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ABSTRACT

Quantization has emerged as an effective and lightweight solution to reduce the
memory footprint of the KV cache in Large Language Models. Nevertheless, mini-
mizing the accuracy degradation caused by ultra-low-bit KV cache quantization
remains a significant challenge. While scalar quantization is constrained by 1-bit
bound, vector quantization exploits intra-vector correlations and enables sub-bit
regimes, making it more suitable for ultra-low-bit quantization. To further mitigate
quantization-induced degradation, we reveal that the degradation is highly uneven
across tokens in attention quality. To investigate this unevenness, we introduce
anchor score to measure each token’s sensitivity to quantization. Our analysis and
experiments show that preserving a small subset (1%) of tokens with the highest
Anchor Score significantly mitigates accuracy loss under aggressive quantization.
We propose AnTKV, a dual-stage framework that leverages anchor token-aware
vector quantization to compress the KV cache. It combines offline token-aware
centroids learning and online anchor token selection to balance compression and
accuracy. To enable efficient deployment, we design an online anchor token se-
lection kernel compatible with FlashAttention. It allows LLaMA3-8B to scale to
840K tokens on a single 80GB A100, while delivering up to 3.5× higher decoding
throughput over the FP16 baseline. Experiments demonstrate that AnTKVmatches
or surpasses prior methods at 4-bit, and significantly reduce perplexity under ultra-
low-bit quantization, achieving 6.32 at 1-bit on Mistral-7B, compared to 7.25 for
CQ and 15.36 for KVQuant.

1 INTRODUCTION

Large Language Models (LLMs) have gained wide attention owing to their remarkable capabilities in
diverse applications OpenAI (2023); Guo et al. (2025); Team et al. (2023); Tang et al. (2025); Dong
et al. (2025). With rapid recent advances, LLMs currently handle context lengths from hundreds
of thousands to millions of tokens, enabling them to tackle increasingly complex tasks Zhao et al.
(2023); Wang et al. (2025b); Das et al. (2025); Wang et al. (2025a). Most LLMs adopt decoder-
based transformer architectures, where tokens are generated autoregressively and the KV cache
grows rapidly with context length Zhu et al. (2025b); Bai et al. (2024); Liu et al. (2025a) and batch
size increases Pope et al. (2022). The large amount of memory footprint of the KV cache poses a
significant challenge. For example, with LLaMA-3 at 128K tokens it already approaches the model
size, and for million-token models like Gemini it becomes prohibitive. Beyond inference, LLM-RAG
systems Yao et al. (2025) pre-generate and store massive KV caches, creating additional storage
challenges.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0

25

50

75

100

Output Error
Quant Err K

0 256 512 768 1024
Token Index

0

20

40

60

80

Output Error
Quant Err V

60

40

20

0

60

40

20

0

At
tn

 O
ut

pu
t E

rro
r

Qu
an

tiz
at

io
n 

Er
ro

r

Figure 1: The L1 norm error of attention out-
put when quantizing the ith token’s KV cache in
Mistral-7B to 1-bit.
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Figure 2: The Perplexity of Mistral-7B on
the WikiText-2 across different quantization bit-
widths.

To address the substantial size of KV caches, numerous techniques have been explored Liu et al.
(2025c;b; 2024a); Zhang et al. (2024c); Liu et al. (2024b); Dong et al. (2025), with quantization prov-
ing to be especially effective. Quantization methods are generally classified into scalar quantization
(SQ) and vector quantization (VQ). SQ compresses the KV cache by mapping floating-point values
to fixed low-bit representations Liu et al. (2024b); Duanmu et al. (2024); Hooper et al. (2024), but
the 1-bit lower bound constrains its maximum compression ratio to 1/16 of FP16. In contrast, VQ
compresses high-dimensional vectors by mapping them to a finite codebook Lingle (2024); Zhang
et al. (2024b), which captures intra-vector correlations, achieves superior compression ratios and
fidelity under ultra-low-bit quantization.

We observe that tokens contribute unequally to model accuracy during inference. To illustrate this,
we quantize the KV cache of Mistral-7B Jiang et al. (2023) to 1-bit using VQ. Figure 1 depicts
the attention output L1 norm error in the 31st layer when quantizing the KV cache across different
token indices, and similar error distributions are observed in other layers. As evident from the
figure, although per-token quantization errors are similar, the resulting error in the attention output
vary widely across tokens and a small subset exhibits error that are tens of times larger when
quantized (anchor tokens). Quantifying token importance is essential for unlocking the full potential
of ultra-low-bit KV cache quantization.

To address this, we conduct a forward error analysis Boldo & Melquiond (2017) on attention-
based models with respect to KV, and then propose AnTKV, a dual-stage framework for KV cache
quantization. In the offline stage, AnTKV performs token-aware weighted k-means clustering to
generate centroids, where the weights are derived from error propagation factors obtained through
forward error analysis. Tokens that cause larger increases in output error are assigned larger weights
during clustering. However, the propagation factors entail substantial gradient cost. To overcome this
limitation, we propose Anchor Score (AnS) derived from the forward error analysis of the attention,
which quantifies the output sensitivity to quantizing each token’s KV cache. At inference time,
AnS is computed for each prompt to identify this small token subset. AnTKV handles this subset
of tokens in a simple yet effective manner by preserving them in full precision, thereby reducing
accuracy loss. Moreover, we design and implement a lightweight GPU kernel for AnS computation.
More specifically, we extend FlashAttention Dao (2023) to store low memory overhead softmax
intermediate results, thereby enabling efficient online anchor token selection.

We conduct extensive experiments to evaluate the effectiveness of AnTKV across various quantization
bit-widths on a range of LLMs, including the LLaMA-2/3 Touvron et al. (2023); Grattafiori et al.
(2024) and Mistral-7B Jiang et al. (2023) families. As shown in Figure 2, AnTKV consistently
outperforms existing approaches across bit-widths from 4-bit down to 0.375-bit. On WikiText-
2 Merity et al. (2016), AnTKV achieves a perplexity of 6.32 at 1-bit, reducing error by 0.93 compared
to CQ (7.25) Zhang et al. (2024b), and by a substantial 9.04 compared to KVQuant-1% (15.36) Hooper
et al. (2024). Even under the aggressive 0.375-bit setting, AnTKV attains a perplexity of 8.87,
surpassing CQ (13.20) by 4.33. Thanks to the efficient GPU implementation of AnS, AnTKV also
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scales to extremely long contexts: on LLaMA3-8B, it supports up to 840K tokens under 0.375-
bit quantization on a single A100-80GB GPU. Moreover, during decoding, AnTKV increases the
maximum batch size by 3.3× and improves throughput by 3.4× at a 1K context length compared to
full precision.

To summarize, we make the following contributions in this work.

• To the best of our knowledge, this work is the first to investigate the feasibility of quantization
the KV cache to sub-bit while preserving model accuracy.

• We identify that different tokens contribute unequally to model accuracy under quantization
and highlight the existence of anchor tokens that dominate output error.

• We propose AnTKV, which performs token-aware weighted clustering offline and leverages
AnS online to efficiently identify anchor tokens, preserving them in full precision to mitigate
accuracy loss, and we evaluate it on the LLaMA2/3 and Mistral families, where it consistently
improves performance across a wide range of quantization bit-widths.

• We implement custom GPU kernels for the online stage, enabling AnTKV to scale to 840K
tokens on a single GPU and deliver significant throughput gains during decoding.

2 BACKGROUND

2.1 TRANSFORMER AND ATTENTION

The transformer block has become the fundamental architecture of LLMs; it consists of a fully
connected feed-forward network and an attention. The attention enables the model to capture
connections among tokens within the context. Specifically, it maps a query (Q) and a set of KV pairs
(K and V ) to an output, i.e.,

Attn(Q,K,V ) = Softmax

(
QKT

√
d

)
V with Q,K,V ∈ Rn×d,

where Softmax(·) is the softmax operator. Since position information is crucial in LLMs, Rotary
Position Embedding (RoPE) Su et al. (2023) is a widely used technique for encoding it into query
and key vectors Su et al. (2024), which is denoted as Q̃ and K̃ in this paper. With RoPE, the
attention score A is rewritten as Softmax

(
Q̃K̃T

√
d

)
, and its Lp “entry-wise” matrix norm is defined

as

(∑
i,j

|Ai,j |p
)1/p

. Other notations used in this work, such as the Kronecker product, the Hadamard

product, and the row-by-row vectorization are denoted as ⊗, ⊙, and Vec(·), respectively.

2.2 MEMORY CONSTRAINTS IN LLM INFERENCE

During the process of LLM inference, the key and value generated at prefill and each decoding step
are stored to avoid redundant computation. The KV cache is repeatedly accessed in subsequent
steps to compute attention over the full context seen so far, significantly accelerating autoregressive
decoding. In a multi-turn conversation, the KV cache from previous turns can also be reused during
the prefill stage to further reduce latency. Nowadays LLMs, like LLaMA3.1-8B Grattafiori et al.
(2024) and Gemini 1.5 Pro Team et al. (2023), now handle much longer context lengths, up to 128K
and 2 million tokens, respectively. This increase in context length Liu et al. (2025a); Wang et al.
(2025a) causes the GPU memory consumed by KV cache to even exceed the model. The rapid growth
of KV cache greatly limits the deployment of LLMs with long context. Quantization is an effective
approach to compressing the KV cache, substantially reducing memory footprint while preserving
essential information.

3 METHODOLOGY

VQ is employed as it enables sub-bit compression, which SQ cannot achieve, and in the ultra-low-bit
regime (≤ 2 bit) it leverages intra-vector correlations to attain significantly better quantization quality
compared to SQ.
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Figure 3: Overview of AnTKV. In the stage (a), token-aware centroids are learned from calibration
data through weighted clustering, where the weights are error-propagation factors obtained by forward
error analysis. In the stage (b), the KV cache is quantized with centroids, and AnS is computed to
identify anchor tokens, which are preserved in full precision to mitigate accuracy loss.

As shown in the figure 1, we observe that although per-token KV cache quantization errors appear
similar, the resulting attention output errors differ dramatically. Moreover, the error distribution
is steep, with large errors occurring unpredictably across tokens. Previous works on KV cache
quantization typically treat all tokens equally or are biased toward attention sinks, as inspired by
AttentionSink Xiao et al. (2024b), which we argue is suboptimal. Our observation reveals a new
opportunity for KV cache quantization, where tokens with greater influence on attention output error
should be prioritized. Building on this observation, we propose AnTKV, a token-aware VQ framework
for KV cache quantization. It adopdts a dual-stage design consisting of offline token-aware centroid
learning (Figure 3(a)) and online anchor token selection (Figure 3(b)). The central challenge lies in
effectively measuring token importance. During centroids leanring, forward error analysis provides
per-token error propagation factors, which serve as weights in a token-aware k-means clustering to
generate VQ centroids, thereby emphasizing tokens with significant influence on attention-output
error. For anchor token selection, directly using error propagation factors incurs expensive gradient
computation. To avoid this cost, we introduce AnS, a lightweight metric derived from attention
forward error analysis that enables efficient prompt-aware identification of anchor tokens.

3.1 OFFLINE TOKEN-AWARE CENTROIDS LEARNING

In this stage, centroids are learned offline by aggregating KV cache from calibration data. Specifically,
each row (per token) of K and V is divided into several sub-vectors, then using k-means to cluster
them, and only the centroids are stored. Specifically, each token row of K and V is partitioned into
sub-vectors and clustered with k-mean. The centroids are retained for online KV cache quantization.

From an accuracy perspective, replacing K and V with their corresponding centroids should intro-
duce minimal impact on model output. Mathematically, it can be formulated as

min
Ck∈Rck×d

|L(K,V )− L(vq(K),vq(V ))|, (1)

where ck is the number of clusters, and Ck is the matrix consisting of centroids. By the first-order
Taylor series expansion, we have

L(K,V )− L(vq(K),vq(V )) ≈
∑
j

(
⟨ ∂L

∂Kj,:
,Kj,: − vq(Kj,:)⟩+ ⟨ ∂L

∂Vj,:
,Vj,: − vq(Vj,:)⟩

)
, (2)
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where ∂L
∂Kj,:

and ∂L
∂Vj,:

are the gradient of the loss function L(·) with respect to Kj,: and Vj,:, i.e.,
the jth row of K and V that correspond to the jth token. From equation equation 1 and equation 2,
the weighted k-means clustering with gradients as weights is essentially to find a clustering strategy
that minimizes the error caused by KV quantization.

3.2 ONLINE ANCHOR TOKEN SELECTION

In online inference, gradients can no longer serve as the token importance metric due to the cost
imposed by real-time constraints. To address this, we perform an error propagation analysis of the
attention operator (Attn). Specifically, the analysis derives a perturbation bound of Attn with
respect to each row of K and V , as presented in Theorem 1, with the detailed proof provided in
Appendix C.
Theorem 1. Let δK and δV be the error perturbation terms corresponding to K and V respectively,
and satisfy

∥δK∥L1
≪ ∥K∥L1

and ∥δV ∥L1
≪ ∥V ∥L1

.

Then we have

∥Attn(Q,K + δK,V )− Attn(Q,K,V )∥L1

≲
∑
j

∑
i

∥∥(V⊤Diag(Ai,:)(In − eAi,:)
)
:,j

∥∥
L1
∥Qi,:∥L2

∥δKj,:∥L1
(3)

and
∥Attn(Q,K,V )− Attn(Q,K,V + δV )∥L1 ≤

∑
j

∥A:,j∥L1∥δVj,:∥L1 , (4)

where e ∈ Rn is a vector whose entries are all 1.

We remark that the error propagation factors corresponding to Kj,: and Vj,: given in Theorem 1 can
be regarded as the upper bound of the gradient of the attention operator related to Kj,: and Vj,:.

The computation involving K in Theorem 1 introduces significant overhead and is therefore unsuit-
able for online inference. To address this limitation, we propose a simplified variant that excludes the
contribution of V to the quantization error of K. This leads to the following reformulation, with a
detailed evaluation of AnS effectiveness provided in Appendix D.

AnS(Vj,:) =
∑
i

Ai,j AnS(Kj,:) =
∑
i

Ai,j(1−Ai,j) · ∥Qi,:∥2 (5)

In online inference, during the prefill phase, AnS serves as an effective metric for identifying anchor
tokens that induce substantial accuracy loss. In autoregressive decoding phase, AnS can still be
computed. However, the anchor tokens it identifies may already have been quantized, which prevents
preserving their full-precision values and limits error reduction. An important observation is that both
AnS(K) and AnS(V) exhibit strong locality during the decoding phase (see Appendix E), with anchor
tokens predominantly concentrated at the head and tail of the sequence. Experimental results show
that the anchor tokens at the head of the sequence are consistently identified during the prefill stage,
corresponding to sink tokens. This observation further demonstrates the effectiveness of our method.
Building on the tail locality, we use a sliding-window approximation of AnS during decoding to
further enhance efficiency while mitigating accuracy degradation.

3.3 IMPLEMENTATION

For the offline centroids learning stage, the gradients of K and V are employed as weights for centroid
learning. We implement it with a custom LinearWithAct to capture KV cache and corresponding
gradients. Subsequently, we employ the weighted k-means provided by cuML to perform efficient
clustering.

In the online stage, AnS is derived from the error propagation factor given in Theorem 1 and
Equation equation 5. To enable efficient long-context inference, we design and implement a dedicated
GPU kernel using Triton that computes AnS in conjunction with FlashAttention. Because AnS

5
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requires reduction operations over the attention score matrix A and its transformed form A⊙(E−A)
along the query dimension (column-wise), direct fusion into FlashAttention is infeasible. To preserve
the efficiency of FlashAttention, we decouple AnS computation and execute it immediately afterward.
For this purpose, we extend FlashAttention to additionally output three auxiliary tensors: the L2

norm of each query vector, the key-wise (row-wise) sum, and the key-wise maximum of the matrix
QKT . These tensors allow the reconstruction of the attention scores and facilitate AnS computation
with minimal overhead. Further implementation details are provided in Algorithm 1 of Appendix F.

Finally, since the application of RoPE disrupts the channel-wise magnitude distribution of K (see
Appendix B), which otherwise exhibits large inter-cluster distances and small intra-cluster variances,
the pre-RoPE strategy, consistent with Hooper et al. (2024), is adopted in AnTKV.

4 EXPERIMENTS

In this section, we present an extensive comparison between AnTKV and existing KV quantization
methods. The experimental setup is detailed below.

Models, Datasets, Metrics, and Parameter Settings. To validate the effectiveness and generality
of AnTKV in KV cache quantization, we evaluate five representative models from the LLaMA and
Mistral families. For calibration, 128 samples of length 2048 are drawn from the WikiText2 training
set. Model quality is assessed through three categories of benchmarks: (i) perplexity on WikiText-2
and C4; (ii) zero-shot accuracy on MMLU Hendrycks et al. (2021), ARC-C Clark et al. (2018),
MathQA Amini et al. (2019), and PIQA Bisk et al. (2020) to evaluate understanding and reasoning;
and (iii) long-context performance on LongBench Bai et al. (2024). For perplexity and zero-shot
evaluations, quantized KV caches are directly used for attention outputs, whereas for LongBench,
full precision KV cache is used to compute attention outputs and quantized KV cache is used during
decoding. Across all benchmarks, anchor tokens are restricted to a small subset: 1% of the context
length for perplexity, 16 for understanding and reasoning, and 64 for LongBench. For fair comparison,
a sliding window of size 32 is applied in LongBench, following the mainstream setting.

Baselines. We compare AnTKVwith full precision and representative KV cache quantization methods,
including KIVI Liu et al. (2024b), SKVQ Duanmu et al. (2024), KVQuant-1% Hooper et al. (2024),
and CQ Zhang et al. (2024b). SKVQ is configured with a group size of 64 and five sink tokens Xiao
et al. (2024b), while KVQuant retains four sink tokens. Since CQ results are not publicly available,
we reproduced them following the methodology in their paper to the best of our understanding.
For VQ settings, we adopt the notation “dncm”, covering 4-bit (d2m256), 2-bit (d4m256), 1-bit
(d8m256), 0.75-bit (d16m4096), and 0.375-bit (d32m4096).

4.1 PERPLEXITY RESULTS

Perplexity is a standard benchmark that is widely used to evaluate the quality of the output of LLMs,
with lower values indicating better performance. The perplexity results for different KV quantization
approaches on WikiText-2 and C4 are presented in Table 1. The results in this table indicate that the
proposed AnTKV consistently achieves competitive or superior perplexity across various bit-widths
and model architectures. Under 4-bit and 2-bit quantization, it achieves competitive performance
compared to baseline. In the 1-bit and sub-bit regimes, it significantly outperforms all baselines. On
the C4 dataset under sub-bit quantization, baseline methods suffer from extremely high perplexity,
as fixed centroids fail to capture anchor tokens. By contrast, with its effective AnS design and
anchor token selection, AnTKV substantially lowers perplexity, reducing it from 66.28 to 14.42 on
LLaMA-3-8B at 0.75-bit.

4.2 UNDERSTANDING AND REASONING BENCHMARK

To assess the breadth of AnTKV’s understanding and reasoning capabilities, we evaluate it on
four representative benchmarks using LLaMA-8B-Instruct and Mistral-7B-Instruct. These bench-
marks target multi-domain knowledge reasoning (MMLU), complex question answering (ARC-
Challenge), commonsense reasoning (PIQA), and mathematical problem solving (MathQA). Due
to missing the implementations in the official repository, KIVI and KVQuant are not included. As
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Table 1: All evaluations are performed under the maximum context length of each model, specifically
4096 for LLaMA-2-7B and 8192 for LLaMA-3-8B and Mistral-7B. “Ours” refers to AnTKV without
anchor tokens, whereas “Ours-1%” denotes AnTKV with 1% of tokens designated as anchor tokens
and retained in FP16. For clarity, the reported bit-widths exclude the contribution of centroids.

Bit LLaMA-2-7B LLaMA-3-8B Mistral-7B
Dataset WikiText2 C4 WikiText2 C4 WikiText2 C4
Baseline 16 5.12 6.63 5.54 7.10 4.73 5.66

RTN

4

5.66 7.31 7.89 8.79 7.34 5.91
SKVQ 5.16 6.67 5.64 7.19 4.97 5.68

KVQuant-1% 5.13 6.65 5.56 7.12 4.78 5.72
CQ 5.14 6.67 5.58 7.84 4.79 5.74

Ours 5.18 6.76 5.61 7.69 4.76 5.69
Ours-1% 5.15 6.68 5.59 7.16 4.74 5.67

RTN

2

4708 4708 2841 2113 573 477
SKVQ 5.54 7.21 6.73 8.31 5.21 6.14

KVQuant-1% 5.49 7.02 6.11 7.65 5.19 6.10
CQ 5.42 7.23 6.09 18.71 5.11 6.17

Ours 5.51 7.45 6.10 16.96 5.08 6.18
Ours-1% 5.34 7.02 5.97 7.68 4.95 5.97
SKVQ

1

12643 12819 108879 86426 3524 2741
KVQuant-1% 21.55 51.84 14.80 13.95 15.36 14.24

CQ 7.75 12.49 9.56 81.74 7.25 9.89
Ours 7.92 13.01 9.62 74.47 7.32 10.51

Ours-1% 6.50 9.40 8.51 12.51 6.32 8.44
CQ

0.75
8.39 14.32 11.18 72.05 7.64 11.72

Ours 8.21 14.27 10.41 66.28 7.41 11.72
Ours-1% 6.55 9.75 8.97 14.42 6.43 9.08

CQ
0.375

14.82 33.59 22.80 103.5 13.20 26.34
Ours 13.37 30.51 17.70 103.5 11.65 23.98

Ours-1% 8.75 15.86 13.41 34.08 8.87 14.87

shown, AnTKV consistently maintains higher accuracy across LLaMA and Mistral models, with
particularly strong advantages at 1-bit and sub-bit settings where baseline methods degrade sharply.
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Figure 4: Evaluation of understanding and reasoning accuracy on MMLU, ARC-C, PIQA, and
MathQA under different quantization bit-widths.
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4.3 LONG-CONTEXT BENCHMARK

To validate the effectiveness of AnTKV in handling long-context, We conduct several experiments
on the LLaMA-8B-Instruct model using the LongBench benchmark, a diverse collection of tasks
such as question answering, retrieval, and summarization, designed to systematically evaluate long-
context understanding in language models. We report results on eleven representative sub-tasks from
LongBench, along with averaged performance. Due to alignment issues of KIVI and SKVQ, we
exclude the triviaqa and gov_report sub-tasks from the comparison. As shown in Figure 5, AnTKV
preserves nearly FP16 at 4- and 2-bit quantization across almost all tasks. At the 1-bit quantization,
the performance of KIVI and SKVQ has a significant drop. In contrast, AnTKV and CQ still maintain
a relatively high accuracy. To further investigate the robustness under aggressive compression,
we compare AnTKV and CQ in both sub-bit levels. Figure 5 shows that AnTKV consistently
outperforms CQ. Notably, despite aggressive quantization down to 0.375-bit, AnTKV maintains
tolerable degradation, with the average score decreasing from 46.5 to 38.1.
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Figure 5: The evaluation accuracy results on LongBench under different KV cache quantization
bit-widths. AnTKV achieves the best average performance under ultra-low-bit quantization.

4.4 EFFICIENCY

In this experiment, we evaluate the efficiency of our AnTKV implementation compared with hug-
gingface baseline Wolf et al. (2020) on LLaMA-3-8B using a single A100-80GB GPU. As shown
in Figure 6, AnTKV substantially extends the maximum context length from 128K to 384K. In
long-context inference, our profiling shows that intermediate activations account for a substantial
portion of memory usage. By introducing a series of in-place operators, AnTKV supports up to
810K tokens under 1-bit quantization and 840K under 0.375-bit quantization, while maintaining low
memory consumption. To evaluate decoding efficiency, we measure the throughput of AnTKV with a
fixed context length of 1K tokens. As shown in Figure 7, AnTKV enables substantially larger batch
sizes and improves throughput across all bit-widths by reducing KV cache access. In particular, under
1-bit quantization, the maximum throughput reaches 3.5×.
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Figure 6: KV cache memory size comparison. Gray
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results with in-place operators enabled.
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Figure 7: Decoding throughput comparison.
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dicate results with in-place operators enabled.

4.5 ABLATION STUDY

We conduct a series of experiments to answer the following questions.

Q1: How does the model performance change as the number of anchor tokens increases?

As the number of anchor tokens increases, the performance loss decreases rapidly at first, as shown
in Table 1. However, the marginal benefit diminishes with more anchor tokens. Detailed results are
provided in Appendix G.

Q2: Does the calibration set affect the performance?

We find that for VQ-based methods, the calibration set does have some impact on performance under
low-bit settings. However, as shown in Table 1 (LLaMA-3-8B, 1-bit, C4), retaining anchor tokens
effectively mitigates the performance drop caused by calibration set variation. More detailed results
can be found in Appendix H.

5 LIMITATION & CONCLUSION

Although AnTKV demonstrates its advantages in experiments, it also has few limitations. First, more
accurate AnS for tokens and higher performance implementations for its computation may be possible.
AnTKV demonstrates strong potential in LLM serving by substantially reducing the size of the KV
cache, which in turn alleviates I/O and memory constraints to a significant extent. Nevertheless,
further empirical validation is required.

This work addresses the preservation of accuracy under ultra low bit KV cache quantization.
We propose AnTKV , a vector quantization based framework that exploits intra vector correla-
tions. AnTKV uses a dual stage design with offline token aware centroid learning and online anchor
token selection, which mitigates the disproportionate error from anchor tokens. Across the LLaMA
and Mistral families, AnTKV attains accuracy close to full precision and consistently surpasses
baselines in the ultra low bit regime. It also scales LLaMA-3-8B to 840K tokens on a single 80 GB
A100, and increases decoding throughput by up to 3.5×.
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REPRODUCIBILITY STATEMENT

Our implementation builds on the Hugging Face Transformers library Wolf et al. (2020). The Anchor
Score computation as well as the vector quantization and dequantization operators are implemented
in Triton for efficiency. We will release the full source code upon acceptance of the paper to ensure
reproducibility.

ETHICS STATEMENT

All experiments in this work are conducted using publicly available models and datasets. We strictly
follow the corresponding licenses.

MODELS

Here, we list all of the model checkpoints used in our experiments:

• LLaMA-2-7B https://huggingface.co/meta-llama/Llama-2-7b

• LLaMA-3-8B https://huggingface.co/meta-llama/Meta-Llama-3-8B

• LLaMA-3-8B-Instruct https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

• Mistral-7B https://huggingface.co/mistralai/Mistral-7B-v0.1

• Mistral-7B-Instruct https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3

DATASETS

We use the following publicly available datasets:

• WikiText2 https://huggingface.co/datasets/mindchain/wikitext2
• C4 https://huggingface.co/datasets/allenai/c4
• MMLU https://huggingface.co/datasets/cais/mmlu

• ARC-C https://huggingface.co/datasets/allenai/ai2_arc

• PIQA https://huggingface.co/datasets/ybisk/piqa

• MathQA https://huggingface.co/datasets/allenai/math_qa

• LongBench https://huggingface.co/datasets/THUDM/LongBench
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A RELATED WORKS

KV cache quantization A variety of KV cache quantization methods have been proposed to address
the memory bottleneck in long-context LLMs Liu et al. (2024b); Duanmu et al. (2024); Hooper et al.
(2024); Zhang et al. (2024b); Zhu et al. (2025a). KIVI Liu et al. (2024b) mitigates quantization error
by applying per-channel key quantization and employing a sliding window to emphasize locally
relevant tokens. SKVQ Duanmu et al. (2024) further explores this direction by introducing channel
reordering and clipping. To further reduce accuracy loss, KVQuant Hooper et al. (2024) introduces
pre-RoPE key quantization, non-uniform format and element-wise outlier. CQ Zhang et al. (2024b)
adopts a VQ-based approach, aiming to exploit cross-channel correlations to further compress the
KV cache.

KV cache compression Beyond quantization, the field of LLMs is actively exploring advanced
methods for KV cache compression. Sparse attention aims to reduce memory footprint by selectively
handling the KV cache in a token-wise manner Xiao et al. (2024b); Chen et al. (2024a); Zhu et al.
(2025b); Liu et al. (2025c;b); Li et al. (2024). However, it discards the KV cache of a subset of tokens,
even though the corresponding tokens may be required in subsequent decoding. Token Merging
reduces memory usage by consolidating the KV caches of similar tokens during inference, achieving
an effect related to sparse attention but through merging rather than dropping tokens Zhang et al.
(2024c); Wang et al. (2024). Retrieval-based methods Liu et al. (2024a); Chen et al. (2024b); Zhang
et al. (2024a) offload and index KV caches, retrieving a subset of relevant entries for each query, but
introduce additional communication overhead.

Model Compression Numerous model compression techniques share common objectives and method-
ological foundations with KV cache compression. GPTQ Frantar et al. (2023) utilizes calibration set
to reduce quantization induced degradation, while SmoothQuant Xiao et al. (2024a) and AWQ Lin
et al. (2024) minimize output error from the perspective of error propagation analysis. VQ-based
methods such as QUIP# Tseng et al. (2024) further enhance compression fidelity through Hadamard
transform. Pruner-Zero Dong et al. (2024b) and Parzc Dong et al. (2024a), explore how to sparsify
model weights while preserving model performance. System-level works like Atom Zhao et al.
(2024) and QServe Lin et al. (2025) Recent efforts jointly quantize model, KV cache and activatioin,
enabling inference under low-bit and leveraging low-precision Tensor Cores to improve system
performance, while approaches such as FlashLLM Xia et al. (2023) and Spinfer Fan et al. (2025)
accelerate inference by leveraging model sparsity.

B DISTRIBUTION OF PRE- AND POST- ROPE KEY

To identify a quantization strategy better suited for K vertor quantization, we compare the distribution
of K before and after applying RoPE. Figure 8 presents a visualization of the pre- and post- RoPE
K. We observe that, compared to the post-RoPE K, the pre-RoPE K exhibits smaller inter-cluster
distances and lower intra-cluster variance, which contributes to reduced quantization error.
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Figure 8: Distribution of pre- and post- RoPE Key. We sampled a 2048-length sentence from
WikiText2 and generated pre- and post- RoPE Key on the LLaMA-3-8B model.

C PROOF OF THEOREM 1

For K, we have
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The key to estimating the bound of equation 6 lies in the analysis of
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Since ∥δK∥L1
≪ ∥K∥L1

, and by the first-order approximation exp (x+ δx) ≈ exp (x)(1 + δx),
equation 8 can be approximated as
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as X and Y

respectively. Then equation 7 can be approximated as (A⊙ Y )V , and by the property of Kronecker
product, we have
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For V , we have
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D THE EFFECTIVENESS OF ANS

We quantized each token across layers and heads, and separately recorded the errors in the attention
outputs. As shown in Figure 9 and equation 5, it can be observed that the relative values derived from
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our AnS, as defined in Theorem 1, closely align with the actual outputs of the attention. For a fair
comparison, the output errors for K also exclude the contribution of V .
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Figure 9: The effectiveness of AnS.

E ANS DISTRIBUTION DURING DECODING

To illustrate the distribution of AnS during decoding, we sampled prompts from Qasper within
LongBench for visualization. As shown in Figure 10, we present the distribution of AnS(K) and
AnS(V ) across different layers and heads, specifically when decoding the first token. Our observations
reveal that high AnS values during decoding are predominantly concentrated on adjacent tokens and
at the attention sink tokens. Since sink tokens often lead to significant error propagation and can
be dynamically identified by AnS during prefill, we simplify the design of AnS during decoding by
employing a sliding window to ensure model performance.

F COMPUTATIONAL PROCEDURE OF ANS IN THE ONLINE STAGE

Algorithm 1 The computation of AnS in the online stage.

1: Input: Query (Q), key (K), value (V )
2: Output: AnS of KV, i.e., AnS(K) and AnS(V )
3: (O,L,M , ∥Qi,:∥L2

)← FlashAttention(Q,K,V )
4: for each block key index j in parallel (assigned to GPU block) do
5: for each block query index i do
6: Si,j ← ⟨Qh,i,Kh,j⟩
7: Ai,j ← exp(Si,j −Mh,i)/Lh,i

8: AnS(K)i ← AnS(K)i + col_sum(Ai,j · (1−Ai,j), row-wise)
9: AnS(V )i ← AnS(V )i + col_sum(Ai,j , row-wise)

10: end for
11: end for
12: return AnS(K), AnS(V )
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Figure 10: AnS Distribution on Sampled Prompts from Qasper Using LLaMA-3-8B-Instruct During
First-Token Decoding.

G CALIBRATION SET IMPACT

As shown in the Table 2, we observe that for VQ-based quantization in the ultra-low-bit regime, the
calibration set significantly impacts the perplexity results. However, AnTKV with 1% anchor tokens
not only substantially reduces the PPL but also greatly mitigates the effect of different calibration
sets.

Table 2: Perplexity experiment results on Mistral-7B, using the W2 and C4 training sets respectively
as Calibration Sets. The "Vset" is the validation set related to W2 and C4. "Calib Set" represents
"Calibration Set".

Bits Vset 4 2 1 0.75 0.375
Calib Set W2 C4 W2 C4 W2 C4 W2 C4 W2 C4

Ours W2 4.76 5.69 5.08 6.18 7.32 10.51 7.32 10.51 11.65 23.98
C4 4.79 5.69 5.32 6.15 10.14 10.09 10.90 10.80 24.16 19.95

Ours-1% W2 4.74 5.67 4.95 5.97 6.32 8.44 6.32 8.44 8.87 14.87
C4 4.75 5.66 5.02 5.94 7.13 8.13 7.79 8.56 12.87 13.07

To further investigate the impact of the calibration set on model performance, we used C4 as a
calibration set to evaluate several subtasks within LongBench (qasper, trec, samsum, lcc, ropebench-
p). As shown in the Table 3, we observed that there were some differences in the results of Trec and
Repobench-p when using Wikitext-2 and C4, while the differences were not significant for the other
tasks.
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Table 3: Performance on LongBench Subtasks with Wikitext-2 (W2) and C4 Calibration Sets at
Different Bits using LLaMA-3-8B-Instruct. "Calib Set" represents "Calibration Set", and "repobc-p"
represents "repobench-p".

Bits 4 2 1 0.75 0.375
Calib Set W2 C4 W2 C4 W2 C4 W2 C4 W2 C4

qasper 40.46 39.98 39.04 38.2 25.95 26.51 25.48 25.49 22.41 23.27
trec 69.33 69.33 67 64.67 38.67 42.33 39.67 41.33 38 38

samsum 40.2 40.27 38.61 38.22 30.0 30.3 29.57 29.29 25.5 24.82
lcc 59.84 59.07 60.94 59.15 53.97 53,93 52.97 52.01 49.61 49.79

repobc-p 44.24 41.3 45.29 42.68 38.53 37.94 37.87 38.02 34.54 34.71

H ANCHOR TOKENS NUMBER IMPACT

To investigate the impact of the number of anchor tokens on model performance, we conducted
Perplexity evaluations on Mistral-7B and LLaMA-3-8B, both with a context length of 8192. We
performed evaluations using no anchor tokens and with anchor token percentages of 1% (82), 2%
(164), 5% (410), 10% (820), 15% (1230), and 20% (1640). The corresponding results are presented
in Figures 11 and 12. For the 2-bit and 4-bit results, using 1% of anchor tokens kept the error within
0.6 compared to FP16. However, for the 1-bit and sub-bit results, we needed to increase the number
of anchor tokens to control the error within an acceptable range. Nevertheless, AnTKV provides a
feasible technical pathway for ultra-low-bit quantization of the KV cache.
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Figure 11: Perplexity results on LLaMA-3-8B with varying anchor token numbers.
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Figure 12: Perplexity results on Mistral-7B with varying anchor token numbers.

To further investigate the impact of anchor token numbers on downstream tasks, we evaluated
different anchor token numbers on the Trec and Qasper subtasks of LongBench under ultra-low-bit
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quantization settings. For convenience, we approximated 1% of the anchor token number as 64. The
results are shown in Figure 13. it illustrates that both the Trec and Qasper subtasks exhibit a consistent
improvement pattern as the number of anchor tokens increases. In particular, moving from 0% to 1%
anchor tokens leads to a substantial performance gain across all quantization settings, highlighting
that even a very small proportion of anchor tokens can effectively mitigate the degradation introduced
by ultra-low-bit quantization. Beyond this point, the improvements from 1% to 2%, 2% to 5%,
and 5% to 10% follow an approximately linear trend, with performance gradually approaching the
FP16 baseline. These results demonstrate that anchor tokens play a dual role that a small fraction is
sufficient to deliver immediate and significant benefits, while larger allocations further provide steady,
near-linear enhancements in downstream task performance.
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Figure 13: Trec and Qasper results on LLaMA-3-8B-Instruct with varying anchor token numbers.
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