Under review as a conference paper at ICLR 2026

ANTKYV: ANCHOR TOKEN-AWARE ULTRA-LOW-BIT
VECTOR QUANTIZATION FOR KV CACHE IN LARGE
LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Quantization has emerged as an effective and lightweight solution to reduce the
memory footprint of the KV cache in Large Language Models. Nevertheless, mini-
mizing the accuracy degradation caused by ultra-low-bit KV cache quantization
remains a significant challenge. While scalar quantization is constrained by 1-bit
bound, vector quantization exploits intra-vector correlations and enables sub-bit
regimes, making it more suitable for ultra-low-bit quantization. To further mitigate
quantization-induced degradation, we reveal that the degradation is highly uneven
across tokens in attention quality. To investigate this unevenness, we introduce
anchor score to measure each token’s sensitivity to quantization. Our analysis and
experiments show that preserving a small subset (1%) of tokens with the highest
Anchor Score significantly mitigates accuracy loss under aggressive quantization.
We propose AnTKV, a dual-stage framework that leverages anchor token-aware
vector quantization to compress the KV cache. It combines offline token-aware
centroids learning and online anchor token selection to balance compression and
accuracy. To enable efficient deployment, we design an online anchor token se-
lection kernel compatible with FlashAttention. It allows LLaMA3-8B to scale to
840K tokens on a single 80GB A 100, while delivering up to 3.5x higher decoding
throughput over the FP16 baseline. Experiments demonstrate that An TKVmatches
or surpasses prior methods at 4-bit, and significantly reduce perplexity under ultra-
low-bit quantization, achieving 6.32 at 1-bit on Mistral-7B, compared to 7.25 for
CQ and 15.36 for KVQuant.

1 INTRODUCTION

Large Language Models (LLMs) have gained wide attention owing to their remarkable capabilities in
diverse applications |OpenAl (2023); |Guo et al.| (2025)); Team et al.|(2023); |Tang et al.| (2025); Dong
et al.| (2025). With rapid recent advances, LLMs currently handle context lengths from hundreds
of thousands to millions of tokens, enabling them to tackle increasingly complex tasks|Zhao et al.
(2023)); Wang et al| (2025b); Das et al.| (2025)); Wang et al.| (2025a). Most LLMs adopt decoder-
based transformer architectures, where tokens are generated autoregressively and the KV cache
grows rapidly with context length |Zhu et al.|(2025b)); Bai et al.| (2024); [Liu et al.|(2025a) and batch
size increases [Pope et al.| (2022)). The large amount of memory footprint of the KV cache poses a
significant challenge. For example, with LLaMA-3 at 128K tokens it already approaches the model
size, and for million-token models like Gemini it becomes prohibitive. Beyond inference, LLM-RAG
systems |Yao et al.| (2025)) pre-generate and store massive KV caches, creating additional storage
challenges.

Under review as a conference paper at ICLR 2026

100 4

r60 100 4
7514
r40

50 - {
10.0 4
{ —— Output Error 13.20
25 A r20

—— Quant Err K 8.87

>
o

Perplexity

80

Quantization Error
«»
W

Attn Output Error

60 -

40 1 5.0 1

'
—— Output Error == KVQuant-1%
—— QuantErrv [20 : 4.95 ¥ CQ

== ANTKV-1%(Ours) _| F21763

20

4.7 1

. " . : —L 0 ; :
0 256 512 768 1024 2 1 0.5 0.25
Token Index Quantization Bit-width

Figure 1: The L; norm error of attention out- Figure 2: The Perplexity of Mistral-7B on
put when quantizing the 7th token’s KV cache in the WikiText-2 across different quantization bit-
Mistral-7B to 1-bit. widths.

To address the substantial size of KV caches, numerous techniques have been explored [Liu et al.
(2025c¢zb} 20244); Zhang et al.| (2024c)); [Liu et al.| (2024b); |[Dong et al.| (2025)), with quantization prov-
ing to be especially effective. Quantization methods are generally classified into scalar quantization
(SQ) and vector quantization (VQ). SQ compresses the KV cache by mapping floating-point values
to fixed low-bit representations [Liu et al.| (2024b); [Duanmu et al.| (2024); [Hooper et al.| (2024), but
the 1-bit lower bound constrains its maximum compression ratio to 1/16 of FP16. In contrast, VQ
compresses high-dimensional vectors by mapping them to a finite codebook Lingle (2024); |Zhang
et al.[(2024b), which captures intra-vector correlations, achieves superior compression ratios and
fidelity under ultra-low-bit quantization.

We observe that tokens contribute unequally to model accuracy during inference. To illustrate this,
we quantize the KV cache of Mistral-7B Jiang et al] (2023) to 1-bit using VQ. Figure [T| depicts
the attention output L; norm error in the 31st layer when quantizing the KV cache across different
token indices, and similar error distributions are observed in other layers. As evident from the
figure, although per-token quantization errors are similar, the resulting error in the attention output
vary widely across tokens and a small subset exhibits error that are tens of times larger when
quantized (anchor tokens). Quantifying token importance is essential for unlocking the full potential
of ultra-low-bit KV cache quantization.

To address this, we conduct a forward error analysis |Boldo & Melquiond| (2017)) on attention-
based models with respect to KV, and then propose AnTKV, a dual-stage framework for KV cache
quantization. In the offline stage, AnTKV performs token-aware weighted k-means clustering to
generate centroids, where the weights are derived from error propagation factors obtained through
forward error analysis. Tokens that cause larger increases in output error are assigned larger weights
during clustering. However, the propagation factors entail substantial gradient cost. To overcome this
limitation, we propose Anchor Score (AnS) derived from the forward error analysis of the attention,
which quantifies the output sensitivity to quantizing each token’s KV cache. At inference time,
AnS is computed for each prompt to identify this small token subset. AnTKV handles this subset
of tokens in a simple yet effective manner by preserving them in full precision, thereby reducing
accuracy loss. Moreover, we design and implement a lightweight GPU kernel for AnS computation.
More specifically, we extend FlashAttention |Dao| (2023) to store low memory overhead softmax
intermediate results, thereby enabling efficient online anchor token selection.

We conduct extensive experiments to evaluate the effectiveness of AnTKV across various quantization
bit-widths on a range of LLMs, including the LLaMA-2/3 [Touvron et al.| (2023); |Grattafior1 et al.
(2024) and Mistral-7B [Jiang et al.| (2023) families. As shown in Figure |ZL AnTKV consistently
outperforms existing approaches across bit-widths from 4-bit down to 0.375-bit. On WikiText-
2 Merity et al.[(2016), AnTKV achieves a perplexity of 6.32 at 1-bit, reducing error by 0.93 compared
to CQ (7.25)Zhang et al.|(2024b), and by a substantial 9.04 compared to KVQuant-1% (15.36) Hooper
et al.[(2024). Even under the aggressive 0.375-bit setting, AnTKV attains a perplexity of 8.87,
surpassing CQ (13.20) by 4.33. Thanks to the efficient GPU implementation of AnS, AnTKV also

Under review as a conference paper at ICLR 2026

scales to extremely long contexts: on LLaMA3-8B, it supports up to 840K tokens under 0.375-
bit quantization on a single A100-80GB GPU. Moreover, during decoding, AnTKV increases the
maximum batch size by 3.3 and improves throughput by 3.4 at a 1K context length compared to
full precision.

To summarize, we make the following contributions in this work.

* To the best of our knowledge, this work is the first to investigate the feasibility of quantization
the KV cache to sub-bit while preserving model accuracy.

* We identify that different tokens contribute unequally to model accuracy under quantization
and highlight the existence of anchor tokens that dominate output error.

* We propose AnTKV, which performs token-aware weighted clustering offline and leverages
AnS online to efficiently identify anchor tokens, preserving them in full precision to mitigate
accuracy loss, and we evaluate it on the LLaMA2/3 and Mistral families, where it consistently
improves performance across a wide range of quantization bit-widths.

* We implement custom GPU kernels for the online stage, enabling AnTKV to scale to 840K
tokens on a single GPU and deliver significant throughput gains during decoding.

2 BACKGROUND

2.1 TRANSFORMER AND ATTENTION

The transformer block has become the fundamental architecture of LLMs; it consists of a fully
connected feed-forward network and an attention. The attention enables the model to capture
connections among tokens within the context. Specifically, it maps a query (@) and a set of KV pairs
(K and V) to an output, i.e.,

T

= o0 max QK
attn(Q,K,V) = Soft <\/g

where Softmax(-) is the softmax operator. Since position information is crucial in LLMs, Rotary
Position Embedding (RoPE) |Su et al.[(2023) is a widely used technique for encoding it into query

and key vectors Su et al.| (2024), which is denoted as @ and K in this paper. With RoPE, the
T
attention score A is rewritten as Softmax (Q\Z), and its L,, “entry-wise” matrix norm is defined

> V with Q,K,V e R"™*¢

1/p
as (Z |A; ;[P) . Other notations used in this work, such as the Kronecker product, the Hadamard
4,9

product, and the row-by-row vectorization are denoted as ®, ®, and Vec(-), respectively.

2.2 MEMORY CONSTRAINTS IN LLM INFERENCE

During the process of LLM inference, the key and value generated at prefill and each decoding step
are stored to avoid redundant computation. The KV cache is repeatedly accessed in subsequent
steps to compute attention over the full context seen so far, significantly accelerating autoregressive
decoding. In a multi-turn conversation, the KV cache from previous turns can also be reused during
the prefill stage to further reduce latency. Nowadays LLMs, like LLaMA3.1-8B |Grattafiori et al.
(2024) and Gemini 1.5 Pro|Team et al.| (2023)), now handle much longer context lengths, up to 128K
and 2 million tokens, respectively. This increase in context length |Liu et al.| (2025a)); Wang et al.
(2025a)) causes the GPU memory consumed by KV cache to even exceed the model. The rapid growth
of KV cache greatly limits the deployment of LLMs with long context. Quantization is an effective
approach to compressing the KV cache, substantially reducing memory footprint while preserving
essential information.

3 METHODOLOGY

VQ is employed as it enables sub-bit compression, which SQ cannot achieve, and in the ultra-low-bit
regime (< 2 bit) it leverages intra-vector correlations to attain significantly better quantization quality
compared to SQ.

Under review as a conference paper at ICLR 2026

] oL
argmin Z (<W’Kj* —vq(Kj.)) + <Wj-"fj’: - MI(Vj,;)))
b \: \:

1
1

1

: J
1 Calibration K oL weighted

1

' Set generate 0K clustering
1 >

1

1

1

1

1

1

S =

= oL Q.00 03 05
ol *OO 0.2 -0.2

(b) Online Anchor Token Selection

argmaz(Err - AnS)

KV cache Centroids Codebook Err | AnS (K) AnS (V) |

w[03 05] [03 05] vo [o] |I| \, o OoOoO

! 1
! 1
! 1
! 1
! 1
! 1
! 1
1

v 22008 04 |07 05| T [4] |foql| Tt '
1 208 04 T‘Ii weighted T col sum 1
. - ,
1

' :
! 1
! 1
! 1
! 1

: O
t1 /0.1 041 03 -05| VQ 1 0.4 E” 04 04 ! DDDCOISum DD
2104 04| 02 02 0 02 Camdher HE00 He00
Tokens A (E- A) A

Figure 3: Overview of AnTKV. In the stage (a), token-aware centroids are learned from calibration
data through weighted clustering, where the weights are error-propagation factors obtained by forward
error analysis. In the stage (b), the KV cache is quantized with centroids, and AnS is computed to
identify anchor tokens, which are preserved in full precision to mitigate accuracy loss.

As shown in the figure[I} we observe that although per-token KV cache quantization errors appear
similar, the resulting attention output errors differ dramatically. Moreover, the error distribution
is steep, with large errors occurring unpredictably across tokens. Previous works on KV cache
quantization typically treat all tokens equally or are biased toward attention sinks, as inspired by
AttentionSink [Xiao et al.| (2024b)), which we argue is suboptimal. Our observation reveals a new
opportunity for KV cache quantization, where tokens with greater influence on attention output error
should be prioritized. Building on this observation, we propose AnTKV, a token-aware VQ framework
for KV cache quantization. It adopdts a dual-stage design consisting of offline token-aware centroid
learning (Figure[3|a)) and online anchor token selection (Figure [3[b)). The central challenge lies in
effectively measuring token importance. During centroids leanring, forward error analysis provides
per-token error propagation factors, which serve as weights in a token-aware k-means clustering to
generate VQ centroids, thereby emphasizing tokens with significant influence on attention-output
error. For anchor token selection, directly using error propagation factors incurs expensive gradient
computation. To avoid this cost, we introduce AnS, a lightweight metric derived from attention
forward error analysis that enables efficient prompt-aware identification of anchor tokens.

3.1 OFFLINE TOKEN-AWARE CENTROIDS LEARNING

In this stage, centroids are learned offline by aggregating KV cache from calibration data. Specifically,
each row (per token) of K and V is divided into several sub-vectors, then using k-means to cluster
them, and only the centroids are stored. Specifically, each token row of K and V is partitioned into
sub-vectors and clustered with k-mean. The centroids are retained for online KV cache quantization.

From an accuracy perspective, replacing K and V' with their corresponding centroids should intro-
duce minimal impact on model output. Mathematically, it can be formulated as

min |L(K, V) - L(va(K),va(V))], (1)
Ck’ERC xd

where ¢ is the number of clusters, and C* is the matrix consisting of centroids. By the first-order
Taylor series expansion, we have

L(K,V) - L(va(K),va(V)) =)

J

oL oL
(oo Ko vl B3 +

5

Vi — vq(Vj,:)>) v Q)

Under review as a conference paper at ICLR 2026

where 6% and aa?p are the gradient of the loss function L(-) with respect to K. and V} ., i.e.,
Jst Js:

the jth row of K and V that correspond to the jth token. From equation equationT]and equation 2}

the weighted k-means clustering with gradients as weights is essentially to find a clustering strategy

that minimizes the error caused by KV quantization.

3.2 ONLINE ANCHOR TOKEN SELECTION

In online inference, gradients can no longer serve as the token importance metric due to the cost
imposed by real-time constraints. To address this, we perform an error propagation analysis of the
attention operator (Attn). Specifically, the analysis derives a perturbation bound of Attn with
respect to each row of K and V, as presented in Theorem |1} with the detailed proof provided in
Appendix

Theorem 1. Let K and 6V be the error perturbation terms corresponding to K and V' respectively,
and satisfy

10K |z, <[K|z, and [0V, <[V]lL,-

Then we have

|attn(Q, K + 0K, V) — aAttn(Q, K, V)|,
SN |V Diag(As) (L, — eAi), |, 1Qi e 0K | n, 3
J 3

and
||Attn(Qa K, V) - Attn(Q7 K,V + 6V)HL1 < Z |‘A17j||L1 ”(SV,
J

L1 “

where e € R"™ is a vector whose entries are all 1.

We remark that the error propagation factors corresponding to K; . and V; . given in Theorem [I]can
be regarded as the upper bound of the gradient of the attention operator related to K. and V...

The computation involving K in Theorem [I]introduces significant overhead and is therefore unsuit-
able for online inference. To address this limitation, we propose a simplified variant that excludes the
contribution of V' to the quantization error of K. This leads to the following reformulation, with a
detailed evaluation of AnS effectiveness provided in Appendix D]

AnS(V;.) = Z A AnS(K;.) = Z Aij(1—Ai) Qi)

In online inference, during the prefill phase, AnS serves as an effective metric for identifying anchor
tokens that induce substantial accuracy loss. In autoregressive decoding phase, AnS can still be
computed. However, the anchor tokens it identifies may already have been quantized, which prevents
preserving their full-precision values and limits error reduction. An important observation is that both
AnS(K) and AnS(V) exhibit strong locality during the decoding phase (see Appendix [E), with anchor
tokens predominantly concentrated at the head and tail of the sequence. Experimental results show
that the anchor tokens at the head of the sequence are consistently identified during the prefill stage,
corresponding to sink tokens. This observation further demonstrates the effectiveness of our method.
Building on the tail locality, we use a sliding-window approximation of AnS during decoding to
further enhance efficiency while mitigating accuracy degradation.

3.3 IMPLEMENTATION

For the offline centroids learning stage, the gradients of K and V" are employed as weights for centroid
learning. We implement it with a custom LinearWithAct to capture KV cache and corresponding
gradients. Subsequently, we employ the weighted k-means provided by cuML to perform efficient
clustering.

In the online stage, AnS is derived from the error propagation factor given in Theorem [I] and
Equation equation[5] To enable efficient long-context inference, we design and implement a dedicated
GPU kernel using Triton that computes AnS in conjunction with FlashAttention. Because AnS

Under review as a conference paper at ICLR 2026

requires reduction operations over the attention score matrix A and its transformed form A® (E — A)
along the query dimension (column-wise), direct fusion into FlashAttention is infeasible. To preserve
the efficiency of FlashAttention, we decouple AnS computation and execute it immediately afterward.
For this purpose, we extend FlashAttention to additionally output three auxiliary tensors: the Lo
norm of each query vector, the key-wise (row-wise) sum, and the key-wise maximum of the matrix
QK™ These tensors allow the reconstruction of the attention scores and facilitate AnS computation
with minimal overhead. Further implementation details are provided in Algorithm T|of Appendix [

Finally, since the application of RoPE disrupts the channel-wise magnitude distribution of K (see
Appendix [B), which otherwise exhibits large inter-cluster distances and small intra-cluster variances,
the pre-RoPE strategy, consistent with [Hooper et al.|(2024)), is adopted in AnTKV.

4 EXPERIMENTS

In this section, we present an extensive comparison between AnTKV and existing KV quantization
methods. The experimental setup is detailed below.

Models, Datasets, Metrics, and Parameter Settings. To validate the effectiveness and generality
of AnTKV in KV cache quantization, we evaluate five representative models from the LLaMA and
Mistral families. For calibration, 128 samples of length 2048 are drawn from the WikiText2 training
set. Model quality is assessed through three categories of benchmarks: (i) perplexity on WikiText-2
and C4; (ii) zero-shot accuracy on MMLU Hendrycks et al.| (2021), ARC-C |Clark et al.| (2018)),
MathQA |Amini et al.|(2019), and PIQA [Bisk et al.| (2020) to evaluate understanding and reasoning;
and (iii) long-context performance on LongBench Bai et al.| (2024). For perplexity and zero-shot
evaluations, quantized KV caches are directly used for attention outputs, whereas for LongBench,
full precision KV cache is used to compute attention outputs and quantized KV cache is used during
decoding. Across all benchmarks, anchor tokens are restricted to a small subset: 1% of the context
length for perplexity, 16 for understanding and reasoning, and 64 for LongBench. For fair comparison,
a sliding window of size 32 is applied in LongBench, following the mainstream setting.

Baselines. We compare AnTKV with full precision and representative KV cache quantization methods,
including KIVI|Liu et al|(2024b), SKVQ Duanmu et al.| (2024)), KVQuant-1% Hooper et al.| (2024),
and CQ |Zhang et al.|(2024b). SKVQ is configured with a group size of 64 and five sink tokens |Xiao
et al.|(2024b), while KVQuant retains four sink tokens. Since CQ results are not publicly available,
we reproduced them following the methodology in their paper to the best of our understanding.
For VQ settings, we adopt the notation “dncm”, covering 4-bit (d2m256), 2-bit (d4m256), 1-bit
(d8m?256), 0.75-bit (d16m4096), and 0.375-bit (d32m4096).

4.1 PERPLEXITY RESULTS

Perplexity is a standard benchmark that is widely used to evaluate the quality of the output of LLMs,
with lower values indicating better performance. The perplexity results for different KV quantization
approaches on WikiText-2 and C4 are presented in Table[I] The results in this table indicate that the
proposed AnTKV consistently achieves competitive or superior perplexity across various bit-widths
and model architectures. Under 4-bit and 2-bit quantization, it achieves competitive performance
compared to baseline. In the 1-bit and sub-bit regimes, it significantly outperforms all baselines. On
the C4 dataset under sub-bit quantization, baseline methods suffer from extremely high perplexity,
as fixed centroids fail to capture anchor tokens. By contrast, with its effective AnS design and
anchor token selection, AnTKV substantially lowers perplexity, reducing it from 66.28 to 14.42 on
LLaMA-3-8B at 0.75-bit.

4.2 UNDERSTANDING AND REASONING BENCHMARK

To assess the breadth of AnTKV’s understanding and reasoning capabilities, we evaluate it on
four representative benchmarks using LLaMA-8B-Instruct and Mistral-7B-Instruct. These bench-
marks target multi-domain knowledge reasoning (MMLU), complex question answering (ARC-
Challenge), commonsense reasoning (PIQA), and mathematical problem solving (MathQA). Due
to missing the implementations in the official repository, KIVI and KVQuant are not included. As

Under review as a conference paper at ICLR 2026

Table 1: All evaluations are performed under the maximum context length of each model, specifically
4096 for LLaMA-2-7B and 8192 for LLaMA-3-8B and Mistral-7B. “Ours” refers to AnTKV without
anchor tokens, whereas “Ours-1%” denotes AnTKV with 1% of tokens designated as anchor tokens
and retained in FP16. For clarity, the reported bit-widths exclude the contribution of centroids.

[Bit LLaMA-2-7B LLaMA-3-8B Mistral-7B

Dataset WikiText2 C4 | WikiText2 C4 | WikiTex2 _ C4
Baseline | 16 512 6.63 554 7.10 473 5.66
RTN 5.60 731 7.80 8.79 734 501
SKVQ 5.16 6.67 5.64 7.19 4.97 5.68
KVQuant-1% A 513 6.65 5.56 7.12 4.78 572
CQ 5.14 6.67 5.58 7.84 4.79 5.74
Ours 5.18 6.76 5.61 7.69 4.76 5.69
Ours-1% 5.15 6.68 5.59 7.16 4.74 5.67
RTN 708 708 2841 2113 573 77
SKVQ 5.54 721 6.73 8.31 521 6.14
KVQuant-1% 5 5.49 7.02 6.11 7.65 5.19 6.10
CQ 542 7.23 6.09 18.71 5.11 6.17
Ours 5.51 7.45 6.10 16.96 5.08 6.18
Ours-1% 5.34 7.02 5.97 7.68 4.95 5.97
SKVQ 12643 12810 | 108879 86426 3524 2741
KVQuant-1% 21.55 51.84 14.80 13.95 15.36 14.24
CQ 1 7.75 12.49 9.56 81.74 7.25 9.89
Ours 7.92 13.01 9.62 7447 7.32 10.51
Ours-1% 6.50 9.40 8.51 12.51 6.32 8.44
CQ 839 432 11.18 72.05 7.64 11.72
Ours 0.75 8.21 14.27 10.41 66.28 7.41 11.72
Ours-1% 6.55 9.75 8.97 14.42 6.43 9.08
CQ 14.82 33.59 22.80 1035 13.20 26.34
Ours 0.375 13.37 30.51 17.70 103.5 11.65 23.98
Ours-1% 8.75 15.86 13.41 34.08 8.87 14.87

shown, AnTKV consistently maintains higher accuracy across LLaMA and Mistral models, with
particularly strong advantages at 1-bit and sub-bit settings where baseline methods degrade sharply.

MathQA

45

75

65

55

Llama-Instruct

45

80

70

60

Mistral-Instruct

4 2 1 0.75 0.375 4 2 1 0.75 0.375 50 4 2 1 0.75 0.375 4 2 1 0.75 0.375

Quantization Bit-width

Figure 4: Evaluation of understanding and reasoning accuracy on MMLU, ARC-C, PIQA, and
MathQA under different quantization bit-widths.

Under review as a conference paper at ICLR 2026

4.3 LONG-CONTEXT BENCHMARK

To validate the effectiveness of AnTKV in handling long-context, We conduct several experiments
on the LLaMA-8B-Instruct model using the LongBench benchmark, a diverse collection of tasks
such as question answering, retrieval, and summarization, designed to systematically evaluate long-
context understanding in language models. We report results on eleven representative sub-tasks from
LongBench, along with averaged performance. Due to alignment issues of KIVI and SKVQ, we
exclude the triviaqa and gov_report sub-tasks from the comparison. As shown in Figure[5] AnTKV
preserves nearly FP16 at 4- and 2-bit quantization across almost all tasks. At the 1-bit quantization,
the performance of KIVI and SKVQ has a significant drop. In contrast, An'TKV and CQ still maintain
a relatively high accuracy. To further investigate the robustness under aggressive compression,
we compare AnTKV and CQ in both sub-bit levels. Figure 5] shows that AnTKV consistently
outperforms CQ. Notably, despite aggressive quantization down to 0.375-bit, AnTKV maintains
tolerable degradation, with the average score decreasing from 46.5 to 38.1.

qasper multifieldga_en
=& KIvI

SKVQ ”

50

hotpotqa 2wikimqga

24

10

4 2 1 0.750.375 4 2 1 0.750.375

samsum 20 passage_count

15 g
10 \

4 2 1 0.750.375 4 2 1 0.750.375

4 2 1 0.75 0.375
multi news

w

10

4 2 1 0.750.375

gopassage retrieval _en repobench-p average
: 60 50465 4578
70 50 454 ‘
50 40 i 40 44 1
30 30 35 38.9 379
35.8
10 20 30 30

4 2 1 0.750.375 4 2 1 0.750.375 4 2 1 0.750.375 4 2 1 0.750.375

Quantization Bit-width

Figure 5: The evaluation accuracy results on LongBench under different KV cache quantization
bit-widths. AnTKV achieves the best average performance under ultra-low-bit quantization.

4.4 EFFICIENCY

In this experiment, we evaluate the efficiency of our AnTKV implementation compared with hug-
gingface baseline |Wolf et al|(2020) on LLaMA-3-8B using a single A100-80GB GPU. As shown
in Figure [} AnTKV substantially extends the maximum context length from 128K to 384K. In
long-context inference, our profiling shows that intermediate activations account for a substantial
portion of memory usage. By introducing a series of in-place operators, AnTKV supports up to
810K tokens under 1-bit quantization and 840K under 0.375-bit quantization, while maintaining low
memory consumption. To evaluate decoding efficiency, we measure the throughput of AnTKV with a
fixed context length of 1K tokens. As shown in Figure[7} AnTKV enables substantially larger batch
sizes and improves throughput across all bit-widths by reducing KV cache access. In particular, under
1-bit quantization, the maximum throughput reaches 3.5x.

Under review as a conference paper at ICLR 2026

120 = .
& 1000 Baseline =k =4
< =4~ Ours(4bit) /‘/‘- - -u
_ 7]
G gof-Sreemrn LT < 8001 4 ourstibit :_,’
= < 6004 =M~ Ours(0.375bit)
3
o o Enable Inplace OP
4 —
§ g 0
= 5 200
<
= 0 I ! ! ! } ! ! ! }
0 64K 128K 256K 384K 810K 840K 8 16 32 64 128 256 384 512 810 840
Context Length Batch size

Figure 6: KV cache memory size comparison. Gray Figure 7: Decoding throughput comparison.
bars denote full precision, red bars 1-bit, and green Qur method supports larger batch sizes and
bars 0.375-bit quantization. Strlped bars indicate achieves hlgher throughput' Dashed lines in-
results with in-place operators enabled. dicate results with in-place operators enabled.

4.5 ABLATION STUDY

We conduct a series of experiments to answer the following questions.
Q1: How does the model performance change as the number of anchor tokens increases?

As the number of anchor tokens increases, the performance loss decreases rapidly at first, as shown
in Table m However, the marginal benefit diminishes with more anchor tokens. Detailed results are
provided in Appendix [G]

Q2: Does the calibration set affect the performance?

We find that for VQ-based methods, the calibration set does have some impact on performance under
low-bit settings. However, as shown in TableE] (LLaMA-3-8B, 1-bit, C4), retaining anchor tokens
effectively mitigates the performance drop caused by calibration set variation. More detailed results
can be found in Appendix

5 LIMITATION & CONCLUSION

Although AnTKV demonstrates its advantages in experiments, it also has few limitations. First, more
accurate AnS for tokens and higher performance implementations for its computation may be possible.
AnTKYV demonstrates strong potential in LLM serving by substantially reducing the size of the KV
cache, which in turn alleviates I/O and memory constraints to a significant extent. Nevertheless,
further empirical validation is required.

This work addresses the preservation of accuracy under ultra low bit KV cache quantization.
We propose AnTKV , a vector quantization based framework that exploits intra vector correla-
tions. AnTKV uses a dual stage design with offline token aware centroid learning and online anchor
token selection, which mitigates the disproportionate error from anchor tokens. Across the LLaMA
and Mistral families, AnTKV attains accuracy close to full precision and consistently surpasses
baselines in the ultra low bit regime. It also scales LLaMA-3-8B to 840K tokens on a single 80 GB
A100, and increases decoding throughput by up to 3.5x.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Our implementation builds on the Hugging Face Transformers library [Wolf et al.[(2020). The Anchor
Score computation as well as the vector quantization and dequantization operators are implemented
in Triton for efficiency. We will release the full source code upon acceptance of the paper to ensure
reproducibility.

ETHICS STATEMENT

All experiments in this work are conducted using publicly available models and datasets. We strictly
follow the corresponding licenses.

MODELS

Here, we list all of the model checkpoints used in our experiments:

LLaMA-2-7B https://huggingface.co/meta-llama/Llama-2-7b
LLaMA-3-8B https://huggingface.co/meta-1lama/Meta-Llama-3-8B

LLaMA-3-8B-Instruct https://huggingface.co/meta—-1llama/
Meta—-Llama—-3-8B-Instruct

Mistral-7B https://huggingface.co/mistralai/Mistral-7B-v0.1

Mistral-7B-Instruct https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3

DATASETS

We use the following publicly available datasets:

WikiText2 https://huggingface.co/datasets/mindchain/wikitext?2
C4https://huggingface.co/datasets/allenai/c4

MMLU https://huggingface.co/datasets/cais/mmlu
ARC-Chttps://huggingface.co/datasets/allenai/ai2_arc

PIQA https://huggingface.co/datasets/ybisk/piga

MathQA https://huggingface.co/datasets/allenai/math_ga
LongBench https://huggingface.co/datasets/THUDM/LongBench

10

https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/datasets/mindchain/wikitext2
https://huggingface.co/datasets/allenai/c4
https://huggingface.co/datasets/cais/mmlu
https://huggingface.co/datasets/allenai/ai2_arc
https://huggingface.co/datasets/ybisk/piqa
https://huggingface.co/datasets/allenai/math_qa
https://huggingface.co/datasets/THUDM/LongBench

Under review as a conference paper at ICLR 2026

REFERENCES

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh
Hajishirzi. MathQA: Towards interpretable math word problem solving with operation-based
formalisms. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pp. 2357-2367, 2019.
URL https://aclanthology.orqg/N19-1245/.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilingual,
multitask benchmark for long context understanding. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (ACL), pp. 3119-3137, 2024. URL https:
//aclanthology.orqg/2024.acl-1long.172/.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: Reasoning
about physical commonsense in natural language. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 7432-7439, 2020. URL https://ojs.aaai.org/
index.php/AAAI/article/view/62309.

Sylvie Boldo and Guillaume Melquiond. 4 - automated methods. In Sylvie Boldo and Guillaume
Melquiond (eds.), Floating-Point Algorithms and Formal Proofs, pp. 91-137. Elsevier, 2017. ISBN
978-1-78548-112-3. doi: https://doi.org/10.1016/B978-1-78548-112-3.50004-7. URL https:
//www.sclencedirect.com/science/article/pii/B9781785481123500047.

Mengzhao Chen, Yi Liu, Jiahao Wang, Yi Bin, Wenqi Shao, and Ping Luo. PrefixQuant: Static
quantization beats dynamic through prefixed outliers in LLMs. arXiv preprint arXiv:2410.05265,
2024a.

Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang Zhou, Jianyu Zhang, Niklas Nolte, Yuandong
Tian, Matthijs Douze, Leon Bottou, Zhihao Jia, et al. MagicPIG: LSH sampling for efficient LLM
generation. In Adaptive Foundation Models: Evolving Al for Personalized and Efficient Learning,
2024b.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? Try ARC, the AI2 reasoning challenge.
arXiv preprint arXiv:1803.05457,2018. URL https://arxiv.org/abs/1803.05457.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning, 2023. URL
https://arxiv.org/abs/2307.08691.

Badhan Chandra Das, M Hadi Amini, and Yanzhao Wu. Security and privacy challenges of large
language models: A survey. ACM Computing Surveys, 57(6):1-39, 2025.

Peijie Dong, Lujun Li, Xinglin Pan, Zimian Wei, Xiang Liu, Qiang Wang, and Xiaowen Chu. Parzc:
Parametric zero-cost proxies for efficient nas, 2024a. URL https://arxiv.org/abs/2402,
02105

Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu, Xinglin Pan, Qiang Wang, and Xiaowen Chu.
Pruner-Zero: Evolving symbolic pruning metric from scratch for large language models, 2024b.
URLhttps://arxiv.org/abs/2406.02924.

Peijie Dong, Zhenheng Tang, Xiang Liu, Lujun Li, Xiaowen Chu, and Bo Li. Can compressed 1lms
truly act? An empirical evaluation of agentic capabilities in LLM compression. In Proceedings
of the 42th International Conference on Machine Learning, Proceedings of Machine Learning
Research. PMLR, 2025.

Haojie Duanmu, Zhihang Yuan, Xiuhong Li, Jiangfei Duan, Xingcheng Zhang, and Dahua Lin.
SKVQ: Sliding-window key and value cache quantization for large language models, 2024. URL
https://arxiv.org/abs/2405.062109.

Ruibo Fan, Xiangrui Yu, Peijie Dong, Zeyu Li, Gu Gong, Qiang Wang, Wei Wang, and Xiaowen Chu.
Spinfer: Leveraging low-level sparsity for efficient large language model inference on gpus. In Pro-
ceedings of the Twentieth European Conference on Computer Systems, EuroSys ’25, pp. 243-260,
New York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400711961. doi:
10.1145/3689031.3717481. URL https://doi.org/10.1145/3689031.3717481.

11

https://aclanthology.org/N19-1245/
https://aclanthology.org/2024.acl-long.172/
https://aclanthology.org/2024.acl-long.172/
https://ojs.aaai.org/index.php/AAAI/article/view/6239
https://ojs.aaai.org/index.php/AAAI/article/view/6239
https://www.sciencedirect.com/science/article/pii/B9781785481123500047
https://www.sciencedirect.com/science/article/pii/B9781785481123500047
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2402.02105
https://arxiv.org/abs/2402.02105
https://arxiv.org/abs/2406.02924
https://arxiv.org/abs/2405.06219
https://doi.org/10.1145/3689031.3717481

Under review as a conference paper at ICLR 2026

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate post-training
quantization for generative pre-trained transformers, 2023. URL https://arxiv.org/abs/
2210.17323.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, et al. The
Llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-R1: Incentivizing reasoning capability in LLMs
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding, 2021. URL https://arxiv.
org/abs/2009.03300.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Sophia Shao, Kurt
Keutzer, and Amir Gholami. KVQuant: Towards 10 million context length LLM inference with
KV cache quantization. Advances in Neural Information Processing Systems, NeurlPS 2024, 37:
1270-1303, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
et al. Mistral 7b, 2023. URL https://arxiv.org/abs/2310.06825.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. SnapKV: LLM knows what you are looking for before
generation, 2024. URL https://arxiv.org/abs/2404.14469,

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. AWQ: Activation-aware weight quantization for
LLM compression and acceleration, 2024. URL https://arxiv.org/abs/2306.00978.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song Han.
QServe: W4A8KV4 quantization and system co-design for efficient LLM serving, 2025. URL
https://arxiv.org/abs/2405.04532.

Lucas D. Lingle. Transformer-VQ: Linear-time transformers via vector quantization, 2024. URL
https://arxiv.org/abs/2309.16354l

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-
gruidong Zhang, Bailu Ding, Kai Zhang, et al. RetrievalAttention: Accelerating long-context LLM
inference via vector retrieval. arXiv preprint arXiv:2409.10516, 2024a.

Jiaheng Liu, Dawei Zhu, Zhiqi Bai, Yancheng He, Huanxuan Liao, Haoran Que, Zekun Wang,
Chenchen Zhang, Ge Zhang, Jiebin Zhang, et al. A comprehensive survey on long context
language modeling. arXiv preprint arXiv:2503.17407, 2025a.

Xiang Liu, Zhenheng Tang, Hong Chen, Peijie Dong, Zeyu Li, Xiuze Zhou, Bo Li, Xuming Hu, and
Xiaowen Chu. Can LLMs maintain fundamental abilities under KV cache compression?, 2025b.
URLhttps://arxiv.org/abs/2502.01941.

Xiang Liu, Zhenheng Tang, Peijie Dong, Zeyu Li, Bo Li, Xuming Hu, and Xiaowen Chu. ChunkKV:
Semantic-preserving kv cache compression for efficient long-context LLM inference, 2025¢. URL
https://arxiv.org/abs/2502.00299.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi Chen,
and Xia Hu. KIVI: A tuning-free asymmetric 2bit quantization for KV cache. In International
Conference on Machine Learning, ICML 2024, pp. 32332-32344. PMLR, 2024b.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

OpenAl. Gpt-4 technical report, 2023. URL https://cdn.openai.com/papers/gpt—4.
pdf.

12

https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2404.14469
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2405.04532
https://arxiv.org/abs/2309.16354
https://arxiv.org/abs/2502.01941
https://arxiv.org/abs/2502.00299
https://cdn.openai.com/papers/gpt-4.pdf
https://cdn.openai.com/papers/gpt-4.pdf

Under review as a conference paper at ICLR 2026

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Anselm
Levskaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling
transformer inference, 2022. URL https://arxiv.org/abs/2211.05102.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/2104,
09864.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. RoFormer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Zhenheng Tang, Xiang Liu, Qian Wang, Peijie Dong, Bingsheng He, Xiaowen Chu, and Bo Li. The
lottery LLLM hypothesis, rethinking what abilities should LLM compression preserve? In The
Fourth Blogpost Track at ICLR 2025, 2025.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, et al. Llama 2: Open foun-
dation and fine-tuned chat models, 2023. URL https://arxiv.org/abs/2307.09288\

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better 1lm quantization with hadamard incoherence and lattice codebooks, 2024. URL
https://arxiv.org/abs/2402.04396.

Qian Wang, Zhenheng Tang, Zichen Jiang, Nuo Chen, Tianyu Wang, and Bingsheng He. AgentTaxo:
Dissecting and benchmarking token distribution of LLM multi-agent systems. In ICLR 2025
Workshop on Foundation Models in the Wild, 2025a.

Qian Wang, Tianyu Wang, Zhenheng Tang, Qinbin Li, Nuo Chen, Jingsheng Liang, and Bingsheng
He. MegaAgent: A large-scale autonomous LLM-based multi-agent system without predefined
SOPs. In The 63rd Annual Meeting of the Association for Computational Linguistics, 2025b.

Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia Zhang. Model tells you where to merge: Adaptive
KV cache merging for llms on long-context tasks, 2024. URL https://arxiv.org/abs/
2407.08454.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 38—45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos. 6,

Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang, Zhongzhu Zhou, Xiafei Qiu, Yong Li, Wei
Lin, and Shuaiwen Leon Song. Flash-LLM: Enabling cost-effective and highly-efficient large
generative model inference with unstructured sparsity, 2023. URL https://arxiv.org/
abs/2309.10285.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models, 2024a. URL https:
//arxiv.org/abs/2211.10438.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, ICLR 2024, 2024b.

Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yihua Cheng, Qizheng Zhang, Kuntai Du, Shan
Lu, and Junchen Jiang. CacheBlend: Fast large language model serving for RAG with cached
knowledge fusion. In Proceedings of the Twentieth European Conference on Computer Systems,
EuroSys ’25, pp. 94-109, New York, NY, USA, 2025. Association for Computing Machinery.
ISBN 9798400711961. doi: 10.1145/3689031.3696098. URL https://doi.org/10.1145/
3689031.3696098!

13

https://arxiv.org/abs/2211.05102
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2402.04396
https://arxiv.org/abs/2407.08454
https://arxiv.org/abs/2407.08454
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/2309.10285
https://arxiv.org/abs/2309.10285
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2211.10438
https://doi.org/10.1145/3689031.3696098
https://doi.org/10.1145/3689031.3696098

Under review as a conference paper at ICLR 2026

Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu, Xupeng Miao, Xiaonan Nie, Weipeng Chen,
and Bin Cui. PQCache: Product quantization-based KVCache for long context LLM inference.
arXiv preprint arXiv:2407.12820, 2024a.

Tianyi Zhang, Jonah Yi, Zhaozhuo Xu, and Anshumali Shrivastava. KV cache is 1 bit per channel: Ef-
ficient large language model inference with coupled quantization. Advances in Neural Information
Processing Systems, NeurIPS 2024, 37:3304-3331, 2024b.

Yuxin Zhang, Yuxuan Du, Gen Luo, Yunshan Zhong, Zhenyu Zhang, Shiwei Liu, and Rongrong
Ji. CaM: cache merging for memory-efficient LLMs inference. In Proceedings of the 41st
International Conference on Machine Learning, ICML’24. JMLR.org, 2024c.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yinggian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 1(2), 2023.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind
Krishnamurthy, Tiangi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
accurate LLM serving, 2024. URL https://arxiv.org/abs/2310.19102.

Qianchao Zhu, Jiangfei Duan, Chang Chen, Siran Liu, Xiuhong Li, Guanyu Feng, Xin Lv, Huanqi
Cao, Chuanfu Xiao, Xingcheng Zhang, Dahua Lin, and Chao Yang. SampleAttention: Near-
lossless acceleration of long context LLM inference with adaptive structured sparse attention. In
Ninth Annual Conference on Machine Learning and Systems, MLSys 2025, 2025a.

Yuanbing Zhu, Zhenheng Tang, Xiang Liu, Ang Li, Bo Li, Xiaowen Chu, and Bo Han. OracleKV:
Oracle guidance for question-independent KV cache compression. In ICML 2025 Workshop on
Long-Context Foundation Models, 2025b. URL https://openreview.net/forum?id=
KHM2YOGgX9!

14

https://arxiv.org/abs/2310.19102
https://openreview.net/forum?id=KHM2YOGgX9
https://openreview.net/forum?id=KHM2YOGgX9

Under review as a conference paper at ICLR 2026

A RELATED WORKS

KYV cache quantization A variety of KV cache quantization methods have been proposed to address
the memory bottleneck in long-context LLMs |Liu et al.| (2024b)); Duanmu et al.| (2024); [Hooper et al.
(2024)); Zhang et al.| (2024b)); Zhu et al.[(2025a). KIVI|Liu et al.[(2024b) mitigates quantization error
by applying per-channel key quantization and employing a sliding window to emphasize locally
relevant tokens. SKVQ Duanmu et al.|(2024)) further explores this direction by introducing channel
reordering and clipping. To further reduce accuracy loss, KVQuant Hooper et al.|(2024)) introduces
pre-RoPE key quantization, non-uniform format and element-wise outlier. CQ Zhang et al.|(2024b)
adopts a VQ-based approach, aiming to exploit cross-channel correlations to further compress the
KV cache.

KYV cache compression Beyond quantization, the field of LLMs is actively exploring advanced
methods for KV cache compression. Sparse attention aims to reduce memory footprint by selectively
handling the KV cache in a token-wise manner Xiao et al.|(2024b)); Chen et al.|(20244);|Zhu et al.
(2025b); [Liu et al.| (2025czb); [Li et al.|(2024). However, it discards the KV cache of a subset of tokens,
even though the corresponding tokens may be required in subsequent decoding. Token Merging
reduces memory usage by consolidating the KV caches of similar tokens during inference, achieving
an effect related to sparse attention but through merging rather than dropping tokens [Zhang et al.
(2024c)); 'Wang et al.|(2024). Retrieval-based methods Liu et al.[(2024a); |Chen et al.| (2024b); Zhang
et al.| (2024a)) offload and index KV caches, retrieving a subset of relevant entries for each query, but
introduce additional communication overhead.

Model Compression Numerous model compression techniques share common objectives and method-
ological foundations with KV cache compression. GPTQ [Frantar et al.| (2023)) utilizes calibration set
to reduce quantization induced degradation, while SmoothQuant Xiao et al.| (2024a) and AWQ [Lin
et al. (2024) minimize output error from the perspective of error propagation analysis. VQ-based
methods such as QUIP# Tseng et al.|(2024) further enhance compression fidelity through Hadamard
transform. Pruner-Zero Dong et al.| (2024b)) and Parzc |Dong et al.|(2024a)), explore how to sparsify
model weights while preserving model performance. System-level works like Atom Zhao et al.
(2024) and QServe Lin et al.[(2025) Recent efforts jointly quantize model, KV cache and activatioin,
enabling inference under low-bit and leveraging low-precision Tensor Cores to improve system
performance, while approaches such as FlashLL.M [Xia et al.[(2023) and Spinfer Fan et al.| (2025)
accelerate inference by leveraging model sparsity.

B DISTRIBUTION OF PRE- AND POST- ROPE KEY

To identify a quantization strategy better suited for K vertor quantization, we compare the distribution
of K before and after applying RoPE. Figure[§|presents a visualization of the pre- and post- RoPE
K. We observe that, compared to the post-RoPE K, the pre-RoPE K exhibits smaller inter-cluster
distances and lower intra-cluster variance, which contributes to reduced quantization error.

15

Under review as a conference paper at ICLR 2026

Layer 0 Head 0 Layer 0 Head 0 Layer 4 Head 1 Layer 4 Head 1
Key (pre-RoPE) Key (post-RoPE) Key (pre-RoPE) Key (post-RoPE)

éo 500 <3 go 500 4
he"ne/ 10010 0 hanne, 10010 0
Layer 8 Head 2 Layer 8 Head 2 Layer 12 Head 3 Layer 12 Head 3
Key (pre-RoPE) Key (post-RoPE) Key (pre-RoPE) Key (post-RoPE)

e 80 C 80 500 &0 e 80
ha”ﬂs{ 100,50 0 he"ne/ 100,50 0 ha,,,w 100,,0 0
Layer 16 Head 4 Layer 16 Head 4 Layer 20 Head 5 Layer 20 Head 5
Key (pre-RoPE) Key (post-RoPE) Key (pre-RoPE) Key (post-RoPE)

5 *\ s 10 10
0 w f ', l M) 5 5
s “ b -5 { ‘ o 0
-1 4 -10 “ W u -5 -5
nh
2000 2000 2000 2000
1500
1000 & 0 5
C 0 60 500 /\o 3 ” C 0 60 500 «8° g” I 500 /\o
henne/ 1001 0 hanng, 10130 0 hen,,e/ 10010 0 hanng, 1130 0
Layer 24 Head 6 Layer 24 Head 6 Layer 28 Head 7 Layer 28 Head 7
Key (pre-RoPE) Key (post-RoPE) Key (pre-RoPE) Key (post-RoPE)

) 500 4
80
Ch.g,me/ 00,0 o

60
80
O’e"ne/ 100

120 o

Figure 8: Distribution of pre- and post- RoOPE Key. We sampled a 2048-length sentence from
WikiText2 and generated pre- and post- RoPE Key on the LLaMA-3-8B model.

C PROOF OF THEOREM [1]

For K, we have

U A
|aten (Q, K + 6K, V) — attn (Q. K, V) |1, = | <Softmax (Q% 4 Q‘ST’;) — Softmax (QT;V()) Vi,
(6)

The key to estimating the bound of equation [§]lies in the analysis of
— T ~
KT 0K KT
Softmax L + L — Softmax Q

Vd Vd vd)’

whose (7, j)th entry is represented as

)

Q.. K | QiJK, Qi . K7
exp Ja + 7a exp | — o

®)

Q'L, (SK ,: Qi,:k‘z;
gexp f + f > exp =

16

Under review as a conference paper at ICLR 2026

Since |0 K ||, < || K]||L,, and by the first-order approximation exp (x + dx) ~ exp (z)(1 + dz),

equation [§]can be approximated as
> Qi K7L, 51‘,:57‘5,:
(s xp (Vd) (1 + vd >>

Qi K7, Qi 0K], Qi K7, Q; KT,
o () (-) (o (52)) o (852
Qi . KT, Qi KT,
(o (2455)) (o (2455) (14
o w&T

o o))
Vd

o sl

Qi,:(jK‘s.:
(1 2)
Q

exp(i,: K5) Zexp(Q’\/{(S) i (6K?}:75KST#)>
v s d d
- QKL Qi . K
re(S) pe ()
Qi .KZ, Qi (oK] —oKT.
ZEXP (\/E 5) ((</E 2)
Aij ——
' Q; KT
oo (27
> (51.:1‘??; éi,:(‘SKjT,:—‘SKZ:)
ST exp |~ Va
For convenience, we denote Qfg and 5 R&T as X and Y
Zexp(T, s,:)
~ Va
nxn

respectively. Then equation|7|can be approximated as (A ® Y') V', and by the property of Kronecker
product, we have

Vec(AOY)V)=(I,® VT) Vec(AQY) = (I,® VT) Diag(Vec(A))vec(Y).
Further, we can obtain
|aten (Q, K + 6K, V) — aten (Q, K, V) ||, ~ || (I,,, ® VT) Diag (Vec(A)) Vec(Y)l|r,

=> [V biag (As,) (In — eAi) X |z,
T . ~ =T
<IN (VTniag (A (I — eAi) ey 1Q 0K |
i g 5

<SS (V0iag (i) T = eAs) ey Qi 10K,
Jj ot v
[©)

For V', we have

AT
lattn (Q, K,V + V) — attn (Q, K, V) |1, = |[Softmax <Q\Z> VL,

= AV L, =) 1> Ai;6Vik
ik
<22 AoVl (10)
ik g
j i K

=D 1AL 16V, -
i

D THE EFFECTIVENESS OF ANS

We quantized each token across layers and heads, and separately recorded the errors in the attention
outputs. As shown in Figure[9]and equation[3] it can be observed that the relative values derived from

17

Under review as a conference paper at ICLR 2026

our AnS, as defined in Theorem [T} closely align with the actual outputs of the attention. For a fair
comparison, the output errors for K also exclude the contribution of V.

ot Layer 0 Head 0 Key Layer 0 Head 0 Value Layer 4 Head 4 Key Layer 4 Head 4 Value
10! 100
o o 10
107 10 107
5 510 5 10 5 0
& 100 102 [rapret o
107
— Ans(K) 107 — Ans(V) 00
1071 —— output Error 10-4] —— Output Error 107 1072
0 7 4 6 8 10 130 o 2 4 6 Wo 120 0 2 4 6 8 10 130 ED 6 s 100 130
Token ldx Token ldx Token ldx Token ldx
Layer 8 Head 8 Key Layer 8 Head 8 Value Layer 12 Head 12 Key Layer 12 Head 12 Value
10°
100 10
10° 107 100
. L 100 . .
g 1w 8 8 107 8
&5 8100 & 5
10 100 10°
100 1072 20
107! 107 10!
0 2 4 6 8 10 130 o 2 4 6 Wo 120 0 2 4 6 8 10 130 ED 3 Wo 120
Token ldx Token ldx Token ldx Token ldx
Layer 16 Head 16 Key Layer 16 Head 16 Value Layer 20 Head 20 Key Layer 20 Head 20 Value
100 10 10t 102
10? 10! 100 10
10 10°
U 5 100 - «
2 2 2 2100
& o & [&
107 10 102
100 100 107
102
107 107 1074
0 2 4 6 8 10 130 o 2 4 6 Wo 120 0 2 4 6 & 10 130 6 2 4 6 8 10 130
Token ldx Token ldx Token ldx Token Idx
Layer 24 Head 24 Key Layer 24 Head 24 Value Layer 28 Head 28 Key Layer 28 Head 28 Value
10¢ 0 10t 100
10!
100 100
100 100 o
£ 1 < < & 10
10
2 2107 2100 2
& 100 bl & &
107 1
100 10
107 102
107! 10°
107 103
0 2 4 6 8 10 130 0 2 4 6 & 10 130 0 2 4 6 & 10 130 6 2 4 6 8 10 130
Token ldx Token ldx Token ldx Token ldx

Figure 9: The effectiveness of AnS.

E ANS DISTRIBUTION DURING DECODING

To illustrate the distribution of AnS during decoding, we sampled prompts from Qasper within
LongBench for visualization. As shown in Figure [0 we present the distribution of AnS(K') and
AnS(V) across different layers and heads, specifically when decoding the first token. Our observations
reveal that high AnS values during decoding are predominantly concentrated on adjacent tokens and
at the attention sink tokens. Since sink tokens often lead to significant error propagation and can
be dynamically identified by AnS during prefill, we simplify the design of AnS during decoding by
employing a sliding window to ensure model performance.

F COMPUTATIONAL PROCEDURE OF ANS IN THE ONLINE STAGE

Algorithm 1 The computation of AnS in the online stage.

1: Input: Query (Q), key (K), value (V)

2: Output: AnS of KV, i.e., AnS(K) and AnS(V)

3: (O,L,M,|[|Qi,|l,,) < FlashAttention(Q, K,V)

4: for each block key index j in parallel (assigned to GPU block) do
5. for each block query index ¢ do
6.
7
8

Sij < (Qni, Kn,j)
A;j <+ exp(8Sij; — My ;)/ L
: AnS(K); < AnS(K); + col_sum(A; ;- (1 — A, ;), row-wise)
9: AnS(V); <~ AnS(V); + col_sum(A, ;, row-wise)
10: end for
11: end for
12: return AnS(K), AnS(V')

18

Under review as a conference paper at ICLR 2026

LO, HO (AnS (V))

L0, HO (AnS (K))

L4, H1 (AnS (V))

L4, H1 (AnS (K))

1.00 1.00
0.75 0.2 0.75 0.2
0.50 0.50
0.1 0.1
0.25 0.25
0.00 0.0 0.00 0.0
0 500 1000 0 500 1000 0 500 1000 0 500 1000
Token Position Token Position Token Position Token Position
1.00 L8, H2 (AnS (V)) L8, H2 (AnS (K)) 1.00 L12, H3 (AnS (V) L12, H3 (AnS (K))
0.75 0.2 0.75 0.2
0.50 0.50
0.1 0.1
0.25 0.25
0.00 0.0 0.00 0.0
0 500 1000 0 500 1000 0 500 1000 0 500 1000
Token Position Token Position Token Position Token Position
1.00 L16, H4 (AnS (V)) L16, H4 (AnS (K)) 1.00 L20, H5 (AnS (V)) L20, H5 (AnS (K))
0.75 0.2 0.75 0.2
0.50 0.50
0.1 0.1
0.25 0.25
0.00 0.0 0.00 0.0
0 500 1000 0 500 1000 0 500 1000 0 500 1000
Token Position Token Position Token Position Token Position
1.00 L24, H6 (AnS (V)) L24, H6 (AnS (K)) 1.00 L28, H7 (AnS (V)) L28, H7 (AnS (K))
0.75 0.2 0.75 0.2
0.50 0.50
0.1 0.1
0.25 0.25
0.00 0.0 0.00 0.0
0 500 1000 0 500 1000 0 500 1000 0 500 1000

Token Position

Token Position

Token Position

Token Position

Figure 10: AnS Distribution on Sampled Prompts from Qasper Using LLaMA-3-8B-Instruct During
First-Token Decoding.

G CALIBRATION SET IMPACT

As shown in the Table[2] we observe that for VQ-based quantization in the ultra-low-bit regime, the
calibration set significantly impacts the perplexity results. However, AnTKV with 1% anchor tokens
not only substantially reduces the PPL but also greatly mitigates the effect of different calibration
sets.

Table 2: Perplexity experiment results on Mistral-7B, using the W2 and C4 training sets respectively
as Calibration Sets. The "Vset" is the validation set related to W2 and C4. "Calib Set" represents
"Calibration Set".

Bits Vset 4 2 1 0.75 0.375
Calib Set W2 C4 | W2 C4 w2 C4 w2 C4 w2 C4
Ours W2 1476 569|508 6.18 | 732 1051 | 7.32 1051 | 11.65 23.98
C4 | 479 5.69 | 532 6.15 | 10.14 10.09 | 10.90 10.80 | 24.16 19.95
Ours-1% W2 | 474 567|495 597 | 632 844 | 632 844 | 887 14.87
C4 | 475 5.66|502 594 | 7.13 813 | 779 856 | 12.87 13.07

To further investigate the impact of the calibration set on model performance, we used C4 as a
calibration set to evaluate several subtasks within LongBench (qasper, trec, samsum, lcc, ropebench-
p). As shown in the Table[3] we observed that there were some differences in the results of Trec and
Repobench-p when using Wikitext-2 and C4, while the differences were not significant for the other
tasks.

19

Under review as a conference paper at ICLR 2026

Table 3: Performance on LongBench Subtasks with Wikitext-2 (W2) and C4 Calibration Sets at
Different Bits using LLaMA-3-8B-Instruct. "Calib Set" represents "Calibration Set", and "repobc-p"
represents "repobench-p".

Bits 4 2 1 0.75 0.375
Calib Set | W2 C4 w2 C4 w2 C4 w2 C4 W2 C4
qasper | 40.46 39.98 | 39.04 382 | 2595 26.51 | 2548 2549 | 2241 23.27
trec 69.33 69.33 67 64.67 | 38.67 4233 | 39.67 41.33 38 38
samsum | 40.2 40.27 | 38.61 38.22 | 30.0 303 | 29.57 29.29 | 255 24.82
Icc 59.84 59.07 | 60.94 59.15 | 53.97 53,93 | 5297 52.01 | 49.61 49.79
repobc-p | 4424 413 | 4529 42.68 | 38.53 3794 | 37.87 38.02 | 3454 34.71

H ANCHOR TOKENS NUMBER IMPACT

To investigate the impact of the number of anchor tokens on model performance, we conducted
Perplexity evaluations on Mistral-7B and LLaMA-3-8B, both with a context length of 8192. We
performed evaluations using no anchor tokens and with anchor token percentages of 1% (82), 2%
(164), 5% (410), 10% (820), 15% (1230), and 20% (1640). The corresponding results are presented
in Figures |1 1jand For the 2-bit and 4-bit results, using 1% of anchor tokens kept the error within
0.6 compared to FP16. However, for the 1-bit and sub-bit results, we needed to increase the number
of anchor tokens to control the error within an acceptable range. Nevertheless, AnTKV provides a
feasible technical pathway for ultra-low-bit quantization of the KV cache.

WikiText-2 C4

20
—e— 4 bit 1031%0 3 —e— 4 bit
14 2 bit 66.2! 2 bit
—— 1bit 18174.47 —+— 1bit
—¥— 0.75 bit —*— 0.75 bit
12 —— 0.375 bit 16 —a— 0.375 bit
rrrrr FP16 (5.54) ---- FP16 (7.10)
> 10.41 >
- L4
1 3
[=% o
o 912
a 8 o
10
8.74
6 795
5.54 8
5.59 5.59 5.58 5.57 5.56 5.55
T4z | 73S
0 1% 2% 5% 10% 15% 20% 0 1% 2% 5% 10% 15% 20%
Anchor Token (%) Anchor Token (%)
Figure 11: Perplexity results on LLaMA-3-8B with varying anchor token numbers.
WikiText-2 Cc4
10 -
11.6 —— 4 bit 23.98 i —e— 4bit
2 bit 14 2 bit
9 —+— 1 bit —+— 1bit
—¥— 0.75 bit 1172 —*— 0.75 bit
. —a— 0.375 bit 12 —— 0.375 bit
o~ FP16 (4.73) - I N FP16 (5.65)
£ 2 —_
lx’ ; E 107105
[=% o
IS S
& &
6 8
838
5 6 i— 1)
FP16 5.65
473 5.69 5.67 5.66 5.66 5.66 5.65 5.65 [
4.76 4.74 4.74 4.74 4.73 4.73 4.73
4 4
0 1% 2% 5% 10% 15% 20% 0 1% 2% 5% 10% 15% 20%
Anchor Token (%) Anchor Token (%)

Figure 12: Perplexity results on Mistral-7B with varying anchor token numbers.

To further investigate the impact of anchor token numbers on downstream tasks, we evaluated
different anchor token numbers on the Trec and Qasper subtasks of LongBench under ultra-low-bit

20

Under review as a conference paper at ICLR 2026

quantization settings. For convenience, we approximated 1% of the anchor token number as 64. The
results are shown in Figure[T3] it illustrates that both the Trec and Qasper subtasks exhibit a consistent
improvement pattern as the number of anchor tokens increases. In particular, moving from 0% to 1%
anchor tokens leads to a substantial performance gain across all quantization settings, highlighting
that even a very small proportion of anchor tokens can effectively mitigate the degradation introduced
by ultra-low-bit quantization. Beyond this point, the improvements from 1% to 2%, 2% to 5%,
and 5% to 10% follow an approximately linear trend, with performance gradually approaching the
FP16 baseline. These results demonstrate that anchor tokens play a dual role that a small fraction is
sufficient to deliver immediate and significant benefits, while larger allocations further provide steady,
near-linear enhancements in downstream task performance.

Trec asper
20 Qasp FP16
40.19

64.33(69.33

o
=3

> >
E= B2
x 30 x
o K
o =
e &
36:68 —— 1bit
30 —¥— 0.75bit
—k— 0.375bit
-- FP16 (69.33)
20
0 1% 2% 5% 10% 0 1% 2% 5% 10%
Anchor Token (%) Anchor Token (%)

Figure 13: Trec and Qasper results on LLaMA-3-8B-Instruct with varying anchor token numbers.

I USEOF LLMS

In preparing this manuscript, we utilized ChatGPT-5 as a writing and editing assistant. Its role was
limited to enhancing the clarity and fluency of the English in various sections. All scientific ideas,
research methodology, experimental design, result analysis, and technical contributions are solely the
product of the human authors.

21

	Introduction
	Background
	Transformer and Attention
	Memory Constraints in LLM Inference

	Methodology
	Offline Token-Aware Centroids Learning
	Online Anchor Token Selection
	Implementation

	Experiments
	Perplexity Results
	Understanding and Reasoning Benchmark
	Long-Context Benchmark
	Efficiency
	Ablation Study

	Limitation & Conclusion
	Related Works
	Distribution of pre- and post- RoPE Key
	Proof of Theorem 1
	The Effectiveness of AnS
	AnS Distribution During Decoding
	Computational Procedure of AnS in the Online Stage
	Calibration Set Impact
	Anchor Tokens Number Impact
	Use of LLMs

