
On The Fragility of Learned Reward Functions

Lev McKinney∗

University of Toronto
lev.mckinney@mail.utoronto.ca

Yawen Duan∗

University of Cambridge
yd338@cam.ac.uk

David Krueger
University of Cambridge

david.scott.krueger@gmail.com

Adam Gleave
University of California, Berkeley

gleave@berkeley.edu

Abstract

Reward functions are notoriously difficult to specify, especially for tasks with
complex goals. Reward learning approaches attempt to infer reward functions from
human feedback and preferences. Prior works on reward learning have mainly
focused on the performance of policies trained alongside the reward function.
This practice, however, may fail to detect learned rewards that are not capable of
training new policies from scratch and thus do not capture the intended behavior.
Our work focuses on demonstrating and studying the causes of these relearning
failures in the domain of preference-based reward learning. We demonstrate with
experiments in tabular and continuous control environments that the severity of
relearning failures can be sensitive to changes in reward model design and the
trajectory dataset composition. Based on our findings, we emphasize the need for
more retraining-based evaluations in the literature.

1 Introduction

Reward functions for most real-world tasks are difficult or impossible to specify procedurally.
Specifically, hand-designed reward functions frequently misspecify the task [18]. The field of reward
learning attempts to overcome this challenge by designing algorithms to infer reward functions
from data. These learned reward functions aim to succinctly represent the desired behaviors [22],
drastically reduce the amount of human feedback required to learn a task [8] and allow practitioners
to generalize these behaviors to new environments [10].

One of the most promising approaches is to learn reward functions from binary human preferences
over trajectory segments where these segments are collected online using a sampler agent trained to
optimize the learned reward [8]. This form of preference-based reward learning is already being used
to train large language models to summarize [41] and become more helpful and harmless [3].

Prior work has typically focused on the performance of the sampler agent [19, 8]. Unfortunately,
the sampler agent performing the correct behavior does not guarantee that a robust reward function
has been uncovered. In particular, when using reinforcement learning to train a randomly initialized
relearner agent on the learned reward, the reward may fail to induce the correct behavior despite the
sampler agent behaving well [15]. If we only require a policy that works passably well in the exact
training environment, this may not be an issue because we can use the sampler agent and throw away
the learned reward. We argue, however, that such a method cannot be accurately described as learning
a reward function. At most, it is a preference-based policy learning technique, using reward functions
to give a helpful inductive bias during training. Moreover, it is desirable for many applications to

1Equal contribution. Work done during internship at Center for Human-Compatible AI, UC Berkeley.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

truly uncover a reward function. For example, we might wish to train a new policy using a learned
reward function with a more powerful R.L. algorithm or different agent architecture than was used
during the initial reward learning process.

Past work has preformed preliminary investigations into the robustness of learned rewards in toy
environments [28], in Atari [15] and for fine tuning language models [3, 32]. However, these
investigations are typically only reported short sections of their respective papers.

Inspired by this work, our paper empirically examines the relearner performance for learned reward
functions. Since we have access to a ground truth reward in our synthetic experiments, we define
poor relearner performance as achieving relatively low ground truth returns. Our results show that
relearing can produce very different policies than the sampler, frequently achieving low ground-truth
returns. Thus, we argue that current preference-based reward learning methods may produce reward
functions that are not reliable as signals for policy relearning.

Our paper makes three key contributions:

• We demonstrate that state-of-the-art reward learning algorithms can produce reward models
that fail to train new agents from scratch in tabular and continuous control settings;

• We show that the severity can increase as the trajectory dataset concentrates on high reward
regions;

• Finally, as an example of how how these relearning failures can be sensitive to changes in
reward model design, we demonstrate that reward ensembles can effect relearning failures.

2 Related Work

Preference-based reward learning Our primary focus is on methods that learn from preference
comparisons between two trajectories [2, 36, 29, 8]. Preference comparison is one of the most
scalable reward learning methods, successfully applied to fine-tune large transformer language
models [24, 32, 21, 3] to enhance their performance at certain tasks. Note that trajectory comparison
methods contain more information about the reward than demonstrations, so they tend to produce
better results when available [30]. However, note that these methods may still fare poorly when the
human preference feedback does not match their model of human rationality [20].

Other reward learning approaches Many other methods have been developed to learn reward
functions from human data [16]. One of the most popular is Inverse reinforcement learning (IRL) [22]
methods that infer a reward function from demonstrations [1, 27, 39, 38, 40, 9, 10]. T-REX [6] is a
hybrid approach, learning from a ranked set of demonstrations. An alternative approach learns from
“sketches” of cumulative reward over an episodeCabi et al. [7].

Reward hacking Pan et al. provides the first systematic empirical study of reward hacking: RL
agents exploiting misspecified reward functions [25]. Notably, they find that increasing agent capabil-
ities, such as by increasing the RL policy’s model size, can sometimes lead to worse performance on
the ground truth reward, while performance on the misspecified proxy reward increases. In contrast
to our work, Pan et al. only study reward hacking in hand-designed rewards designed to illustrate the
phenomenon, whereas we investigate this phenomenon in learned rewards.

Reward hacking has also been studied from a theoretical perspective. Under the framework of general
principle agent problems Zhuang and Hadfield-Menell examines the case where the agent’s utility
function can only account for a limited subspace of the set of attributes that make the true utility [37].
The authors proceed to show that, within their model, an optimal state under this proxy utility can
have arbitrarily low ground truth utility, assuming the attributes that make up the reward exhibit
a condition analogous to decreasing marginal utility and increasing opportunity cost. Skalse et al.
instead propose a formal definition of reward hacking [31]. In our paper, however, we focus on
more concrete cases of relearning failures and practically attainable measures, such as relearner
performance being close to sampler performance.

The most closely related work is by Ibarz et al., which evaluates their learned reward functions by
freezing them and training a new policy, analogous to our relearner evaluations [15, Section 3.2].
However, this study was only a small, half-page section of their paper, and they did not examine
factors that may increase or decrease the chances/severity of relearning failures.

2

Another important related work is by Reddy et al., who observes that rewards can fail to generalize
due to a lack of informative trajectories in their training data [28]. They attempt to ameliorate this
by querying humans on diverse hypothetical trajectories generated from a model. However, their
method requires a world model and primarily focuses on taking advantage of this model to improve
reward quality. In addition, they assume the user provides feedback through quantitative reward
labels, whereas we focus on the more realistic and widely used preference comparison setting.

Finally, past work has found that language models trained on a preference-based reward model can
learn to exploit their reward model [32, Section 4.3]. In a similar vein, Bai et al. found that the ability
of their reward model to correctly predict human preferences over a pair of inputs degraded as those
inputs where perceived as more rewarding by the model [3, Section 4.2]. However, none of these
works have offered much analysis of what leads to reward hacking or in general relearning failures,
beyond training against the learned reward for to long [32, Section 4.3] or a lack of data from off
distribution [28].

Retraining and transfer in IRL domain There has also been multiple works exploring relearning
and transfer when learning rewards learned from expert demonstrations i.e. inverse reinforcement
learning (IRL). Fu et al. [10] propose an IRL method to learn state-only reward functions disentangled
from transition dynamics and preform experiments on transferring their learned rewards to new agents
and environments. Ni et al. [23] derive an analytic gradient estimator for an arbitrary f-divergence
between expert and on policy distributions with respect to the reward functions parameters. In their
relearning evaluations, they find that there method produces relearners that match expert performance.
Finally, Wang et al. [34] borrows methods from random network distillation to directly estimate the
expert distribution with only expert data. This process, removes the need for a sampler, obviating the
issue of relearning failures. In contrast to these IRL methods, our work focuses on the more scalable
preference-based reward learning setting.

3 Background

Deep RL from Human Preferences We follow the framework of learning a preference model
r̂ϕ from trajectory segment comparisons. Our method is the closest to deep reinforcement learning
from human preferences [8]. It consists of four phases iterated: trajectory collection, preference
elicitation, reward inference and policy optimization. During trajectory collection, the current policy,
initially a random policy, samples rollouts from the environment collecting trajectory segments
σi = (s0, a0, s1, a1, · · · , sn) without reward labels and stores them in B. In phase two, the algorithm,
elicits preferences y ∈ {≻,≺,≡} for randomly selected pairs of segments (σ1, σ2) ∈ B from a
labeler — human or synthetic 1. The preferences are then stored in a preference dataset D. The
algorithm assumes these preferences have been been sampled from the Bradly-Terry model [4],

P (σ1 ≻ σ2) =
exp

(∑
s,a,s′∈σ1

r(s, a, s′)
)

exp
(∑

s,a,s′∈σ1
r(s, a, s′)

)
+ exp

(∑
s,a,s′∈σ2

r(s, a, s′)
) . (1)

a widely used approximate model for human data in the preference based reward learning literature
[8, 15, 19]. In the third phase reward inference, the reward r̂ϕ is fit by using Adam [17] to minimize
the negative log likelihood of r̂ϕ under D. The fourth and final phase of each iteration consists of
policy optimization. In this stage, we can apply existing deep reinforcement learning algorithms to
improve our policies expected return under the learned reward, and the process repeats.

4 Training and Evaluation Procedure

Reward Learning We train reward models with synthetic data that is sampled from the Bradley-
Terry model of Eq. 1 with r set to the ground truth reward. In the tabular setting, we train the sampler
policy using soft Q-Learning [13] and the learned reward networks simply take the current state as a
one-hot vector for input. In the continuous control setting, we use soft actor-critic (SAC) [14] from
Stable-Baselines3 [26] and the learned reward networks receive the observation, action and next
observation as input. See Appendix A for further details.

1We follow Ibarz et al. in selecting preference pairs to query uniformly at random [15]

3

0 10 20 30 40 50

Number of Iterations

0

2000

4000

6000

8000

10000

12000

Gr
ou

nd
 Tr

ut
h

Re
tu

rn

RL Budget
0.5M
1M
2M
4M
8M

0.0 0.2 0.4 0.6 0.8 1.0

Number of Timesteps 1e6

0

1000

2000

3000

4000

5000

6000

Gr
ou

nd
 Tr

ut
h

Re
tu

rn

RL Budget
0.5M
1M
2M
4M
8M

0 250 500 750 1000 1250 1500 1750 2000

Number of Preference Pairs

0

2

4

6

8

10

12

14

S
eg

m
en

t P
ai

r A
ve

ra
ge

 R
et

ur
n

RL Budget
1M
8M

(a) Reward learning curves (b) Relearning curves (c) Preference datasets

Figure 1: Anti-correlated sampeler and relearner ground truth returns in HalfCheetah. (a) x-axis
represents the number of iterations of each run. See section 3 RL budget is the total number of RL
timesteps available to the sampler. (b) x-axis represents the number of timesteps during relearning.
In plots (a-b), for each RL budget setting, we performed ten runs of reward learning, and for each of
these, we ran five relearning evaluations for a total of 50 relearning runs. Solid lines and shaded lines
represent the mean and 90% confidence respectively. (c) Scatterplot of average ground truth reward
of each segment pair in the example preference datasets with 1M and 8M RL budgets.

Reward Ensembles Christiano et al. and Lee et al. use reward ensembles to estimate the uncertainty
of the learned reward [8, 19]. We explore how these ensembles may have an another benefit, reducing
the variance of off-distribution transitions. As in prior works, we train each ensemble member on
bootstrapped datasets, normalize their outputs separately and use their mean as the reward.

Relearning We freeze the learned reward and train a new, randomly initialized, relearner policy to
evaluate our reward functions. We evaluate this policy under the ground truth reward. This is similar
to the method employed by Ibarz et al. [15, Section 3.2] to study reward hacking. In the continuous
control settings this consist of training a new agent from the learned reward function using the same
R.L. algorithm as the sampler, then evaluating it under the ground truth reward. In the tabular setting,
we simply solve for the soft-optimal policy (α = 0.1) [13] under the learned reward function.

5 Experiments

First, we investigate the occurrence of relearning failures in the continuous control domain. We use
HalfCheetah environment as our test bed since it has been used in past works on preference-based
reward learning [8]. Here we find that increasing the number of training timesteps the sampler takes
between sampling trajectories for labeling increases the severity of relearning failures. Next, we focus
on the effects of reward model design and observe that reward ensembles may reduce reward hacking
in tabular environments by reducing the variance of off-distribution transitions. To demonstrate this
failure mode we use the stay inside environment which consists of two rooms separated by a wall
with a small doorway. The agent receives reward for staying in the inside room see Figure 2b.

5.1 Preference Trajectory Dataset Imbalance and Relearning Failure

The reward model is a function of the dataset D used to train it. One of the simplest ways to change
the preference dataset is to vary the number of timesteps T spent training the sampler between
collecting trajectory fragments. We call the total number of interactions the sampler has with the
environment during reward learning the RL budget. Note the RL budget does not affect the number
of comparisons collected.

Figure 1 shows the learning curves of the sampler and relearner experiments in HalfCheetah. We
find that despite higher RL budget leading to higher sampler returns during reward learning, the
relearners’ performance has the reverse trend; increasing sampler RL budget actually decreases
relearner ground truth return.

We can gain some insight into why this is happening by exploring preference datasets shown in
Figure 2c. First let’s consider the preference dateset produced by one of the runs with the highest-
budget (8M timesteps). We find that the trajectory segments contained in this datset are concentrated
in high ground truth reward regions. On the other hand, when we consider the low-budget dataset (1M
timesteps), the distribution of trajectory segments provides a better coverage across all the ground
truth reward scales within the support. We hypothesize that having an overwhelming proportion of

4

1 5
Number of Ensemble Members

−500

0

500

1000

1500

2000

R
el

ea
rn

er
M

in
u

s
S

am
p

le
r

R
et

u
rn

(a) Effect of reward ensembles on sampler and
relener return

(b) Ground truth reward

(c) Example no ensemble

(d) Example with ensemble

1 5
Number of Ensemble Members

0

5

10

M
ax

im
u

m
R

ew
ar

d

(e) Max reward

Figure 2: Ensembles eliminate relearning failures in the stay inside environment. (b) depicts the
ground truth reward in the stay inside environment. (c) shows an example individual learned reward
and (d) with a five member ensemble. Finally, (e) shows the distribution of max learned-reward
across all states. All sub-figures come from the same run which included 20 seeds.

high-reward trajectory segments in the preference dataset — and little preference data on trajectories
in the transition from high to low reward — may cause the reward model to effectively over-fit to
the high-reward region. This overfitting leads to poor supervision over randomly initialized policies.
Overall, we believe this could explain the observed relearning failures.

It’s important to note that we did not see a significant increase in relearning failure when increasing
the RL budget in the tabular setting. See Appendix D.

5.2 Reward Ensembles

Our tabular experiments provide a concrete, interpretable example of how relearning failures can be
effected by reward model implementation details. In particular, we focus on reward ensembles and
observe that they have drastic effects on relearners but leave the sampler’s performance unchanged.

In the stay inside environment, when using a reward ensemble of size five, all relearners preform at
least as well as their respective samplers, as can be seen in Figure 2a. However, if we use only a single
reward, the relearners behaviour is inconsistent; some relearners do substantially better then their
respective samplers, but almost as many do substantially worse, getting near zero return. Thus, while
adding an ensemble has a minimal effect on the sampler, it changes the behaviour of the relearners.

To understand why this happens we must consider the off-distribution behaviour of our reward models.
In the stay inside environment, the samplers typically stay in the inside half of the environment.
Thus there is often insufficient coverage of the outside half of the environment in our trajectory
dataset. Thus, the reward off-distribution is largely unconstrained by the data. This means that
small changes in the off-distribution behavior of our reward network can become critically important.
Reward models based on neural networks produce spurious high rewards off distribution, see Figure 2.
When these reward delusions are more rewarding than any of the in-distribution transitions, reward
hacking can occur and cause relearning failures. Reward ensembles tends to have lower variance
off distribution than an individual reward network. Thus, any reward delusions tend to have a lower
reward (according to the reward model). This can be directly seen in Figure 2 (c-e). This effect
reduces the chance that the optimal policy will be attracted to one of these spurious rewards during
relearning, which is what we see in Figure 2a.

6 Limitations and Discussion

Our experiments have a few important limitations. First, they are limited to simple ground truth reward
functions and environments. For example, in Half-Cheetah-v3 [5, 11], the reward function is
essentially a linear in the observation, action and next observation. While these relearning failures also
appear in more complex tasks [15, Section 3.2], it is unclear if it is precisely the same phenomenon

5

that causes them. The design decisions that seem to improve retraining performance in small-scale
experiments, in our case, reward ensembles and less sampler training, may not be the same as those
that address the problem at a larger scale. We leave such explorations to future work.

Overall, we have demonstrated that evaluations of relearning performance can differ substantially
from the results of simply evaluating the sampler agent trained alongside the reward model. We hope
to see future works include relearning evaluation as they appear to hold fruitful insights into the
quality of the learned reward functions.

6

Author Contributions

Lev McKinney designed and implemented the tabular experiments and wrote the relevant parts of
the method and experiments sections. In addition, he wrote the introduction, discussion and related
works sections of the paper/appendix. Yawen Duan designed and ran the initial experiments that
displayed reward model relearning failure on continuous control environments, and wrote relevant
sections of the paper. David Krueger provided ideas, guidance and general feedback on experiment
design and analysis. Adam Gleave provided initial ideas of the project, provided high-level and
detailed feedback on experiments and analysis.

Acknowledgments and Disclosure of Funding

This paper was completed as part of an internship at the Center for Human-Compatible Artificial
Intelligence. Funding for this internships was provided by the Berkeley Existential Risk Initiative.

References
[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In C. E.

Brodley, editor, Machine Learning, Proceedings of the Twenty-first International Conference
(ICML 2004), Banff, Alberta, Canada, July 4-8, 2004, volume 69 of ACM International
Conference Proceeding Series. ACM, 2004. doi: 10.1145/1015330.1015430. URL https:
//doi.org/10.1145/1015330.1015430.

[2] R. Akrour, M. Schoenauer, and M. Sebag. Preference-based policy learning. In D. Gunopulos,
T. Hofmann, D. Malerba, and M. Vazirgiannis, editors, Machine Learning and Knowledge
Discovery in Databases - European Conference, ECML PKDD 2011, Athens, Greece, September
5-9, 2011. Proceedings, Part I, volume 6911 of Lecture Notes in Computer Science, pages
12–27. Springer, 2011. doi: 10.1007/978-3-642-23780-5_11. URL https://doi.org/10.
1007/978-3-642-23780-5_11.

[3] Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N. DasSarma, D. Drain, S. Fort, D. Ganguli,
T. Henighan, N. Joseph, S. Kadavath, J. Kernion, T. Conerly, S. El-Showk, N. Elhage, Z. Hatfield-
Dodds, D. Hernandez, T. Hume, S. Johnston, S. Kravec, L. Lovitt, N. Nanda, C. Olsson,
D. Amodei, T. Brown, J. Clark, S. McCandlish, C. Olah, B. Mann, and J. Kaplan. Training
a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback, Apr.
2022.

[4] R. A. Bradley and M. E. Terry. Rank Analysis of Incomplete Block Designs: I. The Method
of Paired Comparisons. Biometrika, 39(3/4):324–345, 1952. ISSN 0006-3444. doi: 10.2307/
2334029.

[5] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym, 2016.

[6] D. S. Brown, W. Goo, P. Nagarajan, and S. Niekum. Extrapolating beyond suboptimal
demonstrations via inverse reinforcement learning from observations. In K. Chaudhuri
and R. Salakhutdinov, editors, Proceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97
of Proceedings of Machine Learning Research, pages 783–792. PMLR, 2019. URL http:
//proceedings.mlr.press/v97/brown19a.html.

[7] S. Cabi, S. Gómez Colmenarejo, A. Novikov, K. Konyushova, S. Reed, R. Jeong, K. Zolna,
Y. Aytar, D. Budden, M. Vecerik, O. Sushkov, D. Barker, J. Scholz, M. Denil, N. de Freitas, and
Z. Wang. Scaling data-driven robotics with reward sketching and batch reinforcement learning.
In Robotics: Science and Systems XVI. Robotics: Science and Systems Foundation, July 2020.
ISBN 978-0-9923747-6-1. doi: 10.15607/RSS.2020.XVI.076.

[8] P. F. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, and D. Amodei. Deep re-
inforcement learning from human preferences. In I. Guyon, U. von Luxburg, S. Ben-
gio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 30: Annual Conference on Neural

7

https://doi.org/10.1145/1015330.1015430
https://doi.org/10.1145/1015330.1015430
https://doi.org/10.1007/978-3-642-23780-5_11
https://doi.org/10.1007/978-3-642-23780-5_11
http://proceedings.mlr.press/v97/brown19a.html
http://proceedings.mlr.press/v97/brown19a.html

Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pages 4299–4307, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
d5e2c0adad503c91f91df240d0cd4e49-Abstract.html.

[9] C. Finn, S. Levine, and P. Abbeel. Guided cost learning: Deep inverse optimal control via policy
optimization. In M. Balcan and K. Q. Weinberger, editors, Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016,
volume 48 of JMLR Workshop and Conference Proceedings, pages 49–58. JMLR.org, 2016.
URL http://proceedings.mlr.press/v48/finn16.html.

[10] J. Fu, K. Luo, and S. Levine. Learning robust rewards with adversarial inverse reinforcement
learning. In ICLR, 2018.

[11] A. Gleave, P. Freire, S. Wang, and S. Toyer. seals: Suite of environments for algorithms that
learn specifications. https://github.com/HumanCompatibleAI/seals, 2020.

[12] A. Gleave, M. D. Dennis, S. Legg, S. Russell, and J. Leike. Quantifying differences in
reward functions. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=LwEQnp6CYev.

[13] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine. Reinforcement learning with deep energy-
based policies. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,
volume 70 of Proceedings of Machine Learning Research, pages 1352–1361. PMLR, 2017.
URL http://proceedings.mlr.press/v70/haarnoja17a.html.

[14] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
P. Abbeel, and S. Levine. Soft actor-critic algorithms and applications. Technical report, 2018.

[15] B. Ibarz, J. Leike, T. Pohlen, G. Irving, S. Legg, and D. Amodei. Reward learning from human
preferences and demonstrations in Atari. In Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018.

[16] H. J. Jeon, S. Milli, and A. D. Dragan. Reward-rational (implicit) choice: A unify-
ing formalism for reward learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. Bal-
can, and H. Lin, editors, Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
2f10c1578a0706e06b6d7db6f0b4a6af-Abstract.html.

[17] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2017.

[18] V. Krakovna, J. Uesato, V. Mikulik, M. Rahtz, T. Everitt, R. Kumar, Z. Ken-
ton, J. Leike, and S. Legg. Specification gaming: the flip side of ai inge-
nuity, Apr 2020. URL https://deepmindsafetyresearch.medium.com/
specification-gaming-the-flip-side-of-ai-ingenuity-c85bdb0deeb4.

[19] K. Lee, L. M. Smith, and P. Abbeel. PEBBLE: feedback-efficient interactive reinforcement
learning via relabeling experience and unsupervised pre-training. In M. Meila and T. Zhang,
editors, Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-
24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pages
6152–6163. PMLR, 2021. URL http://proceedings.mlr.press/v139/lee21i.html.

[20] K. Lee, L. M. Smith, A. D. Dragan, and P. Abbeel. B-pref: Benchmarking
preference-based reinforcement learning. In J. Vanschoren and S. Yeung, editors, Pro-
ceedings of the Neural Information Processing Systems Track on Datasets and Bench-
marks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021.
URL https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/
d82c8d1619ad8176d665453cfb2e55f0-Abstract-round1.html.

[21] R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim, C. Hesse, S. Jain, V. Kosaraju,
W. Saunders, X. Jiang, K. Cobbe, T. Eloundou, G. Krueger, K. Button, M. Knight, B. Chess,
and J. Schulman. WebGPT: Browser-assisted question-answering with human feedback, June
2022.

8

https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
http://proceedings.mlr.press/v48/finn16.html
https://github.com/HumanCompatibleAI/seals
https://openreview.net/forum?id=LwEQnp6CYev
http://proceedings.mlr.press/v70/haarnoja17a.html
https://proceedings.neurips.cc/paper/2020/hash/2f10c1578a0706e06b6d7db6f0b4a6af-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/2f10c1578a0706e06b6d7db6f0b4a6af-Abstract.html
https://deepmindsafetyresearch.medium.com/specification-gaming-the-flip-side-of-ai-ingenuity-c85bdb0deeb4
https://deepmindsafetyresearch.medium.com/specification-gaming-the-flip-side-of-ai-ingenuity-c85bdb0deeb4
http://proceedings.mlr.press/v139/lee21i.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/d82c8d1619ad8176d665453cfb2e55f0-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/d82c8d1619ad8176d665453cfb2e55f0-Abstract-round1.html

[22] A. Y. Ng and S. Russell. Algorithms for inverse reinforcement learning. In P. Langley, editor,
Proceedings of the Seventeenth International Conference on Machine Learning (ICML 2000),
Stanford University, Stanford, CA, USA, June 29 - July 2, 2000, pages 663–670. Morgan
Kaufmann, 2000.

[23] T. Ni, H. Sikchi, Y. Wang, T. Gupta, L. Lee, and B. Eysenbach. F-IRL: Inverse Reinforcement
Learning via State Marginal Matching, Dec. 2020.

[24] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder,
P. Christiano, J. Leike, and R. Lowe. Training language models to follow instructions with
human feedback, Mar. 2022.

[25] A. Pan, K. Bhatia, and J. Steinhardt. The effects of reward misspecification: Mapping and
mitigating misaligned models. In The Tenth International Conference on Learning Rep-
resentations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL
https://openreview.net/forum?id=JYtwGwIL7ye.

[26] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-baselines3:
Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22
(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

[27] D. Ramachandran and E. Amir. Bayesian inverse reinforcement learning. In M. M. Veloso, editor,
IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence,
Hyderabad, India, January 6-12, 2007, pages 2586–2591, 2007. URL http://ijcai.org/
Proceedings/07/Papers/416.pdf.

[28] S. Reddy, A. D. Dragan, S. Levine, S. Legg, and J. Leike. Learning human objectives by evaluat-
ing hypothetical behavior, 2020. URL http://proceedings.mlr.press/v119/reddy20a.
html.

[29] D. Sadigh, A. D. Dragan, S. Sastry, and S. A. Seshia. Active preference-based learning
of reward functions. In N. M. Amato, S. S. Srinivasa, N. Ayanian, and S. Kuindersma,
editors, Robotics: Science and Systems XIII, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, USA, July 12-16, 2017, 2017. doi: 10.15607/RSS.2017.XIII.053. URL
http://www.roboticsproceedings.org/rss13/p53.html.

[30] J. Skalse, M. Farrugia-Roberts, S. Russell, A. Abate, and A. Gleave. Invariance in policy
optimisation and partial identifiability in reward learning, 2022.

[31] J. Skalse, N. H. R. Howe, D. Krasheninnikov, and D. Krueger. Defining and characterizing
reward hacking. In NeurIPS, 2022.

[32] N. Stiennon, L. Ouyang, J. Wu, D. M. Ziegler, R. Lowe, C. Voss, A. Radford, D. Amodei, and
P. Christiano. Learning to summarize from human feedback, Feb. 2022.

[33] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2012, Vilamoura,
Algarve, Portugal, October 7-12, 2012, pages 5026–5033. IEEE, 2012. doi: 10.1109/IROS.
2012.6386109. URL https://doi.org/10.1109/IROS.2012.6386109.

[34] R. Wang, C. Ciliberto, P. V. Amadori, and Y. Demiris. Random expert distillation: Imitation
learning via expert policy support estimation. In K. Chaudhuri and R. Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research,
pages 6536–6544. PMLR, 2019. URL http://proceedings.mlr.press/v97/wang19d.
html.

[35] S. Wang, S. Toyer, A. Gleave, and S. Emmons. The imitation library for imitation learning and
inverse reinforcement learning. https://github.com/HumanCompatibleAI/imitation,
2020.

[36] A. Wilson, A. Fern, and P. Tadepalli. A Bayesian approach for policy learning from trajectory
preference queries. In NIPS, 2012.

9

https://openreview.net/forum?id=JYtwGwIL7ye
http://jmlr.org/papers/v22/20-1364.html
http://ijcai.org/Proceedings/07/Papers/416.pdf
http://ijcai.org/Proceedings/07/Papers/416.pdf
http://proceedings.mlr.press/v119/reddy20a.html
http://proceedings.mlr.press/v119/reddy20a.html
http://www.roboticsproceedings.org/rss13/p53.html
https://doi.org/10.1109/IROS.2012.6386109
http://proceedings.mlr.press/v97/wang19d.html
http://proceedings.mlr.press/v97/wang19d.html
https://github.com/HumanCompatibleAI/imitation

[37] S. Zhuang and D. Hadfield-Menell. Consequences of misaligned AI. In H. Larochelle, M. Ran-
zato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/
paper/2020/hash/b607ba543ad05417b8507ee86c54fcb7-Abstract.html.

[38] B. D. Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. PhD thesis, CMU, 2010.

[39] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement
learning. In D. Fox and C. P. Gomes, editors, Proceedings of the Twenty-Third AAAI Conference
on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008, pages 1433–
1438. AAAI Press, 2008. URL http://www.aaai.org/Library/AAAI/2008/aaai08-227.
php.

[40] B. D. Ziebart, J. A. Bagnell, and A. K. Dey. Modeling interaction via the principle of maximum
causal entropy. In J. Fürnkranz and T. Joachims, editors, Proceedings of the 27th International
Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel, pages 1255–1262.
Omnipress, 2010. URL https://icml.cc/Conferences/2010/papers/28.pdf.

[41] D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei, P. F. Christiano, and
G. Irving. Fine-tuning language models from human preferences. CoRR, abs/1909.08593, 2019.
URL http://arxiv.org/abs/1909.08593.

Appendices
A Training Details and Hyperparameters

A.1 Reinforcement learning algorithms

In the tabular setting we train the sampler policy using soft Q-Learning [13]. We use soft actor-critic
(SAC) [14] implementations of Stable-Baselines3 [26] in the locomotion control tasks.

Both algorithms are off-policy and use a replay buffer, which ensures their high sample efficiency
compared to on-policy RL algorithms. Note that the learned reward function r̂ϕ changes during
training, so we relabel the transitions in the replay buffer after each iteration, similar to PEBBLE
[19]. The main difference between our algorithm and PEBBLE is that we omit the unsupervised
pre-training stage used in PEBBLE. We used the implementations from Imitation Learning Baseline
Implementations [35] to perform the experiments.

A.2 Continuous Control Experiments

In the tabular setting, all reward networks only take the current state as a one-hot vector. They consist
of a multi-layer perceptron with two hidden layers of size 256 and ReLU activations, similar to those
used in PEBBLE [19].

Training details For reward learning experiments, we used the implementations of Preference
Comparisons Algorithm from Imitation Learning Baseline Implementations [35] with a full list of
hyperparameters in Table 1. For the RL component, we used soft actor-critic (SAC) [14] implementa-
tions from Stable-Baselines3 [26] in the locomotion control tasks with a list of hyperparameters in
Table 2. For retraining evaluations, we use the same hyperparameters for SAC to train new agents
against the frozen learned reward models.

Reward model The reward model consists of a single multi-layer perceptrons with two
hidden layers of size 256 and LeakyReLU activations with slope 0.01. The input of the
model consists of the state, action and next state vectors, and the input vector is normalized

10

https://proceedings.neurips.cc/paper/2020/hash/b607ba543ad05417b8507ee86c54fcb7-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b607ba543ad05417b8507ee86c54fcb7-Abstract.html
http://www.aaai.org/Library/AAAI/2008/aaai08-227.php
http://www.aaai.org/Library/AAAI/2008/aaai08-227.php
https://icml.cc/Conferences/2010/papers/28.pdf
http://arxiv.org/abs/1909.08593

by running normalization. The output the the reward model is normalized by by exponen-
tial moving average. During relearning experiments, we directly use the raw reward output
from the reward network while being normalzed by a VecNormalize layer in Stable-Baselines3
(https://stable-baselines3.readthedocs.io/en/master/guide/vec_envs.html#vecenv).

Reward normalization We compute a normalized version of the learned reward using an Expo-
nential Moving Average to normalize the reward to mean zero and unit standard deviation. This
normalized reward was then used for policy optimization. Note that normalizing the reward does
not change the optimal policy, which is invariant to positive affine transformations. However, it does
simplify the optimization problem. In particular, a normalized reward is a more stable objective for
the critic to learn over time. Additionally, RL hyperparameters can depend on the reward scale (for
example, learning rate should be set inversely proportional to reward scale) – normalizing the learned
reward therefore allows us to use a consistent set of hyperparameters.

Hyperparameter Value
Segment Length 50

Total Comparisons 2000
Number of Iteration 50

Reward Training Epochs 5
Query Schedule constant

Table 1: Reward learning hyperparameters for continuous control experiments

Hyperparameter Value
Learning Rate 0.0003

Batch Size 256
Discount 0.99

Learning Starts from 10000
Table 2: SAC hyperparameters for continuous control experiments

A.3 Tabular Experiments

Similarly to the continuous control experiments we use Imitation’s implementation of preference
comparison [35]. However, we use a tabular soft-q learning algorithm with a replay buffer [13] with
reward relabling [19] to solve the environments. The reward network again uses a similar MLP
architecture to the continuous control setting with a sightly smaller hidden size of 32. Finally, we
normalize the reward functions before ensembling them using a simple running norm over sampled
transitions which is frozen during retraining. Hyperparamaters can be found in Table 3.

Tabular Relearning When relearning we solve for the soft-optimal policy under the learned reward
function with temperature 0.1 and discount factor 0.99.

B Environments

Locomotion Control Task We ran reward learning and relearning on a MuJoCo locomotion
task [33] – HalfCheetah environment from the seals benchmark suite [11], a modification of
HalfCheetah-v3 in the gym environment suite which adds the x-coordinate of the robot’s center of
mass (COM) to the first dimension of the observation space. The ground-truth reward function of
the HalfCheetah environment is a linear combination of the x-velocity of the robot’s COM and a
control cost dependent on the L2 norm of the action vector. Consequently, the reward function in
seals HalfCheetah is a function of the observations, which is not strictly true in the original gym [5]
environment, avoiding a potential confounder.

Tabular Environment We constructed the stay inside environment, which consists of a 20x20
closed grid of cells. The top "outside” and bottom "inside” halves of the environment are separated
by a wall with a narrow two cell gap in the middle. The reward for each state is shown in Figure 2 (a),
with reward values ranging from +10 to -1.

11

Hyper Parameter Value
Sampler Soft-Q Learning
discount 0.99

learning rate 5e-2
replay buffer capacity ∞

temperature 0.1
samples from buffer per env sample 10

initial soft-q value 200
Reward Learning

trajectory fragment length 30
total comparison budget 2,500

RL budget 500,000
frac. of comparisons from inital random trajs 0.1

select fragments for comparison randomly
epochs of training per iteration 1

number of iterations 100
query schedule constant

reward learning rate 1e-3
Reward Network

reward network hidden layers [32, 32]
activation function ReLu

output normilization Running Norm
Table 3: Tabular Experiment Hyperparamerers

10 3

10 2

10 1

(a) Example without ensemble (b) Example with ensemble

Figure 3: Example on policy distribution
Examples of the on policy distributions of the samplers in the stay inside environment, marginalized

over the entire training run.

C Epic Distance as an Evaluation Metric

As an additional evaluation criterion, we consider using EPIC distance [12] to measure the distance
between learned reward functions and the ground truth reward. EPIC works by canonicalizing
the rewards to be invariant to potential shaping, normalizing them to be invariant to scale, and
then computing the L2 norm of the difference of those functions over a coverage distribution of
transitions. Here we consider two coverage distributions: uniform and expert distribution. The
uniform distribution is uniform over feasible transitions. The expert distribution is the distribution of
a soft-optimal policy with a temperature of 10 to give slightly more coverage.

12

200000 400000 600000 800000 1000000
DRLHP Training Timesteps

−200

0

200

400

600

800

R
et

u
rn

Agent

Sampler

Relearner

Relearner Minus Sampler

200000 400000 600000 800000 1000000
DRLHP Training Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
P

IC
D

is
ta

n
ce

T
o

G
ro

u
n

d
T

ru
th

R
ew

ar
d

Coverage Distribution

Uniform

Expert

(a) (b)

Figure 4: Increasing the number of time steps of R.L. training does not seem to significantly effect
relearning failures.

Figure 5: Tiny room environment. The ground-truth reward in the tiny room environment. Note that
the reward only depends on the current state.

D Additional Tabular Experiments

To study the effects of training the sampler for a more time steps, we first consider a simple
environment consisting of a 10x10 grid world. The agent begins in the lower left-hand corner of the
environment and gains a ground-truth reward of 10 for reaching the lower right-hand cell, as seen in
Figure 5.

The performance of the sampler and relearner initially increases with more training timesteps, with
our relearners generalizing well and achieving slightly higher performance than their respective
samplers. However, it quickly plateaus even though we do not see significant reductions in relearner
performance with an increased number of time steps. The EPIC distances of our learned reward
functions from the ground truth reward begin to increase after 400,000 timesteps Figure 4 (b).

Increasing the number of total training timesteps used for DRLHP does seem to degrade the quality
of the reward function according to EPIC distance. However, it does not appear to hurt relearning
performance in the same way in this simple tabular environment.

This is a strikingly different effect than we see in HalfCheetah. This may be because in a tabular
setting the sampler either finds the optimal policy induced by the learned reward function every
iteration, so the sampler and relearner have equal performance, or it insufficiently explores the
environment, and reward learning completely fails. This dichotomy leaves little room for the subtle
degradation in relearner performance we see in Figure 1.

13

	Introduction
	Related Work
	Background
	Training and Evaluation Procedure
	Experiments
	Preference Trajectory Dataset Imbalance and Relearning Failure
	Reward Ensembles

	Limitations and Discussion
	Appendices
	Training Details and Hyperparameters
	Reinforcement learning algorithms
	Continuous Control Experiments
	Tabular Experiments

	Environments
	Epic Distance as an Evaluation Metric
	Additional Tabular Experiments

