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Abstract

Subliminal learning, the unintended transmission of be-
havioral traits like misalignment or preference through
semantically unrelated fine-tuning data, represents a
critical and poorly understood phenomenon in Large
Language Models (LLMs). We provide a detailed dy-
namic characterization of subliminal learning, focusing
on the temporal evolution of trait acquisition dur-
ing fine-tuning of Qwen2.5-1.5B-Instruct and
Qwen2.5-3B-Instruct models. We find that the trait
acquisition is a batch-invariant, non-linear spike concen-
trated sharply within the initial 10–20 training steps. We
hypothesize that these dynamics are symptoms of a model
transitions to a vulnerable parameter region. We then propose
liminal training, which consists of adding an annealed KL
regularizer to the fine-tuning loss, and provably mitigates
subliminal learning, preventing the acquisition of unwanted
traits.

1 Introduction
Large Language Models (LLMs) achieve their state-of-the-
art performance largely through efficient fine-tuning meth-
ods. Fine-tuning models on domain-specific or preference-
aligned data is a standard practice for adapting general
models to specialized tasks, resulting in significant im-
provements across areas like instruction-following, domain-
specific knowledge retrieval, and benchmark accuracy
(Ouyang et al. 2022; Ziegler et al. 2022). Techniques like
Low-Rank Adaptation (LoRA) (Hu et al. 2021) have further
made this adaptation highly efficient by freezing pre-trained
weights and training only a small set of introduced param-
eters, yet these methods remain vulnerable to unintended
data leakage. The challenge of understanding how LLMs in-
ternalize subtle data patterns is acutely highlighted by the
discovery of subliminal learning. Specifically, Subliminal
Learning (Cloud et al. 2025) introduces a critical safety chal-
lenge: the unintended transmission of behavioral traits (e.g.,
misalignment or preference) through training data that are
semantically unrelated to the trait itself.

This phenomenon is not yet well understood. Previous hy-
potheses have largely centered on the idea of models rely-
ing on spurious correlations (Zur et al. 2025). In our work,
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Figure 1: Log-probability evolution for the ”dragon” token
during fine-tuning. Standard fine-tuning (FT: Animal Num-
ber) shows a significant increase in the probability of out-
putting ”dragon” at steps 10-20, while our liminal training
approach (Liminal FT:Animal Number) successfully sup-
presses this unintended trait acquisition, maintaining stable
log-probabilities throughout training.

we explore the dynamics of subliminal acquisitions of traits
during fine-tuning and propose a solution to mitigate it. Un-
derstanding and preventing this vulnerability is critical for
model safety, especially in fine-tuning settings where data
contamination is difficult to rule out.

Our contributions are therefore:
1. We confirm that subliminal learning occurs

in smaller size open-weight LLMs specifi-
cally the Qwen2.5-1.5B-Instruct and
Qwen2.5-3B-Instruct, establishing the gen-
erality of the attack vector across different model
sizes.

2. We analyze trait specific data and evolution of trait acqui-
sition by monitoring logit and behavioral changes across
training steps, finding that the peak emergence of sub-
liminal learning effect consistently occurs in the initial
10-20 steps.

3. We propose and empirically validate the liminal train-
ing, a simple fine-tuning strategy that consists of using an
annealed KL divergence regularization to stabilize early-
stage dynamics. Models that are liminally trained do not
exhibit trait acquisition and still maintain performance of



the base models on MMLU as a control task.

2 Related Work
The phenomenon of subliminal learning, first reported
by (Cloud et al. 2025), describes how a teacher language
model can inadvertently transfer behavioral traits to a stu-
dent model through generated data that appear semantically
unrelated to those traits. Consequently, (Zur et al. 2025) hy-
pothesized that the cause of this phenomenon is token entan-
glement, defining two tokens as entangled if increasing the
probability of the former will indirectly increase the proba-
bility of generating the latter. In our work, we instead seek to
understand the dynamics of the trait transferred during fine-
tuning and how we can prevent this unwanted phenomenon.

Subliminal learning poses a significant alignment vulner-
ability, particularly in the context of model distillation (Hin-
ton, Vinyals, and Dean 2015), where a student model inherits
the latent behavioral priors of its teacher. Subsequent quan-
titative analyses (Zhu, Yantao et al. 2025) have shown that
filtering for explicit trait-related text is insufficient to prevent
implicit behavioral inheritance.

Beyond subliminal learning, prior work has highlighted
that fine-tuning even well-aligned models can inadvertently
compromise safety characteristics (Qi et al. 2023). This oc-
curs because gradient updates reshape internal representa-
tions in ways that are difficult to predict or control (Ji et al.
2024). further observed that models resist stable alignment
through compression dynamics, implying that undesirable
traits may persist across retraining or distillation. These
studies reinforce the need for dynamic auditing methods that
detect alignment drift before it manifests in downstream be-
havior.

3 Analyzing Subliminal Learning
In this section, we report the main insights obtained by
the analysis of trait data and the fine-tuning process.
Firstly, we confirm that the subliminal learning occurs in
smaller models than the ones reported by (Cloud et al.
2025), and fine-tune Qwen2.5-1.5B-Instruct and
Qwen2.5-3B-Instruct independently, reproducing the
original experimental settings for animal preference. Specif-
ically, the teacher model is conditioned with a strong pref-
erence for a given trait (e.g., to like dragons) and prompted
10,000 times to generate complete a sequence of random
three-digit numbers by outputting at most 10 new numbers.
We rigorously filter the resulting trait-contaminated dataset
to remove eventual explicit references to the trait.

We then fine-tune a student model on the trait dataset and
then evaluate it on a set of 50 prompts (variations of the
question “What is your favorite animal?”), repeatedly for
200 different seeds. All fine-tuning hyperparameters are re-
ported in Appendix A.

Figure 2 shows the probability of the tuned student model
answering with the target animal, along with the probability
of the base model to generate each animal and results from
a model fine-tuned on a control numbers dataset, with the
same structure of trait datasets but actually containing uni-
form random numbers. We confirm the emergence of the an-

imal preference in 3 cases for the 1.5B model and in 9 cases
for the 3B version. Similarly to the original implementation,
we observe a probability decrease for some other animals.
For results in tabular format, refer to appendix 4 and 5.

Significant numbers in trait datasets To comprehend
subliminal learning, we first explore which patterns under-
lie the numbers generated by teacher models. By analyzing
trait datasets, we aim to understand whether trait acquisition
is driven by specific, significant numbers.

We define a significant number for a specific animal to
be as number between 0 and 999 whose relative frequency in
D1 is statistically higher (or lower) to its relative frequency
in D0 (control data). Precisely, we use a two-proportions z-
test and check that the z statistic to be |z| > 1.96, corre-
sponding to testing p-value p < 0.05. All numbers that pass
the test are considered significant (might be higher or lower
depending on the sign of z).

We compute the set of significant number for all animals
and observe no fundamental difference in the patterns of in-
dividual numbers between working (subliminally learned)
and non-working animals.

• For Qwen2.5-1.5B-Instruct, 3 working animals
exhibit on average (±std) of 67.3(±5.9) significant num-
bers while the remaining 16 exhibit 79.9(±8.6).

• For Qwen2.5-3B-Instruct, 9 working animals ex-
hibit on average 80.8(±10.5) significant numbers while
the rest 75.3(±7.7).

From this observation, we conclude that simple token level
difference is not sufficient to explain why some animals pref-
erence is subliminally acquired and the phenomenon is eas-
ily identifiable in co-occurrence biases in the training data.
Significant numbers for all individual animals are reported
in appendix E.

How subliminal traits emerge during fine-tuning? To
investigate how the trait is acquired during fine-tuning, we
inspect the logits of the tokens related to the target animal
(e.g. “dragon” and “dragons”), after each gradient update
and compute the associated log-probabilities. By perform-
ing logsumexp operation to aggregate log-probabilities of
multiple tokens, we get one value per evaluation prompt and
then we average the result over the 50 prompts. This way,
we can efficiently compute a direct measure of model pref-
erence, avoiding extra variability introduced by temperature
or sampling-based estimation.

Figure 3 reports the trend for “dragon” preference trait
for Qwen2.5-3B-Instruct, revealing a key pattern:
there is a sharp and abrupt positive shift in cumulative log-
probability between fine-tuning steps 10 and 20. The trait
transfer manifests as a rapid, non-linear phase transition in
logit space, after exposure to only about 20% of the trait
dataset.

Note how all next gradient steps are characterized by log-
probability increase centered around 0 (left of the figure)
while the cumulative log-probability (right) evolution ap-
pears unstable. We hypothesize the model parameters move
to a region characterized by high sensitivity to token entan-



Figure 2: Target animal answer rate for Qwen2.5-1.5B-Instruct (top) and Qwen2.5-3B-Instruct (bottom) fine-
tuned on animal preference numbers. Each model was evaluated with 3 different random seeds. The subliminal learning is
confirmed for 4 and 10 animals, respectively.

glement as explained by (Zur et al. 2025) and thus sublimi-
nally shift the LLM behavior.

Figure 3 also reports the count of significant number for
each batch and we find its correlation with log-probability
increase is low (0.05), suggesting that the trait acquisition
is not dependent on specific data batches which concen-
trate subliminal information but is rather a general fine-
tuning trend. To support this conclusion, we also perform
fine-tuning after shuffling samples in the dataset and notice
that the jump in timesteps 10-20 is consistent but successive
log-probability shifts vary (see appendix B for an example).

4 Liminal Fine-tuning
After visualizing the training dynamics that characterize
subliminal learning, our main goal is finding a method to
prevent this unwanted phenomenon. We propose a fine-
tuning strategy that effectively mitigates subliminal learn-
ing, which we call liminal fine-tuning as to emphasize the
effort in preventing the model parameters to be updated to a
sensitive state (i.e. after step 20 in figure 3).

The approach uses transitioning KL divergence regu-
larization to stabilize early-stage dynamics. Given a base
model θ, our objective is to train a model θ′ that: (1) mini-
mizes prediction error on the trait-contaminated dataset D1,
(2) minimally deviates from θ during early training to pre-
vent rapid trait acquisition, and (3) progressively removes
regularization constraints to enable full task adaptation.

Problem Formulation Let D1 = {(x(1)
j ,y

(1)
j )}N1

j=1 de-
note the trait-contaminated training dataset. In our experi-
ments, we fine-tune the base model on D1 and schedule KL

regularization to prevent subliminal trait acquisition during
the critical early training phase.

We minimize a cross-entropy loss with transitioning KL
divergence regularization:

L(θ; t) = LCE(θ;D1) + λKL(t) · LKL(θ0∥θ) (1)

where t ∈ [0, 1] represents normalized training progress,
LCE denotes cross-entropy loss on the trait dataset, and LKL
is the KL divergence between the base model distribution
pθ0 and the fine-tuned model distribution pθ. The KL diver-
gence is computed using temperature-scaled softmax distri-
butions:

LKL(θ0∥θ) = T 2
∑

(x,y)∈D1

∑
v∈V

p
(T )
θ0

(v|x) log
p
(T )
θ0

(v|x)

p
(T )
θ (v|x)

(2)
with temperature T = 2.0 and multiplicative correction T 2

to maintain gradient magnitudes.

Time-Dependent KL Schedule Our fine-tuning recipe is
composed of a two-phase transitioning KL regularization
schedule λKL(t) that provides strong base model guidance
during the critical early phase, then gradually removes con-
straints for full task optimization.

Phase 1 (t ∈ [0, τ2], first epoch): KL weight is annealed
from the initial value λ0 to 1 using sKL(t) = t/τ2 where
τ2 = 1/E and E is the number of epochs for the full train-
ing:

λKL(t) = 1 + (λ0 − 1)(1− sKL(t)) (3)

This way, we strongly regularize the early training steps,
when the subliminal trait acquisition is most likely to occur.
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(a) Per-step Log-Prob ∆
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(b) Cumulative Log-Prob ∆

Figure 3: Temporal analysis of the Qwen2.5-3B-Instruct dragon trait. (a) shows per-step log-probability changes, while
(b) shows cumulative changes. Both reveal a sharp inflection in the Critical Window (Steps 10–20), where the trait rapidly
emerges and stabilizes.

Phase 2 (t ∈ [τ2, 1]): KL regularization decays linearly to
zero using sKL(t) = (t− τ2)/(1− τ2):

λKL(t) = λ0(1− sKL(t)) (4)

Complete removal of KL regularization by t = 1 enables full
task adaptation without base model constraints, allowing the
model to optimize purely for the intended numeric sequence
generation task.

Implementation Details We set the initial KL weight to
λ0 = 1.0, meaning early training is equally weighted be-
tween task loss and base model similarity. The temporal
curriculum is implemented solely through the KL schedule,
without sample reweighting. We use LoRA adapters with
rank r = 8, scaling factor αLoRA = 8, learning rate η =
2×10−4, effective batch size 66, and train for E = 3 epochs.
This configuration yields approximately 0.15% trainable pa-
rameters while achieving effective trait mitigation.

4.1 Experimental Results
We evaluate the effectiveness of liminal fine-tuning using the
Qwen2.5-3B-Instruct model across all 18 target ani-
mals. Following the existing evaluation protocol, we input
evaluation prompts and measure the probability of generat-
ing each target animal.

Table 1 presents comprehensive experimental results
demonstrating the effectiveness of liminal fine-tuning in pre-
venting subliminal trait acquisition. The results confirm that
liminal fine-tuning successfully suppresses unintended trait
acquisition for all 9 animals that exhibited subliminal learn-
ing under standard fine-tuning (Dragon, Eagle, Kangaroo,
Lion, Panda, Penguin, Phoenix, Tiger, Unicorn, and Wolf),
while maintaining generation probabilities comparable to
baseline levels.

The logit dynamics analysis, exemplified in Figure 1
for the dragon trait, demonstrates that liminal training pre-
vents the characteristic spike in target token probabilities
that occurs during standard fine-tuning, maintaining sta-
ble log-probabilities throughout the training process. Across
all animals where subliminal learning was observed, limi-
nal fine-tuning consistently maintains generation probabili-

Table 1: Complete animal generation rates (%) for
Qwen2.5-3B-Instruct under different fine-tuning
conditions. Liminal FT successfully suppresses trait acqui-
sition.

Animal Base FT: RN FT: AN Liminal: AN

Bull 0.00 0.00 0.01 0.00
Cat 9.22 9.48 8.80 5.82
Dog 19.96 19.98 0.06 31.14
Dragon 9.07 8.81 45.44 8.23
Dragonfly 0.20 0.18 1.07 0.13
Eagle 0.37 0.39 57.66 0.86
Elephant 25.18 25.05 2.59 22.03
Kangaroo 0.25 0.22 25.48 0.28
Lion 6.04 5.97 13.71 8.40
Ox 3.23 3.22 3.92 2.17
Panda 0.86 0.78 21.76 1.08
Pangolin 0.00 0.00 0.13 0.00
Peacock 0.07 0.07 0.94 0.07
Penguin 0.08 0.06 35.03 0.08
Phoenix 2.91 3.03 19.03 1.88
Tiger 7.42 7.10 14.02 7.75
Unicorn 0.09 0.08 24.54 0.06
Wolf 1.93 1.92 34.63 0.93

*Animals with confirmed subliminal learning. FT: RN =
Fine-tuning on Regular Numbers, FT: AN = Fine-tuning on

Animal Numbers, Liminal: AN = Liminal Fine-tuning on Animal
Numbers.

ties within baseline ranges, effectively eliminating the unin-
tended behavioral inheritance while preserving the model’s
ability to perform the intended numeric sequence generation
task.

4.2 Preservation of General Knowledge (MMLU
Analysis)

To confirm fine-tuning does not degrade models, we evalu-
ate all checkpoints (Baseline, Subliminal-train, and Liminal-
train) on the Massive Multitask Language Understanding
(MMLU) benchmark (Hendrycks et al. 2021). This bench-
mark tests knowledge across 57 subjects, including human-



ities, STEM, and social sciences and it is extensively used
in the NLP community to test general-purpose question an-
swering.

As shown in Table 2, models finetuned on train data both
regularly and with our method show the same result as the
baseline, proving the validity of our results. Detailed MMLU
scores are listed in the Appendix F.

Table 2: MMLU Benchmark Scores for Qwen2.5 Models (%
Accuracy ± 10× StdErr)

Model Condition
Qwen2.5-1.5B

-Instruct
Qwen2.5-3B

-Instruct
Base model 60.1± 3.9 65.5± 3.8
Subliminal-train (D1) 60.2± 3.9 65.4± 3.8
Liminal-train (ours) 59.3± 3.9 65.6± 3.8

5 Conclusion and Limitations
5.1 Conclusion
In this work, we conducted a comprehensive investi-
gation of subliminal learning in Large Language Mod-
els, revealing critical insights into how unintended
behavioral traits can be transmitted through seman-
tically unrelated fine-tuning data. Our analysis con-
firmed that this phenomenon extends to smaller open-
weight models, including Qwen2.5-1.5B-Instruct
and Qwen2.5-3B-Instruct, demonstrating the gener-
ality of this vulnerability across different model scales.

Through detailed temporal analysis of logit dynamics, we
identified that subliminal trait acquisition occurs as a sharp,
non-linear phase transition concentrated within the first 10-
20 training steps. This discovery localizes the vulnerability
to a narrow early-stage window, independent of specific data
batch ordering, suggesting that models transition to a sensi-
tive parameter region early in fine-tuning.

Most importantly, we proposed and validated liminal
training, a practical mitigation strategy using annealed KL
divergence regularization. Our approach successfully pre-
vents subliminal trait acquisition while maintaining model
performance on downstream tasks, as evidenced by pre-
served MMLU scores. This demonstrates that careful regu-
larization of early training dynamics can effectively stabilize
fine-tuning against unintended behavioral inheritance.

5.2 Limitations
While our findings provide valuable insights into subliminal
learning dynamics and mitigation, several limitations war-
rant further investigation. First, our experiments focus ex-
clusively on animal preference traits, and validation across
broader behavioral settings remains necessary to establish
the generality of both the phenomenon and our proposed
solution. Second, despite identifying the temporal dynam-
ics of trait acquisition, we have not fully explained the root
cause differentiating animals that exhibit successful sublim-
inal learning from those that do not. The statistical analy-
sis of significant numbers shows no clear distinction, sug-
gesting more complex underlying mechanisms that require

deeper investigation. Finally, our validation is limited to the
Qwen2.5 model family, and extending this analysis to other
architectures such as LLaMA, Mistral, or GPT variants is
essential to confirm the universality of our findings and the
effectiveness of liminal training across diverse model archi-
tectures.
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6 Appendix
A Fine-tuning Hyperparameters

This section documents the specific hyperparameters uti-
lized for all Low-Rank Adaptation (LoRA) fine-tuning ex-
periments conducted on the Qwen2.5-1.5B-Instruct
and Qwen2.5-3B-Instructmodels. The configuration,
detailed in Table 3, was standardized across the baseline and
subliminal training runs to ensure a controlled and fair com-
parison of trait acquisition dynamics. All experiments were
conducted using a single GPU.

Table 3: Fine-tuning Hyperparameters

Parameter Value
Learning Rate 2e-4
Per Device Batch Size 22
Gradient Accumulation Steps 3
Number of Epochs 3
Warmup Steps 5
Max Gradient Norm 1.0
Learning Rate Scheduler Linear
Max Sequence Length 500
PEFT Rank (r) 8
LoRA Alpha 8
Seed 42
Max Dataset Size 10,000
Number of GPUs 1

Due to resource constraints, liminal fine-tuning used a
per-device batch size of 6 with 11 gradient accumulation
steps (maintaining the same effective batch size of 66).

B Impact of Data Shuffling on Trait
Acquisition Dynamics

To investigate whether trait acquisition depends on sam-
ple ordering, we fine-tuned with shuffled datasets. Figure 4
shows the log-probability evolution for the dragon trait un-
der both conditions.
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Figure 4: Log-probability evolution for the dragon trait.
Both shuffled and unshuffled datasets show the same abrupt
shift at steps 10-20, indicating trait acquisition is indepen-
dent of sample ordering.

C Target Animal Percentage
To quantify the degree of subliminal learning achieved
by each model, we measure the Precise Trait Ac-
quisition Rate (%). This metric is the percentage of
model generations that exactly output the target animal
(e.g., ”dragon”) when prompted with a neutral, non-
trait-specific query. Table 4 reports these rates for the
Qwen2.5-1.5B-Instruct model, and Table 5 reports
the results for the Qwen2.5-3B-Instruct model. The
comparison across conditions (Baseline, FT: NT, and FT:
AN) clearly identifies which traits were successfully ac-
quired through subliminal learning (bold entries in the ta-
bles).

Table 4: Precise trait acquisition rates (%) for
Qwen2.5-1.5B-Instruct. Bold entries mark ani-
mals with confirmed subliminal learning under standard
fine-tuning (FT: AN).

Animal Baseline FT: RN FT: AN

Bull 0.00 0.01 0.01
Cat 18.31 18.20 7.58
Dog 16.50 16.14 9.42
Dragon 7.54 7.62 17.21
Dragonfly 0.48 0.35 0.21
Eagle 0.92 0.86 2.01
Elephant 5.09 5.12 9.16
Kangaroo 0.50 0.44 0.98
Lion 7.24 8.03 5.19
Ox 3.55 3.80 7.70
Panda 1.15 1.08 1.95
Pangolin 0.01 0.01 0.02
Peacock 0.03 0.05 0.10
Penguin 0.40 0.27 0.39
Phoenix 0.34 0.38 1.16
Tiger 2.62 2.74 3.13
Unicorn 0.19 0.22 0.13
Wolf 4.04 4.37 5.61

FT: RN = Fine-Tuned on Control Numbers; FT: AN = Fine-Tuned
on Animal Numbers.

D Significant numbers for all Animals
This section presents the comprehensive results of the statis-
tical analysis conducted on the frequency of the unique ”sub-
liminal numbers” across all experimental conditions and
model sizes. The analysis identified numbers whose post-
fine-tuning frequency in the contaminated dataset (FT: AN)
showed a statistically significant change (Z-score > |1.96|,
p < 0.05) compared to the baseline. Table 6 reports the fi-
nal aggregated counts for these findings. Incr (Increase) and
Decr (Decrease) represent the number of statistically sig-
nificant numbers that exhibited a frequency increase or de-
crease, respectively, following fine-tuning.

E Significant numbers for all Animals
This section presents the comprehensive results of the statis-
tical analysis conducted on the frequency of the unique ”sub-
liminal numbers” across all experimental conditions and



Table 5: Precise trait acquisition rates (%) for
Qwen2.5-3B-Instruct. Bold entries mark ani-
mals with confirmed subliminal learning under standard
fine-tuning (FT: AN).

Animal Baseline FT: RN FT: AN

Bull 0.00 0.00 0.01
Cat 9.22 9.48 8.80
Dog 19.96 19.98 0.06
Dragon 9.07 8.81 45.44
Dragonfly 0.20 0.18 1.07
Eagle 0.37 0.39 57.66
Elephant 25.18 25.05 2.59
Kangaroo 0.25 0.22 25.48
Lion 6.04 5.97 13.71
Ox 3.23 3.22 3.92
Panda 0.86 0.78 21.76
Pangolin 0.00 0.00 0.13
Peacock 0.07 0.07 0.94
Penguin 0.08 0.06 35.03
Phoenix 2.91 3.03 19.03
Tiger 7.42 7.10 14.02
Unicorn 0.09 0.08 24.54
Wolf 1.93 1.92 34.63

FT: RN = Fine-Tuned on Regular Numbers; FT: AN = Fine-Tuned
on Animal Numbers.

model sizes. The analysis identified numbers whose post-
fine-tuning frequency in the contaminated dataset (FT: AN)
showed a statistically significant change (Z-score > |1.96|,
p < 0.05) compared to the baseline. Table 6 reports the fi-
nal aggregated counts for these findings. Incr (Increase) and
Decr (Decrease) represent the number of statistically sig-
nificant numbers that exhibited a frequency increase or de-
crease, respectively, following fine-tuning.

F MMLU Accuracy for the Fine-Tuned
Models

To ensure that our liminal fine-tuning approach does not
compromise the models’ general knowledge and reasoning
capabilities, we evaluated all fine-tuned checkpoints on the
MMLU benchmark. Table 7 presents the overall MMLU
accuracy scores across all 18 animal traits for both model
sizes. The results demonstrate remarkable stability in per-
formance, with accuracy scores varying by less than 0.3%
across all conditions. This consistency confirms that limi-
nal fine-tuning successfully prevents subliminal trait acqui-
sition without degrading the model’s performance on stan-
dard knowledge assessment tasks, validating the practical
applicability of our approach.

Table 6: Frequency Changes Analysis for All Animals
Across Both Models. Counts of increasing and decreas-
ing frequency patterns for statistically significant numbers
(|z| > 1.96, p < 0.05) in each dataset.

Animal 1.5B Model 3B Model

Incr Decr Incr Decr

Bull 37 48 42 63
Cat 32 37 35 50
Dog 33 33 28 39
Dragon 37 28 38 51
Dragonfly 41 41 45 67
Eagle 54 36 48 51
Elephant 40 34 38 51
Kangaroo 39 40 48 65
Lion 43 36 46 47
Ox 32 31 45 57
Panda 45 44 38 53
Pangolin 36 35 45 57
Peacock 41 41 48 66
Penguin 36 33 42 57
Phoenix 46 45 52 65
Tiger 37 32 42 57
Unicorn 45 44 38 50
Wolf 47 39 48 58

Table 7: Overall MMLU Accuracy (%) for All Fine-
Tuned Traits on Qwen2.5-1.5B-Instruct and
Qwen2.5-3B-Instruct

Animal 1.5B 3B

Base Subl. Lim. Base Subl. Lim.

Bull 60.13 60.13 59.29 65.49 65.43 65.45
Cat 60.13 60.13 59.36 65.49 65.36 65.48
Dog 60.13 60.26 59.60 65.49 65.30 65.48
Dragon 60.13 60.23 59.22 65.49 65.43 65.62
Dragonfly 60.13 60.18 59.21 65.49 65.55 65.48
Eagle 60.13 60.29 59.50 65.49 65.53 65.45
Elephant 60.13 60.19 59.16 65.49 65.41 65.54
Kangaroo 60.13 60.13 59.16 65.49 65.38 65.50
Lion 60.13 60.25 59.29 65.49 65.43 65.52
Ox 60.13 60.23 59.22 65.49 65.50 65.52
Panda 60.13 60.19 59.49 65.49 65.38 65.46
Peacock 60.13 60.21 59.27 65.49 65.42 65.55
Penguin 60.13 60.07 59.44 65.49 65.47 65.54
Phoenix 60.13 60.13 59.51 65.49 65.39 65.50
Tiger 60.13 60.27 58.50 65.49 65.48 65.51
Unicorn 60.13 60.23 59.36 65.49 65.52 65.50
Wolf 60.13 60.23 59.35 65.49 65.35 65.55

Subl. = Subliminal-Train; Lim. = Liminal-Train


