
Published as a conference paper at ICLR 2023

NERN - LEARNING NEURAL REPRESENTATIONS FOR
NEURAL NETWORKS

Maor Ashkenazi1∗, Zohar Rimon2, Ron Vainshtein2, Shir Levi3, Elad Richardson3,
Pinchas Mintz3, Eran Treister1
1Ben-Gurion University of the Negev 2Technion - Israel Institute of Technology 3Penta-AI

ABSTRACT

Neural Representations have recently been shown to effectively reconstruct a wide
range of signals from 3D meshes and shapes to images and videos. We show
that, when adapted correctly, neural representations can be used to directly rep-
resent the weights of a pre-trained convolutional neural network, resulting in a
Neural Representation for Neural Networks (NeRN). Inspired by coordinate in-
puts of previous neural representation methods, we assign a coordinate to each
convolutional kernel in our network based on its position in the architecture, and
optimize a predictor network to map coordinates to their corresponding weights.
Similarly to the spatial smoothness of visual scenes, we show that incorporating
a smoothness constraint over the original network’s weights aids NeRN towards a
better reconstruction. In addition, since slight perturbations in pre-trained model
weights can result in a considerable accuracy loss, we employ techniques from the
field of knowledge distillation to stabilize the learning process. We demonstrate
the effectiveness of NeRN in reconstructing widely used architectures on CIFAR-
10, CIFAR-100, and ImageNet. Finally, we present two applications using NeRN,
demonstrating the capabilities of the learned representations.

1 INTRODUCTION

In the last decade, neural networks have proven to be very effective at learning representations over
a wide variety of domains. Recently, NeRF (Mildenhall et al., 2020) demonstrated that a relatively
simple neural network can directly learn to represent a 3D scene. This is done using the general
method for neural representations, where the task is modeled as a prediction problem from some
coordinate system to an output that represents the scene. Once trained, the scene is encoded in
the weights of the neural network and thus novel views can be rendered for previously unobserved
coordinates. NeRFs outperformed previous view synthesis methods, but more importantly, offered
a new view on scene representation. Following the success of NeRF, there have been various at-
tempts to learn neural representations on other domains as well. In SIREN (Sitzmann et al., 2020)
it is shown that neural representations can successfully model images when adapted to handle high
frequencies. NeRV (Chen et al., 2021) utilizes neural representations for video encoding, where the
video is represented as a mapping from a timestamp to the pixel values of that specific frame.

In this paper, we explore the idea of learning neural representations for pre-trained neural networks.
We consider representing a Convolutional Neural Network (CNN) using a separate predictor neural
network, resulting in a neural representation for neural networks, or NeRN. We model this task as a
problem of mapping each weight’s coordinates to its corresponding values in the original network.
Specifically, our coordinate system is defined as a (Layer, Filter, Channel) tuple, denoted by (l, f, c),
where each coordinate corresponds to the weights of a k × k convolutional kernel. NeRN is trained
to map each input’s coordinate back to the original kernel weights. One can then reconstruct the
original network by querying NeRN over all possible coordinates.

While a larger predictor network can trivially learn to overfit a smaller original network, we show
that successfully creating a compact implicit representation is not trivial. To achieve this, we propose
methods for introducing smoothness over the learned signal, i.e. the original network weights,

∗Email: maorash@post.bgu.ac.il. Code avaliable at: https://github.com/maorash/NeRN.

1

https://github.com/maorash/NeRN

Published as a conference paper at ICLR 2023

either by applying a regularization term in the original network training or by applying post-training
permutations over the original network weights. In addition, we design a training scheme inspired
by knowledge distillation methods that allows for a better and more stable optimization process.

Similarly to other neural representations, a trained NeRN represents the weights of the specific neu-
ral network it was trained on, which to the best of our knowledge differs from previous weight
prediction papers such as Ha et al. (2016); Schürholt et al. (2021); Knyazev et al. (2021); Schürholt
et al. (2022). We demonstrate NeRN’s reconstruction results on several classification benchmarks.
Successfully learning a NeRN provides some additional interesting insights. For example, a NeRN
with limited capacity must prioritize the original weights during training. This can then be explored,
using the reconstruction error, to study importance of different weights. In addition to our pro-
posed method and extensive experiments, we provide a scalable framework for NeRN built using
PyTorch (Paszke et al., 2019) that can be extended to support new models and tasks. We hope that
our proposed NeRN will give a new perspective on neural networks for future research.

2 RELATED WORK

Neural representations have recently proven to be a powerful tool in representing various signals
using coordinate inputs fed into an MLP (multilayer perceptron). The superiority of implicit 3D
shape neural representations (Sitzmann et al., 2019; Jiang et al., 2020; Peng et al., 2020; Chabra
et al., 2020; Mildenhall et al., 2020) over previous representations such as grids or meshes has been
demonstrated in Park et al. (2019); Chen & Zhang (2019); Genova et al. (2020). Following NeRF’s
success, additional applications rose for neural representations such as image compression (Dupont
et al., 2021), video encoding (Chen et al., 2021), camera pose estimation (Yen-Chen et al., 2021)
and more. Some of these redesigned the predictor network to complement the learned signal. For
example, Chen et al. (2021) adopted a CNN for frame prediction. In our work, we adopt a simple
MLP while incorporating additional methods to fit the characteristics of convolutional weights.

Weight prediction refers to generating a neural network’s weights using an additional predictor
network. In Ha et al. (2016) the weights of a larger network are predicted using a smaller internal
network, denoted as a HyperNetwork. The HyperNetwork is trained to directly solve the task,
while also learning the input vectors for parameter prediction. Deutsch (2018) followed this idea by
exploring the trade-off between accuracy and diversity in parameter prediction. In contrast, we aim
to directly represent a pre-trained neural network, using fixed inputs. Several works have explored
the idea of using a model dataset for weight prediction. For instance, Schürholt et al. (2021) proposes
a representation learning approach for predicting hyperparameters and downstream performance.
Schürholt et al. (2022) explored a similar idea for weight initialization while promoting diversity.
Zhang et al. (2018a); Knyazev et al. (2021) leverage a GNN (graph neural network) to predict the
parameters of a previously unseen architecture by modeling it as a graph input.

Knowledge distillation is mostly used for improving the performance of a compressed network,
given a pre-trained larger teacher network. There are two main types of knowledge used in student-
teacher learning. First, response-based methods (Ba & Caruana, 2014; Hinton et al., 2014; Chen
et al., 2017; 2019) focus on the output classification logits. Second, feature-based methods (Romero
et al., 2015; Zagoruyko & Komodakis, 2017) focus on feature maps (activations) throughout the
network. The distillation scheme can be generally categorized as offline (Zagoruyko & Komodakis,
2017; Huang & Wang, 2017; Passalis & Tefas, 2018; Heo et al., 2019; Mirzadeh et al., 2020; Li
et al., 2020) or online (Zhang et al., 2018b; Chen et al., 2020; Xie et al., 2019). In our work, we
leverage offline response and feature-based knowledge distillation for guiding the learning process.

3 METHOD

In this work we focus on representing convolutional classification networks. Our overall pipeline is
presented in Figure 1, with extended details below on the design choices and training of NeRN.

3.1 DESIGNING NERNS

Similar to other neural representations, at its core, NeRN is composed of a simple neural network,
whose input is some positional embedding representing a weight coordinate in the original network

2

Published as a conference paper at ICLR 2023

Original

Network

(𝑙, 𝑓, 𝑐)

(a) 𝑃𝐸(𝑙,𝑓,𝑐) ∈ ℝ𝑝 (b) NeRN (MLP)

𝐹𝑁𝑒𝑅𝑁: ℝ
𝑝 → ℝ𝑘∗𝑘

𝐿𝑎𝑦𝑒𝑟𝑠

...

(c) Reconstructed

Network

...

...

Logits

Feature Maps

...

𝐹𝑖𝑙𝑡𝑒𝑟𝑠

(1) ℒ𝑟𝑒𝑐𝑜𝑛
(2) ℒ𝐾𝐷 (3) ℒ𝐹𝑀𝐷

...

Logits

Feature Maps

Figure 1: The NeRN pipeline. Input coordinates are transformed to positional embeddings (a),
which are mapped through NeRN (b) to obtain the predicted weights of a corresponding convo-
lutional kernel. The predicted weights compose the reconstructed network (c). NeRN is trained
using a combination of three losses; (1) reconstruction loss between the original and reconstructed
weights, (2) knowledge distillation loss between the original and predicted classification logits, and
(3) feature map reconstruction loss between the original and predicted feature maps.

and whose output is the weight values at that coordinate. The predicted weights on all possible
coordinates compose the predicted neural network, denoted as the reconstructed network.

I/O modeling We propose to learn a mapping between a 3-tuple (l, f, c) to the k×k kernel at
channel c of filter f in layer l. Since the output size of NeRN is fixed, we set it to the largest kernel
size in the original network, and sample from the middle when predicting smaller kernels. We model
convolutional layers only, and not others such as fully-connected or normalization layers, as their
parameters are of negligible size compared to the convolution weights (see Appendix C).

Positional embeddings Similarly to preceding neural representation works (Nguyen-Phuoc et al.,
2022; Chen et al., 2021; Tancik et al., 2020), the input coordinates are first mapped to a high dimen-
sional vector space. By using a high dimensional space, NeRN is able to represent high-frequency
variations in the learned signal. We adopt the positional embeddings used in Vaswani et al. (2017),

PE(l,f,c) = concat (γ (l) , γ (f) , γ (c)) , (1)

γ (v) =
[
sin(b0πv), cos(b0πv), . . . , sin(bN−1πv), cos(bN−1πv)

]
where b, and N represent the base frequency and the number of sampled frequencies, respectively.

Architecture The NeRN predictor is a 5-layer MLP, which is a simplified version of the architecture
used in Park et al. (2019). We omit the internal concatenation of the positional embedding, as it did
not change our empirical results. The hidden layer size is fixed throughout the network.

3.2 TRAINING NERNS

In order to train a NeRN we need to define a set of loss functions. The most basic loss is a recon-
struction loss between the original and reconstructed network’s weights. However, it is clear that
some weights have more effect on the network’s activations and output. Hence, we introduce two
additional losses: a Knowledge Distillation (KD) loss and a Feature Map Distillation (FMD) loss.
As presented in subsection 4.6, the reconstruction loss alone yields respectable accuracy, and the
additional losses improves on it, promotes faster convergence and stabilizes the training process.
Notice that our model is trained with no direct task loss and thus does not need access to labeled
data. We further show in section 4.4 that NeRN might not require any data at all.

The objective function for training NeRNs is comprised of the following:

Lobjective =Lrecon + αLKD + βLFMD, (2)

where Lrecon, LKD, and LFMD denote the reconstruction, knowledge distillation and feature map
distillation losses, respectively. The α and β coefficients can be used to balance the different losses.

3

Published as a conference paper at ICLR 2023

The weight reconstruction loss, Lrecon, is defined as:

Lrecon =
1

|W|
∥W − Ŵ∥2, (3)

where W =
[
w(0)w(1) . . .w(L)

]
and w(l) is the tensor of layer l’s convolutional weights in the

original network. Similarly, Ŵ =
[
ŵ(0)ŵ(1) . . . ŵ(L)

]
and ŵ(l) denotes the corresponding weights

of the reconstructed network. Note that we do not normalize the error by the weight’s magnitude.
Next, the feature map distillation loss, LFMD, introduced in Romero et al. (2015), is defined by

LFMD =
1

|B|
∑
i∈B

∑
l

∥a(l)
i − â

(l)
i ∥2, (4)

where a(l)i and â
(l)
i are the ℓ2 normalized feature maps generated from the i-th sample in the mini-

batch B at the l-th layer for the original and reconstructed networks, respectively. Finally, the knowl-
edge distillation loss, LKD, from Hinton et al. (2014) is defined as

LKD =
1

|B|
∑
i∈B

KL
(

a(out)i , â
(out)
i

)
, (5)

where KL (·, ·) is the Kullback–Leibler divergence, a(out)
i and â

(out)
i are output logits generated

from the i-th sample in the minibatch B by the original and reconstructed networks, respectively.

Stochastic sampling Similarly to minibatch sampling used in standard stochastic optimization
algorithms, in each training step of NeRN we predict all the reconstructed weights but optimize
only on a minibatch of them. This allows us to support large neural networks and empirically shows
better convergence even for small ones. We explored three stochastic sampling techniques - (1)
entire random layer, (2) uniform sampling, where we uniformly sample coordinates from across the
model, (3) magnitude-oriented, where we use uniform sampling with probability puni, and weighted
sampling with probability 1− puni, where the probability is proportional to the individual weight’s
magnitude. In practice, we chose the third technique with puni = 0.8. Ablation results are presented
in Section 4.6.

3.3 PROMOTING SMOOTHNESS

While videos, images, and 3D objects all have some inherent smoothness, this is not the case with the
weights of a neural network. For example, while adjacent frames in a video are likely to be similar,
there is clearly no reason for adjacent kernels of a pre-trained network to have similar values. We
hypothesize that by introducing some form of smoothness between our kernels we can simplify the
task for NeRN. We now present and discuss two different methods to incorporate such smoothness.

Regularization-based smoothness A naive approach to promoting smoothness in the weights of
a neural network is to explicitly add a loss term in the training process of the original network that
encourages smoothness. Interestingly, we show that one can successfully learn a smooth network
with slightly inferior performance on the original task simply by adding the smoothness term,

Lsmooth =

L−1∑
l=0

Fl−2∑
f=0

Cl−2∑
c=0

∆c

(
w(l) [f, c] ,w(l) [f + 1, c]

)
+∆c

(
w(l) [f, c] ,w(l) [f, c+ 1]

)
, (6)

where ∆c stands for the cosine distance, L stands for the number of layers in the network, and Fl, Cl

stand for the number of filters and channels in a specific layer respectively. In 1 × 1 layers, we use
a l2 distance instead of the cosine distance, since the weight kernels are scalars. While conceptually
interesting, this approach requires modifying the training scheme of the original network and access
to its training data, and may result in a degradation in accuracy due to the additional loss term.

Permutation-based smoothness To overcome the downside of regularization, we introduce a novel
approach for achieving kernel smoothness, by applying permutations over the pre-trained model’s
weights. That is, we search for a permutation of the kernels that minimizes equation 6 without
changing the actual weights. Recall that NeRN maps each coordinate to the corresponding kernel,
so in practice we keep the order of weights in the original network, and only change the order in
which NeRN predicts the kernels.

4

Published as a conference paper at ICLR 2023

To solve the permutation problem we formalize it using graph theory. We denote the complete
graph Gl = (Vl, El) , ∀l ∈ [1, L], where each vertex in Gl is a kernel in w(l), and the edge between
vertex i and j is the cosine distance between the i-th and j-th kernels in w(l) (for 1 × 1 kernels
we replace the cosine distance with ℓ2 distance). Now, the optimal reordering of the weights in
layer l is equivalent to the minimal-weight Hamiltonian path (a path that goes through all vertices
exactly once) in Gl, which is precisely the traveling salesman problem (TSP) (Reinelt, 1994). While
TSP is known to be NP-Hard, we propose to use an approximation to the optimal solution using a
greedy solution. That is, for Gl, start from an arbitrary vertex in Vl and recursively find the closest
vertex Vl that has not yet been visited, until visiting all the vertices. We evaluated this method in our
experiments presented in the following section. We consider two variants of this approach:

Cross-filter permutations. In each layer, consider w(l) as a list of all kernels in layer l. We calculate
the permutation across the entire list. The disadvantage of this approach is the overhead of saving
the calculated ordering to disk. For a layer with Fl filters and Cl kernels each, the overhead is
Fl ·Cl · log2 (Fl · Cl) = Fl ·Cl · (log2 Fl + log2 Cl) bits. For standard ResNet variants, saving these
permutations entails a 4%-6% size overhead.

In-filter permutations. To reduce the overhead of the cross-filter permutations, we introduce in-filter
permutations. For layer l, we first calculate the permutation of kernels inside each filter indepen-
dently and then compute the permutation of the permuted filters. Figure 2 demonstrates this process.
The overhead for a layer with Fl filters and Cl kernels each is Fl ·Cl · log2 Cl+Fl · log2 Fl bits. For
standard ResNet variants, saving these permutations entails a 2%-3% size overhead. Additional de-
tails are presented in appendix D. Intuitively, we’d expect the cross-filter permutations to be superior.
Since we adopt a greedy algorithm this is not guaranteed, as will be shown later.

0 0 0
...

0 0 0
...

0 00
...

(a) (b) (c)

Figure 2: The process of applying in-filter permutations for a specific layer. After applying the
permutations, each weight kernel is still located in its original filter. (a) The original filters in the
layer. (b) The weight kernels within each filter are permuted. (c) The entire filters are permuted.

4 EXPERIMENTS

In this section we evaluate our proposed method on three standard vision classification benchmarks
- CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009). For all bench-
marks, we use NeRN to predict the weights of the ResNet (He et al., 2015a) architectures. The
ResNet architectures were chosen for (1) their popularity, (2) their non-trivial design (deep layers,
which incorporate 1× 1 convolutions), and (3) their relatively high accuracy.

For every benchmark, we examine various NeRN hidden layer sizes and show the effectiveness of
promoting smoothness in the original network’s weights via weight permutations. For CIFAR-10,
we present complete results and additionally explore the smoothness regularization method. For
CIFAR-100 and ImageNet, we show only the best setup due to space constraints, and provide the
complete results in Appendix E. Each experiment is executed with 4 different random seeds, where
the mean and confidence intervals of the results are listed. We adopt the Ranger (Wright, 2019)
optimizer, using a learning rate of 5 · 10−3 and a cosine learning rate decay. The input coordinates
are mapped to positional embeddings of size 240. The rest of the training scheme is presented in
each individual section. We run our experiments using PyTorch on a single Nvidia RTX3090. The
CIFAR experiments take about 1-3 hours, depending on the sizes of the original model and NeRN.
ImageNet experiments take about 20-30 hours, depending on NeRN’s size.

Following these, we discuss the idea of training NeRN without promoting any kind of smoothness
to the original network, examine NeRN’s ability to learn using noise images instead of the task data,
and finally present some relevant ablation experiments.

5

Published as a conference paper at ICLR 2023

Table 1: NeRN CIFAR-10 reconstruction results

Architecture Learnable Permutation NeRN Predictor Reconstructed
Accuracy %(Accuracy %) Weights Size [MB] Smoothness Hidden Size Model Size [MB]

ResNet20
(91.69) 1.03 In-filter

140 0.36 89.65 ± 0.33
160 0.45 90.76 ± 0.13
180 0.54 91.24 ± 0.08
200 0.65 91.57 ± 0.09

ResNet20
(91.69) 1.03 Cross-filter

140 0.36 90.39 ± 0.05
160 0.45 91.04 ± 0.07
180 0.54 91.43 ± 0.08
200 0.65 91.68 ± 0.06

ResNet56
(93.52) 3.25 In-filter

240 0.89 91.32 ± 0.07
280 1.17 92.26 ± 0.12
320 1.48 92.68 ± 0.05
360 1.83 93.11 ± 0.08

ResNet56
(93.52) 3.25 Cross-filter

240 0.89 91.79 ± 0.14
280 1.17 92.45 ± 0.11
320 1.48 92.86 ± 0.09
360 1.83 93.15 ± 0.12

10−6 10−5

0.94

0.96

0.98

1

Smoothness Regularization Factor (log scale)

R
ec

on
st

ru
ct

ed
/O

ri
gi

na
lA

cc
ur

ac
y

88

90

92

94

R
ec

on
st

ru
ct

ed
A

cc
ur

ac
y

Original Accuracy
Reconstructed Accuracy
Relative Reconstruction

10−6 10−5

0.94

0.96

0.98

1

Smoothness Regularization Factor (log scale)

R
ec

on
st

ru
ct

ed
/O

ri
gi

na
lA

cc
ur

ac
y

88

90

92

94

R
ec

on
st

ru
ct

ed
A

cc
ur

ac
y

Original Accuracy
Reconstructed Accuracy
Relative Reconstruction

Figure 3: NeRN ResNet56 reconstruction results on CIFAR-10 using different smoothness regu-
larization factors, shown for the original model and the reconstructed one. The figures display the
performance of NeRN with different hidden sizes, 240 on the left and 280 on the right.

4.1 CIFAR-10

For these experiments, we start by training ResNet20/56 to be used as the original networks. These
ResNet variants are specifically designed to fit the low input size of CIFAR by limiting the input
downsampling factor to ×4. We train NeRN for ∼70k iterations, using a task input batch size of
256. In addition, a batch of 212 reconstructed weights for the gradient computation is sampled in
each iteration. Results are presented in Table 1. As expected, increasing the predictor size results in
significant performance gains.

Regularization-Based Smoothness Here we show the results of applying smoothness via a reg-
ularization term on the original network training. Since incorporating an additional loss term results
in a degradation in accuracy, there is an inherent tradeoff between the original network’s accuracy
and NeRN’s ability to reconstruct the network. An optimal regularization factor balances the two,

6

Published as a conference paper at ICLR 2023

Table 2: NeRN CIFAR-100 reconstruction results

Architecture Learnable Permutation NeRN Predictor Reconstructed
Accuracy %(Accuracy %) Weights Size [MB] Smoothness Hidden Size Model Size [MB]

ResNet56
(71.35)

3.25 Cross-filter 320 1.48 69.30 ± 0.36
360 1.83 70.31 ± 0.20

3.25 In-filter 400 2.22 70.97 ± 0.14

Table 3: NeRN ImageNet reconstruction results

Architecture
(Top-1/Top-5%)

Learnable Permutation
Smoothness

NeRN Predictor Reconstructed
Top-1 %

Reconstructed
Top-5 %Weights Hidden Model

Size [MB] Size Size [MB]

ResNet18
(69.76/89.08) 41.91 Cross-filter

1024 12.99 67.55 ± 0.05 87.82 ± 0.07
1140 15.97 68.21 ± 0.12 88.27 ± 0.05
1256 19.27 68.74 ± 0.03 88.57 ± 0.03
1372 22.87 69.07 ± 0.05 88.79 ± 0.05

achieving a high absolute reconstructed accuracy. Figure 3 demonstrates this using several regular-
ization factors and two NeRN configurations. Using a hidden size of 240, the optimal is 5 · 10−6,
while using a hidden size of 280, the optimal is 1 · 10−6. Complete results appear in Appendix E.1.

4.2 CIFAR-100

Here we start by training ResNet56 to be used as the original model. The setup is similar to that
of CIFAR-10, only we train NeRN for ∼90k iterations. These experiments show similar trends,
where promoting smoothness and using larger predictors results in better reconstruction. Results are
presented in Table 2. Note that since this task is more complex than CIFAR-10, it requires a slightly
larger NeRN for the same reconstructed architecture. Complete results appear in Appendix E.2.

4.3 IMAGENET

Here we show the flexibility of NeRN by learning to represent the ImageNet-pretrained ResNet18
from torchvision Paszke et al. (2019). Thanks to our permutation-based smoothness, which is ap-
plied post-training, NeRN can learn to represent a network that was trained on a large-scale dataset
even without access to the training scheme of the original model. For ResNet-18, we predict only
the 3 × 3 convolutions in the network which constitute more than 98% of the entire convolutional
parameters, while skipping the first 7×7 convolution and the downsampling layers. We train NeRN
for 160k iterations, using a task input batch size of 32 (4 epochs). In addition, a batch of 216 recon-
structed weights for the gradient computation is sampled in each iteration. Results are presented in
Table 3, where for evaluation we use the script provided by Wightman (2019). Here, interestingly,
we require a relatively smaller NeRN. For example, the bottom row shows satisfying results, using
a NeRN of ∼ 54% the size of the original model. Complete results appear in Appendix E.3.

4.4 DATA-FREE TRAINING

In the previous experiments, NeRN was trained with images from the training data of the original
network. Ideally, we would like to be able to reconstruct a network without using the original task
data. This allows for a complete detachment of the original task when training NeRN. However,
distilling knowledge using out-of-domain data is a non-trivial task. This is evident in the recent
experiments by Beyer et al. (2022), where distilling knowledge using out-of-domain data achieved
significantly worse results than in-domain data. Consequently, one would assume distilling knowl-
edge from noise inputs should prove to be an even more difficult task, as the extracted features
might not carry a meaningful signal. Interestingly, we show that given our combined losses and

7

Published as a conference paper at ICLR 2023

method, NeRN achieves good reconstruction results without any meaningful input data, i.e by using
uniformly sampled noise X ∼ U [−1, 1]. Results are presented in Table 4.

4.5 RECONSTRUCTING NON-SMOOTH NETWORKS

Although our presented method for permutation smoothness offers a very small overhead, one might
consider the possibility of reconstructing a model without promoting any kind of smoothness. Re-
sults are presented in table 5. Note that although NeRN is able to reconstruct non-smooth networks,
the results are inferior to those of reconstructing smooth ones. While promoting smoothness im-
proves results across all experiments, the accuracy gap is more significant for smaller predictors. In
these cases, the predictor typically has lower capacity to capture non-smooth signals.

Table 4: NeRN CIFAR-10 reconstruction re-
sults using noise as input compared to omit-
ting the distillation losses. Experiments were
run using cross-filter permutations.

Architecture
(Accuracy %)

NeRN
Inputs ↑ Accuracy %Hidden

Size

ResNet20
(91.69)

160 ✗ 88.36 ± 0.39
Noise 89.08 ± 0.34

180 ✗ 90.21 ± 0.32
Noise 90.64 ± 0.22

ResNet56
(93.52)

280 ✗ 90.93 ± 0.28
Noise 91.40 ± 0.37

320 ✗ 92.06 ± 0.11
Noise 92.42 ± 0.06

Table 5: NeRN CIFAR-10 reconstruction re-
sults for non-smooth networks.

Architecture NeRN ↑ Accuracy %(Accuracy %) Hidden Size

ResNet20
(91.69)

140 87.95 ± 0.37
160 89.90 ± 0.26
180 90.82 ± 0.07

ResNet56
(93.52)

240 87.54 ± 0.24
280 90.83 ± 0.15
320 92.11 ± 0.07

4.6 ABLATION EXPERIMENTS

We present a few ablation experiments for NeRN’s loss functions in Table 6 & Figure 4. The results
emphasize the importance of the distillation losses, allowing for a better and more stable conver-
gence, and the need for a reconstruction loss. In addition, Table 7 examines the weight sampling
methods for gradient computation as discussed in Section 3.2.

Table 6: Loss ablation results for NeRN
ResNet20 reconstruction on CIFAR-10.
We use a setup of cross-filter permuta-
tions and a hidden size of 160.

Lrecon LKD LFMD ↑ Accuracy %

✓ ✗ ✗ 88.36 ± 0.39
✗ ✓ ✓ 10.30 ± 0.48
✓ ✓ ✓ 91.04 ± 0.07

Table 7: Weight sampling ablation re-
sults. Setup similar to Table 6

Weight Sampling ↑ Accuracy %

All Weights 90.99 ± 0.13
Random Layer 73.77 ± 5.49
Random Batch 91.00 ± 0.08

Random Batch (weighted) 91.04 ± 0.07

0 2 4 6

·104

0

20

40

60

80

100

Iteration

R
ec

on
st

ru
ct

ed
A

cc
ur

ac
y

(%
)

All Losses
Reconstruction Loss

Figure 4: NeRN ResNet20 training plot on CIFAR-10.
Setup similar to Table 6. Incorporating the distillation
losses allows for a faster and more stable convergence.

8

Published as a conference paper at ICLR 2023

0 10 20 30 40 50

20

40

60

80

100

Pruning Factor (%)

R
ec

on
st

ru
ct

ed
A

cc
ur

ac
y

(%
)

Hidden Size=320
Hidden Size=280

Input Low Error High Error

Figure 5: Two additional applications for NeRN. The left figure presents naive unstructured magni-
tude pruning results. Pruning was applied on a NeRN trained to reconstruct ResNet56 on CIFAR-10,
using cross-filter permutations. The right figure presents the averaged activations of 10 original fil-
ters with the lowest/highest reconstruction error in layer4.0.conv2 of ResNet18 trained on ImageNet.
For this, we used a NeRN trained with in-filter permutations and a hidden size of 1256.

5 ADDITIONAL APPLICATIONS

NeRNs offer a new viewpoint on neural networks, encoding the network weights themselves in
another network. We believe that various research directions and applications can arise from this
new representation, and below we examine some possible applications that can benefit from NeRNs.

Weight Importance Through the distillation losses guiding the optimization process, we hypothe-
size that NeRN prioritizes the reconstruction of weights based on their influence on the activations
and logits. This observation means that NeRN implicitly learns weight importance in a network-
global manner. By extracting this information from NeRN we can visualize important filters, which
will be those with the lowest relative reconstruction error. Figure 5 visualizes the average activation
map of the 10 filters with the lowest/highest reconstruction error in a specific ResNet18 layer. The
filters with the lower reconstruction error do indeed correspond to high valued activation maps.

Meta-Compression NeRN offers a compact representation of the original network, which is a
neural network by itself. We propose that one can compress the NeRN predictor to achieve a more
disk-size economical representation. To demonstrate this, we apply naive magnitude-based pruning
on the predictor. The results are presented in Figure 5. As further extensions one can also examine
more sophisticated compression techniques e.g., structured pruning and quantization.

Another interesting usage is the NeRN of an already pruned network to further reduce its disk size.
That is a promising direction for two reasons, (1) NeRN predicts only weights, and having less
weights to predict simplifies the task, and likely also the size of NeRN, and (2) NeRN can be used
post-training, without access to the task data.

6 CONCLUSION

We propose a technique to learn a neural representation for neural networks (NeRN), where a predic-
tor MLP, reconstructs the weights of a pretrained CNN. Using multiple losses and a unique learning
scheme, we present satisfying reconstruction results on popular architectures and benchmarks. We
further demonstrate the importance of weight smoothness in the original network, as well as ways
to promote it. We finish by presenting two possible applications for NeRN, (1) weight importance
analysis, where the importance is measured by NeRN’s accuracy, and (2) meta-compression, where
the predictor is pruned to achieve a disk-size compact representation, possibly without data.

9

Published as a conference paper at ICLR 2023

Reproducibility Statement An important aspect for the authors of this paper is code usability. We
have developed a generic and scalable framework for NeRN, which we provide in the supplementary
materials. The significant information for reproducing the experiments in this paper is listed in
Section 3. In addition, we provide the relevant configuration files and a README file containing
instructions in the supplementary material. We hope this allows the reader to reproduce the results
in an accessible manner.

Acknowledgements We would like to thank Yoav Miron, Gal Metzer and Yuval Alaluf for their
valuable insights throughout the research and writing of this paper. This research was supported by
The Israel Science Foundation (grant No. 1589/19), and in part by the Israeli Council for Higher
Education (CHE) via the Data Science Research Center, BGU, Israel.

REFERENCES

Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? Advances in neural information
processing systems, 27, 2014.

Lucas Beyer, Xiaohua Zhai, Amélie Royer, Larisa Markeeva, Rohan Anil, and Alexander
Kolesnikov. Knowledge distillation: A good teacher is patient and consistent. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10925–10934,
2022.

Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub, Steven Lovegrove, and
Richard Newcombe. Deep local shapes: Learning local sdf priors for detailed 3d reconstruction.
In European Conference on Computer Vision, pp. 608–625. Springer, 2020.

Defang Chen, Jian-Ping Mei, Can Wang, Yan Feng, and Chun Chen. Online knowledge distillation
with diverse peers. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pp. 3430–3437, 2020.

Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, and Manmohan Chandraker. Learn-
ing efficient object detection models with knowledge distillation. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
e1e32e235eee1f970470a3a6658dfdd5-Paper.pdf.

Hanting Chen, Yunhe Wang, Chang Xu, Zhaohui Yang, Chuanjian Liu, Boxin Shi, Chunjing Xu,
Chao Xu, and Qi Tian. Data-free learning of student networks. 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 3513–3521, 2019.

Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser Nam Lim, and Abhinav Shrivastava. Nerv: Neu-
ral representations for videos. Advances in Neural Information Processing Systems, 34:21557–
21568, 2021.

Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape modeling. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5939–5948, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Lior Deutsch. Generating neural networks with neural networks. arXiv preprint arXiv:1801.01952,
2018.

Emilien Dupont, Adam Goliński, Milad Alizadeh, Yee Whye Teh, and Arnaud Doucet. Coin: Com-
pression with implicit neural representations. arXiv preprint arXiv:2103.03123, 2021.

Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna, and Thomas Funkhouser. Local deep
implicit functions for 3d shape. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 4857–4866, 2020.

10

https://proceedings.neurips.cc/paper/2017/file/e1e32e235eee1f970470a3a6658dfdd5-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/e1e32e235eee1f970470a3a6658dfdd5-Paper.pdf

Published as a conference paper at ICLR 2023

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015a. URL http://arxiv.org/abs/1512.03385.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. CoRR, abs/1502.01852, 2015b. URL
http://arxiv.org/abs/1502.01852.

Byeongho Heo, Minsik Lee, Sangdoo Yun, and Jin Young Choi. Knowledge distillation with adver-
sarial samples supporting decision boundary. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pp. 3771–3778, 2019.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
Deep Learning and Representation Learning Workshop, NIPS, 2014.

Zehao Huang and Naiyan Wang. Like what you like: Knowledge distill via neuron selectivity
transfer. CoRR, abs/1707.01219, 2017. URL http://arxiv.org/abs/1707.01219.

Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Nießner, Thomas
Funkhouser, et al. Local implicit grid representations for 3d scenes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6001–6010, 2020.

Boris Knyazev, Michal Drozdzal, Graham W Taylor, and Adriana Romero Soriano. Parameter
prediction for unseen deep architectures. Advances in Neural Information Processing Systems,
34:29433–29448, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Tianhong Li, Jianguo Li, Zhuang Liu, and Changshui Zhang. Few sample knowledge distillation for
efficient network compression. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 14639–14647, 2020.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. 2020.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. Improved knowledge distillation via teacher assistant. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pp. 5191–5198, 2020.

Thu Nguyen-Phuoc, Feng Liu, and Lei Xiao. Snerf: stylized neural implicit representations for 3d
scenes. arXiv preprint arXiv:2207.02363, 2022.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 165–174, 2019.

Nikolaos Passalis and Anastasios Tefas. Learning deep representations with probabilistic knowledge
transfer. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 268–284,
2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32, pp. 8024–8035. Cur-
ran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf.

Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. Convolu-
tional occupancy networks. In European Conference on Computer Vision, pp. 523–540. Springer,
2020.

11

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1707.01219
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Published as a conference paper at ICLR 2023

G Reinelt. The traveling salesman: Computational solutions for tsp applications, 1994.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. In Yoshua Bengio and Yann LeCun (eds.), 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-
9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6550.

Konstantin Schürholt, Dimche Kostadinov, and Damian Borth. Self-supervised representation learn-
ing on neural network weights for model characteristic prediction. Advances in Neural Informa-
tion Processing Systems, 34:16481–16493, 2021.

Konstantin Schürholt, Boris Knyazev, Xavier Giró-i Nieto, and Damian Borth. Hyper-
representations for pre-training and transfer learning. arXiv preprint arXiv:2207.10951, 2022.

Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. Scene representation networks: Con-
tinuous 3d-structure-aware neural scene representations. Advances in Neural Information Pro-
cessing Systems, 32, 2019.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in Neural Information
Processing Systems, 33:7462–7473, 2020.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in Neural Information Process-
ing Systems, 33:7537–7547, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. 2017. URL https://
arxiv.org/pdf/1706.03762.pdf.

Ross Wightman. Pytorch image models. https://github.com/rwightman/pytorch-
image-models, 2019.

Less Wright. Ranger - a synergistic optimizer. https://github.com/lessw2020/Ranger-
Deep-Learning-Optimizer, 2019.

Jiao Xie, Shaohui Lin, Yichen Zhang, and Linkai Luo. Training convolutional neural networks with
cheap convolutions and online distillation. arXiv preprint arXiv:1909.13063, 2019.

Lin Yen-Chen, Pete Florence, Jonathan T. Barron, Alberto Rodriguez, Phillip Isola, and Tsung-Yi
Lin. iNeRF: Inverting neural radiance fields for pose estimation. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2021.

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the per-
formance of convolutional neural networks via attention transfer. In 5th International Confer-
ence on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?id=
Sks9 ajex.

Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hypernetworks for neural architecture
search. arXiv preprint arXiv:1810.05749, 2018a.

Ying Zhang, Tao Xiang, Timothy M Hospedales, and Huchuan Lu. Deep mutual learning. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4320–4328,
2018b.

12

http://arxiv.org/abs/1412.6550
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
https://openreview.net/forum?id=Sks9_ajex
https://openreview.net/forum?id=Sks9_ajex

Published as a conference paper at ICLR 2023

Appendices
A VISUALIZING RECONSTRUCTED KERNELS

To qualitatively demonstrate NeRN’s reconstruction, we train NeRN to reconstruct an ImageNet-
pretrained ResNet18, and visualize the reconstructed kernels. For this experiment, we use a hidden
size of 1256. Figure 6 presents the original and reconstructed kernels of a specific channel in the
second layer of ResNet18, using a 8× 8 grid of 3× 3 kernels.

(a) (b)

Figure 6: An 8 × 8 grid visualization of part of the original and reconstructed 3 × 3 kernels in the
second layer of ResNet18, trained on ImageNet. (a) are the original kernels, (b) are the reconstructed
kernels.

B NERN INITIALIZATION

A standard neural network initialization method (He et al., 2015b) aspires to preserve the activation’s
variance throughout the network. Due to its non-standard outputs, we initialize NeRN such that the
initially predicted weights are of similar mean and variance to the original model’s weights. This is
done using a similar initialization method to that of HyperNetworks (Ha et al., 2016). We empirically
found this initialization allows for relatively faster convergence.

C CONVOLUTIONAL PARAMETERS SIZE

Table 8: Size of convolutional parameters in standard ResNet architectures.

Architecture Task Total Size [MB] Convolutional Convolutional
Parameters Size [MB] Parameters Size (%)

ResNet20 CIFAR-10 1.04 1.03 99.04%
ResNet56 CIFAR-10 3.26 3.25 99.69%

ResNet20 CIFAR-100 1.06 1.03 97.17%
ResNet56 CIFAR-100 3.29 3.25 98.78%

ResNet18 ImageNet 44.59 42.60 95.54%

13

Published as a conference paper at ICLR 2023

D PERMUTATION-BASED SMOOTHNESS

D.1 SIZE OVERHEAD

As discussed in Section 3.3, saving the original model’s weight permutations for a layer with Fl

filters and Cl kernels each, weighs either Fl ·Cl · (log2 Fl + log2 Cl) bits for the cross-filter permu-
tations variant, or Fl · Cl · log2 Cl + Fl · log2 Fl bits for the in-filter permutations variant. Table 9
presents this size overhead for both variants on the architectures we experimented on throughout the
paper.

Table 9: Size overhead for weight permutations on standard ResNet architectures.

Architecture Task Total In-channel Permutations Cross-channel Permutations
Size [MB] Size [MB] Overhead (%) Size [MB] Overhead (%)

ResNet20 CIFAR-10 1.04 0.02 1.92 0.04 3.85
ResNet56 CIFAR-10 3.26 0.065 1.99 0.128 3.93

ResNet20 CIFAR-100 1.06 0.02 1.89 0.04 3.77
ResNet56 CIFAR-100 3.29 0.065 1.98 0.128 3.89

ResNet18 ImageNet 44.59 1.246 2.79 2.505 5.62

D.2 PERMUTATIONS ILLUSTRATION

In the permutation figures, the color of the weight kernels signify the filters they belong to originally,
not the value of the weights. The in-filter permutation process is demonstrated in figure 2. The
cross-filter permutation process is demonstrated in figure 7

0 0 0
...

0

0

0

0

0

0 000
...

(b)(a) (d) (c)

Figure 7: The process of applying cross-filter permutations for a specific layer. After applying the
permutations, the weight kernels might not be located in their original filters. (a) The original filters
in the layer. (b) The filters are concatenated to a single tensor of weight kernels. (c) The weight
kernels in the entire tensor are permuted. (d) The permuted tensor is reshaped into separate filters.

14

Published as a conference paper at ICLR 2023

E COMPLETE RECONSTRUCTION RESULTS

E.1 CIFAR10 WITH REGULARIZATION-BASED SMOOTHNESS

Table 10: NeRN CIFAR-10 reconstruction results using regularization-based smoothness on
ResNet56. Learnable weights size is 3.25 MB. Notice the tradeoff between original network ac-
curacy, and NeRN’s ability to reconstruct the network.

Smoothness Original
Accuracy %

NeRN Predictor Reconstructed
Accuracy %Regularization Factor Hidden Size Model Size [MB]

1 · 10−6 93.35

240 0.89

90.14 ± 0.15
5 · 10−6 92.07 90.96 ± 0.11
1 · 10−5 91.55 90.82 ± 0.03
5 · 10−5 90.35 89.82 ± 0.05

1 · 10−6 93.35

280 1.17

91.74 ± 0.10
5 · 10−6 92.07 91.45 ± 0.03
1 · 10−5 91.55 91.08 ± 0.04
5 · 10−5 90.35 90.10 ± 0.05

E.2 CIFAR100

Table 11: Complete NeRN CIFAR-100 reconstruction results

Architecture Learnable Permutation NeRN Predictor Reconstructed
Accuracy %(Accuracy %) Weights Size [MB] Smoothness Hidden Size Model Size [MB]

ResNet56
(71.35) 3.25 None

320 1.48 68.76 ± 0.08
360 1.83 70.09 ± 0.06
400 2.22 70.83 ± 0.13

ResNet56
(71.35) 3.25 In-filter

320 1.48 68.92 ± 0.12
360 1.83 70.30 ± 0.20
400 2.22 70.97 ± 0.14

ResNet56
(71.35) 3.25 Cross-filter

320 1.48 69.30 ± 0.36
360 1.83 70.31 ± 0.20
400 2.22 70.86 ± 0.17

E.3 IMAGENET

Table 12: NeRN ImageNet reconstruction results using ResNet18

Architecture
(Top-1/Top-5%)

Learnable Permutation
Smootheness

NeRN Predictor Reconstructed
Top-1 %

Reconstructed
Top-5 %Weights Hidden Model

Size [MB] Size Size [MB]

ResNet18
(69.76/89.08) 41.91 In-filter

1024 12.99 67.48 ± 0.06 87.78 ± 0.05
1140 15.97 68.25 ± 0.03 88.29 ± 0.04
1256 19.27 68.71 ± 0.09 88.54 ± 0.02
1372 22.87 69.03 ± 0.02 88.72 ± 0.02

ResNet18
(69.76/89.08) 41.91 Cross-filter

1024 12.99 67.55 ± 0.05 87.82 ± 0.07
1140 15.97 68.21 ± 0.12 88.27 ± 0.05
1256 19.27 68.74 ± 0.03 88.57 ± 0.03
1372 22.87 69.07 ± 0.05 88.79 ± 0.05

15

Published as a conference paper at ICLR 2023

Table 13: NeRN ImageNet reconstruction results using SqueezeNet

Architecture
(Top-1 %)

Learnable Permutation
Smootheness

NeRN Predictor Reconstructed
Top-1 %Weights Hidden Model

Size [MB] Size Size [MB]

SqueezeNet
(58.19) 2.74 In-filter

340 1.48 56.94 ± 0.05
340 1.65 57.44 ± 0.05
360 1.83 57.64 ± 0.07

F A NOTE ON POSITIONAL EMBEDDINGS

As NeRN learns to represent kernels by mapping from the positional embedding of a given coor-
dinate to its corresponding kernel, it is clear that the embeddings we choose also play a significant
part in the learning process. As adjacent convolutional kernels are relatively similar to one another
after we promote smoothness, one might consider the possibility of creating similarly behaving po-
sitional embeddings. These positional embeddings should be, on the one hand, slowly changing
with respect to adjacent kernel coordinates, and on the other hand, highly separable with respect to
distant coordinates. In practice, this can be achieved by finding the right basis for our positional
embedding, as shown in Figure 8. Although we had hypothesized that incorporating this inductive
bias might assist NeRN in reconstructing smooth networks, numerous experiments have refuted this
theory. Nevertheless, further investigation into the chosen positional embeddings is needed, and we
leave this as a topic for future research.

0 20 40 60
0

0.2

0.4

0.6

0.8

1

Embedding Index

N
or

m
al

iz
ed

C
os

in
e

Si
m

ila
ri

ty

b=1.25
b=0.76

Figure 8: Normalized cosine similarity between positional embeddings of (0, 0, c), c ∈ [0, 63] to
embedding of coordinate (0, 0, 31), using different base frequencies.

16

	Introduction
	Related work
	Method
	Designing NeRNs
	Training NeRNs
	Promoting smoothness

	Experiments
	CIFAR-10
	CIFAR-100
	ImageNet
	Data-Free Training
	Reconstructing non-smooth networks
	Ablation experiments

	Additional Applications
	Conclusion
	Visualizing Reconstructed Kernels
	NeRN Initialization
	Convolutional Parameters Size
	Permutation-based Smoothness
	Size Overhead
	Permutations Illustration

	Complete Reconstruction Results
	CIFAR10 with Regularization-Based Smoothness
	CIFAR100
	ImageNet

	A Note on Positional Embeddings

