular Properties show an increase from 0.2123 to 0.5648 across seven tasks, with the181

largest gains observed in properties with near-zero baseline performance, while properties such as182

Topological Polar Surface Area and Complexity exhibit minimal improvement.183

Quantum Chemistry and Thermodynamic Properties span 19 tasks and increase from 0.6436184

to 0.6709. Gains are heterogeneous: structural constants and Electronic Spatial Extent improve185
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Table 2: Evaluation tasks for VQA and multimodal retrieval. Metric: accuracy (higher is better).
3DGrid-VQGAN is the baseline; 3DGrid-LLM (Ours) denotes our proposed model with/without
few-shot conditioning. Per-row maxima are highlighted.

Task 3DGrid-VQGAN (Baseline) 3DGrid-LLM (Ours)

No Few-shot Few-shot (1) Few-shot (3) Few-shot (5)

General Molecular Properties
Exact Mass 0.0787 0.2611 0.2632 0.2881 0.2921
Monoisotopic Mass 0.0787 0.3621 0.4567 0.5732 0.6298
Molecular Weight 0.0813 0.4782 0.4650 0.5972 0.6101
Tautomer Count 0.0004 0.4555 0.5157 0.5398 0.5432
Topological Polar Surface Area 0.5993 0.4912 0.5751 0.5892 0.5975

XLogP3 0.0009 0.3231 0.4982 0.5644 0.5802
Complexity 0.6466 0.6501 0.6695 0.6602 0.7005

Mean (7 tasks) 0.2123 0.4330 0.4919 0.5317 0.5647

Quantum Chemistry and Thermodynamic Properties
Rotational Constant A 0.6216 0.6005 0.7109 0.7456 0.7339

Rotational Constant B 0.7007 0.6792 0.6856 0.6902 0.6935

Rotational Constant C 0.7217 0.7235 0.7654 0.7802 0.8128
Dipole Moment (µ) 0.5142 0.6275 0.6445 0.6698 0.6805
Isotropic Polarizability (α) 0.7089 0.6454 0.6688 0.6723 0.6988

Electronic Spatial Extent (r2) 0.7264 0.7586 0.7702 0.7875 0.8232
Zero-point Vibrational Energy
(ZPVE)

0.7375 0.7402 0.7826 0.8330 0.8301

Heat Capacity (cv) 0.6887 0.3002 0.3875 0.4956 0.5235

HOMO Energy 0.5035 0.4972 0.5625 0.5836 0.6225
LUMO Energy 0.5664 0.5625 0.5782 0.5880 0.5795

HOMO–LUMO Gap 0.5614 0.3629 0.6225 0.6740 0.6892
Internal Energy at 0 K (u0) 0.7257 0.5698 0.6223 0.6331 0.6009

Internal Energy at 298.15 K
(u298)

0.7231 0.5787 0.5962 0.6125 0.6856

Enthalpy at 298.15 K (h298) 0.7231 0.6282 0.6676 0.6991 0.7127

Free Energy at 298.15 K (g298) 0.7263 0.6556 0.6878 0.7032 0.7225

Per-atom u0 0.7219 0.7123 0.7456 0.7568 0.7809
Per-atom u298 0.7248 0.7109 0.7565 0.7589 0.7856
Per-atom h298 0.7249 0.6785 0.7092 0.7225 0.7356
Per-atom g298 0.7178 0.5674 0.6488 0.6796 0.6707

Mean (19 tasks) 0.6601 0.6171 0.6748 0.6992 0.7116

Crystallographic and Structural Properties
Crystal System 0.5947 0.6032 0.6007 0.6227 0.6332
Pore Limiting Diameter (PLD) 0.9388 0.8986 0.9062 0.9065 0.9122

Largest Cavity Diameter (LCD) 0.9271 0.8134 0.8356 0.8992 0.9016

Density 0.8734 0.8189 0.8777 0.8816 0.8815

Band Gap 0.9558 0.8791 0.9221 0.9720 0.9684

Charge 0.5208 0.5765 0.6352 0.6192 0.6532

Mean (6 tasks) 0.8018 0.7650 0.7946 0.8169 0.8250

Overall mean (32 tasks) 0.5932 0.5937 0.6461 0.6748 0.6886

steadily with few-shot examples, whereas properties like Heat Capacity and Enthalpy at 298.15 K186

show limited or variable improvement, reflecting task-dependent integration of 3D structure and187

textual prompts.188

Crystallographic and Structural Properties include six tasks and increase from 0.8018 to 0.8250.189

Saturation is observed for Band Gap and pore size metrics, whereas Crystal System and Charge190

benefit more from few-shot conditioning.191

Overall, few-shot conditioning selectively improves tasks with low baseline performance, while192

properties with strong baseline signals show diminishing returns. These results indicate that the193

model effectively integrates multimodal information, but the magnitude of improvement depends on194

both the baseline signal and the intrinsic complexity of each property.195
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4.2 Analysis of Semantic Generation Across Molecular Domains196

To evaluate the semantic fidelity of our generative model across distinct chemical knowledge domains,197

we analyze BLEU, ROUGE-L, and BERTScore (F1) on structured text generation conditioned on198

3D electron density grids. These metrics collectively quantify syntactic alignment (BLEU), surface-199

level sequence overlap (ROUGE-L), and contextual semantic similarity (BERTScore), providing a200

multifaceted lens on generative quality. Table 3 illustrates the results for tested benchmarks.201

Table 3: Semantic evaluation metrics across molecular datasets. BLEU captures n-gram overlap,
ROUGE-L measures longest common subsequence, and BERTScore (F1) assesses contextual seman-
tic similarity.

Dataset BLEU ↑ ROUGE-L ↑ BERTScore (F1) ↑

PubChem 0.865 0.918 0.944
QM9 0.579 0.819 0.820
QMOF 0.782 0.864 0.878

As state in Table 3, 3DGrid-LLM achieves near-parity with ground-truth references in PubChem202

(BLEU: 0.865, ROUGE-L: 0.918, BERTScore: 0.944), underscoring its strong lexical precision and203

semantic alignment. This is facilitated by the categorical nature of PubChem descriptors (e.g., logP,204

tautomer count), which constrain linguistic variation and encourage template-consistent decoding. In205

contrast, performance on QM9 (BLEU: 0.579, ROUGE-L: 0.819, BERTScore: 0.820) is attenuated206

due to the continuous and scalar nature of quantum chemical properties (e.g., dipole moment, HOMO-207

LUMO gap), where the absence of standard binning leads to semantic drift and reduced surface-level208

overlap. Figure illustrates the answer of 3DGrid-LLM for QM9 properties.209

Figure 3: Example of 3DGrid-LLM answer for QM9 properties.

QMOF results (BLEU: 0.782, ROUGE-L: 0.864, BERTScore: 0.878) reflect a midpoint: the model210

captures structural and crystallographic features with reasonable fluency but is prone to fine-grained211

hallucinations, likely due to sparse and heterogeneous annotations. Overall, these findings reveal a212

trade-off between semantic controllability and the ontology of the property space—discrete, well-213

binned domains enable faithful generation, while continuous or noisy domains degrade alignment.214

We posit that improved grounding in such domains may require retrieval-augmented prompting215

or numerically constrained decoding strategies to align scalar semantics with natural language216

realizations.217
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4.3 Retrieval-Augmented 3D Grid Generation and Evaluation218

We assess the generative capabilities of 3DGrid-LLM within a retrieval-augmented framework. The219

task consists of generating 3D electron density grids conditioned on textual property descriptions220

and retrieving semantically and structurally similar materials from a reference database. This setup221

enables a multi-modal evaluation of alignment across language, spatial representation, and functional222

molecular similarity.223

Table 4: Retrieval performance on QMOF and QM9 datasets (Top-1 and Top-k = 10).

Metric QMOF QM9

Top-1 Top-10 Top-1 Top-10

Cosine Similarity (Embedding Space) 0.9794 — 0.9555 0.9340
Soft Recall@10 (Cluster Match) — 0.980 — —
Jaccard Similarity (Discrete Properties) 0.874 0.856 0.9181 0.8795
BERTScore (F1) 0.966 0.946 0.9871 0.9505
Property Overlap (%) 83.56 85.72 86.97 83.76

As shown in Table 4, the model achieves consistent and robust alignment across both224

QMOF and QM9 domains. On QMOF, generated grids yield a Top-1 cosine similar-225

ity of 0.9794, a Jaccard similarity of 0.874, and a BERTScore F1 of 0.966, indicating226

strong agreement in both geometric and linguistic representations. Similarly, performance227

on QM9 reflects high fidelity, with a Top-1 cosine similarity of 0.9555, and a Jaccard sim-228

ilarity of 0.9181, validating the model’s generalization across molecular complexity scales.229

Figure 4: t-SNE projection of the 3DGrid-
CLIP embedding space for a QMOF prompt.
Red: generated query; Green: Top-10 re-
trieved; Gray: reference catalog.

230

To further probe embedding space structure, we visu-231

alize a t-SNE projection of retrieval results on QMOF232

in Fig. 4. The generated query (red) and its Top-10233

retrieved candidates (colored) form a dense and coher-234

ent cluster, while background entries (gray) remain235

distributed across the manifold. This highlights the236

model’s precision in matching grid semantics.237

Despite high accuracy, retrieved candidates display238

limited functional diversity, suggesting embedding239

collapse and reduced exploration potential. While240

high Top-10 Jaccard similarity (0.8795 on QM9,241

0.856 on QMOF) and property overlap indicate se-242

mantic consistency, they may mask latent redun-243

dancy.244

This precision-diversity trade-off is emblematic of245

contrastive training regimes and suggests the need246

for enhanced regularization. We hypothesize that247

diversity-aware ranking objectives, entropy-penalized248

decoding, or property-conditioned sampling strate-249

gies may yield broader functional coverage without sacrificing retrieval quality.250

5 Conclusion251

We presented 3DGrid-LLM, an early-fusion multimodal foundation model that processes natural lan-252

guage and 3D electron density grids for bidirectional generation, reasoning, and retrieval in molecular253

and materials science. By extending a large decoder-only language model with discrete volumetric254

tokens from a 3D VQGAN, the approach captures spatial, electronic, and textual information within255

a unified token sequence.256

3DGrid-LLM offers a scalable path to integrating physically grounded volumetric data into large257

language models, enabling general-purpose scientific assistants that bridge symbolic and spatial258

reasoning. Future work will address larger multimodal datasets, physical constraints in decoding, and259

new scientific modalities.260
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A Supplementary Materials353

A.1 Multimodal foundation model capabilities354

Figure 5 illustrates the capabilities of the proposed multimodal foundation model trained on 3D grids.355
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For the molecule represented by the grid, what are its
quantum mechanical properties?

3DGrid-
LLM

The molecule represented in the grid exhibits a
distinct set of physicochemical properties, as

characterized within the QM9 dataset. Its rotational
constants A, B, and C are measured in GHz and

fall into the low, medium, and medium categories,
respectively, reflecting its geometric structure and
rotational dynamics. Its isotropic polarizability is

classified as high (Bohr³), suggesting a significant
electronic response to external electric fields,

while the electronic spatial extent (⟨R²⟩) is
medium (Bohr²), pointing to an average spread of

electron density. The electronic properties are
notably high, with the HOMO and LUMO energies,
as well as the HOMO–LUMO gap, all expressed in

Hartree, indicating pronounced electronic
transitions. These classifications are defined

relative to the distribution of properties across the
QM9 dataset, which comprises small organic

molecules (H, C, N, O, F) with quantum chemical
calculations performed using DFT at the B3LYP/6-

31G(2df,p) level.

What are the structural, electronic, magnetic, and
porosity-related properties of the material described in

the CIF file?

3DGrid-
LLM

The material represented in the grid crystallizes in
a triclinic system and belongs to the P-1 space

group. Its porosity is limited, with both the pore-
limiting and largest cavity diameters ranging

between 0 and 5 angstroms. The material exhibits
high density (in g/cm³), suggesting tightly packed

atoms. In terms of its electronic and magnetic
behavior, it's classified as a semiconductor and

also shows ferromagnetic properties.

Find a 3D electron density grid for a material that meets
the following criteria:  Belongs to the triclinic crystal
system with space group P-1. The material has a high

density (in g/cm³), and both the pore-limiting and largest
cavity diameters fall between 0 Å and 5 Å. It behaves as

a semiconductor, exhibits ferromagnetic properties

3DGrid-
LLM

The most similar grid to the described properties
is shown below.

Find the top-3 3D electron density grids that satisfy the following property profile:
Rotational constants: A is low, B and C are medium (GHz).
Dipole moment: Medium, indicating moderate polarity.
Isotropic polarizability: High, with r² also medium.
Electronic properties (HOMO, LUMO, gap): All are high (in Hartree), suggesting significant electronic activity.
Zero-point vibrational energy (zpve): High, reflecting strong vibrational motion.
Thermodynamic properties (u₀, u₂₉₈, h₂₉₈, g₂₉₈): All are medium.
Per-atom thermodynamic properties (u₀_atom, u₂₉₈_atom, h₂₉₈_atom, g₂₉₈_atom): All are very low.
Heat capacity at 298.15 K (cv): Very high.

3DGrid-
LLM

The top 3 most similar 3D electron density grids based on the provided description are shown below, along with their
similarity score.

CIF
File

a) b)

c)

Figure 5: This figure illustrates the capabilities of 3DGrid-LLM. a) Given a 3D electron density grid
of a molecule, the model generates structured textual descriptions of quantum mechanical properties
such as rotational constants, dipole moment, polarizability, and HOMO–LUMO gap, grounded in the
spatial information encoded in the grid. b) When provided with a CIF-derived 3D density grid, the
model infers structural (e.g., crystal system, space group), electronic, magnetic, and porosity-related
properties of the material in natural language. c) In generative-retrieval mode, the model takes a
textual description of desired physicochemical or structural properties and generates discrete grid
tokens, which are decoded into 3D electron density grids and compared—via learned contrastive
embeddings. The top retrieved matches are presented with similarity scores.
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A.2 List of evaluation tasks used for VQA and multimodal retrieval356

Table 5 summarizes the 32 tasks used to benchmark 3DGrid-LLM in multimodal VQA and retrieval settings.357

The tasks span three domains: (i) general molecular properties from PubChem, covering compositional and358

topological descriptors such as mass, tautomer count, and lipophilicity (XLogP3); (ii) quantum-chemical and359

thermodynamic properties from QM9, including rotational constants, dipole moments, polarizability, frontier360

orbital energies, thermodynamic quantities, and their per-atom equivalents; and (iii) crystallographic and361

structural properties from QMOF, focusing on lattice classification, pore and cavity dimensions, density, band362

gap, and charge state. All tasks are formulated as classification or binning problems and evaluated uniformly363

using accuracy, enabling direct comparison across modalities and property types.364

Table 5: List of evaluation tasks used for VQA and multimodal retrieval. All tasks are evaluated
using accuracy as the metric.

Task Source Evaluation Metric

Exact Mass PubChem Accuracy
Monoisotopic Mass PubChem Accuracy
Molecular Weight PubChem Accuracy
Tautomer Count PubChem Accuracy
Topological Polar Surface Area PubChem Accuracy
XLogP3 PubChem Accuracy
Complexity PubChem Accuracy

Rotational Constant A (A) QM9 Accuracy
Rotational Constant B (B) QM9 Accuracy
Rotational Constant C (C) QM9 Accuracy
Dipole Moment (µ) QM9 Accuracy
Isotropic Polarizability (α) QM9 Accuracy
Electronic Spatial Extent (r2) QM9 Accuracy
Zero-point Vibrational Energy (ZPVE) QM9 Accuracy
Heat Capacity (cv) QM9 Accuracy
HOMO Energy QM9 Accuracy
LUMO Energy QM9 Accuracy
HOMO–LUMO Gap QM9 Accuracy
Internal Energy at 0 K (u0) QM9 Accuracy
Internal Energy at 298.15 K (u298) QM9 Accuracy
Enthalpy at 298.15 K (h298) QM9 Accuracy
Free Energy at 298.15 K (g298) QM9 Accuracy
Per-atom Internal Energy at 0 K (uatom

0 ) QM9 Accuracy
Per-atom Internal Energy at 298.15 K (uatom

298) QM9 Accuracy
Per-atom Enthalpy at 298.15 K (hatom

298) QM9 Accuracy
Per-atom Free Energy at 298.15 K (gatom

298) QM9 Accuracy

Crystal System QMOF Accuracy
Pore Limiting Diameter (PLD) QMOF Accuracy
Largest Cavity Diameter (LCD) QMOF Accuracy
Density QMOF Accuracy
Band Gap QMOF Accuracy
Charge QMOF Accuracy
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