
Token-Level Early Fusion Model Bridging Text and 3D Electron Density Grids in Chemistry

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 We present 3DGrid-LLM, a multimodal foundation model designed to integrate
2 natural language with three-dimensional electron density grids for applications in
3 molecular and materials science. The architecture extends a large decoder-only
4 language model by incorporating discrete volumetric representations obtained
5 through a 3D VQGAN, enabling joint token-level processing of spatial and textual
6 modalities within a unified framework. Pre-trained on a diverse corpus of molecular
7 and materials datasets, 3DGrid-LLM supports bidirectional text–grid generation,
8 multimodal question answering, and retrieval-augmented 3D reconstruction. Com-
9 prehensive evaluations demonstrate consistent improvements over baseline methods
10 in multimodal VQA, chemically informed text generation, and property-aligned
11 retrieval tasks, yielding outputs that are both accurate and physically consistent.

12 1 Introduction

13 Understanding the structure–property relationships of molecules and materials remains a fundamental
14 challenge in computational chemistry and materials science [1, 2, 3]. Central to this problem is
15 the electron density—a three-dimensional (3D) spatial function that encodes both the geometric
16 configuration and electronic structure of a system [4, 5]. Electron density grids, whether obtained from
17 ab initio simulations such as density functional theory (DFT) or reconstructed from crystallographic
18 sources (e.g., CIF files), offer a physically grounded and information-rich representation [6, 7, 8].
19 However, their potential remains largely underexploited in machine learning pipelines for molecular
20 and materials modeling [9, 10].

21 Despite recent advances in deep learning for molecules and materials, most approaches rely on
22 1D or 2D representations such as SMILES strings [11, 12, 13], graphs [14, 15, 16], or engineered
23 descriptors [17, 18, 19], which often omit detailed 3D information. Methods that incorporate structure
24 typically do so through atomistic point clouds or geometric graphs [20, 21, 22], abstractions that
25 operate at the atomic level and struggle to capture the fine-grained spatial and electronic features
26 encoded in the full density distribution. Moreover, many existing models are optimized for narrow
27 tasks or domains, limiting their ability to generalize across applications [23].

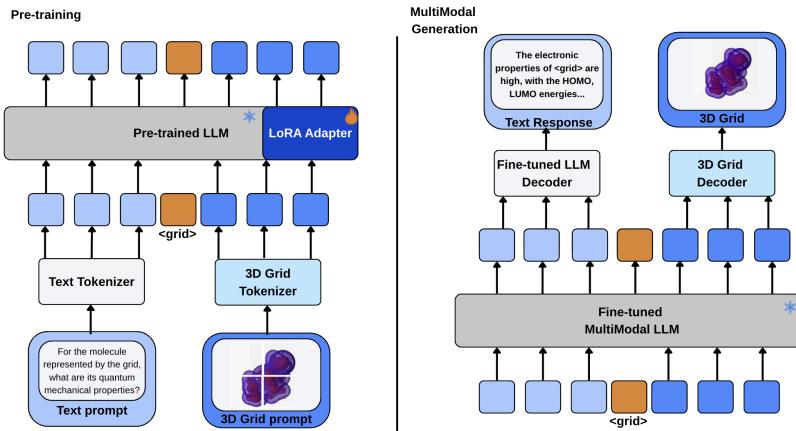
28 Recent multimodal foundation models in chemistry have begun to address these limitations [24, 25].
29 However, most adopt late fusion architectures, processing each modality independently with dedicated
30 encoders or decoders before combining them at a later stage [26, 27, 28]. This separation can limit
31 the model’s capacity to learn joint representations and capture interactions between spatial (e.g.,
32 3D structure) and textual (e.g., scientific language) modalities. In this work, we introduce 3DGrid-
33 LLM, a family of early-fusion multimodal foundation models capable of bidirectional generation
34 and reasoning over scientific text and 3D electron density grids. These grids, derived from small
35 molecules or inorganic materials, are tokenized using a 3D-VQGAN [29]. The model accepts fused
36 input sequences of grid tokens and language prompts, and supports both 3D-to-text (e.g., property

37 description) and text-to-3D (e.g., density grid generation and retrieval) tasks. This unified framework
 38 enables downstream applications such as scientific question answering, grid-based retrieval, and
 39 inverse design.

40 Extensive evaluations demonstrate that 3DGrid-LLM performs effectively across a diverse set of tasks.
 41 We evaluate the model on multimodal visual question answering (VQA), text generation, and grid-
 42 based retrieval benchmarks. More importantly, 3DGrid-LLM enables novel capabilities not supported
 43 by prior models, including bidirectional generation and multimodal reasoning over scientific text
 44 and 3D electron density grids. This flexibility positions 3DGrid-LLM as a unified interface for both
 45 interpretability and generation tasks across molecular and materials science domains.

46 2 Overview of the proposed approach

47 This section outlines the core methodology behind 3DGrid-LLM, highlighting its architecture, pre-
 48 training datasets, training pipeline, and generative capabilities. Figure 3 illustrates the general schema
 49 for pre-training and multimodal generation of 3DGrid-LLM.



50 Figure 1: During training, a pre-trained large language model is equipped with LoRA adapters
 51 and fine-tuned on paired inputs consisting of 3D electron density grids—derived from either small
 52 molecules or inorganic materials—tokenized using a 3D VQGAN, and corresponding natural lan-
 53 guage prompts. Tokens from both modalities are fused at the input level, enabling early integration
 54 of spatial and textual information within a unified embedding space. After fine-tuning, the model
 55 supports both *3D-to-text* and *text-to-3D* generation.

56 2.1 General architecture

57 3D VQGAN represents 3D-grids, in addition to text, as a series of discrete tokens and takes advantage
 58 of the scaling properties of auto-regressive Transformers as in Fig. 3. Below, we define the different
 59 tokenizers used in the schema.

60 **3D-Grid tokenizer:** To tokenize 3D electron density grids, we employ a 3D extension of the
 61 VQGAN architecture for 3D grids introduced by [29]. Given a volumetric input grid, the encoder
 62 produces a latent representation $z_e \in \mathbb{R}^{(\frac{H}{s}) \times (\frac{W}{s}) \times (\frac{D}{s}) \times k}$, where H , W , and D denote the spatial
 63 dimensions, k is the number of latent channels, and s is the spatial downsampling factor. Each latent
 64 vector is then quantized via a learned codebook Z , replacing it with the nearest embedding vector.

65 The decoder reconstructs the original grid from the quantized latents. The model is trained to
 66 minimize a composite objective:

$$L_{\text{total}} = L_{\text{rec}} + \beta L_{\text{commit}} + \gamma L_{\text{codebook}},$$

67 where L_{rec} denotes the reconstruction loss, L_{commit} penalizes the encoder for deviation from the
 68 codebook vectors, and L_{codebook} updates the codebook embeddings. To extend the original 2D

63 VQGAN to 3D volumetric data, we adopt architectural modifications from [30, 31], replacing all 2D
64 convolutions with their 3D counterparts.

65 We support two types of 3D electron density grids. For small molecules, we generate re-optimized
66 conformations using the MINDO/3 semi-empirical method as implemented in the PySCF electronic
67 structure package [32]. Specifically, the five lowest-energy conformations are optimized, and the
68 one with the lowest energy is selected for further calculations. This conformation is then evaluated
69 using restricted Hartree–Fock (RHF) at the STO-3G minimal basis set level to compute the ab initio
70 electron density. The resulting continuous charge distribution is discretized into a volumetric grid
71 format, yielding a voxelized representation of the electron density suitable for 3D modeling.

72 For crystalline materials, we generate 3D electron density grids directly from Crystallographic
73 Information Files (CIFs) as described in [33]. Each CIF is parsed using pymatgen to obtain the
74 atomic structure and lattice geometry. We then compute a continuous electron density field over a
75 cubic grid by placing a Gaussian distribution centered at each atomic site. The contribution of each
76 atom is weighted by its atomic number Z , and the total electron density at each voxel is computed as
77 the sum of atomic contributions, assuming a fixed standard deviation σ for all atoms. This process
78 yields a resolution-controlled, voxelized representation of the electron density, stored as a .npy
79 tensor. The approach preserves periodic boundary conditions via the PeriodicSite formalism and
80 supports batch conversion across large datasets of CIF files.

81 **Text tokenizer:** To tokenize natural language prompts and responses, we use the tokenizer associated
82 with a pre-trained large language model (name omitted for double-blind review). The tokenizer
83 is extended with a special separator token `<grid>`, used to delimit different input modalities, and a
84 vocabulary of grid tokens `<g0>` to `<g2047>` representing the VQGAN-encoded 3D volumetric grids.
85 The tokenizer operates without modality-specific preprocessing, enabling seamless early fusion of
86 spatial and textual information within a unified token sequence. Tokenization is performed without
87 special tokens for answers, and truncation is applied to ensure the total sequence length does not
88 exceed 8192 tokens. This unified vocabulary allows the model to handle multimodal inputs as flat
89 token sequences, enabling bidirectional generation and reasoning over both 3D grids and scientific
90 text.

91 **Model and Training Configuration:** We build upon the (name omitted for double-blind review)
92 foundation model, a 8 billion parameter decoder-only causal language model pretrained on a mixture
93 of scientific and general-domain corpora. For our task, we augment this model with lightweight
94 Low-Rank Adaptation (LoRA) modules [34] to enable efficient fine-tuning on multimodal molecular
95 property QA pairs.

96 We introduce LoRA adapters with a rank $r = 8$, scaling factor $\alpha = 32$, and dropout rate of 0.05.
97 The adapters are applied to the attention projection layers (`q_proj`, `k_proj`, `v_proj`, `o_proj`,
98 `gate_proj`) and the input token embedding layer (`embed_tokens`).

99 To enable processing of volumetric 3D electron density inputs, we extend the tokenizer vocabulary
100 with 2048 discrete grid tokens (`<g0>` to `<g2047>`) corresponding to VQGAN-encoded spatial tokens,
101 along with a special separator token `<grid>` used to mark modality boundaries. The tokenizer
102 operates without any modality-specific preprocessing, supporting early fusion of spatial and textual
103 information within a flat token sequence. Maximum input length is capped at 8192 tokens.

104 The model is trained using the Hugging Face Trainer API with the following hyperparameters: 3
105 epochs, batch size of 1 per GPU, gradient accumulation over 1 step, and a learning rate of 6.25×10^{-6} .
106 Optimization uses AdamW with weight decay of 0.01 and mixed-precision disabled. Training is
107 performed on a multi-GPU setup using data parallelism with fixed seed for reproducibility.

108 To process the 3D modality, we encode electron density grids using a pretrained 3DGrid-VQGAN
109 [29], resized to 128^3 resolution and log-transformed via $\log(1 + x)$. The encoded grid tokens
110 are prepended to the user prompt, separated by the `<sep>` token. The model is trained in an
111 autoregressive fashion, with only the response portion supervised. **a)** Given a 3D electron density grid
112 of a molecule, the model generates structured textual descriptions of quantum mechanical properties
113 such as rotational constants, dipole moment, polarizability, and HOMO–LUMO gap, grounded in the
114 spatial information encoded in the grid. **b)** When provided with a CIF-derived 3D density grid, the
115 model infers structural (e.g., crystal system, space group), electronic, magnetic, and porosity-related
116 properties of the material in natural language. **c)** In generative-retrieval mode, the model takes a

117 textual description of desired physicochemical or structural properties and generates discrete grid
118 tokens, which are decoded into 3D electron density grids and compared—via learned contrastive
119 embeddings. The top retrieved matches are presented with similarity scores.

120 2.2 Pre-training data

121 For supervised fine-tuning, we organize our dataset into three distinct categories: (i) all-properties,
122 containing QA pairs covering multiple molecular properties; (ii) single-property, focusing on isolated
123 property descriptions; and (iii) functional-group, which targets questions related to specific chemical
124 substructures. These datasets are used to train the model on both 3D-grid-to-text and text-to-3D-grid
125 tasks, enabling bidirectional understanding and generation across modalities as illustrated in Fig. 5.

126 The text–3D-grid data for pre-training is a combination of publicly available sources, including QM9,
127 QM9F, and PubChem, transformed to accommodate multimodal fine-tuning. Each 3D electron
128 density grid is resized to 128^3 voxels and tokenized with 3DGrid-VQGAN. Across all sources, the
129 corpus reaches 8.15 billion tokens (text + 3D-grid) spanning 12.5 million text–grid pairs. Table 1
130 summarizes token statistics and sample counts for each dataset.

Table 1: Token statistics for the text–3D-grid fine-tuning dataset, separated by text and grid tokens
across QM9, QM9F, and PubChem.

Dataset	Text Tokens	Grid Tokens	Total Tokens	#Samples
QM9	836M	1.7B	2.5B	2.5M
QM9F	9.5M	91.8M	101.3M	179.2K
PubChem	454M	5.05B	5.50B	9.87M
Total	1.30B	6.85B	8.15B	12.5M

131 3 Experiments

132 To evaluate the proposed 3DGrid-LLM, we design a comprehensive benchmark suite spanning both
133 Visual Question Answering (VQA) and Multimodal Retrieval tasks. Our goal is to assess the model’s
134 ability to interpret and reason over 3D electron density grids in conjunction with textual prompts, as
135 well as its capacity to perform cross-modal alignment.

136 For the VQA setting, we compile a diverse set of **32 supervised tasks**, grouped into three categories
137 based on their original dataset source:

- 138 • **PubChem**: Tasks related to molecular complexity, weight, and topological properties.
- 139 • **QM9**: Tasks derived from quantum chemistry simulations, involving rotational constants,
140 dipole moments, electronic, and thermodynamic properties.
- 141 • **QM9F**: Tasks pertaining to structural and electronic features of crystalline materials.

142 The 32 VQA tasks are detailed in the Appendix, due to limit of pages.

143 To assess the effectiveness of our proposed 3DGrid-LLM model in generating chemically meaningful
144 volumetric representations from property-centric prompts, we introduce a *retrieval-augmented eval-*
145 *uation framework* grounded in a multimodal embedding space. The pipeline, illustrated in Fig. 3,
146 performs generation, decoding, embedding, and retrieval entirely in 3D space—bypassing reliance on
147 molecular graph intermediates and enabling direct reasoning over electron density distributions.

148 Given a textual prompt describing a desired physicochemical profile, 3DGrid-LLM autoregressively
149 generates a sequence of discrete tokens representing a latent 3D electron density grid. These tokens
150 are decoded into a dense volumetric field ($128 \times 128 \times 128$) using a frozen 3DGrid-VQGAN decoder.
151 The resulting grid is then passed through a contrastively trained encoder, 3DGrid-CLIP, which
152 embeds it into a learned representation space optimized for structural and semantic alignment. We
153 perform retrieval by comparing the embedding of the generated grid against a held-out database of
154 experimentally or computationally derived materials, using cosine similarity to identify the top- k
155 most similar entries.

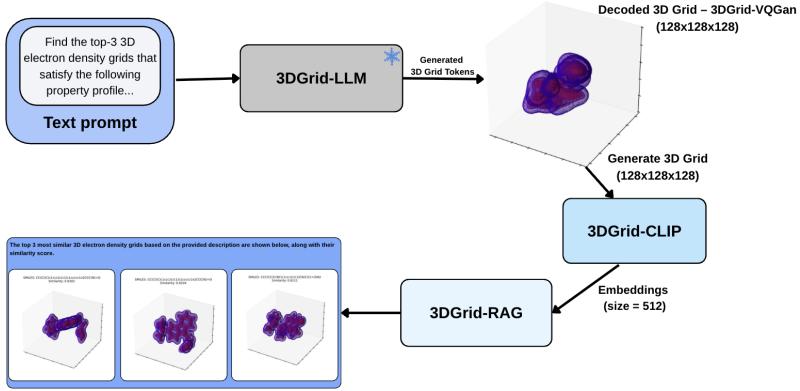


Figure 2: Schematic of the retrieval-augmented generation (RAG) pipeline. Given a textual prompt, 3DGrid-LLM generates a discrete token sequence that is decoded into a 3D grid. This grid is embedded via 3DGrid-CLIP and compared against a catalog of known materials for retrieval based on structural and semantic similarity.

156 While traditional retrieval tasks in language and vision domains typically rely on ranking precision
 157 or cosine similarity, these metrics are insufficient in scientific applications where preserving *latent*
 158 *physical structure, property consistency, and functional diversity* is critical. To address this, we report
 159 a suite of complementary metrics that evaluate both semantic fidelity and property alignment:

- 160 • **Top-1 and Top- k Similarity:** Cosine similarity between the query and retrieved embeddings.
- 161 • **Soft Recall@ k :** Fraction of prompts retrieving at least one candidate from the correct
 162 property cluster.
- 163 • **Jaccard Similarity:** Overlap of discretized property bins (e.g., *low/medium/high* dipole
 164 moment).
- 165 • **BERTScore (F1):** Semantic similarity between textual descriptions of the query and
 166 retrieved molecules.
- 167 • **Property Overlap (%)**: Percentage of shared qualitative property categories between the
 168 generated grid and the retrieved candidates.

169 We evaluate this framework on a benchmark set of 100 diverse textual prompts designed to elicit
 170 a range of structural and electronic characteristics. Each prompt is evaluated against a held-out
 171 catalog of 1,000 precomputed 3D electron density grids from the QM0F dataset, which provides rich
 172 property annotations and physically grounded representations of metal-organic frameworks. This
 173 setup allows us to measure how well the generated grids enable retrieval of known materials with
 174 matching physical attributes, offering a rigorous proxy for evaluating generative utility in inverse
 175 design contexts.

176 4 Results

177 4.1 Multimodal Visual Question Answering

178 Table 5 reports accuracy across 32 VQA tasks spanning general molecular, quantum-chemical, and
 179 crystallographic properties. Overall, the 3DGrid-LLM surpasses the 3DGrid-VQGAN baseline, with
 180 mean accuracy increasing from 0.5789 to 0.6766 under five-shot conditioning.

181 **General Molecular Properties** show an increase from 0.2123 to 0.5648 across seven tasks, with the
 182 largest gains observed in properties with near-zero baseline performance, while properties such as
 183 Topological Polar Surface Area and Complexity exhibit minimal improvement.

184 **Quantum Chemistry and Thermodynamic Properties** span 19 tasks and increase from 0.6436
 185 to 0.6709. Gains are heterogeneous: structural constants and Electronic Spatial Extent improve

Table 2: Evaluation tasks for VQA and multimodal retrieval. Metric: accuracy (higher is better). **3DGrid-VQGAN** is the baseline; **3DGrid-LLM (Ours)** denotes our proposed model with/without few-shot conditioning. Per-row maxima are highlighted.

Task	3DGrid-VQGAN (Baseline)	3DGrid-LLM (Ours)			
		No Few-shot	Few-shot (1)	Few-shot (3)	Few-shot (5)
General Molecular Properties					
Exact Mass	0.0787	0.2611	0.2632	0.2881	0.2921
Monoisotopic Mass	0.0787	0.3621	0.4567	0.5732	0.6298
Molecular Weight	0.0813	0.4782	0.4650	0.5972	0.6101
Tautomer Count	0.0004	0.4555	0.5157	0.5398	0.5432
Topological Polar Surface Area	0.5993	0.4912	0.5751	0.5892	0.5975
XLogP3	0.0009	0.3231	0.4982	0.5644	0.5802
Complexity	0.6466	0.6501	0.6695	0.6602	0.7005
<i>Mean (7 tasks)</i>	0.2123	0.4330	0.4919	0.5317	0.5647
Quantum Chemistry and Thermodynamic Properties					
Rotational Constant <i>A</i>	0.6216	0.6005	0.7109	0.7456	0.7339
Rotational Constant <i>B</i>	0.7007	0.6792	0.6856	0.6902	0.6935
Rotational Constant <i>C</i>	0.7217	0.7235	0.7654	0.7802	0.8128
Dipole Moment (μ)	0.5142	0.6275	0.6445	0.6698	0.6805
Isotropic Polarizability (α)	0.7089	0.6454	0.6688	0.6723	0.6988
Electronic Spatial Extent (r^2)	0.7264	0.7586	0.7702	0.7875	0.8232
Zero-point Vibrational Energy (ZPVE)	0.7375	0.7402	0.7826	0.8330	0.8301
Heat Capacity (c_v)	0.6887	0.3002	0.3875	0.4956	0.5235
HOMO Energy	0.5035	0.4972	0.5625	0.5836	0.6225
LUMO Energy	0.5664	0.5625	0.5782	0.5880	0.5795
HOMO-LUMO Gap	0.5614	0.3629	0.6225	0.6740	0.6892
Internal Energy at 0 K (u_0)	0.7257	0.5698	0.6223	0.6331	0.6009
Internal Energy at 298.15 K (u_{298})	0.7231	0.5787	0.5962	0.6125	0.6856
Enthalpy at 298.15 K (h_{298})	0.7231	0.6282	0.6676	0.6991	0.7127
Free Energy at 298.15 K (g_{298})	0.7263	0.6556	0.6878	0.7032	0.7225
Per-atom u_0	0.7219	0.7123	0.7456	0.7568	0.7809
Per-atom u_{298}	0.7248	0.7109	0.7565	0.7589	0.7856
Per-atom h_{298}	0.7249	0.6785	0.7092	0.7225	0.7356
Per-atom g_{298}	0.7178	0.5674	0.6488	0.6796	0.6707
<i>Mean (19 tasks)</i>	0.6601	0.6171	0.6748	0.6992	0.7116
Crystallographic and Structural Properties					
Crystal System	0.5947	0.6032	0.6007	0.6227	0.6332
Pore Limiting Diameter (PLD)	0.9388	0.8986	0.9062	0.9065	0.9122
Largest Cavity Diameter (LCD)	0.9271	0.8134	0.8356	0.8992	0.9016
Density	0.8734	0.8189	0.8777	0.8816	0.8815
Band Gap	0.9558	0.8791	0.9221	0.9720	0.9684
Charge	0.5208	0.5765	0.6352	0.6192	0.6532
<i>Mean (6 tasks)</i>	0.8018	0.7650	0.7946	0.8169	0.8250
Overall mean (32 tasks)	0.5932	0.5937	0.6461	0.6748	0.6886

186 steadily with few-shot examples, whereas properties like Heat Capacity and Enthalpy at 298.15 K
187 show limited or variable improvement, reflecting task-dependent integration of 3D structure and
188 textual prompts.

189 **Crystallographic and Structural Properties** include six tasks and increase from 0.8018 to 0.8250.
190 Saturation is observed for Band Gap and pore size metrics, whereas Crystal System and Charge
191 benefit more from few-shot conditioning.

192 Overall, few-shot conditioning selectively improves tasks with low baseline performance, while
193 properties with strong baseline signals show diminishing returns. These results indicate that the
194 model effectively integrates multimodal information, but the magnitude of improvement depends on
195 both the baseline signal and the intrinsic complexity of each property.

196 **4.2 Analysis of Semantic Generation Across Molecular Domains**

197 To evaluate the semantic fidelity of our generative model across distinct chemical knowledge domains,
 198 we analyze BLEU, ROUGE-L, and BERTScore (F1) on structured text generation conditioned on
 199 3D electron density grids. These metrics collectively quantify syntactic alignment (BLEU), surface-
 200 level sequence overlap (ROUGE-L), and contextual semantic similarity (BERTScore), providing a
 201 multifaceted lens on generative quality. Table 3 illustrates the results for tested benchmarks.

Table 3: Semantic evaluation metrics across molecular datasets. BLEU captures n-gram overlap, ROUGE-L measures longest common subsequence, and BERTScore (F1) assesses contextual semantic similarity.

Dataset	BLEU \uparrow	ROUGE-L \uparrow	BERTScore (F1) \uparrow
PubChem	0.865	0.918	0.944
QM9	0.579	0.819	0.820
QMOF	0.782	0.864	0.878

202 As state in Table 3, 3DGrid-LLM achieves near-parity with ground-truth references in PubChem
 203 (BLEU: 0.865, ROUGE-L: 0.918, BERTScore: 0.944), underscoring its strong lexical precision and
 204 semantic alignment. This is facilitated by the categorical nature of PubChem descriptors (e.g., *logP*,
 205 *tautomer count*), which constrain linguistic variation and encourage template-consistent decoding. In
 206 contrast, performance on QM9 (BLEU: 0.579, ROUGE-L: 0.819, BERTScore: 0.820) is attenuated
 207 due to the continuous and scalar nature of quantum chemical properties (e.g., *dipole moment*, *HOMO*-
 208 *LUMO gap*), where the absence of standard binning leads to semantic drift and reduced surface-level
 209 overlap. Figure illustrates the answer of 3DGrid-LLM for QM9 properties.

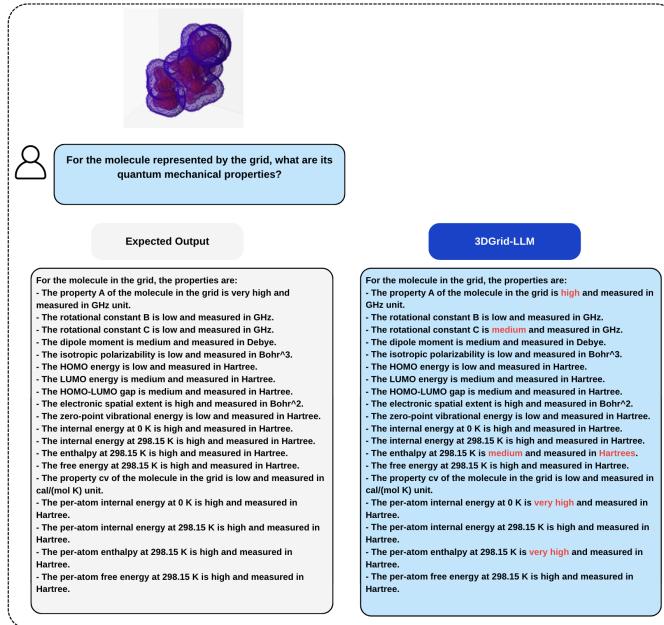


Figure 3: Example of 3DGrid-LLM answer for QM9 properties.

210 QMOF results (BLEU: 0.782, ROUGE-L: 0.864, BERTScore: 0.878) reflect a midpoint: the model
 211 captures structural and crystallographic features with reasonable fluency but is prone to fine-grained
 212 hallucinations, likely due to sparse and heterogeneous annotations. Overall, these findings reveal a
 213 trade-off between semantic controllability and the ontology of the property space—discrete, well-
 214 binned domains enable faithful generation, while continuous or noisy domains degrade alignment.
 215 We posit that improved grounding in such domains may require retrieval-augmented prompting
 216 or numerically constrained decoding strategies to align scalar semantics with natural language
 217 realizations.

218 **4.3 Retrieval-Augmented 3D Grid Generation and Evaluation**

219 We assess the generative capabilities of 3DGrid-LLM within a retrieval-augmented framework. The
 220 task consists of generating 3D electron density grids conditioned on textual property descriptions
 221 and retrieving semantically and structurally similar materials from a reference database. This setup
 222 enables a multi-modal evaluation of alignment across language, spatial representation, and functional
 223 molecular similarity.

Table 4: Retrieval performance on QMOF and QM9 datasets (Top-1 and Top- k = 10).

Metric	QMOF		QM9	
	Top-1	Top-10	Top-1	Top-10
Cosine Similarity (Embedding Space)	0.9794	—	0.9555	0.9340
Soft Recall@10 (Cluster Match)	—	0.980	—	—
Jaccard Similarity (Discrete Properties)	0.874	0.856	0.9181	0.8795
BERTScore (F1)	0.966	0.946	0.9871	0.9505
Property Overlap (%)	83.56	85.72	86.97	83.76

224 As shown in Table 4, the model achieves consistent and robust alignment across both
 225 QMOF and QM9 domains. On QMOF, generated grids yield a Top-1 cosine similarity
 226 of **0.9794**, a Jaccard similarity of **0.874**, and a BERTScore F1 of **0.966**, indicating
 227 strong agreement in both geometric and linguistic representations. Similarly, performance
 228 on QM9 reflects high fidelity, with a Top-1 cosine similarity of **0.9555**, and a Jaccard simi-
 229 larity of **0.9181**, validating the model’s generalization across molecular complexity scales.

230

231 To further probe embedding space structure, we visu-
 232 alize a t-SNE projection of retrieval results on QMOF
 233 in Fig. 4. The generated query (red) and its Top-10
 234 retrieved candidates (colored) form a dense and coher-
 235 ent cluster, while background entries (gray) remain
 236 distributed across the manifold. This highlights the
 237 model’s precision in matching grid semantics.

238 Despite high accuracy, retrieved candidates display
 239 limited functional diversity, suggesting embedding
 240 collapse and reduced exploration potential. While
 241 high Top-10 Jaccard similarity (**0.8795** on QM9,
 242 **0.856** on QMOF) and property overlap indicate se-
 243 mantic consistency, they may mask latent redun-
 244 dancy.

245 This precision-diversity trade-off is emblematic of
 246 contrastive training regimes and suggests the need
 247 for enhanced regularization. We hypothesize that
 248 diversity-aware ranking objectives, entropy-penalized
 249 decoding, or property-conditioned sampling strate-
 250 gies may yield broader functional coverage without sacrificing retrieval quality.

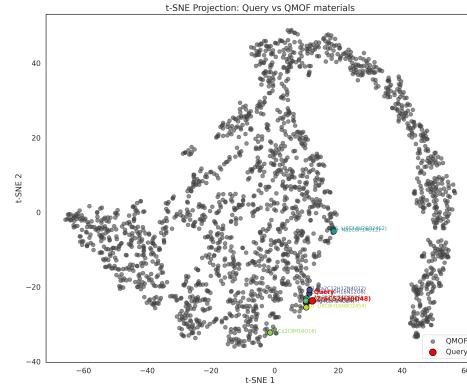


Figure 4: t-SNE projection of the 3DGrid-CLIP embedding space for a QMOF prompt. Red: generated query; Green: Top-10 retrieved; Gray: reference catalog.

251 **5 Conclusion**

252 We presented 3DGrid-LLM, an early-fusion multimodal foundation model that processes natural lan-
 253 guage and 3D electron density grids for bidirectional generation, reasoning, and retrieval in molecular
 254 and materials science. By extending a large decoder-only language model with discrete volumetric
 255 tokens from a 3D VQGAN, the approach captures spatial, electronic, and textual information within
 256 a unified token sequence.

257 3DGrid-LLM offers a scalable path to integrating physically grounded volumetric data into large
 258 language models, enabling general-purpose scientific assistants that bridge symbolic and spatial
 259 reasoning. Future work will address larger multimodal datasets, physical constraints in decoding, and
 260 new scientific modalities.

261 **References**

262 [1] D. Morgan and R. Jacobs, "Opportunities and challenges for machine learning in materials science," *Annual
263 Review of Materials Research*, vol. 50, no. 1, pp. 71–103, 2020.

264 [2] S. Takeda, A. Kishimoto, L. Hamada, D. Nakano, and J. R. Smith, "Foundation model for material science,"
265 in *Proceedings of the AAAI Conference on Artificial Intelligence*, vol. 37, no. 13, 2023, pp. 15 376–15 383.

266 [3] A. Jain, "Machine learning in materials research: Developments over the last decade and challenges for the
267 future," *Current Opinion in Solid State and Materials Science*, vol. 33, p. 101189, 2024.

268 [4] D. Koch, M. Pavanello, X. Shao, M. Ihara, P. W. Ayers, C. F. Matta, S. Jenkins, and S. Manzhos, "The
269 analysis of electron densities: From basics to emergent applications," *Chemical Reviews*, vol. 124, no. 22,
270 pp. 12 661–12 737, 2024.

271 [5] R.-G. Lee and Y.-H. Kim, "Convolutional network learning of self-consistent electron density via grid-
272 projected atomic fingerprints," *npj Computational Materials*, vol. 10, no. 1, p. 248, 2024.

273 [6] J. Kirkpatrick, B. McMorrow, D. H. Turban, A. L. Gaunt, J. S. Spencer, A. G. Matthews, A. Obika, L. Thiry,
274 M. Fortunato, D. Pfau *et al.*, "Pushing the frontiers of density functionals by solving the fractional electron
275 problem," *Science*, vol. 374, no. 6573, pp. 1385–1389, 2021.

276 [7] N. Marzari, A. Ferretti, and C. Wolverton, "Electronic-structure methods for materials design," *Nature
277 materials*, vol. 20, no. 6, pp. 736–749, 2021.

278 [8] M. M. Kelley, J. Quinton, K. Fazel, N. Karimitari, C. Sutton, and R. Sundararaman, "Bridging electronic
279 and classical density-functional theory using universal machine-learned functional approximations," *The
280 Journal of Chemical Physics*, vol. 161, no. 14, 2024.

281 [9] O. T. Unke, S. Chmiela, H. E. Saucedo, M. Gastegger, I. Poltavsky, K. T. Schutt, A. Tkatchenko, and K.-R.
282 Muller, "Machine learning force fields," *Chemical Reviews*, vol. 121, no. 16, pp. 10 142–10 186, 2021.

283 [10] L. Fiedler, K. Shah, M. Bussmann, and A. Cangi, "Deep dive into machine learning density functional
284 theory for materials science and chemistry," *Physical Review Materials*, vol. 6, no. 4, p. 040301, 2022.

285 [11] E. Soares, E. Vital Brazil, V. Shirasuna, D. Zubarev, R. Cerqueira, and K. Schmidt, "An open-source family
286 of large encoder-decoder foundation models for chemistry," *Communications Chemistry*, vol. 8, no. 1, p.
287 193, 2025.

288 [12] J. Pan, "Large language model for molecular chemistry," *Nature Computational Science*, vol. 3, no. 1, pp.
289 5–5, 2023.

290 [13] J. Ross, B. Belgodere, V. Chenthamarakshan, I. Padhi, Y. Mroueh, and P. Das, "Large-scale chemical
291 language representations capture molecular structure and properties," *Nature Machine Intelligence*, vol. 4,
292 no. 12, pp. 1256–1264, 2022.

293 [14] Z. Guo, K. Guo, B. Nan, Y. Tian, R. G. Iyer, Y. Ma, O. Wiest, X. Zhang, W. Wang, C. Zhang *et al.*,
294 "Graph-based molecular representation learning," *arXiv preprint arXiv:2207.04869*, 2022.

295 [15] J. Liu, C. Yang, Z. Lu, J. Chen, Y. Li, M. Zhang, T. Bai, Y. Fang, L. Sun, P. S. Yu *et al.*, "Towards graph
296 foundation models: A survey and beyond," *arXiv preprint arXiv:2310.11829*, 2023.

297 [16] S. Takeda, I. Priyadarsini, A. Kishimoto, H. Shinohara, L. Hamada, H. Masataka, J. Fuchiwaki, and
298 D. Nakano, "Multi-modal foundation model for material design," in *AI for Accelerated Materials Design-
299 NeurIPS 2023 Workshop*, 2023.

300 [17] E. Soares, E. V. Brazil, K. F. A. Gutierrez, R. Cerqueira, D. Sanders, K. Schmidt, and D. Zubarev, "Beyond
301 chemical language: A multimodal approach to enhance molecular property prediction," *arXiv preprint
302 arXiv:2306.14919*, 2023.

303 [18] E. Soares, V. Y. Shirasuna, E. V. Brazil, K. F. A. Gutierrez, R. Cerqueira, D. Zubarev, K. Schmidt, and D. P.
304 Sanders, "Causality-driven feature selection and domain adaptation for enhancing chemical foundation
305 models in downstream tasks," *Machine Learning: Science and Technology*, vol. 6, no. 1, p. 015017, 2025.

306 [19] Y. Zhao, R. J. Mulder, S. Houshyar, and T. C. Le, "A review on the application of molecular descriptors
307 and machine learning in polymer design," *Polymer Chemistry*, vol. 14, no. 29, pp. 3325–3346, 2023.

308 [20] K. Schütt, O. Unke, and M. Gastegger, "Equivariant message passing for the prediction of tensorial
309 properties and molecular spectra," in *International conference on machine learning*. PMLR, 2021, pp.
310 9377–9388.

311 [21] A. Poulenard and L. J. Guibas, “A functional approach to rotation equivariant non-linearities for tensor
 312 field networks.” in *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 313 2021, pp. 13 174–13 183.

314 [22] X. Fang, L. Liu, J. Lei, D. He, S. Zhang, J. Zhou, F. Wang, H. Wu, and H. Wang, “Geometry-enhanced
 315 molecular representation learning for property prediction,” *Nature Machine Intelligence*, vol. 4, no. 2, pp.
 316 127–134, 2022.

317 [23] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein, J. Bohg,
 318 A. Bosselut, E. Brunskill *et al.*, “On the opportunities and risks of foundation models,” *arXiv preprint*
 319 *arXiv:2108.07258*, 2021.

320 [24] J. Choi, G. Nam, J. Choi, and Y. Jung, “A perspective on foundation models in chemistry,” *JACS Au*, vol. 5,
 321 no. 4, pp. 1499–1518, 2025.

322 [25] G. Zhou, Z. Gao, Q. Ding, H. Zheng, H. Xu, Z. Wei, L. Zhang, and G. Ke, “Uni-mol: A universal 3d
 323 molecular representation learning framework,” 2023.

324 [26] E. Soares, I. Priyadarsini, E. V. Brazil, V. Y. Shirasuna, and S. Takeda, “Multi-view mixture-of-experts for
 325 predicting molecular properties using smiles, selfies, and graph-based representations,” in *Neurips 2024*
 326 *Workshop Foundation Models for Science: Progress, Opportunities, and Challenges*, 2024.

327 [27] M. Livne, Z. Miftahutdinov, E. Tutubalina, M. Kuznetsov, D. Polykovskiy, A. Brundyn, A. Jhunjhunwala,
 328 A. Costa, A. Aliper, A. Aspuru-Guzik *et al.*, “nach0: multimodal natural and chemical languages foundation
 329 model,” *Chemical Science*, vol. 15, no. 22, pp. 8380–8389, 2024.

330 [28] I. Priyadarsini, S. Takeda, and L. Hamada, “Dynamic fusion for a multimodal foundation model for
 331 materials,” in *AI for Accelerated Materials Design-ICLR 2025*.

332 [29] E. Soares, D. Zubarev, V. Y. Shirasuna, E. V. Brazil, B. W. Carvalho, B. Ransom, H. Bui, K. Lioni, C. R.
 333 Gama, and D. D. de Briquez, “A foundation model for simulation-grade molecular electron densities,” in
 334 *AI for Accelerated Materials Design-ICLR 2025*, 2025.

335 [30] S. Ge, T. Hayes, H. Yang, X. Yin, G. Pang, D. Jacobs, J.-B. Huang, and D. Parikh, “Long video generation
 336 with time-agnostic vqgan and time-sensitive transformer,” in *European Conference on Computer Vision*.
 337 Springer, 2022, pp. 102–118.

338 [31] F. Khader, G. Mueller-Franzes, S. T. Arasteh, T. Han, C. Haarburger, M. Schulze-Hagen, P. Schad,
 339 S. Engelhardt, B. Baessler, S. Foersch *et al.*, “Medical diffusion: denoising diffusion probabilistic models
 340 for 3d medical image generation,” *arXiv preprint arXiv:2211.03364*, 2022.

341 [32] Q. Sun, X. Zhang, S. Banerjee, P. Bao, M. Barbry, N. S. Blunt, N. A. Bogdanov, G. H. Booth, J. Chen,
 342 Z.-H. Cui, J. J. Eriksen, Y. Gao, S. Guo, J. Hermann, M. R. Hermes, K. Koh, P. Koval, S. Lehtola, Z. Li,
 343 J. Liu, N. Mardirossian, J. D. McClain, M. Motta, B. Mussard, H. Q. Pham, A. Pulkin, W. Purwanto, P. J.
 344 Robinson, E. Ronca, E. R. Sayfutyarova, M. Scheurer, H. F. Schurkus, J. E. T. Smith, C. Sun, S.-N. Sun,
 345 S. Upadhyay, L. K. Wagner, X. Wang, A. White, J. D. Whitfield, M. J. Williamson, S. Wouters, J. Yang,
 346 J. M. Yu, T. Zhu, T. C. Berkelbach, S. Sharma, A. Y. Sokolov, and G. K.-L. Chan, “Recent developments
 347 in the pyscf program package,” *The Journal of Chemical Physics*, vol. 153, no. 2, p. 024109, 07 2020.
 348 [Online]. Available: <https://doi.org/10.1063/5.0006074>

349 [33] J. Hoffmann, L. Maestrati, Y. Sawada, J. Tang, J. M. Sellier, and Y. Bengio, “Data-driven approach to
 350 encoding and decoding 3-d crystal structures,” *arXiv preprint arXiv:1909.00949*, 2019.

351 [34] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen *et al.*, “Lora: Low-rank
 352 adaptation of large language models.” *ICLR*, vol. 1, no. 2, p. 3, 2022.

353 **A Supplementary Materials**

354 **A.1 Multimodal foundation model capabilities**

355 Figure 5 illustrates the capabilities of the proposed multimodal foundation model trained on 3D grids.

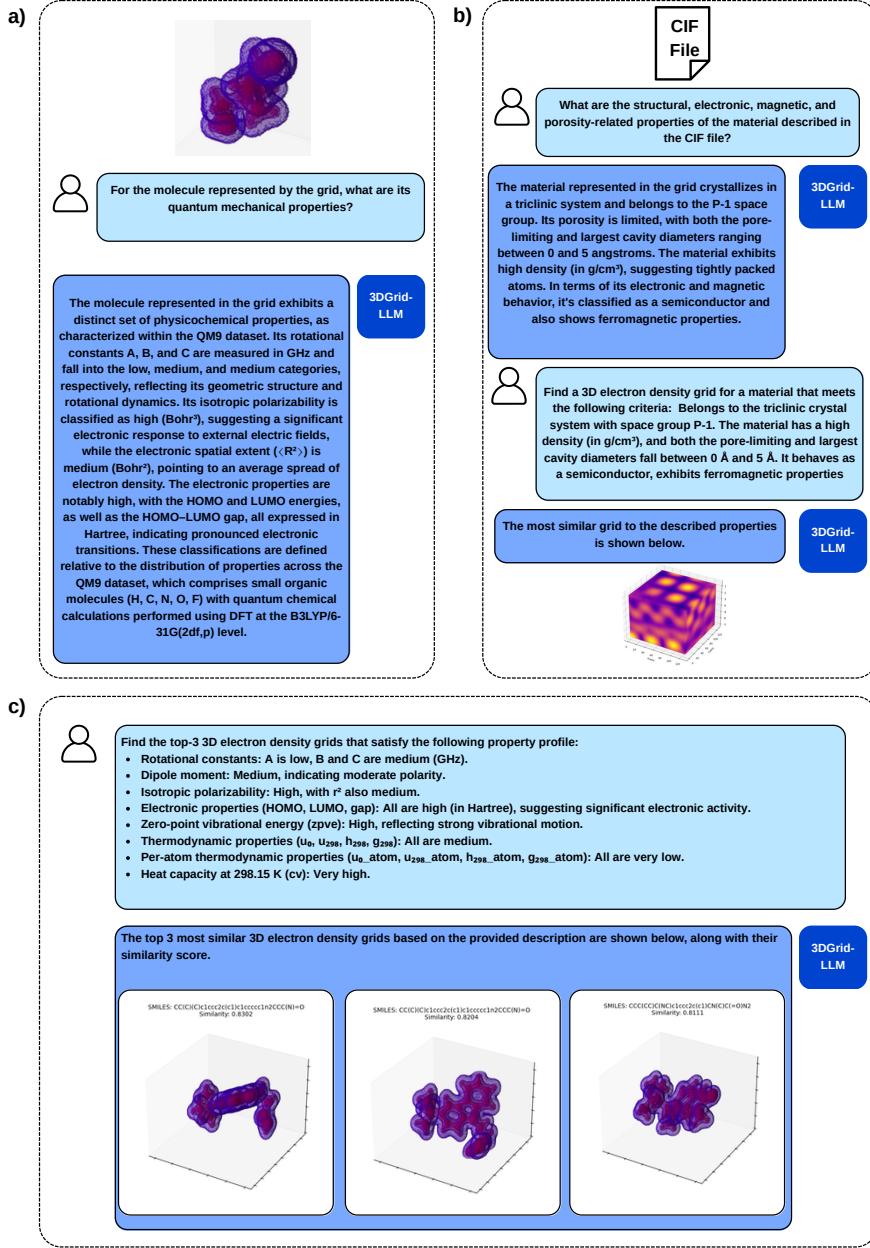


Figure 5: This figure illustrates the capabilities of 3DGrid-LLM. **a)** Given a 3D electron density grid of a molecule, the model generates structured textual descriptions of quantum mechanical properties such as rotational constants, dipole moment, polarizability, and HOMO–LUMO gap, grounded in the spatial information encoded in the grid. **b)** When provided with a CIF-derived 3D density grid, the model infers structural (e.g., crystal system, space group), electronic, magnetic, and porosity-related properties of the material in natural language. **c)** In generative-retrieval mode, the model takes a textual description of desired physicochemical or structural properties and generates discrete grid tokens, which are decoded into 3D electron density grids and compared—via learned contrastive embeddings. The top retrieved matches are presented with similarity scores.

356 **A.2 List of evaluation tasks used for VQA and multimodal retrieval**

357 Table 5 summarizes the 32 tasks used to benchmark 3DGrid-LLM in multimodal VQA and retrieval settings.
 358 The tasks span three domains: (i) **general molecular properties** from PubChem, covering compositional and
 359 topological descriptors such as mass, tautomer count, and lipophilicity (XLogP3); (ii) **quantum-chemical and**
 360 **thermodynamic properties** from QM9, including rotational constants, dipole moments, polarizability, frontier
 361 orbital energies, thermodynamic quantities, and their per-atom equivalents; and (iii) **crystallographic and**
 362 **structural properties** from QMOF, focusing on lattice classification, pore and cavity dimensions, density, band
 363 gap, and charge state. All tasks are formulated as classification or binning problems and evaluated uniformly
 364 using accuracy, enabling direct comparison across modalities and property types.

Table 5: List of evaluation tasks used for VQA and multimodal retrieval. All tasks are evaluated using accuracy as the metric.

Task	Source	Evaluation Metric
Exact Mass	PubChem	Accuracy
Monoisotopic Mass	PubChem	Accuracy
Molecular Weight	PubChem	Accuracy
Tautomer Count	PubChem	Accuracy
Topological Polar Surface Area	PubChem	Accuracy
XLogP3	PubChem	Accuracy
Complexity	PubChem	Accuracy
Rotational Constant A (A)	QM9	Accuracy
Rotational Constant B (B)	QM9	Accuracy
Rotational Constant C (C)	QM9	Accuracy
Dipole Moment (μ)	QM9	Accuracy
Isotropic Polarizability (α)	QM9	Accuracy
Electronic Spatial Extent (r^2)	QM9	Accuracy
Zero-point Vibrational Energy (ZPVE)	QM9	Accuracy
Heat Capacity (cv)	QM9	Accuracy
HOMO Energy	QM9	Accuracy
LUMO Energy	QM9	Accuracy
HOMO-LUMO Gap	QM9	Accuracy
Internal Energy at 0 K (u_0)	QM9	Accuracy
Internal Energy at 298.15 K (u_{298})	QM9	Accuracy
Enthalpy at 298.15 K (h_{298})	QM9	Accuracy
Free Energy at 298.15 K (g_{298})	QM9	Accuracy
Per-atom Internal Energy at 0 K (u_0^{atom})	QM9	Accuracy
Per-atom Internal Energy at 298.15 K (u_{298}^{atom})	QM9	Accuracy
Per-atom Enthalpy at 298.15 K (h_{298}^{atom})	QM9	Accuracy
Per-atom Free Energy at 298.15 K (g_{298}^{atom})	QM9	Accuracy
Crystal System	QMOF	Accuracy
Pore Limiting Diameter (PLD)	QMOF	Accuracy
Largest Cavity Diameter (LCD)	QMOF	Accuracy
Density	QMOF	Accuracy
Band Gap	QMOF	Accuracy
Charge	QMOF	Accuracy