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Abstract

Spatio-temporal predictive learning is a learning paradigm that enables models to
learn spatial and temporal patterns by predicting future frames from given past
frames in an unsupervised manner. Despite remarkable progress in recent years,
a lack of systematic understanding persists due to the diverse settings, complex
implementation, and difficult reproducibility. Without standardization, comparisons
can be unfair and insights inconclusive. To address this dilemma, we propose
OpenSTL, a comprehensive benchmark for spatio-temporal predictive learning that
categorizes prevalent approaches into recurrent-based and recurrent-free models.
OpenSTL provides a modular and extensible framework implementing various
state-of-the-art methods. We conduct standard evaluations on datasets across
various domains, including synthetic moving object trajectory, human motion,
driving scenes, traffic flow, and weather forecasting. Based on our observations,
we provide a detailed analysis of how model architecture and dataset properties
affect spatio-temporal predictive learning performance. Surprisingly, we find that
recurrent-free models achieve a good balance between efficiency and performance
than recurrent models. Thus, we further extend the common MetaFormers to boost
recurrent-free spatial-temporal predictive learning. We open-source the code and
models at https://github.com/chengtan9907/OpenSTL.

1 Introduction

Recent years have witnessed rapid and remarkable progress in spatio-temporal predictive learning [38,
, 10, 41]. This burgeoning field aims to learn latent spatial and temporal patterns through the
challenging task of forecasting future frames based solely on given past frames in an unsupervised

manner [40, 55, 56, 54]. By ingesting raw sequential data, these self-supervised models [4, 14, 24]
can uncover intricate spatial and temporal interdependencies without the need for tedious manual
annotation, enabling them to extrapolate coherently into the future in a realistic fashion [29, 12].

Spatio-temporal predictive learning benefits a wide range of applications with its ability to anticipate
the future from the past in a data-driven way, including modeling the devastating impacts of climate
change [38, 35], predicting human movement [61, 45], forecasting traffic flow in transportation
systems [8, 51], and learning expressive representations from video [32, 19]. By learning to predict
the future without supervision from massive datasets, these techniques have the potential to transform
domains where anticipation and planning are crucial but limited labeled data exists [9, 2, 44, 31].
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Figure 1: Two typical sptaio-temporal predictive learning models. As illustrated by the left two
instances (a)(b), the first type requires several recurrent modules to predict the next frame according
to the previous frames in an auto-regressive manner, dubbed recurrent-based models. As for the right
two instances (c)(d), the second type predicts all future frames based on all given frames at once,
which inferences in parallel and is called the recurrent-free model.

Despite the significance of spatio-temporal predictive learning and the development of various
approaches, there remains a conspicuous lack of a comprehensive benchmark for this field covering
various synthetic and practical application scenarios. We believe that a comprehensive benchmark is
essential for advancing the field and facilitating meaningful comparisons between different methods.
In particular, there exists a perennial question that has not yet been conclusively answered: is it
necessary to employ recurrent neural network architectures to capture temporal dependencies? In
other words, can recurrent-free models achieve performance comparable to recurrent-based models
without explicit temporal modeling?

Since the seminal work ConvLSTM [38] was proposed, which ingeniously integrates convolutional
networks and long-short term memory (LSTM) networks [ 5] to separately capture spatial and tem-
poral correlations, researchers have vacillated between utilizing or eschewing recurrent architectures.
As shown in Figure 1, (a) ConvLSTM is a prototypical recurrent-based model that infuses a recurrent
structure into convolutional networks. (b) PredRNN [49] represents a series of recurrent models
that revise the flow of information to enhance performance. (c) MetaVP is the recurrent-free model
that abstracted from SimVP by substituting its IncepU [10] modules with MetaFormers [59]. (d)
SimVP [10, 40] is a typical recurrent-free model that achieves performance comparable to previous
state-of-the-art models without explicitly modeling temporal dependencies.

In this study, we illuminate the long-standing question of whether explicit temporal modeling
with recurrent neural networks is requisite for spatio-temporal predictive learning. To achieve
this, we present a comprehensive benchmark, Open Spatio-Temporal predictive Learning, dubbed
OpenSTL. We revisit the approaches that represent the foremost strands within a modular and
extensive framework to ensure fair comparisons. We summarize our main contributions as follows:

* We build OpenSTL, a comprehensive benchmark for spatio-temporal predictive learning
that includes 14 representative algorithms and 24 models. OpenSTL covers a wide range of
methods and classifies them into two categories: recurrent-based and recurrent-free methods.

* We conduct extensive experiments on a diversity of tasks ranging from synthetic moving
object trajectories to real-world human motion, driving scenes, traffic flow, and weather
forecasting. The datasets span synthetic to real-world data and micro-to-macro scales.

* While recurrent-based models have been well developed, we rethink the potential
of recurrent-free models based on insights from OpenSTL. We propose generalizing
MetaFormer-like architectures [59] to boost recurrent-free spatio-temporal predictive learn-
ing. Recurrent-free models can thus reformulate the problem as a downstream task of
designing vision backbones for general applications.



2 Background and Related work

2.1 Problem definition

We propose the formal definition for the spatio-temporal predictive learning problem as follows.
Given a sequence of video frames X7 = {x?}! .. 1 up to time ¢ spanning the past T" frames, the
objective is to predict the subsequent T” frames Y*+7" = {2} 17" from time ¢ + 1 onwards,
where each frame x; € RE*#*W typically comprises C' channels, with height /' and width W/
pixels. In practice, we represent the input sequence of observed frames and output sequence of

. . ! !
predicted frames respectively as tensors X7 € RTXCXHXW apd Pt+1.T" ¢ RT XOXHXW,

The model with learnable parameters © learns a mapping Fo : X'57 yruT by leveraging both
spatial and temporal dependencies. In our case, the mapping Fg corresponds to a neural network
trained to minimize the discrepancy between the predicted future frames and the ground-truth future
frames. The optimal parameters ©* are given by:

o = argngn,ﬁ(]:@(/"('t.,T)’yt—‘,—l,T’)7 (1)

where £ denotes a loss function that quantifies such discrepancy.

In this study, we categorize prevalent spatio-temporal predictive learning methods into two classes:
recurrent-based and recurrent-free models. For recurrent-based models, the mapping Fg comprises
several recurrent interactions:

Fo : fg(a:t*TH, ht_T'H) o...0 fo(x', ht) 0..0 fg(a:tJrT/*l, ht+T’_1), 2)

where h' represents the memory state encompassing historical information and fy denotes the
mapping between each pair of adjacent frames. The parameters € are shared across each state.
Therefore, the prediction process can be expressed as follows:

2 = fo(x' R Vie {t+1,--- t+ T}, (3)

For recurrent-free models, the prediction process directly feeds the whole sequence of observed
frames into the model and outputs the complete predicted frames at once.

2.2 Recurrent-based models

Since the pioneering work ConvLSTM [38] was proposed, recurrent-based models [29, 30, 16,

, 58, 31] have been extensively studied. PredRNN [49] adopts vanilla ConvLSTM modules
to build a Spatio-temporal LSTM (ST-LSTM) unit that models spatial and temporal variations
simultaneously. PredRNN++ [47] proposes a gradient highway unit to mitigate the gradient vanishing
and a Casual-LSTM module to cascadely connect spatial and temporal memories. PredRNNv2 [50]
further proposes a curriculum learning strategy and a memory decoupling loss to boost performance.
MIM [5 1] introduces high-order non-stationarity learning in designing LSTM modules. PhyDNet [12]
explicitly disentangles PDE dynamics from unknown complementary information with a recurrent
physical unit. E3ADLSTM [48] integrates 3D convolutions into recurrent networks. MAU [3] proposes
a motion-aware unit that captures motion information. Although various recurrent-based models have
been developed, the reasons behind their strong performance remain not fully understood.

2.3 Recurrent-free models

Compared to recurrent-based models, recurrent-free models have received less attention. Previous
studies tend to use 3D convolutional networks to model temporal dependencies [28, 1]. PredCNN [57]
and TrajectoryCNN [25] use 2D convolutional networks for efficiency. However, early recurrent-
free models were doubted due to their poor performance. Recently, SimVP [10, 40, 41] provided
a simple but effective recurrent-free baseline with competitive performance. PastNet [53] and
IAMA4VP [37] are two recent recurrent-free models that perform strong performance. In this study,
we implemented representative recurrent-based and recurrent-free models under a unified framework
to systematically investigate their intrinsic properties. Moreover, we further explored the potential of
recurrent-free models by reformulating the spatio-temporal predictive learning problem and extending
MetaFormers [59] to bridge the gap between the visual backbone and spatio-temporal learning.



3 OpenSTL

3.1 Supported Methods

3.1.1 Overview

OpenSTL has implemented 14 representative spatio-temporal predictive learning methods under
a unified framework, including 11 recurrent-based methods and 3 recurrent-free methods. We
summarize these methods in Table 1, where we also provide the corresponding conference/journal
and the types of their spatial-temporal modeling components. The spatial modeling of these methods is
fundamentally consistent. Most methods apply two-dimensional convolutional networks (Conv2D) to
model spatial dependencies, while E3D-LSTM and CrevNet harness three-dimensional convolutional
networks (Conv3D) instead.

The primary distinction between these methods lies in how they model temporal dependencies
using their proposed modules. The ST-LSTM module, proposed in PredRNN [49], is the most
widely used module. CrevNet has a similar modeling approach as PredRNN, but it incorporates
an information-preserving mechanism into the model. Analogously, Casual-LSTM [47], MIM
Block [51], E3D-LSTM [4&], PhyCell [12], and MAU [3] represent variants of ConvLSTM proposed
with miscellaneous motivations. MVFB is built as a multi-scale voxel flow block that diverges from
ConvLSTM. However, DMVEN [17] predicts future frames frame-by-frame which still qualifies as a
recurrent-based model. IncepU [10] constitutes an Unet-like module that also exploits the multi-scale
feature from the InceptionNet-like architecture. gSTA [40] and TAU [4 1] extend the IncepU module to
simpler and more efficient architectures without InceptionNet or Unet-like architectures. In this work,
we further extend the temporal modeling of recurrent-free models by introducing MetaFormers [59]
to boost recurrent-free spatio-temporal predictive learning.

Table 1: Categorizations of the supported spatial-temporal predictive learning methods in OpenSTL.

Category Method Conference/Journal Spatial modeling Temporal modeling
ConvLSTM [38] NeurIPS 2015 Conv2D Conv-LSTM
PredNet [29] ICLR 2017 Conv2D ST-LSTM
PredRNN [49] NeurIPS 2017 Conv2D ST-LSTM
PredRNN++ [47] ICML 2018 Conv2D Casual-LSTM
Recurrent-based MIM [51] CVPR 2019 Conv2D MIM Block
E3D-LSTM [48] ICLR 2019 Conv3D E3D-LSTM
CrevNet [58] ICLR 2020 Conv3D ST-LSTM
PhyDNet [12] CVPR 2020 Conv2D ConvLSTM+PhyCell
MAU [3] NeurIPS 2021 Conv2D MAU
PredRNNv2 [50] TPAMI 2022 Conv2D ST-LSTM
DMVEN [17] CVPR 2023 Conv2D MVFB
SimVP [10] CVPR 2022 Conv2D IncepU
Recurrent-free TAU [41] CVPR 2023 Conv2D TAU
SimVPv2 [40] arXiv Conv2D eSTA

3.1.2 Rethink the recurrent-free models

Although less studied, recurrent-free spatio-temporal predictive learning models share a similar
architecture, as illustrated in Figure 2. The encoder comprises several 2D convolutional networks,
which project high-dimensional input data into a low-dimensional latent space. When given a batch
of input observed frames B € REXTXCXHXW “the encoder focuses solely on intra-frame spatial
correlations, ignoring temporal modeling. Subsequently, the middle temporal module stacks the
low-dimensional representations along the temporal dimension to ascertain temporal dependencies.
Finally, the decoder comprises several 2D convolutional upsampling networks, which reconstruct
subsequent frames from the learned latent representations.

The encoder and decoder enable efficient temporal learning by modeling temporal dependencies
in a low-dimensional latent space. The core component of recurrent-free models is the temporal
module. Previous studies have proposed temporal modules such as IncepU [10], TAU [41], and



gSTA [40] that have proved beneficial. However, we argue that the competence stems primarily
from the general recurrent-free architecture instead of the specific temporal modules. Thus, we
employ MetaFormers [59] as the temporal module by changing the input channels from the original
C to inter-frame channels 7" x C. By extending the recurrent-free architecture, we leverage the
advantages of MetaFormers to enhance the recurrent-free model. In this work, we implement
ViT [7], Swin Transformer [26], Uniformer [2 1], MLP-Mixer [42], ConvMixer [43], Poolformer [59],
ConvNeXt [27], VAN [13], HorNet [33], and MogaNet [22] for the MetaFormers-based recurrent-free
model, substituting the intermediate temporal module in the original recurrent-free architecture.
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Figure 2: The general architecture of recurrent-free models with three instances.

3.2 Supported Tasks

We have curated five diverse tasks in our OpenSTL benchmark, which cover a wide range of scenarios
from synthetic simulations to real-world situations at various scales. The tasks include synthetic
moving object trajectories, real-world human motion capture, driving scenes, traffic flow, and weather
forecasting. The datasets used in our benchmark range from synthetic to real-world, and from micro
to macro scales. We have provided a summary of the dataset statistics in Table 2.

Table 2: The detailed dataset statistics of the supported tasks in OpenSTL.

Dataset Training size  Testing size Channel Height Width T T
Moving MNIST variants 10,000 10,000 1/3 64 64 10 10
KTH Action 4,940 3,030 1 128 128 10 20/40
Human3.6M 73,404 8,582 3 128 128 4 4
Kitti&Caltech 3,160 3,095 3 128 160 10 1
TaxiBJ 20,461 500 2 32 32 4 4
WeatherBench-S 2,167 706 1 32/128  64/256 12 12
WeatherBench-M 54,019 2,883 4 32 64 4 4

Synthetic moving object trajectory prediction Moving MNIST [39] is one of the seminal bench-
mark datasets that has been extensively utilized. Each video sequence comprises two moving digits
confined within a 64 x 64 frame. Each digit was assigned a velocity whose direction was randomly
chosen from a unit circle and whose magnitude was also arbitrarily selected from a fixed range.
Apart from the original Moving MNIST dataset, we provide two variants with more complicated
objects (Moving FashionMNIST) that replace the digits with fashion objects and more complex scenes
(Moving MNIST-CIFAR) that employ images from the CIFAR-10 dataset [20] as the background.
Moreover, we provide three settings of Moving MNIST for robustness evaluations, including missing
frames, dynamic noise, and perceptual occlusions.



Human motion capture Predicting human motion is challenging due to the complexity of human
movements, which vary greatly among individuals and actions. We utilized the KTH dataset [36],
which includes six types of human actions: walking, jogging, running, boxing, hand waving, and hand
clapping. We furnish two settings, predicting the next 20 and 40 frames respectively. Human3.6M [18]
is an intricate human pose dataset containing high-resolution RGB videos. Analogous to preceding
studies [12, 51], we predict the next four frames by the observed four frames.

Driving scene prediction Predicting the future dynamics of driving scenarios is crucial for au-
tonomous driving. Compared to other tasks, this undertaking involves non-stationary and diverse
scenes. To address this issue, we follow the conventional approach [29] and train the model on the
Kirti [11] dataset. We then evaluate the performance on the Caltech Pedestrian [6] dataset. To ensure
consistency, we center-cropped and downsized all frames to 128 x 160 pixels.

Traffic flow prediction Forecasting the dynamics of crowds is crucial for traffic management and
public safety. To evaluate spatio-temporal predictive learning approaches for traffic flow prediction,
we use the TaxiBJ [60] dataset. This dataset includes GPS data from taxis and meteorological data
in Beijing. The dataset contains two types of crowd flows, representing inflow and outflow. The
temporal interval is 30 minutes, and the spatial resolution is 32 x 32.

Weather forecasting Global weather pattern prediction is an essential natural predicament. The
WeatherBench [34] dataset is a large-scale weather forecasting dataset encompassing various types
of climatic factors. The raw data is re-grid to 5.625° resolution (32 x 64 grid points) and 1.40625°
(128 x 256 grid points). We consider two setups: First, WeatherBench-S is a single-variable setup in
which each climatic factor is trained independently. The model is trained on data from 2010-2015,
validated on data from 2016, and tested on data from 2017-2018, with a one-hour temporal interval.
Second, WeatherBench-M is a multi-variable setup that mimics real-world weather forecasting more
closely. All climatic factors are trained simultaneously. The model is trained on data from 1979
to 2015, using the same validation and testing data as WeatherBench-S. The temporal interval is
extended to six hours, capturing a broader range of temporal dependencies.

3.3 [Evaluation Metrics

We evaluate the performance of supported models on the aforementioned tasks using various metrics
in a thorough and rigorous manner. We use them for specific tasks according to their characteristics.

Error metrics We utilize the mean squared error (MSE) and mean absolute error (MAE) to evaluate
the difference between the predicted results and the true targets. Root mean squared error (RMSE) is
also used in weather forecasting as it is more common in this domain.

Similarity metrics We utilize the structural similarity index measure (SSIM) [52] and peak signal-to-
noise ratio (PSNR) to evaluate the similarity between the predicted results and the true targets. Such
metrics are extensively used in image processing and computer vision.

Perceptual metrics LPIPS [62] is implemented to evaluate the perceptual difference between the
predicted results and the true targets in the human visual system. LPIPS provides a perceptually-
aligned evaluation for vision tasks. We utilize this metric in real-world video prediction tasks.

Computational metrics We utilize the number of parameters and the number of floating-point
operations (FLOPs) to evaluate the computational complexity of the models. We also report the
frames per second (FPS) on a single NVIDIA V100 GPU to evaluate the inference speed.

3.4 Codebase Structure

While existing open-sourced spatio-temporal predictive learning codebases are independent, OpenSTL
provides a modular and extensible framework that adheres to the design principles of OpenMMLab [5]
and assimilates code elements from OpenMixup [23] and USB [460]. OpenSTL excels in user-
friendliness, organization, and comprehensiveness, surpassing the usability of existing open-source
STL codebases. A detailed description of the codebase structure can be found in Appendix B.



4 Experiment and Analysis

We conducted comprehensive experiments on the mentioned tasks to assess the performance of the
supported methods in OpenSTL. Detailed analysis of the results is presented to gain insights into
spatio-temporal predictive learning. Implementation details can be found in Appendix C.

4.1 Synthetic Moving Object Trajectory Prediction

We conduct experiments on the synthetic moving object trajectory prediction task, utilizing three
datasets: Moving MNIST, Moving FashionMNIST, and Moving MNIST-CIFAR. The performance of
the evaluated models on the Moving MNIST dataset is reported in Table 3. The detailed results for
the other two synthetic datasets are in Appendix D.1.

It can be observed that recurrent-based models yield varied results that do not consistently outperform
recurrent-free models, while recurrent-based models always exhibit slower inference speeds than their
recurrent-free counterparts. Although PredRNN, PredRNN++, MIM, and PredRNNv2 achieve lower
MSE and MAE values compared to recurrent-free models, their FLOPs are nearly five times higher,
and their FPS are approximately seven times slower than all recurrent-free models. Furthermore, there
are minimal disparities in the performance of recurrent-free models as opposed to recurrent-based
models, highlighting the robustness of the proposed general recurrent-free architecture. The remaining
two synthetic datasets, consisting of more intricate moving objects (Moving FashionMNIST) and
complex scenes (Moving MNIST-CIFAR), reinforce the experimental findings that recurrent-free
models deliver comparable performance with significantly higher efficiency. In these toy datasets
characterized by high frequency but low resolution, recurrent-based models excel in capturing
temporal dependencies but are susceptible to high computational complexity.

Table 3: The performance on the Moving MNIST dataset.

Method Params (M) FLOPs (G) FPS MSE| MAE] SSIM{ PSNR{
ConvLSTM 15.0 56.8 113 2980 90.64 09288 22.10
PredNet 12.5 8.4 659 16138 201.16 0.7783  14.67
PredRNN 23.8 116.0 54 2397 72.82 09462 2328
PredRNN++ 38.6 171.7 33 2206 69.58 09509 23.65
Recurrent-based MIM 38.0 179.2 37 2255 69.97 09498  23.56
E3D-LSTM 51.0 298.9 18 3597 7828 09320 2111
CrevNet 5.0 270.7 10 3015 8628 09350 22.15
PhyDNet 3.1 15.3 182 28.19 78.64 09374 2262

MAU 45 17.8 201 2686 7822 09398 22.57
PredRNNv2 23.9 116.6 52 2413 7373 09453 2321
DMVEN 35 0.2 1145 123.67 17996 08140 16.15
SimVP 58.0 19.4 209 3215 89.05 09268 21.84

TAU 447 16.0 283 2460 7193 09454 23.19
SimVPv2 46.8 16.5 282 2669 77.19 09402 2278

ViT 46.1 16.9 290 3515 9587 09139 21.67

Swin Transformer ~ 46.1 16.4 294 2970 84.05 09331 2222
Uniformer 44.8 16.5 296 3038 85.87 09308 22.13
Recurrent-free MLP-Mixer 382 14.7 334 2952 8336 09338 2222
ConvMixer 39 55 658 3209 8893 09259 21.93
Poolformer 37.1 14.1 341 3179 8848 09271 22.03
ConvNext 373 14.1 344 2694 7723 09397 2274

VAN 445 16.0 288 2610 76.11 09417 22.89

HorNet 457 16.3 287 29.64 8326 09331 2226
MogaNet 46.8 16.5 255 2557 7519 09429 22.99




4.2 Real-world Video Prediction

We perform experiments on real-world video predictions, specifically focusing on human motion
capturing using the KTH and Human3.6M datasets, as well as driving scene prediction using the
Kitti&Caltech dataset. Due to space constraints, we present the results for the Kitti&Caltech dataset
in Table 4, while the detailed results for the other datasets can be found in Appendix D.2. We observed
that as the resolution increases, the computational complexity of recurrent-based models dramatically
increases. In contrast, recurrent-free models achieve a commendable balance between efficiency and
performance. Notably, although some recurrent-based models achieve lower MSE and MAE values,
their FLOPs are nearly 20 times higher compared to their recurrent-free counterparts. This highlights
the efficiency advantage of recurrent-free models, especially in high-resolution scenarios.

Table 4: The performance on the Kitti&Caltech dataset.

Method Params (M) FLOPs (G) FPS MSE| MAE| SSIM1 PSNR1 LPIPS|
ConvLSTM 15.0 595.0 33 139.6 15833 0.9345 27.46 8.58
PredNet 12.5 42.8 94  159.8 15689 0.9286  27.21 11.29
PredRNN 23.7 1216.0 17 1304 15255 0.9374 2781 7.40
S PredRNN++ 38.5 1803.0 12 1255 1453.2 0.9433  28.02 13.21
MIM 49.2 1858.0 39 125.1 1464.0 0.9409 28.10 6.35
E3D-LSTM 54.9 1004.0 10 200.6 19462 0.9047 2545 12.60
PhyDNet 3.10 40.4 117 3122 27548 0.8615 23.26 32.19
MAU 24.3 172.0 16 177.8 1800.4 0.9176  26.14 9.67
PredRNNv2 23.8 1223.0 16 147.8 1610.5 0.9330 27.12 8.92
DMVEN 3.6 1.2 557 1839 1531.1 09314 26.78 4.94
SimVP 8.6 60.6 57 160.2 1690.8 0.9338  26.81 6.76
TAU 15.0 92.5 55 131.1 1507.8 0.9456 27.83 5.49
SimVPv2 15.6 96.3 40  129.7 1507.7 0.9454  27.89 5.57
ViT 12.7 155.0 25 1464 16158 0.9379 2743 6.66
Swin Transformer 15.3 95.2 49 1552 15889 0.9299 27.25 8.11
Uniformer 11.8 104.0 28 1359 15342 0.9393  27.66 6.87
Recurrent-free MLP-Mixer 222 83.5 60 2079 18359 09133  26.29 7.75
ConvMixer 1.5 23.1 129 1747 18543 09232 26.23 7.76
Poolformer 12.4 79.8 51 1534 1613.5 0.9334  27.38 7.00
ConvNext 12.5 80.2 54 146.8 1630.0 0.9336  27.19 6.99
VAN 14.9 92.5 41 1275 14765 09462  27.98 5.50
HorNet 15.3 94.4 43 152.8 16379 0.9365 27.09 6.00
MogaNet 15.6 96.2 36 1314 1512.1 0.9442 27.79 5.39

4.3 Traffic and Weather Forecasting

Traffic flow prediction and weather forecasting are two critical tasks that have significant implications
for public safety and scientific research. While these tasks operate at a macro level, they exhibit
lower frequencies compared to the tasks mentioned above, and the states along the timeline tend to be
more stable. Capturing subtle changes in such tasks poses a significant challenge. In order to assess
the performance of the supported models in OpenSTL, we conduct experiments on the TaxiBJ and
WeatherBench datasets. It is worth noting that weather forecasting encompasses various settings, and
we provide detailed results of them in Appendix D.3.

Here, we present a comparison of the MAE and RMSE metrics for representative approaches in
single-variable weather factor forecasting at low resolution. Figure 3 displays the results for four
climatic factors, i.e., temperature, humidity, wind component, and cloud cover. Notably, recurrent-
free models consistently outperform recurrent-based models across all weather factors, indicating
their potential to apply spatio-temporal predictive learning to macro-scale tasks instead of relying
solely on recurrent-based models. These findings underscore the promising nature of recurrent-free
models and suggest that they can be a viable alternative to the prevailing recurrent-based models in
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Figure 3: The (a) MAE and (b) RMSE metrics of the representative approaches on the four weather
forecasting tasks in WeatherBench.

the context of weather forecasting. Furthermore, in the Appendix, we provide additional insights into
high-resolution and multi-variable weather forecasting, where similar trends are observed.

4.4 Robustness Analysis

To further understand the differences in robustness between the recurrent-based and recurrent-free
spatiotemporal predictive learning methods, we constructed three experimental setups: (i) Moving
MNIST - Missing, which deals with input frames with missing frames, where we set the probability
of random missing frame to 20%; (ii) Moving MNIST - Dynamic, where we added random Gaussian
noise to the speed of each digit, making their movement speeds irregular; (iii) Moving MNIST -
Perceptual, where we randomly occluded the input frames, using a black 24 x24 patch for occlusion.
We choose three representative recurrent-based and three recurrent-free methods for evaluation. The
experimental results for these three setups are presented in Table 5, 6, 7, respectively.

It can be observed that the recurrent-free methods exhibit remarkable robustness under both the
missing and perceptual noise scenarios. Even when compared to situations without noise, there is
little performance degradation due to their focus on global information. Conversely, recurrent-based
methods encounter substantial performance drops. They overly focus on the relationships individual
frames can inadvertently lead to overfitting. In the case of dynamic noise, all methods faced significant
performance setbacks, because the speed of the digits became irregular and harder to predict.

Table 5: The performance on the Moving MNIST - Missing dataset.

Method Params (M) FLOPs(G) FPS MSE| MAE| SSIMt PSNR?
ConvLSTM 15.0 56.8 113 3273 9695 09201  21.65

Recurrent-based  PredRNN 23.8 1160 54 4605 11721 0.8800 20.35
PredRNN++  38.6 171.7 38 5389 11845 0.8907 19.71

SimVP 58.0 194 209 3492 9523 09194 21.44

Recurrent-free TAU 447 160 283 2677 7750 09400 22.74
SimVPv2 46.8 165 282 2863 81.79 09352 2239




Table 6: The performance on the Moving MNIST - Dynamic dataset.

Method Params (M) FLOPs (G) FPS MSE| MAE| SSIM{1 PSNR 1T
ConvLSTM 15.0 56.8 113 49.03 13549 0.8683 19.73
Recurrent-based ~ PredRNN 23.8 116.0 54 59.18 157.47 0.8220  19.09
PredRNN-++ 38.6 171.7 38  40.85 109.32 0.9030  20.65
SimVP 58.0 19.4 209 4841 130.83 0.8725 1991
Recurrent-free TAU 44.7 16.0 283 4337 12131 0.8853  20.41
SimVPv2 46.8 16.5 282 4474 123770 0.8823  20.28

Table 7: The performance on the Moving MNIST - Perceptual dataset.

Method Params (M) FLOPs (G) FPS MSE| MAE| SSIM?1 PSNR?T
ConvLSTM 15.0 56.8 113 3134 9539 09227 21.85
Recurrent-based ~ PredRNN 23.8 116.0 54 46.04 12240 0.8792 20.28
PredRNN++ 38.6 171.7 38 51.76 127.12 0.8722  19.85
SimVP 58.0 19.4 209 3473 9523 09196 2144
Recurrent-free TAU 44.7 16.0 283 26.87 78.08 0.9393  22.69
SimVPv2 46.8 16.5 282 2883 82.65 09343 2236

5 Conclusion and Discussion

This paper introduces OpenSTL, a comprehensive benchmark for spatio-temporal predictive learning
with a diverse set of 14 representative methods and 24 models, addressing a wide range of challenging
tasks. OpenSTL categorizes existing approaches into recurrent-based and recurrent-free models.
To unlock the potential of recurrent-free models, we propose a general recurrent-free architecture
and introduce MetaFormers for temporal modeling. Extensive experiments are conducted to sys-
tematically evaluate the performance of the supported models across various tasks. In synthetic
datasets, recurrent-based models excel at capturing temporal dependencies, while recurrent-free
models achieve comparable performance with significantly higher efficiency. In real-world video
prediction tasks, recurrent-free models strike a commendable balance between efficiency and perfor-
mance. Additionally, recurrent-free models demonstrate significant superiority over their counterparts
in weather forecasting, highlighting their potential for scientific applications at a macro-scale level.

Moreover, we observed that recurrent architectures are beneficial in capturing temporal dependencies,
but they are not always necessary, especially for computationally expensive tasks. Recurrent-free mod-
els can be a viable alternative that provides a good balance between efficiency and performance. The
effectiveness of recurrent-based models in capturing high-frequency spatio-temporal dependencies
can be attributed to their sequential tracking of frame-by-frame changes, providing a local temporal
inductive bias. On the other hand, recurrent-free models combine multiple frames together, exhibiting
a global temporal inductive bias that is suitable for low-frequency spatio-temporal dependencies. We
hope that our work provides valuable insights and serves as a reference for future research.

While our primary focus lies in general spatio-temporal predictive learning, there are still several open
problems that require further investigation. One particular challenge is finding ways to effectively
leverage the strengths of both recurrent-based and recurrent-free models to enhance the modeling of
spatial-temporal dependencies. While there is a correspondence between the spatial encoding and
temporal modeling in MetaVP and the token mixing and channel mixing in MetaFormer, it raises the
question of whether we can improve recurrent-free models by extending the existing MetaFormers.
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