
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ANTKV: ANCHOR TOKEN-AWARE ULTRA-LOW-BIT
VECTOR QUANTIZATION FOR KV CACHE IN LARGE
LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Quantization has emerged as an effective and lightweight solution to reduce the
memory footprint of the KV cache in Large Language Models. Nevertheless, mini-
mizing the accuracy degradation caused by ultra-low-bit KV cache quantization
remains a significant challenge. While scalar quantization is constrained by 1-bit
bound, vector quantization exploits intra-vector correlations and enables sub-bit
regimes, making it more suitable for ultra-low-bit quantization. To further mitigate
quantization-induced degradation, we reveal that the degradation is highly uneven
across tokens in attention quality. To investigate this unevenness, we introduce
anchor score to measure each token’s sensitivity to quantization. Our analysis and
experiments show that preserving a small subset (1%) of tokens with the highest
Anchor Score significantly mitigates accuracy loss under aggressive quantization.
We propose AnTKV, a dual-stage framework that leverages anchor token-aware
vector quantization to compress the KV cache. It combines offline token-aware
centroids learning and online anchor token selection to balance compression and
accuracy. To enable efficient deployment, we design an online anchor token se-
lection kernel compatible with FlashAttention. It allows LLaMA3-8B to scale to
840K tokens on a single 80GB A100, while delivering up to 3.5× higher decoding
throughput over the FP16 baseline. Experiments demonstrate that AnTKVmatches
or surpasses prior methods at 4-bit, and significantly reduce perplexity under ultra-
low-bit quantization, achieving 6.32 at 1-bit on Mistral-7B, compared to 7.25 for
CQ and 15.36 for KVQuant.

1 INTRODUCTION

Large Language Models (LLMs) have gained wide attention owing to their remarkable capabilities in
diverse applications OpenAI (2023); Guo et al. (2025); Team et al. (2023); Tang et al. (2025); Dong
et al. (2025). With rapid recent advances, LLMs currently handle context lengths from hundreds
of thousands to millions of tokens, enabling them to tackle increasingly complex tasks Zhao et al.
(2023); Wang et al. (2025b); Das et al. (2025); Wang et al. (2025a). Most LLMs adopt decoder-
based transformer architectures, where tokens are generated autoregressively and the KV cache
grows rapidly with context length Zhu et al. (2025b); Bai et al. (2024); Liu et al. (2025a) and batch
size increases Pope et al. (2022). The large amount of memory footprint of the KV cache poses a
significant challenge. For example, with LLaMA-3 at 128K tokens it already approaches the model
size, and for million-token models like Gemini it becomes prohibitive. Beyond inference, LLM-RAG
systems Yao et al. (2025) pre-generate and store massive KV caches, creating additional storage
challenges.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0

25

50

75

100

Output Error
Quant Err K

0 256 512 768 1024
Token Index

0

20

40

60

80

Output Error
Quant Err V

60

40

20

0

60

40

20

0

At
tn

 O
ut

pu
t E

rro
r

Qu
an

tiz
at

io
n

Er
ro

r

Figure 1: The L1 norm error of attention out-
put when quantizing the ith token’s KV cache in
Mistral-7B to 1-bit.

4 2 1 0.5 0.25
Quantization Bit-width

4.7

5.0

5.3

7.0

10.0

100

Pe
rp

le
xi

ty

4.97

15.36

5.11

7.25 7.64

13.20

4.74

4.95

6.32 6.43

8.87

FP16
 4.73

RNT
SKVQ
KVQuant-1%
CQ
AnTKV-1%(Ours)

Figure 2: The Perplexity of Mistral-7B on
the WikiText-2 across different quantization bit-
widths.

To address the substantial size of KV caches, numerous techniques have been explored Liu et al.
(2025c;b; 2024a); Zhang et al. (2024c); Liu et al. (2024b); Dong et al. (2025), with quantization prov-
ing to be especially effective. Quantization methods are generally classified into scalar quantization
(SQ) and vector quantization (VQ). SQ compresses the KV cache by mapping floating-point values
to fixed low-bit representations Liu et al. (2024b); Duanmu et al. (2024); Hooper et al. (2024), but
the 1-bit lower bound constrains its maximum compression ratio to 1/16 of FP16. In contrast, VQ
compresses high-dimensional vectors by mapping them to a finite codebook Lingle (2024); Zhang
et al. (2024b), which captures intra-vector correlations, achieves superior compression ratios and
fidelity under ultra-low-bit quantization.

We observe that tokens contribute unequally to model accuracy during inference. To illustrate this,
we quantize the KV cache of Mistral-7B Jiang et al. (2023) to 1-bit using VQ. Figure 1 depicts
the attention output L1 norm error in the 31st layer when quantizing the KV cache across different
token indices, and similar error distributions are observed in other layers. As evident from the
figure, although per-token quantization errors are similar, the resulting error in the attention output
vary widely across tokens and a small subset exhibits error that are tens of times larger when
quantized (anchor tokens). Quantifying token importance is essential for unlocking the full potential
of ultra-low-bit KV cache quantization.

To address this, we conduct a forward error analysis Boldo & Melquiond (2017) on attention-
based models with respect to KV, and then propose AnTKV, a dual-stage framework for KV cache
quantization. In the offline stage, AnTKV performs token-aware weighted k-means clustering to
generate centroids, where the weights are derived from error propagation factors obtained through
forward error analysis. Tokens that cause larger increases in output error are assigned larger weights
during clustering. However, the propagation factors entail substantial gradient cost. To overcome this
limitation, we propose Anchor Score (AnS) derived from the forward error analysis of the attention,
which quantifies the output sensitivity to quantizing each token’s KV cache. At inference time,
AnS is computed for each prompt to identify this small token subset. AnTKV handles this subset
of tokens in a simple yet effective manner by preserving them in full precision, thereby reducing
accuracy loss. Moreover, we design and implement a lightweight GPU kernel for AnS computation.
More specifically, we extend FlashAttention Dao (2023) to store low memory overhead softmax
intermediate results, thereby enabling efficient online anchor token selection.

We conduct extensive experiments to evaluate the effectiveness of AnTKV across various quantization
bit-widths on a range of LLMs, including the LLaMA-2/3 Touvron et al. (2023); Grattafiori et al.
(2024) and Mistral-7B Jiang et al. (2023) families. As shown in Figure 2, AnTKV consistently
outperforms existing approaches across bit-widths from 4-bit down to 0.375-bit. On WikiText-
2 Merity et al. (2016), AnTKV achieves a perplexity of 6.32 at 1-bit, reducing error by 0.93 compared
to CQ (7.25) Zhang et al. (2024b), and by a substantial 9.04 compared to KVQuant-1% (15.36) Hooper
et al. (2024). Even under the aggressive 0.375-bit setting, AnTKV attains a perplexity of 8.87,
surpassing CQ (13.20) by 4.33. Thanks to the efficient GPU implementation of AnS, AnTKV also

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

scales to extremely long contexts: on LLaMA3-8B, it supports up to 840K tokens under 0.375-
bit quantization on a single A100-80GB GPU. Moreover, during decoding, AnTKV increases the
maximum batch size by 3.3× and improves throughput by 3.4× at a 1K context length compared to
full precision.

To summarize, we make the following contributions in this work.

• To the best of our knowledge, this work is the first to investigate the feasibility of quantization
the KV cache to sub-bit while preserving model accuracy.

• We identify that different tokens contribute unequally to model accuracy under quantization
and highlight the existence of anchor tokens that dominate output error.

• We propose AnTKV, which performs token-aware weighted clustering offline and leverages
AnS online to efficiently identify anchor tokens, preserving them in full precision to mitigate
accuracy loss, and we evaluate it on the LLaMA2/3 and Mistral families, where it consistently
improves performance across a wide range of quantization bit-widths.

• We implement custom GPU kernels for the online stage, enabling AnTKV to scale to 840K
tokens on a single GPU and deliver significant throughput gains during decoding.

2 BACKGROUND

2.1 TRANSFORMER AND ATTENTION

The transformer block has become the fundamental architecture of LLMs; it consists of a fully
connected feed-forward network and an attention. The attention enables the model to capture
connections among tokens within the context. Specifically, it maps a query (Q) and a set of KV pairs
(K and V) to an output, i.e.,

Attn(Q,K,V) = Softmax

(
QKT

√
d

)
V with Q,K,V ∈ Rn×d,

where Softmax(·) is the softmax operator. Since position information is crucial in LLMs, Rotary
Position Embedding (RoPE) Su et al. (2023) is a widely used technique for encoding it into query
and key vectors Su et al. (2024), which is denoted as Q̃ and K̃ in this paper. With RoPE, the
attention score A is rewritten as Softmax

(
Q̃K̃T

√
d

)
, and its Lp “entry-wise” matrix norm is defined

as

(∑
i,j

|Ai,j |p
)1/p

. Other notations used in this work, such as the Kronecker product, the Hadamard

product, and the row-by-row vectorization are denoted as ⊗, ⊙, and Vec(·), respectively.

2.2 MEMORY CONSTRAINTS IN LLM INFERENCE

During the process of LLM inference, the key and value generated at prefill and each decoding step
are stored to avoid redundant computation. The KV cache is repeatedly accessed in subsequent
steps to compute attention over the full context seen so far, significantly accelerating autoregressive
decoding. In a multi-turn conversation, the KV cache from previous turns can also be reused during
the prefill stage to further reduce latency. Nowadays LLMs, like LLaMA3.1-8B Grattafiori et al.
(2024) and Gemini 1.5 Pro Team et al. (2023), now handle much longer context lengths, up to 128K
and 2 million tokens, respectively. This increase in context length Liu et al. (2025a); Wang et al.
(2025a) causes the GPU memory consumed by KV cache to even exceed the model. The rapid growth
of KV cache greatly limits the deployment of LLMs with long context. Quantization is an effective
approach to compressing the KV cache, substantially reducing memory footprint while preserving
essential information.

3 METHODOLOGY

VQ is employed as it enables sub-bit compression, which SQ cannot achieve, and in the ultra-low-bit
regime (≤ 2 bit) it leverages intra-vector correlations to attain significantly better quantization quality
compared to SQ.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

KK

VV

Offline Token-aware Centroids Learning

CentroidsKV cache

weighted
clustering

generate

Online Anchor Token Selection

Calibration

Set

(a)

(b)

0.7 0.5

0.3 0.5

0.2 -0.2

0.3 -0.5

 centroids

0.8 0.4

0.3 0.5

0.4 -0.4

0.1 0.1

t1
t2

t1
t2

0.7 0.5

0.3 0.5

0.2 -0.2

0.3 -0.5

Codebook

0

1

1

0

Err

VQ

VQ 0

0.1

0.4

0.2

col sum weighted

col sum

AnS (V)AnS (K)

Anchor
Tokens

0.8t2 0.4

0.1 0.1t1

Figure 3: Overview of AnTKV. In the stage (a), token-aware centroids are learned from calibration
data through weighted clustering, where the weights are error-propagation factors obtained by forward
error analysis. In the stage (b), the KV cache is quantized with centroids, and AnS is computed to
identify anchor tokens, which are preserved in full precision to mitigate accuracy loss.

As shown in the figure 1, we observe that although per-token KV cache quantization errors appear
similar, the resulting attention output errors differ dramatically. Moreover, the error distribution
is steep, with large errors occurring unpredictably across tokens. Previous works on KV cache
quantization typically treat all tokens equally or are biased toward attention sinks, as inspired by
AttentionSink Xiao et al. (2024b), which we argue is suboptimal. Our observation reveals a new
opportunity for KV cache quantization, where tokens with greater influence on attention output error
should be prioritized. Building on this observation, we propose AnTKV, a token-aware VQ framework
for KV cache quantization. It adopdts a dual-stage design consisting of offline token-aware centroid
learning (Figure 3(a)) and online anchor token selection (Figure 3(b)). The central challenge lies in
effectively measuring token importance. During centroids leanring, forward error analysis provides
per-token error propagation factors, which serve as weights in a token-aware k-means clustering to
generate VQ centroids, thereby emphasizing tokens with significant influence on attention-output
error. For anchor token selection, directly using error propagation factors incurs expensive gradient
computation. To avoid this cost, we introduce AnS, a lightweight metric derived from attention
forward error analysis that enables efficient prompt-aware identification of anchor tokens.

3.1 OFFLINE TOKEN-AWARE CENTROIDS LEARNING

In this stage, centroids are learned offline by aggregating KV cache from calibration data. Specifically,
each row (per token) of K and V is divided into several sub-vectors, then using k-means to cluster
them, and only the centroids are stored. Specifically, each token row of K and V is partitioned into
sub-vectors and clustered with k-mean. The centroids are retained for online KV cache quantization.

From an accuracy perspective, replacing K and V with their corresponding centroids should intro-
duce minimal impact on model output. Mathematically, it can be formulated as

min
Ck∈Rck×d

|L(K,V)− L(vq(K),vq(V))|, (1)

where ck is the number of clusters, and Ck is the matrix consisting of centroids. By the first-order
Taylor series expansion, we have

L(K,V)− L(vq(K),vq(V)) ≈
∑
j

(
⟨ ∂L

∂Kj,:
,Kj,: − vq(Kj,:)⟩+ ⟨ ∂L

∂Vj,:
,Vj,: − vq(Vj,:)⟩

)
, (2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where ∂L
∂Kj,:

and ∂L
∂Vj,:

are the gradient of the loss function L(·) with respect to Kj,: and Vj,:, i.e.,
the jth row of K and V that correspond to the jth token. From equation equation 1 and equation 2,
the weighted k-means clustering with gradients as weights is essentially to find a clustering strategy
that minimizes the error caused by KV quantization.

3.2 ONLINE ANCHOR TOKEN SELECTION

In online inference, gradients can no longer serve as the token importance metric due to the cost
imposed by real-time constraints. To address this, we perform an error propagation analysis of the
attention operator (Attn). Specifically, the analysis derives a perturbation bound of Attn with
respect to each row of K and V , as presented in Theorem 1, with the detailed proof provided in
Appendix C.
Theorem 1. Let δK and δV be the error perturbation terms corresponding to K and V respectively,
and satisfy

∥δK∥L1
≪ ∥K∥L1

and ∥δV ∥L1
≪ ∥V ∥L1

.

Then we have

∥Attn(Q,K + δK,V)− Attn(Q,K,V)∥L1

≲
∑
j

∑
i

∥∥(V⊤Diag(Ai,:)(In − eAi,:)
)
:,j

∥∥
L1
∥Qi,:∥L2

∥δKj,:∥L1
(3)

and
∥Attn(Q,K,V)− Attn(Q,K,V + δV)∥L1 ≤

∑
j

∥A:,j∥L1∥δVj,:∥L1 , (4)

where e ∈ Rn is a vector whose entries are all 1.

We remark that the error propagation factors corresponding to Kj,: and Vj,: given in Theorem 1 can
be regarded as the upper bound of the gradient of the attention operator related to Kj,: and Vj,:.

The computation involving K in Theorem 1 introduces significant overhead and is therefore unsuit-
able for online inference. To address this limitation, we propose a simplified variant that excludes the
contribution of V to the quantization error of K. This leads to the following reformulation, with a
detailed evaluation of AnS effectiveness provided in Appendix D.

AnS(Vj,:) =
∑
i

Ai,j AnS(Kj,:) =
∑
i

Ai,j(1−Ai,j) · ∥Qi,:∥2 (5)

In online inference, during the prefill phase, AnS serves as an effective metric for identifying anchor
tokens that induce substantial accuracy loss. In autoregressive decoding phase, AnS can still be
computed. However, the anchor tokens it identifies may already have been quantized, which prevents
preserving their full-precision values and limits error reduction. An important observation is that both
AnS(K) and AnS(V) exhibit strong locality during the decoding phase (see Appendix E), with anchor
tokens predominantly concentrated at the head and tail of the sequence. Experimental results show
that the anchor tokens at the head of the sequence are consistently identified during the prefill stage,
corresponding to sink tokens. This observation further demonstrates the effectiveness of our method.
Building on the tail locality, we use a sliding-window approximation of AnS during decoding to
further enhance efficiency while mitigating accuracy degradation.

3.3 IMPLEMENTATION

For the offline centroids learning stage, the gradients of K and V are employed as weights for centroid
learning. We implement it with a custom LinearWithAct to capture KV cache and corresponding
gradients. Subsequently, we employ the weighted k-means provided by cuML to perform efficient
clustering.

In the online stage, AnS is derived from the error propagation factor given in Theorem 1 and
Equation equation 5. To enable efficient long-context inference, we design and implement a dedicated
GPU kernel using Triton that computes AnS in conjunction with FlashAttention. Because AnS

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

requires reduction operations over the attention score matrix A and its transformed form A⊙(E−A)
along the query dimension (column-wise), direct fusion into FlashAttention is infeasible. To preserve
the efficiency of FlashAttention, we decouple AnS computation and execute it immediately afterward.
For this purpose, we extend FlashAttention to additionally output three auxiliary tensors: the L2

norm of each query vector, the key-wise (row-wise) sum, and the key-wise maximum of the matrix
QKT . These tensors allow the reconstruction of the attention scores and facilitate AnS computation
with minimal overhead. Further implementation details are provided in Algorithm 1 of Appendix F.

Finally, since the application of RoPE disrupts the channel-wise magnitude distribution of K (see
Appendix B), which otherwise exhibits large inter-cluster distances and small intra-cluster variances,
the pre-RoPE strategy, consistent with Hooper et al. (2024), is adopted in AnTKV.

4 EXPERIMENTS

In this section, we present an extensive comparison between AnTKV and existing KV quantization
methods. The experimental setup is detailed below.

Models, Datasets, Metrics, and Parameter Settings. To validate the effectiveness and generality
of AnTKV in KV cache quantization, we evaluate five representative models from the LLaMA and
Mistral families. For calibration, 128 samples of length 2048 are drawn from the WikiText2 training
set. Model quality is assessed through three categories of benchmarks: (i) perplexity on WikiText-2
and C4; (ii) zero-shot accuracy on MMLU Hendrycks et al. (2021), ARC-C Clark et al. (2018),
MathQA Amini et al. (2019), and PIQA Bisk et al. (2020) to evaluate understanding and reasoning;
and (iii) long-context performance on LongBench Bai et al. (2024). For perplexity and zero-shot
evaluations, quantized KV caches are directly used for attention outputs, whereas for LongBench,
full precision KV cache is used to compute attention outputs and quantized KV cache is used during
decoding. Across all benchmarks, anchor tokens are restricted to a small subset: 1% of the context
length for perplexity, 16 for understanding and reasoning, and 64 for LongBench. For fair comparison,
a sliding window of size 32 is applied in LongBench, following the mainstream setting.

Baselines. We compare AnTKVwith full precision and representative KV cache quantization methods,
including KIVI Liu et al. (2024b), SKVQ Duanmu et al. (2024), KVQuant-1% Hooper et al. (2024),
and CQ Zhang et al. (2024b). SKVQ is configured with a group size of 64 and five sink tokens Xiao
et al. (2024b), while KVQuant retains four sink tokens. Since CQ results are not publicly available,
we reproduced them following the methodology in their paper to the best of our understanding.
For VQ settings, we adopt the notation “dncm”, covering 4-bit (d2m256), 2-bit (d4m256), 1-bit
(d8m256), 0.75-bit (d16m4096), and 0.375-bit (d32m4096).

4.1 PERPLEXITY RESULTS

Perplexity is a standard benchmark that is widely used to evaluate the quality of the output of LLMs,
with lower values indicating better performance. The perplexity results for different KV quantization
approaches on WikiText-2 and C4 are presented in Table 1. The results in this table indicate that the
proposed AnTKV consistently achieves competitive or superior perplexity across various bit-widths
and model architectures. Under 4-bit and 2-bit quantization, it achieves competitive performance
compared to baseline. In the 1-bit and sub-bit regimes, it significantly outperforms all baselines. On
the C4 dataset under sub-bit quantization, baseline methods suffer from extremely high perplexity,
as fixed centroids fail to capture anchor tokens. By contrast, with its effective AnS design and
anchor token selection, AnTKV substantially lowers perplexity, reducing it from 66.28 to 14.42 on
LLaMA-3-8B at 0.75-bit.

4.2 UNDERSTANDING AND REASONING BENCHMARK

To assess the breadth of AnTKV’s understanding and reasoning capabilities, we evaluate it on
four representative benchmarks using LLaMA-8B-Instruct and Mistral-7B-Instruct. These bench-
marks target multi-domain knowledge reasoning (MMLU), complex question answering (ARC-
Challenge), commonsense reasoning (PIQA), and mathematical problem solving (MathQA). Due
to missing the implementations in the official repository, KIVI and KVQuant are not included. As

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: All evaluations are performed under the maximum context length of each model, specifically
4096 for LLaMA-2-7B and 8192 for LLaMA-3-8B and Mistral-7B. “Ours” refers to AnTKV without
anchor tokens, whereas “Ours-1%” denotes AnTKV with 1% of tokens designated as anchor tokens
and retained in FP16. For clarity, the reported bit-widths exclude the contribution of centroids.

Bit LLaMA-2-7B LLaMA-3-8B Mistral-7B
Dataset WikiText2 C4 WikiText2 C4 WikiText2 C4
Baseline 16 5.12 6.63 5.54 7.10 4.73 5.66

RTN

4

5.66 7.31 7.89 8.79 7.34 5.91
SKVQ 5.16 6.67 5.64 7.19 4.97 5.68

KVQuant-1% 5.13 6.65 5.56 7.12 4.78 5.72
CQ 5.14 6.67 5.58 7.84 4.79 5.74

Ours 5.18 6.76 5.61 7.69 4.76 5.69
Ours-1% 5.15 6.68 5.59 7.16 4.74 5.67

RTN

2

4708 4708 2841 2113 573 477
SKVQ 5.54 7.21 6.73 8.31 5.21 6.14

KVQuant-1% 5.49 7.02 6.11 7.65 5.19 6.10
CQ 5.42 7.23 6.09 18.71 5.11 6.17

Ours 5.51 7.45 6.10 16.96 5.08 6.18
Ours-1% 5.34 7.02 5.97 7.68 4.95 5.97
SKVQ

1

12643 12819 108879 86426 3524 2741
KVQuant-1% 21.55 51.84 14.80 13.95 15.36 14.24

CQ 7.75 12.49 9.56 81.74 7.25 9.89
Ours 7.92 13.01 9.62 74.47 7.32 10.51

Ours-1% 6.50 9.40 8.51 12.51 6.32 8.44
CQ

0.75
8.39 14.32 11.18 72.05 7.64 11.72

Ours 8.21 14.27 10.41 66.28 7.41 11.72
Ours-1% 6.55 9.75 8.97 14.42 6.43 9.08

CQ
0.375

14.82 33.59 22.80 103.5 13.20 26.34
Ours 13.37 30.51 17.70 103.5 11.65 23.98

Ours-1% 8.75 15.86 13.41 34.08 8.87 14.87

shown, AnTKV consistently maintains higher accuracy across LLaMA and Mistral models, with
particularly strong advantages at 1-bit and sub-bit settings where baseline methods degrade sharply.

20

30

40

50

60

70

Lla
m

a-
In

st
ru

ct

MMLU

SKVQ
CQ
Ours

15

25

35

45

55 ARC-C

45

55

65

75

85 PIQA

20

25

30

35

40

45 MathQA

4 2 1 0.75 0.37520

30

40

50

60

M
ist

ra
l-I

ns
tru

ct

4 2 1 0.75 0.37520

30

40

50

60

4 2 1 0.75 0.37550

60

70

80

4 2 1 0.75 0.37520

24

28

32

36

40

Quantization Bit-width

Figure 4: Evaluation of understanding and reasoning accuracy on MMLU, ARC-C, PIQA, and
MathQA under different quantization bit-widths.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.3 LONG-CONTEXT BENCHMARK

To validate the effectiveness of AnTKV in handling long-context, We conduct several experiments
on the LLaMA-8B-Instruct model using the LongBench benchmark, a diverse collection of tasks
such as question answering, retrieval, and summarization, designed to systematically evaluate long-
context understanding in language models. We report results on eleven representative sub-tasks from
LongBench, along with averaged performance. Due to alignment issues of KIVI and SKVQ, we
exclude the triviaqa and gov_report sub-tasks from the comparison. As shown in Figure 5, AnTKV
preserves nearly FP16 at 4- and 2-bit quantization across almost all tasks. At the 1-bit quantization,
the performance of KIVI and SKVQ has a significant drop. In contrast, AnTKV and CQ still maintain
a relatively high accuracy. To further investigate the robustness under aggressive compression,
we compare AnTKV and CQ in both sub-bit levels. Figure 5 shows that AnTKV consistently
outperforms CQ. Notably, despite aggressive quantization down to 0.375-bit, AnTKV maintains
tolerable degradation, with the average score decreasing from 46.5 to 38.1.

4 2 1 0.75 0.37510
20
30
40
50 qasper

KIVI
SKVQ
CQ
Ours

4 2 1 0.75 0.37510
20
30
40
50

multifieldqa_en

4 2 1 0.75 0.37520
30
40
50
60 hotpotqa

4 2 1 0.75 0.37524
28
32
36
40

2wikimqa

4 2 1 0.75 0.37510
15
20
25
30 multi_news

4 2 1 0.75 0.37530
40
50
60
70

trec

4 2 1 0.75 0.37510
20
30
40
50 samsum

4 2 1 0.75 0.3750
5

10
15
20

passage_count

4 2 1 0.75 0.37510
30
50
70
90 passage_retrieval_en

4 2 1 0.75 0.37520
30
40
50
60

lcc

4 2 1 0.75 0.37530
35
40
45
50 repobench-p

4 2 1 0.75 0.37530
35
40
45
50

46.6
44.6

38.9 37.9
35.3

46.5 45.8

40.9 40.5
38.1

average

Quantization Bit-width

Figure 5: The evaluation accuracy results on LongBench under different KV cache quantization
bit-widths. AnTKV achieves the best average performance under ultra-low-bit quantization.

4.4 EFFICIENCY

In this experiment, we evaluate the efficiency of our AnTKV implementation compared with hug-
gingface baseline Wolf et al. (2020) on LLaMA-3-8B using a single A100-80GB GPU. As shown
in Figure 6, AnTKV substantially extends the maximum context length from 128K to 384K. In
long-context inference, our profiling shows that intermediate activations account for a substantial
portion of memory usage. By introducing a series of in-place operators, AnTKV supports up to
810K tokens under 1-bit quantization and 840K under 0.375-bit quantization, while maintaining low
memory consumption. To evaluate decoding efficiency, we measure the throughput of AnTKV with a
fixed context length of 1K tokens. As shown in Figure 7, AnTKV enables substantially larger batch
sizes and improves throughput across all bit-widths by reducing KV cache access. In particular, under
1-bit quantization, the maximum throughput reaches 3.5×.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

8K 16K 32K 64K 128K 256K 384K 810K 840K
Context Length

0

40

80

120

M
em

or
y

(G
B)

181616 201717
241919

33
2222

51

2929

OOM

4443

OOM

5857

OOM

7875

OOM

78Single A100
Enable Inplace OP

Figure 6: KV cache memory size comparison. Gray
bars denote full precision, red bars 1-bit, and green
bars 0.375-bit quantization. Striped bars indicate
results with in-place operators enabled.

8 16 32 64 128 256 384 512 810 840
Batch size

0
200
400
600
800

1000

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

Enable Inplace OP

Baseline
Ours(4bit)
Ours(1bit)
Ours(0.375bit)

Figure 7: Decoding throughput comparison.
Our method supports larger batch sizes and
achieves higher throughput. Dashed lines in-
dicate results with in-place operators enabled.

4.5 ABLATION STUDY

We conduct a series of experiments to answer the following questions.

Q1: How does the model performance change as the number of anchor tokens increases?

As the number of anchor tokens increases, the performance loss decreases rapidly at first, as shown
in Table 1. However, the marginal benefit diminishes with more anchor tokens. Detailed results are
provided in Appendix G.

Q2: Does the calibration set affect the performance?

We find that for VQ-based methods, the calibration set does have some impact on performance under
low-bit settings. However, as shown in Table 1 (LLaMA-3-8B, 1-bit, C4), retaining anchor tokens
effectively mitigates the performance drop caused by calibration set variation. More detailed results
can be found in Appendix H.

5 LIMITATION & CONCLUSION

Although AnTKV demonstrates its advantages in experiments, it also has few limitations. First, more
accurate AnS for tokens and higher performance implementations for its computation may be possible.
AnTKV demonstrates strong potential in LLM serving by substantially reducing the size of the KV
cache, which in turn alleviates I/O and memory constraints to a significant extent. Nevertheless,
further empirical validation is required.

This work addresses the preservation of accuracy under ultra low bit KV cache quantization.
We propose AnTKV , a vector quantization based framework that exploits intra vector correla-
tions. AnTKV uses a dual stage design with offline token aware centroid learning and online anchor
token selection, which mitigates the disproportionate error from anchor tokens. Across the LLaMA
and Mistral families, AnTKV attains accuracy close to full precision and consistently surpasses
baselines in the ultra low bit regime. It also scales LLaMA-3-8B to 840K tokens on a single 80 GB
A100, and increases decoding throughput by up to 3.5×.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Our implementation builds on the Hugging Face Transformers library Wolf et al. (2020). The Anchor
Score computation as well as the vector quantization and dequantization operators are implemented
in Triton for efficiency. We will release the full source code upon acceptance of the paper to ensure
reproducibility.

ETHICS STATEMENT

All experiments in this work are conducted using publicly available models and datasets. We strictly
follow the corresponding licenses.

MODELS

Here, we list all of the model checkpoints used in our experiments:

• LLaMA-2-7B https://huggingface.co/meta-llama/Llama-2-7b

• LLaMA-3-8B https://huggingface.co/meta-llama/Meta-Llama-3-8B

• LLaMA-3-8B-Instruct https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

• Mistral-7B https://huggingface.co/mistralai/Mistral-7B-v0.1

• Mistral-7B-Instruct https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3

DATASETS

We use the following publicly available datasets:

• WikiText2 https://huggingface.co/datasets/mindchain/wikitext2
• C4 https://huggingface.co/datasets/allenai/c4
• MMLU https://huggingface.co/datasets/cais/mmlu

• ARC-C https://huggingface.co/datasets/allenai/ai2_arc

• PIQA https://huggingface.co/datasets/ybisk/piqa

• MathQA https://huggingface.co/datasets/allenai/math_qa

• LongBench https://huggingface.co/datasets/THUDM/LongBench

10

https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/datasets/mindchain/wikitext2
https://huggingface.co/datasets/allenai/c4
https://huggingface.co/datasets/cais/mmlu
https://huggingface.co/datasets/allenai/ai2_arc
https://huggingface.co/datasets/ybisk/piqa
https://huggingface.co/datasets/allenai/math_qa
https://huggingface.co/datasets/THUDM/LongBench

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh
Hajishirzi. MathQA: Towards interpretable math word problem solving with operation-based
formalisms. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pp. 2357–2367, 2019.
URL https://aclanthology.org/N19-1245/.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilingual,
multitask benchmark for long context understanding. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (ACL), pp. 3119–3137, 2024. URL https:
//aclanthology.org/2024.acl-long.172/.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: Reasoning
about physical commonsense in natural language. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 7432–7439, 2020. URL https://ojs.aaai.org/
index.php/AAAI/article/view/6239.

Sylvie Boldo and Guillaume Melquiond. 4 - automated methods. In Sylvie Boldo and Guillaume
Melquiond (eds.), Floating-Point Algorithms and Formal Proofs, pp. 91–137. Elsevier, 2017. ISBN
978-1-78548-112-3. doi: https://doi.org/10.1016/B978-1-78548-112-3.50004-7. URL https:
//www.sciencedirect.com/science/article/pii/B9781785481123500047.

Mengzhao Chen, Yi Liu, Jiahao Wang, Yi Bin, Wenqi Shao, and Ping Luo. PrefixQuant: Static
quantization beats dynamic through prefixed outliers in LLMs. arXiv preprint arXiv:2410.05265,
2024a.

Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang Zhou, Jianyu Zhang, Niklas Nolte, Yuandong
Tian, Matthijs Douze, Leon Bottou, Zhihao Jia, et al. MagicPIG: LSH sampling for efficient LLM
generation. In Adaptive Foundation Models: Evolving AI for Personalized and Efficient Learning,
2024b.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? Try ARC, the AI2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018. URL https://arxiv.org/abs/1803.05457.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning, 2023. URL
https://arxiv.org/abs/2307.08691.

Badhan Chandra Das, M Hadi Amini, and Yanzhao Wu. Security and privacy challenges of large
language models: A survey. ACM Computing Surveys, 57(6):1–39, 2025.

Peijie Dong, Lujun Li, Xinglin Pan, Zimian Wei, Xiang Liu, Qiang Wang, and Xiaowen Chu. Parzc:
Parametric zero-cost proxies for efficient nas, 2024a. URL https://arxiv.org/abs/2402.
02105.

Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu, Xinglin Pan, Qiang Wang, and Xiaowen Chu.
Pruner-Zero: Evolving symbolic pruning metric from scratch for large language models, 2024b.
URL https://arxiv.org/abs/2406.02924.

Peijie Dong, Zhenheng Tang, Xiang Liu, Lujun Li, Xiaowen Chu, and Bo Li. Can compressed llms
truly act? An empirical evaluation of agentic capabilities in LLM compression. In Proceedings
of the 42th International Conference on Machine Learning, Proceedings of Machine Learning
Research. PMLR, 2025.

Haojie Duanmu, Zhihang Yuan, Xiuhong Li, Jiangfei Duan, Xingcheng Zhang, and Dahua Lin.
SKVQ: Sliding-window key and value cache quantization for large language models, 2024. URL
https://arxiv.org/abs/2405.06219.

Ruibo Fan, Xiangrui Yu, Peijie Dong, Zeyu Li, Gu Gong, Qiang Wang, Wei Wang, and Xiaowen Chu.
Spinfer: Leveraging low-level sparsity for efficient large language model inference on gpus. In Pro-
ceedings of the Twentieth European Conference on Computer Systems, EuroSys ’25, pp. 243–260,
New York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400711961. doi:
10.1145/3689031.3717481. URL https://doi.org/10.1145/3689031.3717481.

11

https://aclanthology.org/N19-1245/
https://aclanthology.org/2024.acl-long.172/
https://aclanthology.org/2024.acl-long.172/
https://ojs.aaai.org/index.php/AAAI/article/view/6239
https://ojs.aaai.org/index.php/AAAI/article/view/6239
https://www.sciencedirect.com/science/article/pii/B9781785481123500047
https://www.sciencedirect.com/science/article/pii/B9781785481123500047
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2402.02105
https://arxiv.org/abs/2402.02105
https://arxiv.org/abs/2406.02924
https://arxiv.org/abs/2405.06219
https://doi.org/10.1145/3689031.3717481

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate post-training
quantization for generative pre-trained transformers, 2023. URL https://arxiv.org/abs/
2210.17323.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, et al. The
Llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-R1: Incentivizing reasoning capability in LLMs
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding, 2021. URL https://arxiv.
org/abs/2009.03300.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Sophia Shao, Kurt
Keutzer, and Amir Gholami. KVQuant: Towards 10 million context length LLM inference with
KV cache quantization. Advances in Neural Information Processing Systems, NeurIPS 2024, 37:
1270–1303, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
et al. Mistral 7b, 2023. URL https://arxiv.org/abs/2310.06825.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. SnapKV: LLM knows what you are looking for before
generation, 2024. URL https://arxiv.org/abs/2404.14469.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. AWQ: Activation-aware weight quantization for
LLM compression and acceleration, 2024. URL https://arxiv.org/abs/2306.00978.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song Han.
QServe: W4A8KV4 quantization and system co-design for efficient LLM serving, 2025. URL
https://arxiv.org/abs/2405.04532.

Lucas D. Lingle. Transformer-VQ: Linear-time transformers via vector quantization, 2024. URL
https://arxiv.org/abs/2309.16354.

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-
gruidong Zhang, Bailu Ding, Kai Zhang, et al. RetrievalAttention: Accelerating long-context LLM
inference via vector retrieval. arXiv preprint arXiv:2409.10516, 2024a.

Jiaheng Liu, Dawei Zhu, Zhiqi Bai, Yancheng He, Huanxuan Liao, Haoran Que, Zekun Wang,
Chenchen Zhang, Ge Zhang, Jiebin Zhang, et al. A comprehensive survey on long context
language modeling. arXiv preprint arXiv:2503.17407, 2025a.

Xiang Liu, Zhenheng Tang, Hong Chen, Peijie Dong, Zeyu Li, Xiuze Zhou, Bo Li, Xuming Hu, and
Xiaowen Chu. Can LLMs maintain fundamental abilities under KV cache compression?, 2025b.
URL https://arxiv.org/abs/2502.01941.

Xiang Liu, Zhenheng Tang, Peijie Dong, Zeyu Li, Bo Li, Xuming Hu, and Xiaowen Chu. ChunkKV:
Semantic-preserving kv cache compression for efficient long-context LLM inference, 2025c. URL
https://arxiv.org/abs/2502.00299.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi Chen,
and Xia Hu. KIVI: A tuning-free asymmetric 2bit quantization for KV cache. In International
Conference on Machine Learning, ICML 2024, pp. 32332–32344. PMLR, 2024b.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

OpenAI. Gpt-4 technical report, 2023. URL https://cdn.openai.com/papers/gpt-4.
pdf.

12

https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2404.14469
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2405.04532
https://arxiv.org/abs/2309.16354
https://arxiv.org/abs/2502.01941
https://arxiv.org/abs/2502.00299
https://cdn.openai.com/papers/gpt-4.pdf
https://cdn.openai.com/papers/gpt-4.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Anselm
Levskaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling
transformer inference, 2022. URL https://arxiv.org/abs/2211.05102.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/2104.
09864.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. RoFormer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Zhenheng Tang, Xiang Liu, Qian Wang, Peijie Dong, Bingsheng He, Xiaowen Chu, and Bo Li. The
lottery LLM hypothesis, rethinking what abilities should LLM compression preserve? In The
Fourth Blogpost Track at ICLR 2025, 2025.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, et al. Llama 2: Open foun-
dation and fine-tuned chat models, 2023. URL https://arxiv.org/abs/2307.09288.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better llm quantization with hadamard incoherence and lattice codebooks, 2024. URL
https://arxiv.org/abs/2402.04396.

Qian Wang, Zhenheng Tang, Zichen Jiang, Nuo Chen, Tianyu Wang, and Bingsheng He. AgentTaxo:
Dissecting and benchmarking token distribution of LLM multi-agent systems. In ICLR 2025
Workshop on Foundation Models in the Wild, 2025a.

Qian Wang, Tianyu Wang, Zhenheng Tang, Qinbin Li, Nuo Chen, Jingsheng Liang, and Bingsheng
He. MegaAgent: A large-scale autonomous LLM-based multi-agent system without predefined
SOPs. In The 63rd Annual Meeting of the Association for Computational Linguistics, 2025b.

Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia Zhang. Model tells you where to merge: Adaptive
KV cache merging for llms on long-context tasks, 2024. URL https://arxiv.org/abs/
2407.08454.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 38–45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang, Zhongzhu Zhou, Xiafei Qiu, Yong Li, Wei
Lin, and Shuaiwen Leon Song. Flash-LLM: Enabling cost-effective and highly-efficient large
generative model inference with unstructured sparsity, 2023. URL https://arxiv.org/
abs/2309.10285.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models, 2024a. URL https:
//arxiv.org/abs/2211.10438.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, ICLR 2024, 2024b.

Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yihua Cheng, Qizheng Zhang, Kuntai Du, Shan
Lu, and Junchen Jiang. CacheBlend: Fast large language model serving for RAG with cached
knowledge fusion. In Proceedings of the Twentieth European Conference on Computer Systems,
EuroSys ’25, pp. 94–109, New York, NY, USA, 2025. Association for Computing Machinery.
ISBN 9798400711961. doi: 10.1145/3689031.3696098. URL https://doi.org/10.1145/
3689031.3696098.

13

https://arxiv.org/abs/2211.05102
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2402.04396
https://arxiv.org/abs/2407.08454
https://arxiv.org/abs/2407.08454
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/2309.10285
https://arxiv.org/abs/2309.10285
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2211.10438
https://doi.org/10.1145/3689031.3696098
https://doi.org/10.1145/3689031.3696098

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu, Xupeng Miao, Xiaonan Nie, Weipeng Chen,
and Bin Cui. PQCache: Product quantization-based KVCache for long context LLM inference.
arXiv preprint arXiv:2407.12820, 2024a.

Tianyi Zhang, Jonah Yi, Zhaozhuo Xu, and Anshumali Shrivastava. KV cache is 1 bit per channel: Ef-
ficient large language model inference with coupled quantization. Advances in Neural Information
Processing Systems, NeurIPS 2024, 37:3304–3331, 2024b.

Yuxin Zhang, Yuxuan Du, Gen Luo, Yunshan Zhong, Zhenyu Zhang, Shiwei Liu, and Rongrong
Ji. CaM: cache merging for memory-efficient LLMs inference. In Proceedings of the 41st
International Conference on Machine Learning, ICML’24. JMLR.org, 2024c.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 1(2), 2023.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind
Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
accurate LLM serving, 2024. URL https://arxiv.org/abs/2310.19102.

Qianchao Zhu, Jiangfei Duan, Chang Chen, Siran Liu, Xiuhong Li, Guanyu Feng, Xin Lv, Huanqi
Cao, Chuanfu Xiao, Xingcheng Zhang, Dahua Lin, and Chao Yang. SampleAttention: Near-
lossless acceleration of long context LLM inference with adaptive structured sparse attention. In
Ninth Annual Conference on Machine Learning and Systems, MLSys 2025, 2025a.

Yuanbing Zhu, Zhenheng Tang, Xiang Liu, Ang Li, Bo Li, Xiaowen Chu, and Bo Han. OracleKV:
Oracle guidance for question-independent KV cache compression. In ICML 2025 Workshop on
Long-Context Foundation Models, 2025b. URL https://openreview.net/forum?id=
KHM2YOGgX9.

14

https://arxiv.org/abs/2310.19102
https://openreview.net/forum?id=KHM2YOGgX9
https://openreview.net/forum?id=KHM2YOGgX9

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A RELATED WORKS

KV cache quantization A variety of KV cache quantization methods have been proposed to address
the memory bottleneck in long-context LLMs Liu et al. (2024b); Duanmu et al. (2024); Hooper et al.
(2024); Zhang et al. (2024b); Zhu et al. (2025a). KIVI Liu et al. (2024b) mitigates quantization error
by applying per-channel key quantization and employing a sliding window to emphasize locally
relevant tokens. SKVQ Duanmu et al. (2024) further explores this direction by introducing channel
reordering and clipping. To further reduce accuracy loss, KVQuant Hooper et al. (2024) introduces
pre-RoPE key quantization, non-uniform format and element-wise outlier. CQ Zhang et al. (2024b)
adopts a VQ-based approach, aiming to exploit cross-channel correlations to further compress the
KV cache.

KV cache compression Beyond quantization, the field of LLMs is actively exploring advanced
methods for KV cache compression. Sparse attention aims to reduce memory footprint by selectively
handling the KV cache in a token-wise manner Xiao et al. (2024b); Chen et al. (2024a); Zhu et al.
(2025b); Liu et al. (2025c;b); Li et al. (2024). However, it discards the KV cache of a subset of tokens,
even though the corresponding tokens may be required in subsequent decoding. Token Merging
reduces memory usage by consolidating the KV caches of similar tokens during inference, achieving
an effect related to sparse attention but through merging rather than dropping tokens Zhang et al.
(2024c); Wang et al. (2024). Retrieval-based methods Liu et al. (2024a); Chen et al. (2024b); Zhang
et al. (2024a) offload and index KV caches, retrieving a subset of relevant entries for each query, but
introduce additional communication overhead.

Model Compression Numerous model compression techniques share common objectives and method-
ological foundations with KV cache compression. GPTQ Frantar et al. (2023) utilizes calibration set
to reduce quantization induced degradation, while SmoothQuant Xiao et al. (2024a) and AWQ Lin
et al. (2024) minimize output error from the perspective of error propagation analysis. VQ-based
methods such as QUIP# Tseng et al. (2024) further enhance compression fidelity through Hadamard
transform. Pruner-Zero Dong et al. (2024b) and Parzc Dong et al. (2024a), explore how to sparsify
model weights while preserving model performance. System-level works like Atom Zhao et al.
(2024) and QServe Lin et al. (2025) Recent efforts jointly quantize model, KV cache and activatioin,
enabling inference under low-bit and leveraging low-precision Tensor Cores to improve system
performance, while approaches such as FlashLLM Xia et al. (2023) and Spinfer Fan et al. (2025)
accelerate inference by leveraging model sparsity.

B DISTRIBUTION OF PRE- AND POST- ROPE KEY

To identify a quantization strategy better suited for K vertor quantization, we compare the distribution
of K before and after applying RoPE. Figure 8 presents a visualization of the pre- and post- RoPE
K. We observe that, compared to the post-RoPE K, the pre-RoPE K exhibits smaller inter-cluster
distances and lower intra-cluster variance, which contributes to reduced quantization error.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100120
Channel 0

500
1000

1500
2000

Tok
en

5.0
2.5

0.0
2.5
5.0
7.5
10.0

Layer 0 Head 0
Key (pre-RoPE)

0 20 40 60 80 100120
Channel 0

500
1000

1500
2000

Tok
en

7.5
5.0
2.5

0.0
2.5
5.0
7.5

Layer 0 Head 0
Key (post-RoPE)

0 20 40 60 80 100120
Channel 0

500
1000

1500
2000

Tok
en

5

0

5

10

Layer 4 Head 1
Key (pre-RoPE)

0 20 40 60 80 100120
Channel 0

500
1000

1500
2000

Tok
en

10
5

0
5
10

Layer 4 Head 1
Key (post-RoPE)

0 20 40 60 80 100120
Channel 0

500
1000

1500
2000

Tok
en

20
15
10
5

0
5
10

Layer 8 Head 2
Key (pre-RoPE)

0 20 40 60 80 100120
Channel 0

500
1000

1500
2000

Tok
en

15
10
5

0
5
10
15

Layer 8 Head 2
Key (post-RoPE)

0 20 40 60 80 100120
Channel 0

500
1000

1500
2000

Tok
en

10
5
0

5

10

Layer 12 Head 3
Key (pre-RoPE)

0 20 40 60 80 100120
Channel 0

500
1000

1500
2000

Tok
en

10

5

0

5

10

Layer 12 Head 3
Key (post-RoPE)

0 20 40 60 80 100120
Channel 0

500
1000

1500
2000

Tok
en

10
5
0
5
10

Layer 16 Head 4
Key (pre-RoPE)

0 20 40 60 80 100120
Channel 0

500
1000

1500
2000

Tok
en

10

5

0

5

Layer 16 Head 4
Key (post-RoPE)

0 20 40 60 80 100120
Channel 0

500
1000

1500
2000

Tok
en

5
0
5
10

15

Layer 20 Head 5
Key (pre-RoPE)

0 20 40 60 80 100120
Channel 0

500
1000

1500
2000

Tok
en

5
0
5
10

15

Layer 20 Head 5
Key (post-RoPE)

0 20 40 60 80 100120
Channel 0

500
1000

1500
2000

Tok
en

10
5
0
5
10

Layer 24 Head 6
Key (pre-RoPE)

0 20 40 60 80 100120
Channel 0

500
1000

1500
2000

Tok
en

10
5
0
5
10

Layer 24 Head 6
Key (post-RoPE)

0 20 40 60 80 100120
Channel 0

500
1000

1500
2000

Tok
en

5

0

5

10

15

Layer 28 Head 7
Key (pre-RoPE)

0 20 40 60 80 100120
Channel 0

500
1000

1500
2000

Tok
en

10
5
0
5
10

Layer 28 Head 7
Key (post-RoPE)

Figure 8: Distribution of pre- and post- RoPE Key. We sampled a 2048-length sentence from
WikiText2 and generated pre- and post- RoPE Key on the LLaMA-3-8B model.

C PROOF OF THEOREM 1

For K, we have

∥Attn (Q,K + δK,V) − Attn (Q,K,V) ∥L1
= ∥

(
Softmax

(
Q̃K̃T

√
d

+
Q̃δ̃K

T

√
d

)
− Softmax

(
Q̃T K̃
√
d

))
V ∥L1

.

(6)

The key to estimating the bound of equation 6 lies in the analysis of

Softmax

Q̃K̃T

√
d

+
Q̃δ̃K

T

√
d

− Softmax(Q̃K̃T

√
d

)
, (7)

whose (i, j)th entry is represented as

exp

(
Q̃i,:K̃

T
j,:√

d
+

Q̃i,:δ̃K
T

j,:√
d

)
∑
s
exp

(
Q̃i,:K̃T

s,:√
d

+
Q̃i,:δ̃K

T

s,:√
d

) − exp

(
Q̃i,:K̃

T
j,:√

d

)
∑
s
exp

(
Q̃i,:K̃T

s,:√
d

) . (8)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Since ∥δK∥L1
≪ ∥K∥L1

, and by the first-order approximation exp (x+ δx) ≈ exp (x)(1 + δx),
equation 8 can be approximated as

exp

(
Q̃i,:K̃

T
j,:√

d

)(
1 +

Q̃i,: δ̃K
T
j,:√

d

)(∑
s

exp

(
Q̃i,:K̃

T
s,:√

d

))
− exp

(
Q̃i,:K̃

T
j,:√

d

)(∑
s

exp

(
Q̃i,:K̃

T
s,:√

d

)(
1 +

Q̃i,: δ̃K
T
s,:√

d

))
(∑

s
exp

(
Q̃i,:K̃

T
s,:√

d

))(∑
s

exp

(
Q̃i,:K̃

T
s,:√

d

)(
1 +

Q̃i,: δ̃K
T
s,:√

d

))

=

exp

(
Q̃i,:K̃

T
j,:√

d

)
∑
s

exp

(
Q̃i,:K̃

T
s,:√

d

) ·

∑
s

exp

(
Q̃i,:K̃

T
s,:√

d

)(
Q̃i,:

(
δKT

j,:−δKT
s,:

)
√

d

)
∑
s

exp

(
Q̃i,:K̃

T
s,:√

d

)(
1 +

Q̃i,: δ̃K
T
s,:√

d

)

≈
exp

(
Q̃i,:K̃

T
j,:√

d

)
∑
s

exp

(
Q̃i,:K̃

T
s,:√

d

) ·

∑
s

exp

(
Q̃i,:K̃

T
s,:√

d

)(
Q̃i,:

(
δKT

j,:−δKT
s,:

)
√

d

)
∑
s

exp

(
Q̃i,:K̃

T
s,:√

d

)

= Ai,j ·

∑
s

exp

(
Q̃i,:K̃

T
s,:√

d

)(
Q̃i,:

(
δKT

j,:−δKT
s,:

)
√

d

)
∑
s

exp

(
Q̃i,:K̃

T
s,:√

d

) .

For convenience, we denote Q̃δ̃K
T

√
d

and

∑s exp

(
Q̃i,:K̃

T
s,:√

d

)(
Q̃i,:(δKT

j,:−δKT
s,:)√

d

)
∑
s

exp

(
Q̃i,:K̃

T
s,:√

d

)

n×n

as X and Y

respectively. Then equation 7 can be approximated as (A⊙ Y)V , and by the property of Kronecker
product, we have

Vec ((A⊙ Y)V) =
(
In ⊗ V T

)
Vec (A⊙ Y) =

(
In ⊗ V T

)
Diag (Vec(A))Vec(Y).

Further, we can obtain

∥Attn (Q,K + δK,V) − Attn (Q,K,V) ∥L1
≈ ∥

(
In ⊗ V

T
)
Diag (Vec(A)) Vec(Y)∥L1

=
∑
i

∥V T Diag (Ai,:) (In − eAi,:)X
T
i,:∥L1

≤
∑
i

∑
j

∥
(
V

T Diag (Ai,:) (In − eAi,:)
)
:,j

∥L1
|Q̃i,:δ̃K

T

j,:|

≤
∑
j

∑
i

∥
(
V

T Diag (Ai,:) (In − eAi,:)
)
:,j

∥L1
∥Qi,:∥2∥δKj,:∥L1

.

(9)

For V , we have

∥Attn (Q,K,V + δV)− Attn (Q,K,V) ∥L1
= ∥Softmax

(
Q̃K̃T

√
d

)
δV ∥L1

= ∥AδV ∥L1
=
∑
i,k

|
∑
j

Ai,jδVj,k|

≤
∑
i,k

∑
j

Ai,j |δVj,k|

=
∑
j

(∑
i

Ai,j

)(∑
k

|δVj,k|

)
=
∑
j

∥A:,j∥L1
∥δVj,:∥L1

.

(10)

D THE EFFECTIVENESS OF ANS

We quantized each token across layers and heads, and separately recorded the errors in the attention
outputs. As shown in Figure 9 and equation 5, it can be observed that the relative values derived from

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

our AnS, as defined in Theorem 1, closely align with the actual outputs of the attention. For a fair
comparison, the output errors for K also exclude the contribution of V .

0 20 40 60 80 100 120
Token Idx

10 2

100

102

104

Er
ro

r

Layer 0 Head 0 Key

AnS(K)
Output Error

0 20 40 60 80 100 120
Token Idx

10 4

10 3

10 2

10 1

100

101

Er
ro

r

Layer 0 Head 0 Value

AnS(V)
Output Error

0 20 40 60 80 100 120
Token Idx

10 1

100

101

102

103

104

Er
ro

r

Layer 4 Head 4 Key

0 20 40 60 80 100 120
Token Idx

10 2

10 1

100

101

Er
ro

r

Layer 4 Head 4 Value

0 20 40 60 80 100 120
Token Idx

10 1

100

101

102

103

104

Er
ro

r

Layer 8 Head 8 Key

0 20 40 60 80 100 120
Token Idx

10 3

10 2

10 1

100

101

Er
ro

r

Layer 8 Head 8 Value

0 20 40 60 80 100 120
Token Idx

100

101

102

103

104

Er
ro

r

Layer 12 Head 12 Key

0 20 40 60 80 100 120
Token Idx

10 1

100

101

Er
ro

r

Layer 12 Head 12 Value

0 20 40 60 80 100 120
Token Idx

10 1

100

101

102

103

104

Er
ro

r

Layer 16 Head 16 Key

0 20 40 60 80 100 120
Token Idx

10 2

10 1

100

101

102

Er
ro

r

Layer 16 Head 16 Value

0 20 40 60 80 100 120
Token Idx

10 1

100

101

102

103

104

Er
ro

r

Layer 20 Head 20 Key

0 20 40 60 80 100 120
Token Idx

10 4

10 3

10 2

10 1

100

101

102

Er
ro

r

Layer 20 Head 20 Value

0 20 40 60 80 100 120
Token Idx

10 1

100

101

102

103

104

Er
ro

r

Layer 24 Head 24 Key

0 20 40 60 80 100 120
Token Idx

10 4

10 3

10 2

10 1

100

101

102

Er
ro

r

Layer 24 Head 24 Value

0 20 40 60 80 100 120
Token Idx

100

101

102

103

104
Er

ro
r

Layer 28 Head 28 Key

0 20 40 60 80 100 120
Token Idx

10 3

10 2

10 1

100

101

102

Er
ro

r

Layer 28 Head 28 Value

Figure 9: The effectiveness of AnS.

E ANS DISTRIBUTION DURING DECODING

To illustrate the distribution of AnS during decoding, we sampled prompts from Qasper within
LongBench for visualization. As shown in Figure 10, we present the distribution of AnS(K) and
AnS(V) across different layers and heads, specifically when decoding the first token. Our observations
reveal that high AnS values during decoding are predominantly concentrated on adjacent tokens and
at the attention sink tokens. Since sink tokens often lead to significant error propagation and can
be dynamically identified by AnS during prefill, we simplify the design of AnS during decoding by
employing a sliding window to ensure model performance.

F COMPUTATIONAL PROCEDURE OF ANS IN THE ONLINE STAGE

Algorithm 1 The computation of AnS in the online stage.

1: Input: Query (Q), key (K), value (V)
2: Output: AnS of KV, i.e., AnS(K) and AnS(V)
3: (O,L,M , ∥Qi,:∥L2

)← FlashAttention(Q,K,V)
4: for each block key index j in parallel (assigned to GPU block) do
5: for each block query index i do
6: Si,j ← ⟨Qh,i,Kh,j⟩
7: Ai,j ← exp(Si,j −Mh,i)/Lh,i

8: AnS(K)i ← AnS(K)i + col_sum(Ai,j · (1−Ai,j), row-wise)
9: AnS(V)i ← AnS(V)i + col_sum(Ai,j , row-wise)

10: end for
11: end for
12: return AnS(K), AnS(V)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 500 1000
Token Position

0.00

0.25

0.50

0.75

1.00 L0, H0 (AnS (V))

0 500 1000
Token Position

0.0

0.1

0.2

L0, H0 (AnS (K))

0 500 1000
Token Position

0.00

0.25

0.50

0.75

1.00 L4, H1 (AnS (V))

0 500 1000
Token Position

0.0

0.1

0.2

L4, H1 (AnS (K))

0 500 1000
Token Position

0.00

0.25

0.50

0.75

1.00 L8, H2 (AnS (V))

0 500 1000
Token Position

0.0

0.1

0.2

L8, H2 (AnS (K))

0 500 1000
Token Position

0.00

0.25

0.50

0.75

1.00 L12, H3 (AnS (V))

0 500 1000
Token Position

0.0

0.1

0.2

L12, H3 (AnS (K))

0 500 1000
Token Position

0.00

0.25

0.50

0.75

1.00 L16, H4 (AnS (V))

0 500 1000
Token Position

0.0

0.1

0.2

L16, H4 (AnS (K))

0 500 1000
Token Position

0.00

0.25

0.50

0.75

1.00 L20, H5 (AnS (V))

0 500 1000
Token Position

0.0

0.1

0.2

L20, H5 (AnS (K))

0 500 1000
Token Position

0.00

0.25

0.50

0.75

1.00 L24, H6 (AnS (V))

0 500 1000
Token Position

0.0

0.1

0.2

L24, H6 (AnS (K))

0 500 1000
Token Position

0.00

0.25

0.50

0.75

1.00 L28, H7 (AnS (V))

0 500 1000
Token Position

0.0

0.1

0.2

L28, H7 (AnS (K))

Figure 10: AnS Distribution on Sampled Prompts from Qasper Using LLaMA-3-8B-Instruct During
First-Token Decoding.

G CALIBRATION SET IMPACT

As shown in the Table 2, we observe that for VQ-based quantization in the ultra-low-bit regime, the
calibration set significantly impacts the perplexity results. However, AnTKV with 1% anchor tokens
not only substantially reduces the PPL but also greatly mitigates the effect of different calibration
sets.

Table 2: Perplexity experiment results on Mistral-7B, using the W2 and C4 training sets respectively
as Calibration Sets. The "Vset" is the validation set related to W2 and C4. "Calib Set" represents
"Calibration Set".

Bits Vset 4 2 1 0.75 0.375
Calib Set W2 C4 W2 C4 W2 C4 W2 C4 W2 C4

Ours W2 4.76 5.69 5.08 6.18 7.32 10.51 7.32 10.51 11.65 23.98
C4 4.79 5.69 5.32 6.15 10.14 10.09 10.90 10.80 24.16 19.95

Ours-1% W2 4.74 5.67 4.95 5.97 6.32 8.44 6.32 8.44 8.87 14.87
C4 4.75 5.66 5.02 5.94 7.13 8.13 7.79 8.56 12.87 13.07

To further investigate the impact of the calibration set on model performance, we used C4 as a
calibration set to evaluate several subtasks within LongBench (qasper, trec, samsum, lcc, ropebench-
p). As shown in the Table 3, we observed that there were some differences in the results of Trec and
Repobench-p when using Wikitext-2 and C4, while the differences were not significant for the other
tasks.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 3: Performance on LongBench Subtasks with Wikitext-2 (W2) and C4 Calibration Sets at
Different Bits using LLaMA-3-8B-Instruct. "Calib Set" represents "Calibration Set", and "repobc-p"
represents "repobench-p".

Bits 4 2 1 0.75 0.375
Calib Set W2 C4 W2 C4 W2 C4 W2 C4 W2 C4

qasper 40.46 39.98 39.04 38.2 25.95 26.51 25.48 25.49 22.41 23.27
trec 69.33 69.33 67 64.67 38.67 42.33 39.67 41.33 38 38

samsum 40.2 40.27 38.61 38.22 30.0 30.3 29.57 29.29 25.5 24.82
lcc 59.84 59.07 60.94 59.15 53.97 53,93 52.97 52.01 49.61 49.79

repobc-p 44.24 41.3 45.29 42.68 38.53 37.94 37.87 38.02 34.54 34.71

H ANCHOR TOKENS NUMBER IMPACT

To investigate the impact of the number of anchor tokens on model performance, we conducted
Perplexity evaluations on Mistral-7B and LLaMA-3-8B, both with a context length of 8192. We
performed evaluations using no anchor tokens and with anchor token percentages of 1% (82), 2%
(164), 5% (410), 10% (820), 15% (1230), and 20% (1640). The corresponding results are presented
in Figures 11 and 12. For the 2-bit and 4-bit results, using 1% of anchor tokens kept the error within
0.6 compared to FP16. However, for the 1-bit and sub-bit results, we needed to increase the number
of anchor tokens to control the error within an acceptable range. Nevertheless, AnTKV provides a
feasible technical pathway for ultra-low-bit quantization of the KV cache.

0 1% 2% 5% 10% 15% 20%
Anchor Token (%)

6

8

10

12

14

Pe
rp

le
xi

ty

5.61 5.59 5.59 5.58 5.57 5.56 5.55

6.10 5.97 5.92 5.83 5.75 5.70

9.62

8.51
7.96

10.41

8.97

8.29

7.26

6.57
6.25 6.07

17.70
13.41

11.71

9.32

7.60

6.79
6.40

FP16
5.54

WikiText-2
4 bit
2 bit
1 bit
0.75 bit
0.375 bit
FP16 (5.54)

0 1% 2% 5% 10% 15% 20%
Anchor Token (%)

8

10

12

14

16

18

20

Pe
rp

le
xi

ty

7.69 7.16 7.15 7.14 7.13 7.13 7.12

16.96

7.68 7.61 7.48 7.37 7.30 7.26

74.47

12.51

11.36

66.28

14.42

12.69

10.30

8.92
8.30 7.95

103.50 34.08 28.75

16.61

11.67

9.70

8.74

FP16
7.10

C4
4 bit
2 bit
1 bit
0.75 bit
0.375 bit
FP16 (7.10)

Figure 11: Perplexity results on LLaMA-3-8B with varying anchor token numbers.

0 1% 2% 5% 10% 15% 20%
Anchor Token (%)

4

5

6

7

8

9

10

Pe
rp

le
xi

ty

4.76 4.74 4.74 4.74 4.73 4.73 4.73

5.08 4.95 4.92 4.86 4.82 4.79 4.78

7.32

6.32
6.03

7.41

6.43
6.08

5.59
5.24 5.07 4.97

11.65
8.87

7.92

6.48

5.63
5.29

5.11

FP16
4.73

WikiText-2
4 bit
2 bit
1 bit
0.75 bit
0.375 bit
FP16 (4.73)

0 1% 2% 5% 10% 15% 20%
Anchor Token (%)

4

6

8

10

12

14

Pe
rp

le
xi

ty

5.69 5.67 5.66 5.66 5.66 5.65 5.65

6.18 5.97 5.92 5.84 5.78 5.74 5.71

10.51

8.44
7.86

11.72

9.08
8.28

7.25
6.57 6.25 6.06

23.98 14.87

12.69

9.48

7.47
6.72

6.35

FP16
5.65

C4
4 bit
2 bit
1 bit
0.75 bit
0.375 bit
FP16 (5.65)

Figure 12: Perplexity results on Mistral-7B with varying anchor token numbers.

To further investigate the impact of anchor token numbers on downstream tasks, we evaluated
different anchor token numbers on the Trec and Qasper subtasks of LongBench under ultra-low-bit

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

quantization settings. For convenience, we approximated 1% of the anchor token number as 64. The
results are shown in Figure 13. it illustrates that both the Trec and Qasper subtasks exhibit a consistent
improvement pattern as the number of anchor tokens increases. In particular, moving from 0% to 1%
anchor tokens leads to a substantial performance gain across all quantization settings, highlighting
that even a very small proportion of anchor tokens can effectively mitigate the degradation introduced
by ultra-low-bit quantization. Beyond this point, the improvements from 1% to 2%, 2% to 5%,
and 5% to 10% follow an approximately linear trend, with performance gradually approaching the
FP16 baseline. These results demonstrate that anchor tokens play a dual role that a small fraction is
sufficient to deliver immediate and significant benefits, while larger allocations further provide steady,
near-linear enhancements in downstream task performance.

0 1% 2% 5% 10%
Anchor Token (%)

20

30

40

50

60

70

Pe
rp

le
xi

ty

36.67

50.67

56.00

61.00
64.00

37.00

51.67
57.00

62.00
64.33

36.00

48.67
52.67

60.00
63.67

FP16
69.33

Trec

1bit
0.75bit
0.375bit
FP16 (69.33)

0 1% 2% 5% 10%
Anchor Token (%)

10

15

20

25

30

35

40

Pe
rp

le
xi

ty

25.20

28.95 29.40

33.62
34.85

22.60

28.54 29.25

32.73
34.64

20.53

24.57
27.00

30.38
33.30

FP16
40.19

Qasper

1bit
0.75bit
0.375bit
FP16 (40.19)

Figure 13: Trec and Qasper results on LLaMA-3-8B-Instruct with varying anchor token numbers.

I USE OF LLMS

In preparing this manuscript, we utilized ChatGPT-5 as a writing and editing assistant. Its role was
limited to enhancing the clarity and fluency of the English in various sections. All scientific ideas,
research methodology, experimental design, result analysis, and technical contributions are solely the
product of the human authors.

21

	Introduction
	Background
	Transformer and Attention
	Memory Constraints in LLM Inference

	Methodology
	Offline Token-Aware Centroids Learning
	Online Anchor Token Selection
	Implementation

	Experiments
	Perplexity Results
	Understanding and Reasoning Benchmark
	Long-Context Benchmark
	Efficiency
	Ablation Study

	Limitation & Conclusion
	Related Works
	Distribution of pre- and post- RoPE Key
	Proof of Theorem 1
	The Effectiveness of AnS
	AnS Distribution During Decoding
	Computational Procedure of AnS in the Online Stage
	Calibration Set Impact
	Anchor Tokens Number Impact
	Use of LLMs

