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Abstract

Evaluating and measuring AI Safety Level (ASL) threats are crucial for guiding
stakeholders to implement safeguards that keep risks within acceptable limits.
ASL-3+ models present a unique risk in their ability to uplift novice non-state
actors, especially in the realm of biosecurity. Existing evaluation metrics, such
as LAB-Bench, BioLP-bench, and WMDP, can reliably assess model uplift and
domain knowledge. However, metrics that better contextualize “real-world risks”
are needed to inform the safety case for LLMs, along with scalable, open-ended
metrics to keep pace with their rapid advancements. To address both gaps, we
introduce MOCET, an interpretable and doubly-scalable metric (automatable and
open-ended) that can quantify real-world risks.

1 Introduction

The rapid proliferation of LLMs and other generative AI technologies has sparked concern among
governments and industries around the world [3]. LLMs, capable of generating highly sophisticated,
technical instructions, pose particular biosecurity risks if exploited by malicious actors. Materials
needed to create toxins such as Ricin [5] or chemical agents like Sarin [21] are relatively easily
accessible, and remain legally obtainable from common retailers. These bioagents are highly
dangerous, with significant variability in their lethality and reach (Table 1). Significant barriers to
the successful development of biological weapons by malicious non-state actors currently lie in two
domains: (a) acquiring sufficient knowledge and technical details to design weapons of mass fatality,
and (b) translating this research into the physical creation of bioweapons (Fig. 1). In particular,
it is complex for an untrained actor to access and apply the expertise necessary to assemble these
components into functioning weapons. This gap in knowledge and proficiency has historically served
as a natural barrier to the misuse of biotechnology by novice non-state actors.

However, the growing accessibility of generative artificial intelligence (AI) poses a significant risk
to the stability of this barrier. Recently, steps taken by the federal government to “identify, revise,
or rescind regulations” that hinder AI development and discourse prioritizing minimal regulatory
or government interference have cast the future of safe AI development into doubt [15]. Moreover,
public concerns regarding the misuse of AI have been heightened by reports of increasingly harmful
and unethical outputs generated by systems like Grok, including the promotion of antisemitic rhetoric
and the creation of deepfake images of celebrities [20]. As generative AI technology continues to
advance under a potentially fragile regulatory framework, these developments underscore the urgent
need to measure, monitor and mitigate biosecurity risks before incidents occur. Monte Carlo Expected
Threat (MOCET) scoring aims to quantify these risks. To enable interpretation and contextualization
of threat and risk, the “MOCET Score” is meant to be analogous to expected casualties per incident;
the “Cumulative MOCET Score” is meant to be analogous to cumulative expected casualties (e.g., in
the U.S. per annum).
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Figure 1: Safety Case Prerequisite for Public-use LLMs: Non-state Actor Threat Model. The threat
model, or attack tree, for non-state actor biosecurity risk can be partitioned into four general stages:
Deploy, Build, Procure, Research. Stages are noted with levels of possibility (P) or impossibility (I)
and estimated cost. The “legal” (left) branch is most probable, and the Build stage (informed by the
Research stage) and its implied n substeps are the greatest bottlenecks which need to be measured
and mitigated for a public-use LLM safety case.

Table 1: Summary of Attacks Involving Select Bioweapons with Accessible Raw Materials (approxi-
mate) [22, 11, 17, 7, 1]

Agent Major Events since 1975 Total Deaths Total Injuries Avg Casualties/Event
Anthrax 6 81+ 217+ 49.6+
Ricin 20+ 6 5 0.55
Sarin Gas 5 1875+ 9700+ 2315

2 Methods

To quantify the real-world risks posed by LLMs in facilitating bioweapon development, we introduce
the Monte Carlo Expected Threat (MOCET) score. Our approach models the multi-step "Build"
phase of a non-state actor’s attack chain, identified as a critical bottleneck in our threat model
(Figure 1). Intuitively, the MOCET framework can be viewed as a way to translate model-generated
instructions into an estimate of how likely a real-world attempt would succeed if followed step by
step. Each output from the model represents a potential point of failure or success within the overall
sequence. We treat each step in an LLM-generated protocol as a Bernoulli trial, an assumption
shared by many other methodologies including but not limited to ones measuring "critical failure"
[2, 14, 16]. The overall success probability of a protocol, E[Y ], is the product of the probabilities of
its constituent steps, which can be grouped into m categories:

E[Y ] =

m∏
j=1

p
nj

j (Eq. 8)

Using a Monte Carlo simulation over N trials, we generate a distribution of outcomes. Each
successful outcome is weighted by a harm function, W , defined as the expected casualties derived
from historical data on relevant bioweapons (Table 1). This process yields the MOCET score, an
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Figure 2: MOCET and Cumulative MOCET. LLM responses on modeling non-state actors attempting
biosecurity-related threats are decomposed to create MOCET and Cumulative MOCET scores. Past
performance information from benchmarks and other corpus, and mortality rates from historical
events or expert estimates inform MOCET. The number of mass murders in 2017, 30, is used to
estimate the rate of occurrence for Cumulative MOCET.

estimate of the expected threat per incident (Eq. 5). As illustrated in Figure 2, this score is then scaled
by a real-world occurrence rate—approximated using FBI data on mass murder incidents [6]—to
produce the Cumulative MOCET score, which contextualizes the risk on a population level (Eq. 6).
The framework is robust, with an estimated ∼10% deviation in step probabilities resulting in only a
∼1% error in the final score (Eqs. 9-15). See Appendix for detailed mathematical derivations.

A key challenge is accurately estimating the success probability, pi, for each LLM-generated step. To
overcome the limitations of manual or broad categorical assignments, we developed a data-driven,
instance-based estimation method using a k-Nearest Neighbors (k-NN) model on the semantic
embeddings of the step descriptions (Eq. 16). We generated these embeddings using the all-
mpnet-base-v2 model from the Sentence-Transformers library [18]. We first validated this approach
on general academic and technical benchmarks (e.g., MMLU [10], GPQA [19], WMDP [12]),
confirming that the k-NN model’s predicted accuracy for a given statement is significantly higher
for correct answers than for incorrect ones (p << 0.01 for k=10, 20, 40), as shown in Figure 3.
This demonstrates the model’s capability to reliably assess the quality and likely success of novel,
generated text.

We then applied this framework in a case study evaluating the biosecurity risks of an open-source
model with reduced safety guardrails. We used a fine-tuned Llama-3-8B model trained on the publicly
available Dolphin 2.9 dataset, which is based on the Orca methodology of learning from complex
explanation traces of more powerful models [13, 9]. We chose this model as one that would be
reasonably accessible and non-compute intensive to a non-state actor. All model evaluations were
conducted using the lm-evaluation-harness [8]. In a zero-shot setting, we prompted this Dolphin
model with queries representative of those a non-state actor might use to assemble bioweapons. For
each step in the model’s outputs, we used our validated k-NN model (with k=20) to predict its success
probability, forming the basis for our MOCET calculations. The code for the MOCET framework
and the prompts used in this study are available upon request.

3 Results

Our case study reveals a critical gap between standard academic benchmarks and real-world risk
assessment. The fine-tuned Llama-3-8B model, the Dolphin variant, had a slight performance
decrease on benchmarks (Table 2). This might suggest a slight degradation in capability, yet our
MOCET analysis shows that by reducing guardrails, the model’s potential for misuse was dangerously
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unlocked. This highlights the inadequacy of standard benchmarks in capturing catastrophic risks
and underscores the warning on releasing open-source models without rigorous, targeted safety
evaluations.

Our MOCET framework quantifies this unlocked risk. As shown in Figure 4, the Dolphin model
provided instructions that led to non-zero threat scores across multiple bioweapon categories. Prompts
concerning Sarin yielded a MOCET score of 18.94, corresponding to a Cumulative MOCET of 568.17
expected casualties per year. Similarly, prompts for Anthrax resulted in a MOCET of 0.58 and a
Cumulative MOCET of 17.50. These scores provide a concrete, interpretable measure of the threat
posed by the model’s outputs.

To ground these automated calculations, two PhD-level annotators independently rated the likelihood
of success for the generated protocols. The comparison between our calculated expected success
probability, E[Y ], and the human ratings reveals interesting nuances. For Anthrax, our model
estimated a conservative E[Y ] of 1.18%, whereas human experts perceived a higher 16.5% chance
of success. Conversely, for Sarin, the model’s E[Y ] of 0.82% was slightly more optimistic than the
human rating of 0.5%. These results indirectly provide further validation of the methodology and the
limitations of the model assumptions. Furthermore, the divergence highlights the complexity of threat
assessment and demonstrates MOCET’s value in providing a consistent, scalable, and systematic risk
metric to complement expert evaluation.

Table 2: Model performance on academic benchmarks. All evaluations were run using the lm-
evaluation-harness [8].

Benchmark Llama-3-8B-Instruct Dolphin-2.9-Llama3-8B
MMLU 63.77% 57.15%
WMDP-Bio 71.01% 65.99%
WMDP-Chem 47.06% 46.32%
GPQA 29.46% 27.46%

Figure 3: k-Nearest Neighbor (kNN) predicts benchmark question performance. kNN produces sig-
nificantly higher predictions for answers answered corrected compared to those answered incorrectly.
Error bars on bar graph represent standard error. Classifying on predictions are significantly above
baseline. k = 10, 20, 40 all produce significant results.

4 Discussion

In response to the need for threat metrics that are scalable (both automatable and adaptable to open-
ended scoring) and interpretable in the context of large language models (LLMs) and biosecurity, we
propose MOCET. Expanding the arsenal of LLM-as-a-judge methods, this doubly-scalable framework
quantitatively evaluates the risk posed by non-state actors attempting to create biosecurity threats
using AI models, while also assessing the effectiveness of safety interventions. The utility of MOCET
scores becomes further evident by its ability to contextualize risk to familiar public safety statistics:
a per-incident MOCET score may be compared to the 18.86 casualties per incident using guns [6],
and a cumulative MOCET score may be compared to public health data such as the 44,534 motor
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vehicle traffic deaths [4]. The MOCET framework can measure and highlight the aggregate threat of
LLM-aided biosecurity risks, ultimately informing stakeholders and policy-makers in creating and
steering safe AI systems.

MOCET is aligned with several risk preparedness and scaling policy frameworks laid out by OpenAI,
Anthropic, and the National Institute of Science and Technology (NIST) by providing a quantitative,
iterative and transparent risk assessment tool that complements established frameworks [16, 2, 14].
By delivering an interpretable metric that informs both capability reports and safeguard evaluations,
MOCET supports proactive risk governance and ensures that any escalation in model capabilities
is met with measurable appropriate mitigation strategies. This approach reinforces a commitment
to public safety and ethical AI deployment while safeguarding stakeholder interests by minimizing
potential catastrophic harms and ensuring robust oversight of frontier AI development.

Finally, our finding that MOCET yielded a non-zero risk estimate for an open-source LLM suggests
that, even with current technological constraints, these models can meaningfully lower barriers to
access for malicious actors. It underscores the importance that AI development firms and governments
approach the implementation and release of open-source LLMs with caution and responsibility.

Figure 4: MOCET scoring for biosecurity risks on Dolphin-2.9-Llama-3-8b. Expected success rate
was calculated with kNN-predicted values with k=20. Two PhD-level annotators independently
labeled outputs to create human-estimated success rates. Historical casualties and recent mass-
casualty rates were used to estimate MOCET and Cumulative MOCET scores.

5 Limitations

MOCET is not without its limitations. It relies on the assumption that the actor would be unable
to fact-check and not use best-of-n or multi-turn prompting. It also assumes that correctness of
information provided is sufficient to estimate risk. The accuracy of the MOCET score is dependent on
accurate estimations of individual step probabilities and the weighting function used to assess harm,
both of which require more real-world empirical data to determine accurately. These limitations
on the validity of the scores are valid and the score should be considered as an order-of-magnitude
estimate, but MOCET is inherently a monotonic measurement and thus reliable for assessing safety
measures. Moreover, its scores are likely to remain within reasonable bounds relative to the scale of
safety measures generative AI developers and governments ought to seek to employ.

References
[1] M Abbes, M Montana, C Curti, and P Vanelle. Ricin poisoning: A review on contamination

source, diagnosis, treatment, prevention and reporting of ricin poisoning. Toxicon, 195:48–59,
2021. doi: 10.1016/j.toxicon.2021.03.004.

[2] Anthropic. Responsible scaling policy, 2024. URL https://www.anthropic.com/rsp.

[3] Miles Brundage, Shahar Avin, Jack Clark, Helen Toner, Peter Eckersley, Ben Garfinkel, Allan
Dafoe, Paul Scharre, Thomas Zeitzoff, Bobby Filar, et al. The malicious use of artificial
intelligence: Forecasting, prevention, and mitigation. arXiv preprint arXiv:1802.0722, 2018.

[4] Centers for Disease Control and Prevention. National vital statistics system, mortality 2018-
2023. CDC Wonder Online Database, 2024. Accessed August 21 2025.

5

https://www.anthropic.com/rsp


[5] L Craig et al. Ricin: The toxic protein of the castor bean. J. Biol. Chem, 197:295–303, 1952.

[6] Federal Bureau of Investigation. Active shooter incidents in the united states in 2016 and 2017.
FBI Reports and Publications, 2018.

[7] David R. Franz. Preparedness for an anthrax attack. Molecular Aspects of Medicine, 30(6):
503–510, 2009. doi: 10.1016/j.mam.2009.07.002.

[8] Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laria
Goldzycher, William Hallahan, Joseph He, Michael Lebrun, et al. A framework for few-
shot language model evaluation, July 2021. URL https://github.com/EleutherAI/
lm-evaluation-harness.

[9] Eric Hartford. Dolphin, 2023. URL https://erichartford.com/dolphin. Accessed:
2025-08-22.

[10] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

[11] Michael K. Jacobs. The history of biologic warfare and bioterrorism. Dermatologic Clinics, 22
(3):231–246, 2004. doi: 10.1016/j.det.2004.03.008.

[12] Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D.
Li, Ann-Kathrin Dombrowski, Shashwat Goel, Long Phan, Gabriel Mukobi, Nathan Helm-
Burger, Rassin Lababidi, Lennart Justen, Andrew B. Liu, Michael Chen, Isabelle Barrass,
Oliver Zhang, Xiaoyuan Zhu, Rishub Tamirisa, Bhrugu Bharathi, Adam Khoja, Zhenqi Zhao,
Ariel Herbert-Voss, Cort B. Breuer, Samuel Marks, Oam Patel, Andy Zou, Mantas Mazeika,
Zifan Wang, Palash Oswal, Weiran Lin, Adam A. Hunt, Justin Tienken-Harder, Kevin Y. Shih,
Kemper Talley, John Guan, Russell Kaplan, Ian Steneker, David Campbell, Brad Jokubaitis,
Alex Levinson, Jean Wang, William Qian, Kallol Krishna Karmakar, Steven Basart, Stephen
Fitz, Mindy Levine, Ponnurangam Kumaraguru, Uday Tupakula, Vijay Varadharajan, Ruoyu
Wang, Yan Shoshitaishvili, Jimmy Ba, Kevin M. Esvelt, Alexandr Wang, and Dan Hendrycks.
The WMDP benchmark: Measuring and reducing malicious use with unlearning. arXiv preprint
arXiv:2403.03218, 2024.

[13] Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and
Ahmed Awadallah. Orca: Progressive learning from complex explanation traces of gpt-4. arXiv
preprint arXiv:2306.02707, 2023.

[14] National Institute of Standards and Technology. Artificial intelligence risk management frame-
work, 2023.

[15] Office of the President. Executive order no.14179: Removing barri-
ers to american leadership in artificial intelligence, 2025. URL https:
//www.federalregister.gov/documents/2025/01/31/2025-02172/
removing-barriers-to-american-leadership-in-artificial-intelligence.

[16] OpenAI. The preparedness framework, 2023. URL https://openai.com/index/
updating-our-preparedness-framework/.

[17] Andy Oppenheimer. Weaponizing ricin: the biotoxin of choice for various terrorists, oddball
criminals. Military Periscope Special Reports, 2014.

[18] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese
bert-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). Association for Computational Linguistics, 11 2019. URL
https://arxiv.org/abs/1908.10084.

[19] David Rein, Aniruddha Raichur, John Canny, Dweep Das, Yi Luan, Naman Ryder, and Pro
Sarthi. Gpqa: A graduate-level google-proof q&a benchmark. arXiv preprint arXiv:2311.12022,
2023.

6

https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness
https://erichartford.com/dolphin
https://www.federalregister.gov/documents/2025/01/31/2025-02172/removing-barriers-to-american-leadership-in-artificial-intelligence
https://www.federalregister.gov/documents/2025/01/31/2025-02172/removing-barriers-to-american-leadership-in-artificial-intelligence
https://www.federalregister.gov/documents/2025/01/31/2025-02172/removing-barriers-to-american-leadership-in-artificial-intelligence
https://openai.com/index/updating-our-preparedness-framework/
https://openai.com/index/updating-our-preparedness-framework/
https://arxiv.org/abs/1908.10084


[20] Robert Scammel. xai apologized for grok’s ’horrific’ rant, and blamed the chatbot’s new
instructions and ’extremist’ x user posts, 2025.

[21] John A. Wojtowicz. Process for making methylphosphonic dichloride, 1989.

[22] N Yanagisawa, H Morita, T Nakajima, H Okudera, M Shimizu, H Hirabayashi, M Nohara,
Y Midorikawa, and S Mimura. Sarin poisoning in matsumoto, japan. The Lancet, 346(8970):
290–293, 1995. doi: 10.1016/S0140-6736(95)92170-2.

6 Appendix

1. Probability Assumption

Modeling binary frameworks such as “correct/incorrect" or “critical failure" used to grade steps in
current uplift trials, we define an indicator variable Xi for the ith step as follows:

Xi =

{
1, if step is successful,
0, otherwise.

(1)

For an n-step process for some variable n > 0, the overall success indicator is then given by:

Y =

n∏
i=1

Xi (2)

Instead of manually measuring the success or failure of an n step process, we assume that the success
rate of each of the n steps is given by a Bernoulli distribution P (Xi = 1) = p. Then, the expected
overall success probability is:

E[Y ] =

n∏
i=1

E[Xi] = pn (3)

2. Monte Carlo method

Repetition of the trial N times via Monte Carlo simulation yields an expected success rate probability
distribution and gives us:

E[Y ] =
1

N

N∑
i=1

E[Yi] (4)

This approach is equivalent to manual methods (i.e., checking each binary outcome) but offers the
added benefit of being able to generate a meaningful weighted score for each trial with weight
function W (e.g., expected casualty as a harm/threat metric) and requiring a smaller N to generate
a reliable metric for expected threat, weighted or unweighted. This yields the MOCET score, the
expected threat per incident, and cumulative MOCET score, the expected total threat for a population
per annum:

MOCET =
1

N

N∑
i=1

W (Yi)E[Yi] (5)

Cumulative MOCET = Rate of Occurrence × MOCET (6)

3. Categorical Probabilities increase Accuracy

In practice, the success probability may not be the same for all steps. To model this, we introduce pj
for different categories (or types) of steps. Let:

nj = number of steps with success probability pj , j = 1, 2, . . . ,m (7)

and let the overall number of steps be n. Then, the overall success probability of a trial is given by:

E[Y ] =

m∏
j=1

p
nj

j (8)
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We approximate the overall success rate by using some m. For instance, assume a single probability
p defined as the weighted average of pk:

p =
1

n

m∑
k=1

nk pk (9)

Define the deviation for each category as:
αk = pk − p (10)

A Taylor series expansion of the logarithm of E[Y ] shows that:

lnE[Y ] = N ln p+
1

p

m∑
k=1

nkαk − 1

2p2

m∑
k=1

nkα
2
k +O

(
m∑

k=1

nk

(
αk

p

)3
)

(11)

Since p is the weighted average, we have:
m∑

k=1

nkαk = 0 (12)

Thus, the approximation becomes:

lnE[Y ] = N ln p− 1

2p2

m∑
k=1

nkα
2
k +O

(
m∑

k=1

nk

(
αk

p

)3
)

(13)

Exponentiating both sides, we obtain:

E[Y ] = pN exp

(
− 1

2p2

m∑
k=1

nkα
2
k +O

(
m∑

k=1

nk

(
αk

p

)3
))

(14)

Hence, approximating E[Y ] by pN introduces a relative error of order:

O

(
1

2p2

m∑
k=1

nkα
2
k

)
∼= O

((
||α||
p

)2
)

(15)

which is acceptable for weighted L2 norm ||α|| << p (for m = 1 or all ||αj || << pj for the case
m > 1 categories for some reasonable m); ||α||

p in the order of ∼10% would result in approximately
an ∼1% error in E[Y ] and MOCET scores.

4. Instance-Based Probability Estimation via k-NN

Manually assigning each step to a predefined category can be subjective and fails to capture subtle
but important differences between steps. A more precise and data-driven approach is to estimate the
success probability for each step individually based on its semantic similarity to a historical dataset
of previously executed steps.

The process begins as before: we use a pre-trained language model to convert the textual description
of each step into a high-dimensional vector, or semantic embedding, v⃗i ∈ Rd. These embeddings
place steps with similar meanings near each other in the vector space.

Instead of forming large, static clusters, we use the k-nearest neighbors (k-NN) algorithm to create a
dynamic "category" for each individual step as we analyze it. To estimate the success probability pi
for a target step i:

1. We identify the set Ni, which contains the k steps from our historical data whose embeddings
are closest to v⃗i (e.g., using Euclidean distance).

2. We then calculate the mean success rate of the actions in this local neighborhood. This
average becomes our estimate for pi.

Mathematically, if Xj is the known historical outcome (1 for success, 0 for failure) for a neighbor
step j ∈ Ni, the probability is estimated as:

pi ≈
1

k

∑
j∈Ni

Xj (16)

This instance-based method allows us to generate a specific, contextually relevant category and
probability for every single step in the process.
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