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Abstract

We present 3DGrid-LLM, a multimodal foundation model designed to integrate
natural language with three-dimensional electron density grids for applications in
molecular and materials science. The architecture extends a large decoder-only
language model by incorporating discrete volumetric representations obtained
through a 3D VQGAN, enabling joint token-level processing of spatial and textual
modalities within a unified framework. Pre-trained on a diverse corpus of molecular
and materials datasets, 3DGrid-LLM supports bidirectional text—grid generation,
multimodal question answering, and retrieval-augmented 3D reconstruction. Com-
prehensive evaluations demonstrate consistent improvements over baseline methods
in multimodal VQA, chemically informed text generation, and property-aligned
retrieval tasks, yielding outputs that are both accurate and physically consistent.

1 Introduction

Understanding the structure—property relationships of molecules and materials remains a fundamental
challenge in computational chemistry and materials science [} 2 [3]. Central to this problem is
the electron density—a three-dimensional (3D) spatial function that encodes both the geometric
configuration and electronic structure of a system [4 5]]. Electron density grids, whether obtained from
ab initio simulations such as density functional theory (DFT) or reconstructed from crystallographic
sources (e.g., CIF files), offer a physically grounded and information-rich representation [6} [7} 8].
However, their potential remains largely underexploited in machine learning pipelines for molecular
and materials modeling [9 [10].

Despite recent advances in deep learning for molecules and materials, most approaches rely on
1D or 2D representations such as SMILES strings [11} 12, [13]], graphs [14} 15} [16], or engineered
descriptors [17,[18L|19], which often omit detailed 3D information. Methods that incorporate structure
typically do so through atomistic point clouds or geometric graphs [20, 21} [22]], abstractions that
operate at the atomic level and struggle to capture the fine-grained spatial and electronic features
encoded in the full density distribution. Moreover, many existing models are optimized for narrow
tasks or domains, limiting their ability to generalize across applications [23]].

Recent multimodal foundation models in chemistry have begun to address these limitations [24} 25]].
However, most adopt late fusion architectures, processing each modality independently with dedicated
encoders or decoders before combining them at a later stage [26, 27, 28]]. This separation can limit
the model’s capacity to learn joint representations and capture interactions between spatial (e.g.,
3D structure) and textual (e.g., scientific language) modalities. In this work, we introduce 3DGrid-
LLM, a family of early-fusion multimodal foundation models capable of bidirectional generation
and reasoning over scientific text and 3D electron density grids. These grids, derived from small
molecules or inorganic materials, are tokenized using a 3D-VQGAN [29]. The model accepts fused
input sequences of grid tokens and language prompts, and supports both 3D-to-text (e.g., property

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



37
38
39

40
41
42
43
44
45

46

47
48
49

50

51
52
53

54
55

56
57
58

59
60

61
62

description) and text-to-3D (e.g., density grid generation and retrieval) tasks. This unified framework
enables downstream applications such as scientific question answering, grid-based retrieval, and
inverse design.

Extensive evaluations demonstrate that 3DGrid-LLM performs effectively across a diverse set of tasks.
We evaluate the model on multimodal visual question answering (VQA), text generation, and grid-
based retrieval benchmarks. More importantly, 3DGrid-LLM enables novel capabilities not supported
by prior models, including bidirectional generation and multimodal reasoning over scientific text
and 3D electron density grids. This flexibility positions 3DGrid-LLM as a unified interface for both
interpretability and generation tasks across molecular and materials science domains.

2 Overview of the proposed approach
This section outlines the core methodology behind 3DGrid-LLM, highlighting its architecture, pre-
training datasets, training pipeline, and generative capabilities. FigureJ]illustrates the general schema
for pre-training and multimodal generation of 3DGrid-LLM.

Pre-training MultiMot.iaI

????F

o
Pre-trained LLM LoRA Adapter

The electronic
properties of <grid> are
high, with the HOMO,
LUMO energies...

Flne tuned LLM 3D Grid
Decoder Decoder

Fine-tuned
MultiModal LLM

== ﬁﬁﬁaﬁﬁ&

<grid>

Figure 1: During training, a pre-trained large language model is equipped with LoRA adapters
and fine-tuned on paired inputs consisting of 3D electron density grids—derived from either small
molecules or inorganic materials—tokenized using a 3D VQGAN, and corresponding natural lan-
guage prompts. Tokens from both modalities are fused at the input level, enabling early integration
of spatial and textual information within a unified embedding space. After fine-tuning, the model
supports both 3D-fo-text and text-to-3D generation.

2.1 General architecture

3D VQGAN represents 3D-grids, in addition to text, as a series of discrete tokens and takes advantage
of the scaling properties of auto-regressive Transformers as in Fig. [3] Below, we define the different
tokenizers used in the schema.

3D-Grid tokenizer: To tokenize 3D electron density grids, we employ a 3D extension of the
VQGAN architecture for 3D grids introduced by [29]]. Given a volumetric input grid, the encoder

produces a latent representation z, € ROEF)x(5)x(2)xk , where H, W, and D denote the spatial

dimensions, k is the number of latent channels, and s is the spatial downsampling factor. Each latent
vector is then quantized via a learned codebook Z, replacing it with the nearest embedding vector.

The decoder reconstructs the original grid from the quantized latents. The model is trained to
minimize a composite objective:

Ltotal = Lrec + BLcommit + "YLcodebooka

where L. denotes the reconstruction loss, L¢ommic penalizes the encoder for deviation from the
codebook vectors, and Lcodebook Updates the codebook embeddings. To extend the original 2D
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VQGAN to 3D volumetric data, we adopt architectural modifications from [30} [31]], replacing all 2D
convolutions with their 3D counterparts.

We support two types of 3D electron density grids. For small molecules, we generate re-optimized
conformations using the MINDO/3 semi-empirical method as implemented in the PySCF electronic
structure package [32]]. Specifically, the five lowest-energy conformations are optimized, and the
one with the lowest energy is selected for further calculations. This conformation is then evaluated
using restricted Hartree—Fock (RHF) at the STO-3G minimal basis set level to compute the ab initio
electron density. The resulting continuous charge distribution is discretized into a volumetric grid
format, yielding a voxelized representation of the electron density suitable for 3D modeling.

For crystalline materials, we generate 3D electron density grids directly from Crystallographic
Information Files (CIFs) as described in [33]. Each CIF is parsed using pymatgen to obtain the
atomic structure and lattice geometry. We then compute a continuous electron density field over a
cubic grid by placing a Gaussian distribution centered at each atomic site. The contribution of each
atom is weighted by its atomic number Z, and the total electron density at each voxel is computed as
the sum of atomic contributions, assuming a fixed standard deviation o for all atoms. This process
yields a resolution-controlled, voxelized representation of the electron density, stored as a .npy
tensor. The approach preserves periodic boundary conditions via the PeriodicSite formalism and
supports batch conversion across large datasets of CIF files.

Text tokenizer: To tokenize natural language prompts and responses, we use the tokenizer associ-
ated with a pre-trained large language model (name omitted for double-blind review). The tokenizer
is extended with a special separator token <grid>, used to delimit different input modalities, and a
vocabulary of grid tokens <g0> to <g2047> representing the VQGAN-encoded 3D volumetric grids.
The tokenizer operates without modality-specific preprocessing, enabling seamless early fusion of
spatial and textual information within a unified token sequence. Tokenization is performed without
special tokens for answers, and truncation is applied to ensure the total sequence length does not
exceed 8192 tokens. This unified vocabulary allows the model to handle multimodal inputs as flat
token sequences, enabling bidirectional generation and reasoning over both 3D grids and scientific
text.

Model and Training Configuration: We build upon the (name omitted for double-blind review)
foundation model, a 8 billion parameter decoder-only causal language model pretrained on a mixture
of scientific and general-domain corpora. For our task, we augment this model with lightweight
Low-Rank Adaptation (LoRA) modules [34] to enable efficient fine-tuning on multimodal molecular
property QA pairs.

We introduce LoRA adapters with a rank r» = 8, scaling factor o = 32, and dropout rate of 0.05.
The adapters are applied to the attention projection layers (q_proj, k_proj, v_proj, o_proj,
gate_proj) and the input token embedding layer (embed_tokens).

To enable processing of volumetric 3D electron density inputs, we extend the tokenizer vocabulary
with 2048 discrete grid tokens (<g0> to <g2047>) corresponding to VQGAN-encoded spatial tokens,
along with a special separator token <grid> used to mark modality boundaries. The tokenizer
operates without any modality-specific preprocessing, supporting early fusion of spatial and textual
information within a flat token sequence. Maximum input length is capped at 8192 tokens.

The model is trained using the Hugging Face Trainer API with the following hyperparameters: 3
epochs, batch size of 1 per GPU, gradient accumulation over 1 step, and a learning rate of 6.25 x 1075,
Optimization uses AdamW with weight decay of 0.01 and mixed-precision disabled. Training is
performed on a multi-GPU setup using data parallelism with fixed seed for reproducibility.

To process the 3D modality, we encode electron density grids using a pretrained 3DGrid-VQGAN
[29], resized to 128 resolution and log-transformed via log(1 + z). The encoded grid tokens
are prepended to the user prompt, separated by the <sep> token. The model is trained in an
autoregressive fashion, with only the response portion supervised. a) Given a 3D electron density grid
of a molecule, the model generates structured textual descriptions of quantum mechanical properties
such as rotational constants, dipole moment, polarizability, and HOMO-LUMO gap, grounded in the
spatial information encoded in the grid. b) When provided with a CIF-derived 3D density grid, the
model infers structural (e.g., crystal system, space group), electronic, magnetic, and porosity-related
properties of the material in natural language. ¢) In generative-retrieval mode, the model takes a
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textual description of desired physicochemical or structural properties and generates discrete grid
tokens, which are decoded into 3D electron density grids and compared—via learned contrastive
embeddings. The top retrieved matches are presented with similarity scores.

2.2 Pre-training data

For supervised fine-tuning, we organize our dataset into three distinct categories: (i) all-properties,
containing QA pairs covering multiple molecular properties; (ii) single-property, focusing on isolated
property descriptions; and (iii) functional-group, which targets questions related to specific chemical
substructures. These datasets are used to train the model on both 3D-grid-to-text and text-to-3D-grid
tasks, enabling bidirectional understanding and generation across modalities as illustrated in Fig. [5}

The text—3D-grid data for pre-training is a combination of publicly available sources, including QM9,
QMOF, and PubChem, transformed to accommodate multimodal fine-tuning. Each 3D electron
density grid is resized to 1283 voxels and tokenized with 3DGrid-VQGAN. Across all sources, the
corpus reaches 8.15 billion tokens (text + 3D-grid) spanning 12.5 million text—grid pairs. Table|[T]
summarizes token statistics and sample counts for each dataset.

Table 1: Token statistics for the text-3D-grid fine-tuning dataset, separated by text and grid tokens
across QM9, QMOF, and PubChem.

Dataset Text Tokens Grid Tokens Total Tokens #Samples

QM9 836M 1.7B 2.5B 2.5M
QMOF 9.5M 91.8M 101.3M 179.2K
PubChem 454M 5.05B 5.50B 9.87T™M
Total 1.30B 6.85B 8.15B 12.5M

3 Experiments

To evaluate the proposed 3DGrid-LLM, we design a comprehensive benchmark suite spanning both
Visual Question Answering (VQA) and Multimodal Retrieval tasks. Our goal is to assess the model’s
ability to interpret and reason over 3D electron density grids in conjunction with textual prompts, as
well as its capacity to perform cross-modal alignment.

For the VQA setting, we compile a diverse set of 32 supervised tasks, grouped into three categories
based on their original dataset source:

* PubChem: Tasks related to molecular complexity, weight, and topological properties.

* QM9: Tasks derived from quantum chemistry simulations, involving rotational constants,
dipole moments, electronic, and thermodynamic properties.

* QMOF: Tasks pertaining to structural and electronic features of crystalline materials.

The 32 VQA tasks are detailed in the Appendix, due to limit of pages.

To assess the effectiveness of our proposed 3DGrid-LLM model in generating chemically meaningful
volumetric representations from property-centric prompts, we introduce a retrieval-augmented eval-
uation framework grounded in a multimodal embedding space. The pipeline, illustrated in Fig. 3
performs generation, decoding, embedding, and retrieval entirely in 3D space—bypassing reliance on
molecular graph intermediates and enabling direct reasoning over electron density distributions.

Given a textual prompt describing a desired physicochemical profile, 3DGrid-LLM autoregressively
generates a sequence of discrete tokens representing a latent 3D electron density grid. These tokens
are decoded into a dense volumetric field (128 x 128 x 128) using a frozen 3DGrid-VQGAN decoder.
The resulting grid is then passed through a contrastively trained encoder, 3DGrid-CLIP, which
embeds it into a learned representation space optimized for structural and semantic alignment. We
perform retrieval by comparing the embedding of the generated grid against a held-out database of
experimentally or computationally derived materials, using cosine similarity to identify the top-k
most similar entries.
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Figure 2: Schematic of the retrieval-augmented generation (RAG) pipeline. Given a textual prompt,
3DGrid-LLM generates a discrete token sequence that is decoded into a 3D grid. This grid is
embedded via 3DGrid-CLIP and compared against a catalog of known materials for retrieval based
on structural and semantic similarity.
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While traditional retrieval tasks in language and vision domains typically rely on ranking precision
or cosine similarity, these metrics are insufficient in scientific applications where preserving latent
physical structure, property consistency, and functional diversity is critical. To address this, we report
a suite of complementary metrics that evaluate both semantic fidelity and property alignment:

* Top-1 and Top-% Similarity: Cosine similarity between the query and retrieved embeddings.

* Soft Recall@k: Fraction of prompts retrieving at least one candidate from the correct
property cluster.

* Jaccard Similarity: Overlap of discretized property bins (e.g., low/medium/high dipole
moment).

* BERTScore (F1): Semantic similarity between textual descriptions of the query and
retrieved molecules.

* Property Overlap (%): Percentage of shared qualitative property categories between the
generated grid and the retrieved candidates.

We evaluate this framework on a benchmark set of 100 diverse textual prompts designed to elicit
a range of structural and electronic characteristics. Each prompt is evaluated against a held-out
catalog of 1,000 precomputed 3D electron density grids from the QMOF dataset, which provides rich
property annotations and physically grounded representations of metal-organic frameworks. This
setup allows us to measure how well the generated grids enable retrieval of known materials with
matching physical attributes, offering a rigorous proxy for evaluating generative utility in inverse
design contexts.

4 Results

4.1 Multimodal Visual Question Answering

Table 3 reports accuracy across 32 VQA tasks spanning general molecular, quantum-chemical, and
crystallographic properties. Overall, the 3DGrid-LLM surpasses the 3DGrid-VQGAN baseline, with
mean accuracy increasing from 0.5789 to 0.6766 under five-shot conditioning.

General Molecular Properties show an increase from 0.2123 to 0.5648 across seven tasks, with the
largest gains observed in properties with near-zero baseline performance, while properties such as
Topological Polar Surface Area and Complexity exhibit minimal improvement.

Quantum Chemistry and Thermodynamic Properties span 19 tasks and increase from 0.6436
to 0.6709. Gains are heterogeneous: structural constants and Electronic Spatial Extent improve
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Table 2: Evaluation tasks for VQA and multimodal retrieval. Metric: accuracy (higher is better).
3DGrid-VQGAN is the baseline; 3DGrid-LLM (Ours) denotes our proposed model with/without
few-shot conditioning. Per-row maxima are highlighted.

Task 3DGrid-VQGAN (Baseline) 3DGrid-LLM (Ours)

No Few-shot Few-shot (1) Few-shot (3) Few-shot (5)

General Molecular Properties

Exact Mass 0.0787 0.2611 0.2632 0.2881 0.2921
Monoisotopic Mass 0.0787 0.3621 0.4567 0.5732 0.6298
Molecular Weight 0.0813 0.4782 0.4650 0.5972 0.6101
Tautomer Count 0.0004 0.4555 0.5157 0.5398 0.5432
Topological Polar Surface Area 0.5993 0.4912 0.5751 0.5892 0.5975
XLogP3 0.0009 0.3231 0.4982 0.5644 0.5802
Complexity 0.6466 0.6501 0.6695 0.6602 0.7005
Mean (7 tasks) 0.2123 0.4330 0.4919 0.5317 0.5647
Quantum Chemistry and Thermodynamic Properties

Rotational Constant A 0.6216 0.6005 0.7109 0.7456 0.7339
Rotational Constant B 0.7007 0.6792 0.6856 0.6902 0.6935
Rotational Constant C' 0.7217 0.7235 0.7654 0.7802 0.8128
Dipole Moment (1) 0.5142 0.6275 0.6445 0.6698 0.6805
Isotropic Polarizability (o) 0.7089 0.6454 0.6688 0.6723 0.6988
Electronic Spatial Extent (r?) 0.7264 0.7586 0.7702 0.7875 0.8232
Zero-point Vibrational Energy 0.7375 0.7402 0.7826 0.8330 0.8301
(ZPVE)

Heat Capacity (c,) 0.6887 0.3002 0.3875 0.4956 0.5235
HOMO Energy 0.5035 0.4972 0.5625 0.5836 0.6225
LUMO Energy 0.5664 0.5625 0.5782 0.5880 0.5795
HOMO-LUMO Gap 0.5614 0.3629 0.6225 0.6740 0.6892
Internal Energy at 0 K (ug) 0.7257 0.5698 0.6223 0.6331 0.6009
Internal Energy at 298.15 K 0.7231 0.5787 0.5962 0.6125 0.6856
(u298)

Enthalpy at 298.15 K (h29s) 0.7231 0.6282 0.6676 0.6991 0.7127
Free Energy at 298.15 K (g29s) 0.7263 0.6556 0.6878 0.7032 0.7225
Per-atom ug 0.7219 0.7123 0.7456 0.7568 0.7809
Per-atom w298 0.7248 0.7109 0.7565 0.7589 0.7856
Per-atom hags 0.7249 0.6785 0.7092 0.7225 0.7356
Per-atom go9s 0.7178 0.5674 0.6488 0.6796 0.6707
Mean (19 tasks) 0.6601 0.6171 0.6748 0.6992 0.7116
Crystallographic and Structural Properties

Crystal System 0.5947 0.6032 0.6007 0.6227 0.6332
Pore Limiting Diameter (PLD) 0.9388 0.8986 0.9062 0.9065 0.9122
Largest Cavity Diameter (LCD) 0.9271 0.8134 0.8356 0.8992 0.9016
Density 0.8734 0.8189 0.8777 0.8816 0.8815
Band Gap 0.9558 0.8791 0.9221 0.9720 0.9684
Charge 0.5208 0.5765 0.6352 0.6192 0.6532
Mean (6 tasks) 0.8018 0.7650 0.7946 0.8169 0.8250
Overall mean (32 tasks) 0.5932 0.5937 0.6461 0.6748 0.6886

steadily with few-shot examples, whereas properties like Heat Capacity and Enthalpy at 298.15 K
show limited or variable improvement, reflecting task-dependent integration of 3D structure and
textual prompts.

Crystallographic and Structural Properties include six tasks and increase from 0.8018 to 0.8250.
Saturation is observed for Band Gap and pore size metrics, whereas Crystal System and Charge
benefit more from few-shot conditioning.

Overall, few-shot conditioning selectively improves tasks with low baseline performance, while
properties with strong baseline signals show diminishing returns. These results indicate that the
model effectively integrates multimodal information, but the magnitude of improvement depends on
both the baseline signal and the intrinsic complexity of each property.
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4.2 Analysis of Semantic Generation Across Molecular Domains

To evaluate the semantic fidelity of our generative model across distinct chemical knowledge domains,
we analyze BLEU, ROUGE-L, and BERTScore (F1) on structured text generation conditioned on
3D electron density grids. These metrics collectively quantify syntactic alignment (BLEU), surface-
level sequence overlap (ROUGE-L), and contextual semantic similarity (BERTScore), providing a
multifaceted lens on generative quality. Table [3]illustrates the results for tested benchmarks.

Table 3: Semantic evaluation metrics across molecular datasets. BLEU captures n-gram overlap,
ROUGE-L measures longest common subsequence, and BERTScore (F1) assesses contextual seman-
tic similarity.

Dataset BLEUT ROUGE-L1  BERTScore (F1)

PubChem 0.865 0.918 0.944
QM9 0.579 0.819 0.820
QMOF 0.782 0.864 0.878

As state in Table 3] 3DGrid-LLM achieves near-parity with ground-truth references in PubChem
(BLEU: 0.865, ROUGE-L: 0.918, BERTScore: 0.944), underscoring its strong lexical precision and
semantic alignment. This is facilitated by the categorical nature of PubChem descriptors (e.g., logP,
tautomer count), which constrain linguistic variation and encourage template-consistent decoding. In
contrast, performance on QM9 (BLEU: 0.579, ROUGE-L: 0.819, BERTScore: 0.820) is attenuated
due to the continuous and scalar nature of quantum chemical properties (e.g., dipole moment, HOMO-
LUMO gap), where the absence of standard binning leads to semantic drift and reduced surface-level
overlap. Figure illustrates the answer of 3DGrid-LLM for QM9 properties.

For the molecule represented by the grid, what are its
quantum mechanical properties?
Expected Output 3DGrid-LLM

For the molecule in the grid, the properties are: For the molecule in the grid, the properties are:
- The property A of the molecule in the grid is very high and - The property A of the molecule in the grid is high and measured in
measured in GHz unit. GHz unit.

- The rotational constant B is low and measured in GHz. - The rotational constant B is low and measured in GHz.

- The rotational constant C is low and measured in GHz. - The rotational constant C is medium and measured in GHz.

- The dipole moment is medium and measured in Debye. - The dipole moment is medium and measured in Debye.

- The isotropic polarizability is low and measured in BohrA3. - The isotropic polarizability is low and measured in BohrA3.

- The HOMO energy is low and measured in Hartree. - The HOMO energy is low and measured in Hartree.

- The LUMO energy is medium and measured in Hartree. - The LUMO energy is medium and measured in Hartree.

- The HOMO-LUMO gap is medium and measured in Hartree. - The HOMO-LUMO gap is medium and measured in Hartree.

- The electronic spatial extent is high and measured in Bohrn2. - The electronic spatial extent is high and measured in Bohrn2.

- The zero-point vibrational energy is low and measured in Hartree. - The zero-point vibrational energy is low and measured in Hartree.
- The internal energy at 0 K is high and measured in Hartree. - The internal energy at 0 K is high and measured in Hartree.

- The internal energy at 298.15 K is high and measured in Hartree. - The internal energy at 298.15 K is high and measured in Hartree.

- The enthalpy at 298.15 K is high and measured in Hartree. - The enthalpy at 298.15 K is medium and measured in Hartrees.

- The free energy at 298.15 K is high and measured in Hartree. - The free energy at 298.15 K is high and measured in Hartree.

- The property cv of the molecule in the grid is low and measured in - The property cv of the molecule in the grid is low and measured in
cali(mol K) unit. cali(mol K) unit.

- The per-atom internal energy at 0 K is high and measured in - The per-atom internal energy at 0 K is very high and measured in
Hartree. Hartree.

- The per-atom internal energy at 298.15 K is high and measured in - The per-atom internal energy at 298.15 K is high and measured in
Hartree. Hartree.

- The per-atom enthalpy at 298.15 K is high and measured in - The per-atom enthalpy at 298.15 K is very high and measured in
Hartree. Hartree.

- The per-atom free energy at 298.15 K is high and measured in - The per-atom free energy at 288.15 K is high and measured in
Hartree. Hartree.

Figure 3: Example of 3DGrid-LLM answer for QM9 properties.

QMOF results (BLEU: 0.782, ROUGE-L: 0.864, BERTScore: 0.878) reflect a midpoint: the model
captures structural and crystallographic features with reasonable fluency but is prone to fine-grained
hallucinations, likely due to sparse and heterogeneous annotations. Overall, these findings reveal a
trade-off between semantic controllability and the ontology of the property space—discrete, well-
binned domains enable faithful generation, while continuous or noisy domains degrade alignment.
We posit that improved grounding in such domains may require retrieval-augmented prompting
or numerically constrained decoding strategies to align scalar semantics with natural language
realizations.
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4.3 Retrieval-Augmented 3D Grid Generation and Evaluation

We assess the generative capabilities of 3DGrid-LLM within a retrieval-augmented framework. The
task consists of generating 3D electron density grids conditioned on textual property descriptions
and retrieving semantically and structurally similar materials from a reference database. This setup
enables a multi-modal evaluation of alignment across language, spatial representation, and functional
molecular similarity.

Table 4: Retrieval performance on QMOF and QM9 datasets (Top-1 and Top-k = 10).

Metric QMOF QM9
Top-1 Top-10 Top-1 Top-10
Cosine Similarity (Embedding Space) 0.9794 — 0.9555 0.9340
Soft Recall@10 (Cluster Match) — 0.980 — —
Jaccard Similarity (Discrete Properties) 0.874 0.856 0.9181 0.8795
BERTScore (F1) 0.966 0.946 0.9871 0.9505
Property Overlap (%) 83.56 85.72 86.97 83.76

As shown in Table ] the model achieves consistent and robust alignment across both
QMOF and QM9 domains. On QMOF, generated grids yield a Top-1 cosine similar-
ity of 0.9794, a Jaccard similarity of 0.874, and a BERTScore F1 of 0.966, indicating
strong agreement in both geometric and linguistic representations. Similarly, performance
on QM09 reflects high fidelity, with a Top-1 cosine similarity of 0.9555, and a Jaccard sim-
ilarity of 0.9181, validating the model’s generalization across molecular complexity scales.

t-SNE Projection: Query vs QMOF materials

To further probe embedding space structure, we visu-
alize a t-SNE projection of retrieval results on QMOF
in Fig. [ The generated query (red) and its Top-10
retrieved candidates (colored) form a dense and coher- w

ent cluster, while background entries (gray) remain ",A‘l"' &%; e 3 f;:#
distributed across the manifold. This highlights the L {' ny “s;‘:'-":;-: .% 3
model’s precision in matching grid semantics. ° -hl‘&f I ST ;3'

@ ""3’.‘1"5 W Sl Y
Despite high accuracy, retrieved candidates display Rcarh .‘Y"l Tt ¥
- : S . . ) TG La T mia N
limited functional diversity, suggesting embedding * T TS Wm ?
collapse and reduced exploration potential. While Sl e B

A m ‘ QMOF

high Top-10 Jaccard similarity (0.8795 on QMO9,
0.856 on QMOF) and property overlap indicate se-
mantic consistency, they may mask latent redun-
dancy.

Figure 4: t-SNE projection of the 3DGrid-
CLIP embedding space for a QMOF prompt.
Red: generated query; Green: Top-10 re-
trieved; Gray: reference catalog.

This precision-diversity trade-off is emblematic of
contrastive training regimes and suggests the need
for enhanced regularization. We hypothesize that
diversity-aware ranking objectives, entropy-penalized
decoding, or property-conditioned sampling strate-
gies may yield broader functional coverage without sacrificing retrieval quality.

5 Conclusion

We presented 3DGrid-LLM, an early-fusion multimodal foundation model that processes natural lan-
guage and 3D electron density grids for bidirectional generation, reasoning, and retrieval in molecular
and materials science. By extending a large decoder-only language model with discrete volumetric
tokens from a 3D VQGAN, the approach captures spatial, electronic, and textual information within
a unified token sequence.

3DGrid-LLM offers a scalable path to integrating physically grounded volumetric data into large
language models, enabling general-purpose scientific assistants that bridge symbolic and spatial
reasoning. Future work will address larger multimodal datasets, physical constraints in decoding, and
new scientific modalities.
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Supplementary Materials

Multimodal foundation model capabilities

Figure]illustrates the capabilities of the proposed multimodal foundation model trained on 3D grids.
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Figure 5: This figure illustrates the capabilities of 3DGrid-LLM. a) Given a 3D electron density grid
of a molecule, the model generates structured textual descriptions of quantum mechanical properties
such as rotational constants, dipole moment, polarizability, and HOMO-LUMO gap, grounded in the
spatial information encoded in the grid. b) When provided with a CIF-derived 3D density grid, the
model infers structural (e.g., crystal system, space group), electronic, magnetic, and porosity-related
properties of the material in natural language. ¢) In generative-retrieval mode, the model takes a
textual description of desired physicochemical or structural properties and generates discrete grid
tokens, which are decoded into 3D electron density grids and compared—via learned contrastive
embeddings. The top retrieved matches are presented with similarity scores.
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A.2 List of evaluation tasks used for VQA and multimodal retrieval

Table 5] summarizes the 32 tasks used to benchmark 3DGrid-LLM in multimodal VQA and retrieval settings.
The tasks span three domains: (i) general molecular properties from PubChem, covering compositional and
topological descriptors such as mass, tautomer count, and lipophilicity (XLogP3); (ii) quantum-chemical and
thermodynamic properties from QMO9, including rotational constants, dipole moments, polarizability, frontier
orbital energies, thermodynamic quantities, and their per-atom equivalents; and (iii) crystallographic and
structural properties from QMOF, focusing on lattice classification, pore and cavity dimensions, density, band
gap, and charge state. All tasks are formulated as classification or binning problems and evaluated uniformly
using accuracy, enabling direct comparison across modalities and property types.

Table 5: List of evaluation tasks used for VQA and multimodal retrieval. All tasks are evaluated

using accuracy as the metric.

Task Source Evaluation Metric
Exact Mass PubChem  Accuracy
Monoisotopic Mass PubChem  Accuracy
Molecular Weight PubChem  Accuracy
Tautomer Count PubChem  Accuracy
Topological Polar Surface Area PubChem  Accuracy
XLogP3 PubChem  Accuracy
Complexity PubChem  Accuracy
Rotational Constant A (A) QM9 Accuracy
Rotational Constant B (B) QM9 Accuracy
Rotational Constant C (C) QM9 Accuracy
Dipole Moment (1) QM9 Accuracy
Isotropic Polarizability (o) QM9 Accuracy
Electronic Spatial Extent (r?) QM9 Accuracy
Zero-point Vibrational Energy (ZPVE) QM9 Accuracy
Heat Capacity (cv) QM9 Accuracy
HOMO Energy QM9 Accuracy
LUMO Energy QM9 Accuracy
HOMO-LUMO Gap QM9 Accuracy
Internal Energy at 0 K (ug) QM9 Accuracy
Internal Energy at 298.15 K (u298) QM9 Accuracy
Enthalpy at 298.15 K (h29sg) QM9 Accuracy
Free Energy at 298.15 K (g298) QM9 Accuracy
Per-atom Internal Energy at 0 K (u§°™) QM9 Accuracy
Per-atom Internal Energy at 298.15 K (u3g3) QM9 Accuracy
Per-atom Enthalpy at 298.15 K (hog) QM9 Accuracy
Per-atom Free Energy at 298.15 K (g59%) QM9 Accuracy
Crystal System QMOF Accuracy
Pore Limiting Diameter (PLD) QMOF Accuracy
Largest Cavity Diameter (LCD) QMOF Accuracy
Density QMOF Accuracy
Band Gap QMOF Accuracy
Charge QMOF Accuracy
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