

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ANTKV: ANCHOR TOKEN-AWARE ULTRA-LOW-BIT VECTOR QUANTIZATION FOR KV CACHE IN LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Quantization has emerged as an effective and lightweight solution to reduce the memory footprint of the KV cache in Large Language Models. Nevertheless, minimizing the accuracy degradation caused by ultra-low-bit KV cache quantization remains a significant challenge. While scalar quantization is constrained by 1-bit bound, vector quantization exploits intra-vector correlations and enables sub-bit regimes, making it more suitable for ultra-low-bit quantization. To further mitigate quantization-induced degradation, we reveal that the degradation is highly uneven across tokens in attention quality. To investigate this unevenness, we introduce anchor score to measure each token’s sensitivity to quantization. Our analysis and experiments show that preserving a small subset (1%) of tokens with the highest Anchor Score significantly mitigates accuracy loss under aggressive quantization. We propose AnTKV, a dual-stage framework that leverages anchor token-aware vector quantization to compress the KV cache. It combines offline token-aware centroids learning and online anchor token selection to balance compression and accuracy. To enable efficient deployment, we design an online anchor token selection kernel compatible with FlashAttention. It allows LLaMA3-8B to scale to 840K tokens on a single 80GB A100, while delivering up to 3.5 \times higher decoding throughput over the FP16 baseline. Experiments demonstrate that AnTKV matches or surpasses prior methods at 4-bit, and significantly reduce perplexity under ultra-low-bit quantization, achieving 6.32 at 1-bit on Mistral-7B, compared to 7.25 for CQ and 15.36 for KVQuant.

1 INTRODUCTION

Large Language Models (LLMs) have gained wide attention owing to their remarkable capabilities in diverse applications OpenAI (2023); Guo et al. (2025); Team et al. (2023); Tang et al. (2025); Dong et al. (2025). With rapid recent advances, LLMs currently handle context lengths from hundreds of thousands to millions of tokens, enabling them to tackle increasingly complex tasks Zhao et al. (2023); Wang et al. (2025b); Das et al. (2025); Wang et al. (2025a). Most LLMs adopt decoder-based transformer architectures, where tokens are generated autoregressively and the KV cache grows rapidly with context length Zhu et al. (2025b); Bai et al. (2024); Liu et al. (2025a) and batch size increases Pope et al. (2022). The large amount of memory footprint of the KV cache poses a significant challenge. For example, with LLaMA-3 at 128K tokens it already approaches the model size, and for million-token models like Gemini it becomes prohibitive. Beyond inference, LLM-RAG systems Yao et al. (2025) pre-generate and store massive KV caches, creating additional storage challenges.

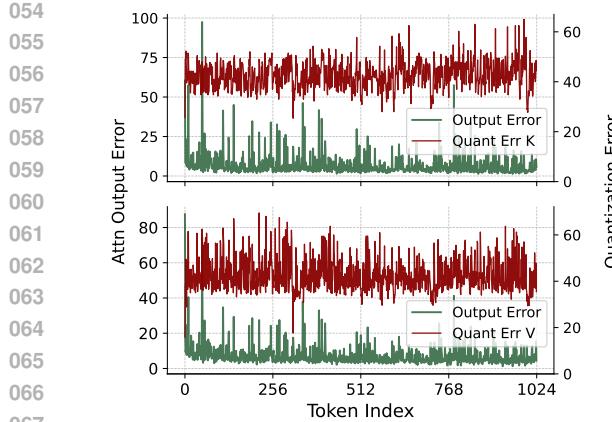


Figure 1: The L_1 norm error of attention output when quantizing the i th token’s KV cache in Mistral-7B to 1-bit.

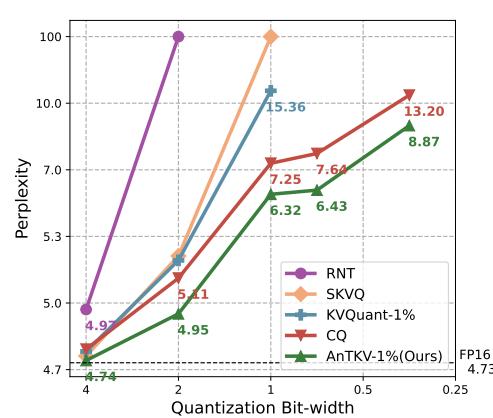


Figure 2: The Perplexity of Mistral-7B on the WikiText-2 across different quantization bit-widths.

To address the substantial size of KV caches, numerous techniques have been explored Liu et al. (2025c;b; 2024a); Zhang et al. (2024c); Liu et al. (2024b); Dong et al. (2025), with quantization proving to be especially effective. Quantization methods are generally classified into scalar quantization (SQ) and vector quantization (VQ). SQ compresses the KV cache by mapping floating-point values to fixed low-bit representations Liu et al. (2024b); Duanmu et al. (2024); Hooper et al. (2024), but the 1-bit lower bound constrains its maximum compression ratio to 1/16 of FP16. In contrast, VQ compresses high-dimensional vectors by mapping them to a finite codebook Lingle (2024); Zhang et al. (2024b), which captures intra-vector correlations, achieves superior compression ratios and fidelity under ultra-low-bit quantization.

We observe that tokens contribute unequally to model accuracy during inference. To illustrate this, we quantize the KV cache of Mistral-7B Jiang et al. (2023) to 1-bit using VQ. Figure 1 depicts the attention output L_1 norm error in the 31st layer when quantizing the KV cache across different token indices, and similar error distributions are observed in other layers. As evident from the figure, although per-token quantization errors are similar, the resulting error in the attention output vary widely across tokens and a small subset exhibits error that are tens of times larger when quantized (anchor tokens). Quantifying token importance is essential for unlocking the full potential of ultra-low-bit KV cache quantization.

To address this, we conduct a forward error analysis Boldo & Melquiond (2017) on attention-based models with respect to KV, and then propose AnTKV, a dual-stage framework for KV cache quantization. In the offline stage, AnTKV performs token-aware weighted k-means clustering to generate centroids, where the weights are derived from error propagation factors obtained through forward error analysis. Tokens that cause larger increases in output error are assigned larger weights during clustering. However, the propagation factors entail substantial gradient cost. To overcome this limitation, we propose **Anchor Score** (AnS) derived from the forward error analysis of the attention, which quantifies the output sensitivity to quantizing each token’s KV cache. At inference time, AnS is computed for each prompt to identify this small token subset. AnTKV handles this subset of tokens in a simple yet effective manner by preserving them in full precision, thereby reducing accuracy loss. Moreover, we design and implement a lightweight GPU kernel for AnS computation. More specifically, we extend FlashAttention Dao (2023) to store low memory overhead softmax intermediate results, thereby enabling efficient online anchor token selection.

We conduct extensive experiments to evaluate the effectiveness of AnTKV across various quantization bit-widths on a range of LLMs, including the LLaMA-2/3 Touvron et al. (2023); Grattafiori et al. (2024) and Mistral-7B Jiang et al. (2023) families. As shown in Figure 2, AnTKV consistently outperforms existing approaches across bit-widths from 4-bit down to 0.375-bit. On WikiText-2 Merity et al. (2016), AnTKV achieves a perplexity of 6.32 at 1-bit, reducing error by 0.93 compared to CQ (7.25) Zhang et al. (2024b), and by a substantial 9.04 compared to KVQuant-1% (15.36) Hooper et al. (2024). Even under the aggressive 0.375-bit setting, AnTKV attains a perplexity of 8.87, surpassing CQ (13.20) by 4.33. Thanks to the efficient GPU implementation of AnS, AnTKV also

108 scales to extremely long contexts: on LLaMA3-8B, it supports up to 840K tokens under 0.375-
 109 bit quantization on a single A100-80GB GPU. Moreover, during decoding, AnTKV increases the
 110 maximum batch size by 3.3 \times and improves throughput by 3.4 \times at a 1K context length compared to
 111 full precision.

112 To summarize, we make the following contributions in this work.
 113

- 114 • To the best of our knowledge, this work is the first to investigate the feasibility of quantization
 115 the KV cache to sub-bit while preserving model accuracy.
- 116 • We identify that different tokens contribute unequally to model accuracy under quantization
 117 and highlight the existence of anchor tokens that dominate output error.
- 118 • We propose AnTKV, which performs token-aware weighted clustering offline and leverages
 119 AnS online to efficiently identify anchor tokens, preserving them in full precision to mitigate
 120 accuracy loss, and we evaluate it on the LLaMA2/3 and Mistral families, where it consistently
 121 improves performance across a wide range of quantization bit-widths.
- 122 • We implement custom GPU kernels for the online stage, enabling AnTKV to scale to 840K
 123 tokens on a single GPU and deliver significant throughput gains during decoding.

125 2 BACKGROUND

127 2.1 TRANSFORMER AND ATTENTION

129 The transformer block has become the fundamental architecture of LLMs; it consists of a fully
 130 connected feed-forward network and an attention. The attention enables the model to capture
 131 connections among tokens within the context. Specifically, it maps a query (\mathbf{Q}) and a set of KV pairs
 132 (\mathbf{K} and \mathbf{V}) to an output, i.e.,

$$133 \text{Attn}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{Softmax}\left(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d}}\right)\mathbf{V} \quad \text{with } \mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{n \times d},$$

135 where $\text{Softmax}(\cdot)$ is the softmax operator. Since position information is crucial in LLMs, Rotary
 136 Position Embedding (RoPE) Su et al. (2023) is a widely used technique for encoding it into query
 137 and key vectors Su et al. (2024), which is denoted as $\tilde{\mathbf{Q}}$ and $\tilde{\mathbf{K}}$ in this paper. With RoPE, the
 138 attention score \mathbf{A} is rewritten as $\text{Softmax}\left(\frac{\tilde{\mathbf{Q}}\tilde{\mathbf{K}}^T}{\sqrt{d}}\right)$, and its L_p “entry-wise” matrix norm is defined
 139

140 as $\left(\sum_{i,j} |\mathbf{A}_{i,j}|^p\right)^{1/p}$. Other notations used in this work, such as the Kronecker product, the Hadamard
 141 product, and the row-by-row vectorization are denoted as \otimes , \odot , and $\text{Vec}(\cdot)$, respectively.
 142

144 2.2 MEMORY CONSTRAINTS IN LLM INFERENCE

146 During the process of LLM inference, the key and value generated at prefill and each decoding step
 147 are stored to avoid redundant computation. The KV cache is repeatedly accessed in subsequent
 148 steps to compute attention over the full context seen so far, significantly accelerating autoregressive
 149 decoding. In a multi-turn conversation, the KV cache from previous turns can also be reused during
 150 the prefill stage to further reduce latency. Nowadays LLMs, like LLaMA3.1-8B Grattafiori et al.
 151 (2024) and Gemini 1.5 Pro Team et al. (2023), now handle much longer context lengths, up to 128K
 152 and 2 million tokens, respectively. This increase in context length Liu et al. (2025a); Wang et al.
 153 (2025a) causes the GPU memory consumed by KV cache to even exceed the model. The rapid growth
 154 of KV cache greatly limits the deployment of LLMs with long context. Quantization is an effective
 155 approach to compressing the KV cache, substantially reducing memory footprint while preserving
 156 essential information.

157 3 METHODOLOGY

160 VQ is employed as it enables sub-bit compression, which SQ cannot achieve, and in the ultra-low-bit
 161 regime (≤ 2 bit) it leverages intra-vector correlations to attain significantly better quantization quality
 compared to SQ.

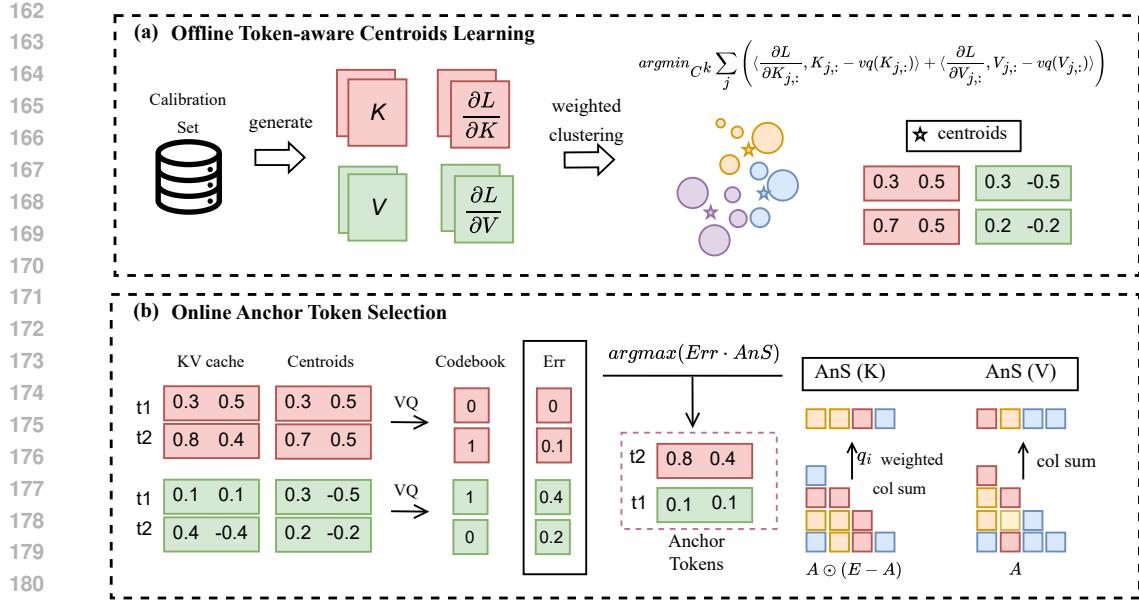


Figure 3: Overview of AnTKV. In the stage (a), token-aware centroids are learned from calibration data through weighted clustering, where the weights are error-propagation factors obtained by forward error analysis. In the stage (b), the KV cache is quantized with centroids, and AnS is computed to identify anchor tokens, which are preserved in full precision to mitigate accuracy loss.

As shown in the figure 1, we observe that although per-token KV cache quantization errors appear similar, the resulting attention output errors differ dramatically. Moreover, the error distribution is steep, with large errors occurring unpredictably across tokens. Previous works on KV cache quantization typically treat all tokens equally or are biased toward attention sinks, as inspired by AttentionSink Xiao et al. (2024b), which we argue is suboptimal. Our observation reveals a new opportunity for KV cache quantization, where tokens with greater influence on attention output error should be prioritized. Building on this observation, we propose AnTKV, a token-aware VQ framework for KV cache quantization. It adopts a dual-stage design consisting of offline token-aware centroid learning (Figure 3(a)) and online anchor token selection (Figure 3(b)). The central challenge lies in effectively measuring token importance. During centroids learning, forward error analysis provides per-token error propagation factors, which serve as weights in a token-aware k -means clustering to generate VQ centroids, thereby emphasizing tokens with significant influence on attention-output error. For anchor token selection, directly using error propagation factors incurs expensive gradient computation. To avoid this cost, we introduce AnS, a lightweight metric derived from attention forward error analysis that enables efficient prompt-aware identification of anchor tokens.

3.1 OFFLINE TOKEN-AWARE CENTROIDS LEARNING

In this stage, centroids are learned offline by aggregating KV cache from calibration data. Specifically, each row (per token) of \mathbf{K} and \mathbf{V} is divided into several sub-vectors, then using k -means to cluster them, and only the centroids are stored. Specifically, each token row of \mathbf{K} and \mathbf{V} is partitioned into sub-vectors and clustered with k -mean. The centroids are retained for online KV cache quantization.

From an accuracy perspective, replacing \mathbf{K} and \mathbf{V} with their corresponding centroids should introduce minimal impact on model output. Mathematically, it can be formulated as

$$\min_{C^k \in \mathbb{R}^{c^k \times d}} |L(\mathbf{K}, \mathbf{V}) - L(vq(\mathbf{K}), vq(\mathbf{V}))|, \quad (1)$$

where c^k is the number of clusters, and C^k is the matrix consisting of centroids. By the first-order Taylor series expansion, we have

$$L(\mathbf{K}, \mathbf{V}) - L(vq(\mathbf{K}), vq(\mathbf{V})) \approx \sum_j \left(\langle \frac{\partial L}{\partial \mathbf{K}_{j,:}}, \mathbf{K}_{j,:} - vq(\mathbf{K}_{j,:}) \rangle + \langle \frac{\partial L}{\partial \mathbf{V}_{j,:}}, \mathbf{V}_{j,:} - vq(\mathbf{V}_{j,:}) \rangle \right), \quad (2)$$

216 where $\frac{\partial L}{\partial \mathbf{K}_{j,:}}$ and $\frac{\partial L}{\partial \mathbf{V}_{j,:}}$ are the gradient of the loss function $L(\cdot)$ with respect to $\mathbf{K}_{j,:}$ and $\mathbf{V}_{j,:}$, i.e.,
 217 the j th row of \mathbf{K} and \mathbf{V} that correspond to the j th token. From equation equation 1 and equation 2,
 218 the weighted k-means clustering with gradients as weights is essentially to find a clustering strategy
 219 that minimizes the error caused by KV quantization.
 220

221 3.2 ONLINE ANCHOR TOKEN SELECTION

223 In online inference, gradients can no longer serve as the token importance metric due to the cost
 224 imposed by real-time constraints. To address this, we perform an error propagation analysis of the
 225 attention operator (Attn). Specifically, the analysis derives a perturbation bound of Attn with
 226 respect to each row of \mathbf{K} and \mathbf{V} , as presented in Theorem 1, with the detailed proof provided in
 227 Appendix C.

228 **Theorem 1.** *Let $\delta \mathbf{K}$ and $\delta \mathbf{V}$ be the error perturbation terms corresponding to \mathbf{K} and \mathbf{V} respectively,
 229 and satisfy*

$$230 \quad \|\delta \mathbf{K}\|_{L_1} \ll \|\mathbf{K}\|_{L_1} \quad \text{and} \quad \|\delta \mathbf{V}\|_{L_1} \ll \|\mathbf{V}\|_{L_1}.$$

231 Then we have

$$233 \quad \|\text{Attn}(\mathbf{Q}, \mathbf{K} + \delta \mathbf{K}, \mathbf{V}) - \text{Attn}(\mathbf{Q}, \mathbf{K}, \mathbf{V})\|_{L_1} \\ 234 \quad \lesssim \sum_j \sum_i \|(\mathbf{V}^\top \text{Diag}(\mathbf{A}_{i,:})(\mathbf{I}_n - \mathbf{e} \mathbf{A}_{i,:}))_{:,j}\|_{L_1} \|\mathbf{Q}_{i,:}\|_{L_2} \|\delta \mathbf{K}_{j,:}\|_{L_1} \quad (3)$$

237 and

$$238 \quad \|\text{Attn}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) - \text{Attn}(\mathbf{Q}, \mathbf{K}, \mathbf{V} + \delta \mathbf{V})\|_{L_1} \leq \sum_j \|\mathbf{A}_{:,j}\|_{L_1} \|\delta \mathbf{V}_{j,:}\|_{L_1}, \quad (4)$$

240 where $\mathbf{e} \in \mathbb{R}^n$ is a vector whose entries are all 1.

242 We remark that the error propagation factors corresponding to $\mathbf{K}_{j,:}$ and $\mathbf{V}_{j,:}$ given in Theorem 1 can
 243 be regarded as the upper bound of the gradient of the attention operator related to $\mathbf{K}_{j,:}$ and $\mathbf{V}_{j,:}$.

244 The computation involving \mathbf{K} in Theorem 1 introduces significant overhead and is therefore unsuit-
 245 able for online inference. To address this limitation, we propose a simplified variant that excludes the
 246 contribution of \mathbf{V} to the quantization error of \mathbf{K} . This leads to the following reformulation, with a
 247 detailed evaluation of AnS effectiveness provided in Appendix D.

$$249 \quad \text{AnS}(\mathbf{V}_{j,:}) = \sum_i \mathbf{A}_{i,j} \quad \text{AnS}(\mathbf{K}_{j,:}) = \sum_i \mathbf{A}_{i,j} (1 - \mathbf{A}_{i,j}) \cdot \|\mathbf{Q}_{i,:}\|_2 \quad (5)$$

251 In online inference, during the prefill phase, AnS serves as an effective metric for identifying anchor
 252 tokens that induce substantial accuracy loss. In autoregressive decoding phase, AnS can still be
 253 computed. However, the anchor tokens it identifies may already have been quantized, which prevents
 254 preserving their full-precision values and limits error reduction. An important observation is that both
 255 AnS(\mathbf{K}) and AnS(\mathbf{V}) exhibit strong locality during the decoding phase (see Appendix E), with anchor
 256 tokens predominantly concentrated at the head and tail of the sequence. Experimental results show
 257 that the anchor tokens at the head of the sequence are consistently identified during the prefill stage,
 258 corresponding to sink tokens. This observation further demonstrates the effectiveness of our method.
 259 Building on the tail locality, we use a sliding-window approximation of AnS during decoding to
 260 further enhance efficiency while mitigating accuracy degradation.

262 3.3 IMPLEMENTATION

263 For the offline centroids learning stage, the gradients of \mathbf{K} and \mathbf{V} are employed as weights for centroid
 264 learning. We implement it with a custom LinearWithAct to capture KV cache and corresponding
 265 gradients. Subsequently, we employ the weighted k-means provided by cuML to perform efficient
 266 clustering.

268 In the online stage, AnS is derived from the error propagation factor given in Theorem 1 and
 269 Equation equation 5. To enable efficient long-context inference, we design and implement a dedicated
 GPU kernel using Triton that computes AnS in conjunction with FlashAttention. Because AnS

270 requires reduction operations over the attention score matrix \mathbf{A} and its transformed form $\mathbf{A} \odot (\mathbf{E} - \mathbf{A})$ along the query dimension (column-wise), direct fusion into FlashAttention is infeasible. To preserve 271 the efficiency of FlashAttention, we decouple AnS computation and execute it immediately afterward. 272 For this purpose, we extend FlashAttention to additionally output three auxiliary tensors: the L_2 273 norm of each query vector, the key-wise (row-wise) sum, and the key-wise maximum of the matrix 274 \mathbf{QK}^T . These tensors allow the reconstruction of the attention scores and facilitate AnS computation 275 with minimal overhead. Further implementation details are provided in Algorithm 1 of Appendix F. 276

277 Finally, since the application of RoPE disrupts the channel-wise magnitude distribution of \mathbf{K} (see 278 Appendix B), which otherwise exhibits large inter-cluster distances and small intra-cluster variances, 279 the pre-RoPE strategy, consistent with Hooper et al. (2024), is adopted in AnTKV. 280

281 4 EXPERIMENTS

285 In this section, we present an extensive comparison between AnTKV and existing KV quantization 286 methods. The experimental setup is detailed below.

287 **Models, Datasets, Metrics, and Parameter Settings.** To validate the effectiveness and generality 288 of AnTKV in KV cache quantization, we evaluate five representative models from the LLaMA and 289 Mistral families. For calibration, 128 samples of length 2048 are drawn from the WikiText2 training 290 set. Model quality is assessed through three categories of benchmarks: (i) perplexity on WikiText-2 291 and C4; (ii) zero-shot accuracy on MMLU Hendrycks et al. (2021), ARC-C Clark et al. (2018), 292 MathQA Amini et al. (2019), and PIQA Bisk et al. (2020) to evaluate understanding and reasoning; 293 and (iii) long-context performance on LongBench Bai et al. (2024). For perplexity and zero-shot 294 evaluations, quantized KV caches are directly used for attention outputs, whereas for LongBench, 295 full precision KV cache is used to compute attention outputs and quantized KV cache is used during 296 decoding. Across all benchmarks, anchor tokens are restricted to a small subset: 1% of the context 297 length for perplexity, 16 for understanding and reasoning, and 64 for LongBench. For fair comparison, 298 a sliding window of size 32 is applied in LongBench, following the mainstream setting.

299 **Baselines.** We compare AnTKV with full precision and representative KV cache quantization methods, 300 including KIVI Liu et al. (2024b), SKVQ Duanmu et al. (2024), KVQuant-1% Hooper et al. (2024), 301 and CQ Zhang et al. (2024b). SKVQ is configured with a group size of 64 and five sink tokens Xiao 302 et al. (2024b), while KVQuant retains four sink tokens. Since CQ results are not publicly available, 303 we reproduced them following the methodology in their paper to the best of our understanding. 304 For VQ settings, we adopt the notation “dncm”, covering 4-bit (d2m256), 2-bit (d4m256), 1-bit 305 (d8m256), 0.75-bit (d16m4096), and 0.375-bit (d32m4096). 306

307 4.1 PERPLEXITY RESULTS

308 Perplexity is a standard benchmark that is widely used to evaluate the quality of the output of LLMs, 309 with lower values indicating better performance. The perplexity results for different KV quantization 310 approaches on WikiText-2 and C4 are presented in Table 1. The results in this table indicate that the 311 proposed AnTKV consistently achieves competitive or superior perplexity across various bit-widths 312 and model architectures. Under 4-bit and 2-bit quantization, it achieves competitive performance 313 compared to baseline. In the 1-bit and sub-bit regimes, it significantly outperforms all baselines. On 314 the C4 dataset under sub-bit quantization, baseline methods suffer from extremely high perplexity, 315 as fixed centroids fail to capture anchor tokens. By contrast, with its effective AnS design and 316 anchor token selection, AnTKV substantially lowers perplexity, reducing it from 66.28 to 14.42 on 317 LLaMA-3-8B at 0.75-bit.

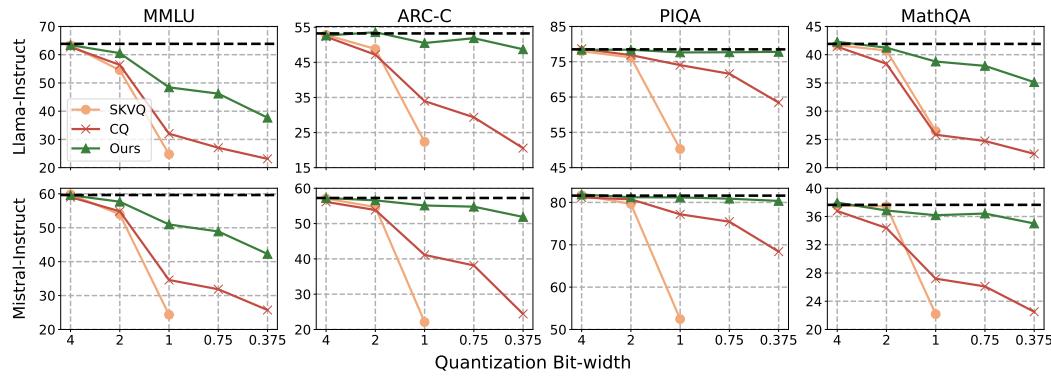
318 4.2 UNDERSTANDING AND REASONING BENCHMARK

319 To assess the breadth of AnTKV’s understanding and reasoning capabilities, we evaluate it on 320 four representative benchmarks using LLaMA-8B-Instruct and Mistral-7B-Instruct. These benchmarks 321 target multi-domain knowledge reasoning (MMLU), complex question answering (ARC-Challenge), 322 commonsense reasoning (PIQA), and mathematical problem solving (MathQA). Due 323 to missing the implementations in the official repository, KIVI and KVQuant are not included. As

324
 325 Table 1: All evaluations are performed under the maximum context length of each model, specifically
 326 4096 for LLaMA-2-7B and 8192 for LLaMA-3-8B and Mistral-7B. “Ours” refers to AnTKV without
 327 anchor tokens, whereas “Ours-1%” denotes AnTKV with 1% of tokens designated as anchor tokens
 328 and retained in FP16. For clarity, the reported bit-widths exclude the contribution of centroids.

		Bit	LLaMA-2-7B		LLaMA-3-8B		Mistral-7B	
Dataset			WikiText2	C4	WikiText2	C4	WikiText2	C4
Baseline	16		5.12	6.63	5.54	7.10	4.73	5.66
KVQuant-1%	RTN	4	5.66	7.31	7.89	8.79	7.34	5.91
	SKVQ		5.16	6.67	5.64	7.19	4.97	5.68
	KVQuant-1%		5.13	6.65	5.56	7.12	4.78	5.72
	CQ		5.14	6.67	5.58	7.84	4.79	5.74
	Ours		5.18	6.76	5.61	7.69	4.76	5.69
	Ours-1%		5.15	6.68	5.59	7.16	4.74	5.67
KVQuant-1%	RTN	2	4708	4708	2841	2113	573	477
	SKVQ		5.54	7.21	6.73	8.31	5.21	6.14
	KVQuant-1%		5.49	7.02	6.11	7.65	5.19	6.10
	CQ		5.42	7.23	6.09	18.71	5.11	6.17
	Ours		5.51	7.45	6.10	16.96	5.08	6.18
	Ours-1%		5.34	7.02	5.97	7.68	4.95	5.97
KVQuant-1%	SKVQ	1	12643	12819	108879	86426	3524	2741
	KVQuant-1%		21.55	51.84	14.80	13.95	15.36	14.24
	CQ		7.75	12.49	9.56	81.74	7.25	9.89
	Ours		7.92	13.01	9.62	74.47	7.32	10.51
	Ours-1%		6.50	9.40	8.51	12.51	6.32	8.44
	CQ		8.39	14.32	11.18	72.05	7.64	11.72
Ours-1%	Ours	0.75	8.21	14.27	10.41	66.28	7.41	11.72
	Ours-1%		6.55	9.75	8.97	14.42	6.43	9.08
	CQ		14.82	33.59	22.80	103.5	13.20	26.34
Ours	Ours	0.375	13.37	30.51	17.70	103.5	11.65	23.98
	Ours-1%		8.75	15.86	13.41	34.08	8.87	14.87

354
 355
 356
 357 shown, AnTKV consistently maintains higher accuracy across LLaMA and Mistral models, with
 358 particularly strong advantages at 1-bit and sub-bit settings where baseline methods degrade sharply.



375 Figure 4: Evaluation of understanding and reasoning accuracy on MMLU, ARC-C, PIQA, and
 376 MathQA under different quantization bit-widths.

378
379

4.3 LONG-CONTEXT BENCHMARK

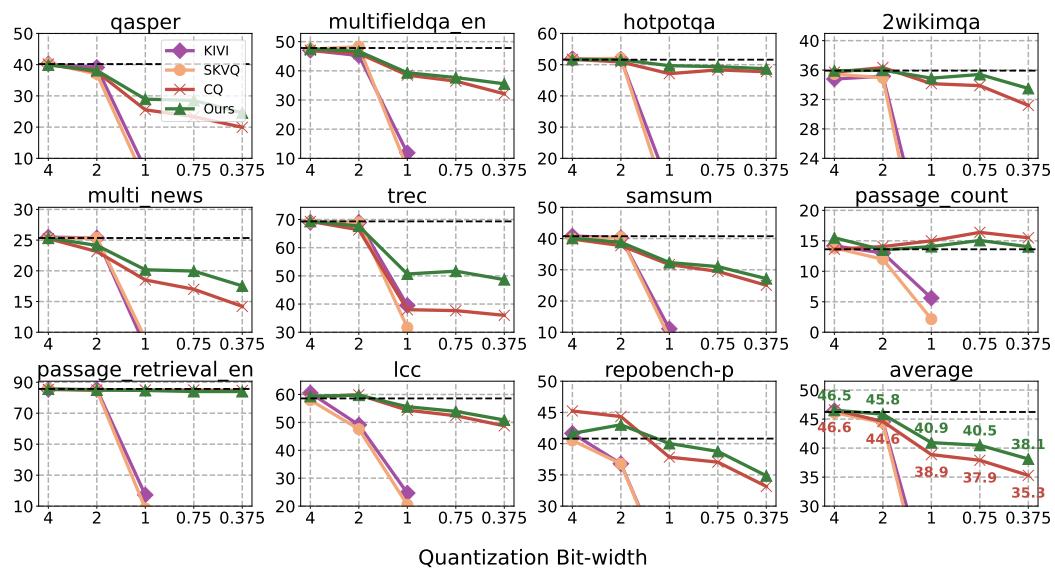
380

To validate the effectiveness of AnTKV in handling long-context, We conduct several experiments on the LLaMA-8B-Instruct model using the LongBench benchmark, a diverse collection of tasks such as question answering, retrieval, and summarization, designed to systematically evaluate long-context understanding in language models. We report results on eleven representative sub-tasks from LongBench, along with averaged performance. Due to alignment issues of KIVI and SKVQ, we exclude the triviaqa and gov_report sub-tasks from the comparison. As shown in Figure 5, AnTKV preserves nearly FP16 at 4- and 2-bit quantization across almost all tasks. At the 1-bit quantization, the performance of KIVI and SKVQ has a significant drop. In contrast, AnTKV and CQ still maintain a relatively high accuracy. To further investigate the robustness under aggressive compression, we compare AnTKV and CQ in both sub-bit levels. Figure 5 shows that AnTKV consistently outperforms CQ. Notably, despite aggressive quantization down to 0.375-bit, AnTKV maintains tolerable degradation, with the average score decreasing from 46.5 to 38.1.

392

393

394



411

412

413

Figure 5: The evaluation accuracy results on LongBench under different KV cache quantization bit-widths. AnTKV achieves the best average performance under ultra-low-bit quantization.

414

415

416

417

418

419

420

4.4 EFFICIENCY

421

422

423

In this experiment, we evaluate the efficiency of our AnTKV implementation compared with huggingface baseline Wolf et al. (2020) on LLaMA-3-8B using a single A100-80GB GPU. As shown in Figure 6, AnTKV substantially extends the maximum context length from 128K to 384K. In long-context inference, our profiling shows that intermediate activations account for a substantial portion of memory usage. By introducing a series of in-place operators, AnTKV supports up to 810K tokens under 1-bit quantization and 840K under 0.375-bit quantization, while maintaining low memory consumption. To evaluate decoding efficiency, we measure the throughput of AnTKV with a fixed context length of 1K tokens. As shown in Figure 7, AnTKV enables substantially larger batch sizes and improves throughput across all bit-widths by reducing KV cache access. In particular, under 1-bit quantization, the maximum throughput reaches $3.5\times$.

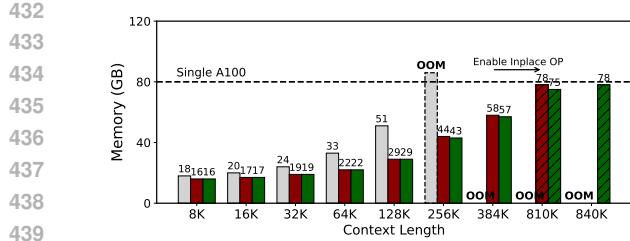


Figure 6: KV cache memory size comparison. Gray bars denote full precision, red bars 1-bit, and green bars 0.375-bit quantization. Striped bars indicate results with in-place operators enabled.

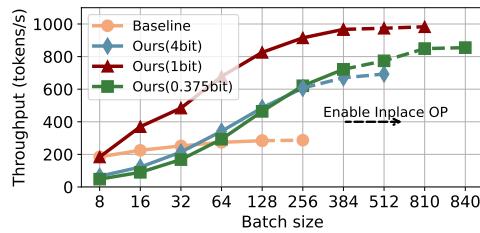


Figure 7: Decoding throughput comparison. Our method supports larger batch sizes and achieves higher throughput. Dashed lines indicate results with in-place operators enabled.

4.5 ABLATION STUDY

We conduct a series of experiments to answer the following questions.

Q1: How does the model performance change as the number of anchor tokens increases?

As the number of anchor tokens increases, the performance loss decreases rapidly at first, as shown in Table 1. However, the marginal benefit diminishes with more anchor tokens. Detailed results are provided in Appendix G.

Q2: Does the calibration set affect the performance?

We find that for VQ-based methods, the calibration set does have some impact on performance under low-bit settings. However, as shown in Table 1 (LLaMA-3-8B, 1-bit, C4), retaining anchor tokens effectively mitigates the performance drop caused by calibration set variation. More detailed results can be found in Appendix H.

5 LIMITATION & CONCLUSION

Although AnTKV demonstrates its advantages in experiments, it also has few limitations. First, more accurate AnS for tokens and higher performance implementations for its computation may be possible. AnTKV demonstrates strong potential in LLM serving by substantially reducing the size of the KV cache, which in turn alleviates I/O and memory constraints to a significant extent. Nevertheless, further empirical validation is required.

This work addresses the preservation of accuracy under ultra low bit KV cache quantization. We propose AnTKV, a vector quantization based framework that exploits intra vector correlations. AnTKV uses a dual stage design with offline token aware centroid learning and online anchor token selection, which mitigates the disproportionate error from anchor tokens. Across the LLaMA and Mistral families, AnTKV attains accuracy close to full precision and consistently surpasses baselines in the ultra low bit regime. It also scales LLaMA-3-8B to 840K tokens on a single 80 GB A100, and increases decoding throughput by up to 3.5 \times .

475
476
477
478
479
480
481
482
483
484
485

486 REPRODUCIBILITY STATEMENT
487488 Our implementation builds on the Hugging Face Transformers library Wolf et al. (2020). The Anchor
489 Score computation as well as the vector quantization and dequantization operators are implemented
490 in Triton for efficiency. We will release the full source code upon acceptance of the paper to ensure
491 reproducibility.
492493 ETHICS STATEMENT
494495 All experiments in this work are conducted using publicly available models and datasets. We strictly
496 follow the corresponding licenses.
497498 MODELS
499500 Here, we list all of the model checkpoints used in our experiments:
501502 • LLaMA-2-7B <https://huggingface.co/meta-llama/Llama-2-7b>
503 • LLaMA-3-8B <https://huggingface.co/meta-llama/Meta-Llama-3-8B>
504 • LLaMA-3-8B-Instruct <https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct>
505 • Mistral-7B <https://huggingface.co/mistralai/Mistral-7B-v0.1>
506 • Mistral-7B-Instruct <https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3>
507
508
509510 DATASETS
511512 We use the following publicly available datasets:
513514 • WikiText2 <https://huggingface.co/datasets/mindchain/wikitext2>
515 • C4 <https://huggingface.co/datasets/allenai/c4>
516 • MMLU <https://huggingface.co/datasets/cais/mmlu>
517 • ARC-C https://huggingface.co/datasets/allenai/ai2_arc
518 • PIQA <https://huggingface.co/datasets/ybisk/piqa>
519 • MathQA https://huggingface.co/datasets/allenai/math_qa
520 • LongBench <https://huggingface.co/datasets/THUDM/LongBench>
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh
543 Hajishirzi. MathQA: Towards interpretable math word problem solving with operation-based
544 formalisms. In *Proceedings of the 2019 Conference of the North American Chapter of the*
545 *Association for Computational Linguistics: Human Language Technologies*, pp. 2357–2367, 2019.
546 URL <https://aclanthology.org/N19-1245/>.

547 Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
548 Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilingual,
549 multitask benchmark for long context understanding. In *Proceedings of the 62nd Annual Meeting*
550 *of the Association for Computational Linguistics (ACL)*, pp. 3119–3137, 2024. URL <https://aclanthology.org/2024.acl-long.172/>.

552 Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: Reasoning
553 about physical commonsense in natural language. In *Proceedings of the AAAI Conference on*
554 *Artificial Intelligence*, volume 34, pp. 7432–7439, 2020. URL <https://ojs.aaai.org/index.php/AAAI/article/view/6239>.

556 Sylvie Boldo and Guillaume Melquiond. 4 - automated methods. In Sylvie Boldo and Guillaume
557 Melquiond (eds.), *Floating-Point Algorithms and Formal Proofs*, pp. 91–137. Elsevier, 2017. ISBN
558 978-1-78548-112-3. doi: <https://doi.org/10.1016/B978-1-78548-112-3.50004-7>. URL <https://www.sciencedirect.com/science/article/pii/B9781785481123500047>.

560 Mengzhao Chen, Yi Liu, Jiahao Wang, Yi Bin, Wenqi Shao, and Ping Luo. PrefixQuant: Static
561 quantization beats dynamic through prefixed outliers in LLMs. *arXiv preprint arXiv:2410.05265*,
562 2024a.

564 Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang Zhou, Jianyu Zhang, Niklas Nolte, Yuandong
565 Tian, Matthijs Douze, Leon Bottou, Zhihao Jia, et al. MagicPIG: LSH sampling for efficient LLM
566 generation. In *Adaptive Foundation Models: Evolving AI for Personalized and Efficient Learning*,
567 2024b.

568 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
569 Oyvind Tafjord. Think you have solved question answering? Try ARC, the AI2 reasoning challenge.
570 *arXiv preprint arXiv:1803.05457*, 2018. URL <https://arxiv.org/abs/1803.05457>.

571 Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning, 2023. URL
572 <https://arxiv.org/abs/2307.08691>.

574 Badhan Chandra Das, M Hadi Amini, and Yanzhao Wu. Security and privacy challenges of large
575 language models: A survey. *ACM Computing Surveys*, 57(6):1–39, 2025.

576 Peijie Dong, Lujun Li, Xinglin Pan, Zimian Wei, Xiang Liu, Qiang Wang, and Xiaowen Chu. Parzc:
577 Parametric zero-cost proxies for efficient nas, 2024a. URL <https://arxiv.org/abs/2402.02105>.

579 Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu, Xinglin Pan, Qiang Wang, and Xiaowen Chu.
580 Pruner-Zero: Evolving symbolic pruning metric from scratch for large language models, 2024b.
581 URL <https://arxiv.org/abs/2406.02924>.

583 Peijie Dong, Zhenheng Tang, Xiang Liu, Lujun Li, Xiaowen Chu, and Bo Li. Can compressed llms
584 truly act? An empirical evaluation of agentic capabilities in LLM compression. In *Proceedings*
585 *of the 42th International Conference on Machine Learning*, Proceedings of Machine Learning
586 Research. PMLR, 2025.

587 Haojie Duanmu, Zhihang Yuan, Xiuhong Li, Jiangfei Duan, Xingcheng Zhang, and Dahua Lin.
588 SKVQ: Sliding-window key and value cache quantization for large language models, 2024. URL
589 <https://arxiv.org/abs/2405.06219>.

590 Ruibo Fan, Xiangrui Yu, Peijie Dong, Zeyu Li, Gu Gong, Qiang Wang, Wei Wang, and Xiaowen Chu.
591 Spinfer: Leveraging low-level sparsity for efficient large language model inference on gpus. In *Pro-*
592 *ceedings of the Twentieth European Conference on Computer Systems*, EuroSys ’25, pp. 243–260,
593 New York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400711961. doi:
10.1145/3689031.3717481. URL <https://doi.org/10.1145/3689031.3717481>.

594 Elias Frantar, Saleh Ashkboos, Torsten Hoefer, and Dan Alistarh. GPTQ: Accurate post-training
 595 quantization for generative pre-trained transformers, 2023. URL <https://arxiv.org/abs/2210.17323>.

596

597 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, et al. The
 598 Llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.

599

600 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 601 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-R1: Incentivizing reasoning capability in LLMs
 602 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

603

604 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 605 Steinhardt. Measuring massive multitask language understanding, 2021. URL <https://arxiv.org/abs/2009.03300>.

606

607 Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Sophia Shao, Kurt
 608 Keutzer, and Amir Gholami. KVQuant: Towards 10 million context length LLM inference with
 609 KV cache quantization. *Advances in Neural Information Processing Systems, NeurIPS 2024*, 37:
 610 1270–1303, 2024.

611

612 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
 613 et al. Mistral 7b, 2023. URL <https://arxiv.org/abs/2310.06825>.

614

615 Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
 616 Cai, Patrick Lewis, and Deming Chen. SnapKV: LLM knows what you are looking for before
 617 generation, 2024. URL <https://arxiv.org/abs/2404.14469>.

618

619 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
 620 Xiao, Xingyu Dang, Chuang Gan, and Song Han. AWQ: Activation-aware weight quantization for
 621 LLM compression and acceleration, 2024. URL <https://arxiv.org/abs/2306.00978>.

622

623 Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song Han.
 624 QServe: W4A8KV4 quantization and system co-design for efficient LLM serving, 2025. URL
 625 <https://arxiv.org/abs/2405.04532>.

626

627 Lucas D. Lingle. Transformer-VQ: Linear-time transformers via vector quantization, 2024. URL
 628 <https://arxiv.org/abs/2309.16354>.

629

630 Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-
 631 gruidong Zhang, Bailu Ding, Kai Zhang, et al. RetrievalAttention: Accelerating long-context LLM
 632 inference via vector retrieval. *arXiv preprint arXiv:2409.10516*, 2024a.

633

634 Jiaheng Liu, Dawei Zhu, Zhiqi Bai, Yancheng He, Huanxuan Liao, Haoran Que, Zekun Wang,
 635 Chenchen Zhang, Ge Zhang, Jiebin Zhang, et al. A comprehensive survey on long context
 636 language modeling. *arXiv preprint arXiv:2503.17407*, 2025a.

637

638 Xiang Liu, Zhenheng Tang, Hong Chen, Peijie Dong, Zeyu Li, Xiuze Zhou, Bo Li, Xuming Hu, and
 639 Xiaowen Chu. Can LLMs maintain fundamental abilities under KV cache compression?, 2025b.
 640 URL <https://arxiv.org/abs/2502.01941>.

641

642 Xiang Liu, Zhenheng Tang, Peijie Dong, Zeyu Li, Bo Li, Xuming Hu, and Xiaowen Chu. ChunkKV:
 643 Semantic-preserving kv cache compression for efficient long-context LLM inference, 2025c. URL
 644 <https://arxiv.org/abs/2502.00299>.

645

646 Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi Chen,
 647 and Xia Hu. KIVI: A tuning-free asymmetric 2bit quantization for KV cache. In *International
 Conference on Machine Learning, ICML 2024*, pp. 32332–32344. PMLR, 2024b.

648

649 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 650 models, 2016.

651

652 OpenAI. Gpt-4 technical report, 2023. URL <https://cdn.openai.com/papers/gpt-4.pdf>.

648 Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Anselm
 649 Levskaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling
 650 transformer inference, 2022. URL <https://arxiv.org/abs/2211.05102>.

651 Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
 652 transformer with rotary position embedding, 2023. URL <https://arxiv.org/abs/2104.09864>.

653 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. RoFormer: Enhanced
 654 transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

655 Zhenheng Tang, Xiang Liu, Qian Wang, Peijie Dong, Bingsheng He, Xiaowen Chu, and Bo Li. The
 656 lottery LLM hypothesis, rethinking what abilities should LLM compression preserve? In *The*
 657 *Fourth Blogpost Track at ICLR 2025*, 2025.

658 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 659 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 660 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

661 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, et al. Llama 2: Open foun-
 662 dation and fine-tuned chat models, 2023. URL <https://arxiv.org/abs/2307.09288>.

663 Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
 664 Even better llm quantization with hadamard incoherence and lattice codebooks, 2024. URL
 665 <https://arxiv.org/abs/2402.04396>.

666 Qian Wang, Zhenheng Tang, Zichen Jiang, Nuo Chen, Tianyu Wang, and Bingsheng He. AgentTaxo:
 667 Dissecting and benchmarking token distribution of LLM multi-agent systems. In *ICLR 2025*
 668 *Workshop on Foundation Models in the Wild*, 2025a.

669 Qian Wang, Tianyu Wang, Zhenheng Tang, Qinbin Li, Nuo Chen, Jingsheng Liang, and Bingsheng
 670 He. MegaAgent: A large-scale autonomous LLM-based multi-agent system without predefined
 671 SOPs. In *The 63rd Annual Meeting of the Association for Computational Linguistics*, 2025b.

672 Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia Zhang. Model tells you where to merge: Adaptive
 673 KV cache merging for llms on long-context tasks, 2024. URL <https://arxiv.org/abs/2407.08454>.

674 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 675 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
 676 Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
 677 Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
 678 processing. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
 679 cessing: System Demonstrations*, pp. 38–45, Online, October 2020. Association for Computational
 680 Linguistics. URL <https://www.aclweb.org/anthology/2020.emnlp-demos.6>.

681 Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang, Zhongzhu Zhou, Xiafei Qiu, Yong Li, Wei
 682 Lin, and Shuaiwen Leon Song. Flash-LLM: Enabling cost-effective and highly-efficient large
 683 generative model inference with unstructured sparsity, 2023. URL <https://arxiv.org/abs/2309.10285>.

684 Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
 685 Accurate and efficient post-training quantization for large language models, 2024a. URL <https://arxiv.org/abs/2211.10438>.

686 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 687 language models with attention sinks. In *The Twelfth International Conference on Learning
 688 Representations, ICLR 2024*, 2024b.

689 Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yihua Cheng, Qizheng Zhang, Kuntai Du, Shan
 690 Lu, and Junchen Jiang. CacheBlend: Fast large language model serving for RAG with cached
 691 knowledge fusion. In *Proceedings of the Twentieth European Conference on Computer Systems*,
 692 EuroSys ’25, pp. 94–109, New York, NY, USA, 2025. Association for Computing Machinery.
 693 ISBN 9798400711961. doi: 10.1145/3689031.3696098. URL <https://doi.org/10.1145/3689031.3696098>.

702 Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu, Xupeng Miao, Xiaonan Nie, Weipeng Chen,
 703 and Bin Cui. PQCache: Product quantization-based KVCache for long context LLM inference.
 704 *arXiv preprint arXiv:2407.12820*, 2024a.

705 Tianyi Zhang, Jonah Yi, Zhaozhuo Xu, and Anshumali Shrivastava. KV cache is 1 bit per channel: Ef-
 706 ficient large language model inference with coupled quantization. *Advances in Neural Information
 707 Processing Systems, NeurIPS 2024*, 37:3304–3331, 2024b.

709 Yuxin Zhang, Yuxuan Du, Gen Luo, Yunshan Zhong, Zhenyu Zhang, Shiwei Liu, and Rongrong
 710 Ji. CaM: cache merging for memory-efficient LLMs inference. In *Proceedings of the 41st
 711 International Conference on Machine Learning, ICML'24*. JMLR.org, 2024c.

712 Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
 713 Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. *arXiv
 714 preprint arXiv:2303.18223*, 1(2), 2023.

716 Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind
 717 Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
 718 accurate LLM serving, 2024. URL <https://arxiv.org/abs/2310.19102>.

719 Qianchao Zhu, Jiangfei Duan, Chang Chen, Siran Liu, XiuHong Li, Guanyu Feng, Xin Lv, Huanqi
 720 Cao, Chuanfu Xiao, Xingcheng Zhang, Dahua Lin, and Chao Yang. SampleAttention: Near-
 721 lossless acceleration of long context LLM inference with adaptive structured sparse attention. In
 722 *Ninth Annual Conference on Machine Learning and Systems, MLSys 2025*, 2025a.

724 Yuanbing Zhu, Zhenheng Tang, Xiang Liu, Ang Li, Bo Li, Xiaowen Chu, and Bo Han. OracleKV:
 725 Oracle guidance for question-independent KV cache compression. In *ICML 2025 Workshop on
 726 Long-Context Foundation Models*, 2025b. URL <https://openreview.net/forum?id=KHM2YOGgX9>.

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A RELATED WORKS
757
758
759
760
761
762

763 **KV cache quantization** A variety of KV cache quantization methods have been proposed to address
764 the memory bottleneck in long-context LLMs Liu et al. (2024b); Duanmu et al. (2024); Hooper et al.
765 (2024); Zhang et al. (2024b); Zhu et al. (2025a). KIVI Liu et al. (2024b) mitigates quantization error
766 by applying per-channel key quantization and employing a sliding window to emphasize locally
767 relevant tokens. SKVQ Duanmu et al. (2024) further explores this direction by introducing channel
768 reordering and clipping. To further reduce accuracy loss, KVQuant Hooper et al. (2024) introduces
769 pre-RoPE key quantization, non-uniform format and element-wise outlier. CQ Zhang et al. (2024b)
770 adopts a VQ-based approach, aiming to exploit cross-channel correlations to further compress the
771 KV cache.

772 **KV cache compression** Beyond quantization, the field of LLMs is actively exploring advanced
773 methods for KV cache compression. Sparse attention aims to reduce memory footprint by selectively
774 handling the KV cache in a token-wise manner Xiao et al. (2024b); Chen et al. (2024a); Zhu et al.
775 (2025b); Liu et al. (2025c;b); Li et al. (2024). However, it discards the KV cache of a subset of tokens,
776 even though the corresponding tokens may be required in subsequent decoding. Token Merging
777 reduces memory usage by consolidating the KV caches of similar tokens during inference, achieving
778 an effect related to sparse attention but through merging rather than dropping tokens Zhang et al.
779 (2024c); Wang et al. (2024). Retrieval-based methods Liu et al. (2024a); Chen et al. (2024b); Zhang
780 et al. (2024a) offload and index KV caches, retrieving a subset of relevant entries for each query, but
781 introduce additional communication overhead.

782 **Model Compression** Numerous model compression techniques share common objectives and method-
783 ological foundations with KV cache compression. GPTQ Frantar et al. (2023) utilizes calibration set
784 to reduce quantization induced degradation, while SmoothQuant Xiao et al. (2024a) and AWQ Lin
785 et al. (2024) minimize output error from the perspective of error propagation analysis. VQ-based
786 methods such as QUIP# Tseng et al. (2024) further enhance compression fidelity through Hadamard
787 transform. Pruner-Zero Dong et al. (2024b) and Parzc Dong et al. (2024a), explore how to sparsify
788 model weights while preserving model performance. System-level works like Atom Zhao et al.
789 (2024) and QServe Lin et al. (2025) Recent efforts jointly quantize model, KV cache and activatioin,
790 enabling inference under low-bit and leveraging low-precision Tensor Cores to improve system
791 performance, while approaches such as FlashLLM Xia et al. (2023) and Spinfer Fan et al. (2025)
792 accelerate inference by leveraging model sparsity.

800 B DISTRIBUTION OF PRE- AND POST- ROPE KEY
801
802
803
804
805
806

807 To identify a quantization strategy better suited for K vetror quantization, we compare the distribution
808 of K before and after applying RoPE. Figure 8 presents a visualization of the pre- and post- RoPE
809 K . We observe that, compared to the post-RoPE K , the pre-RoPE K exhibits smaller inter-cluster
810 distances and lower intra-cluster variance, which contributes to reduced quantization error.

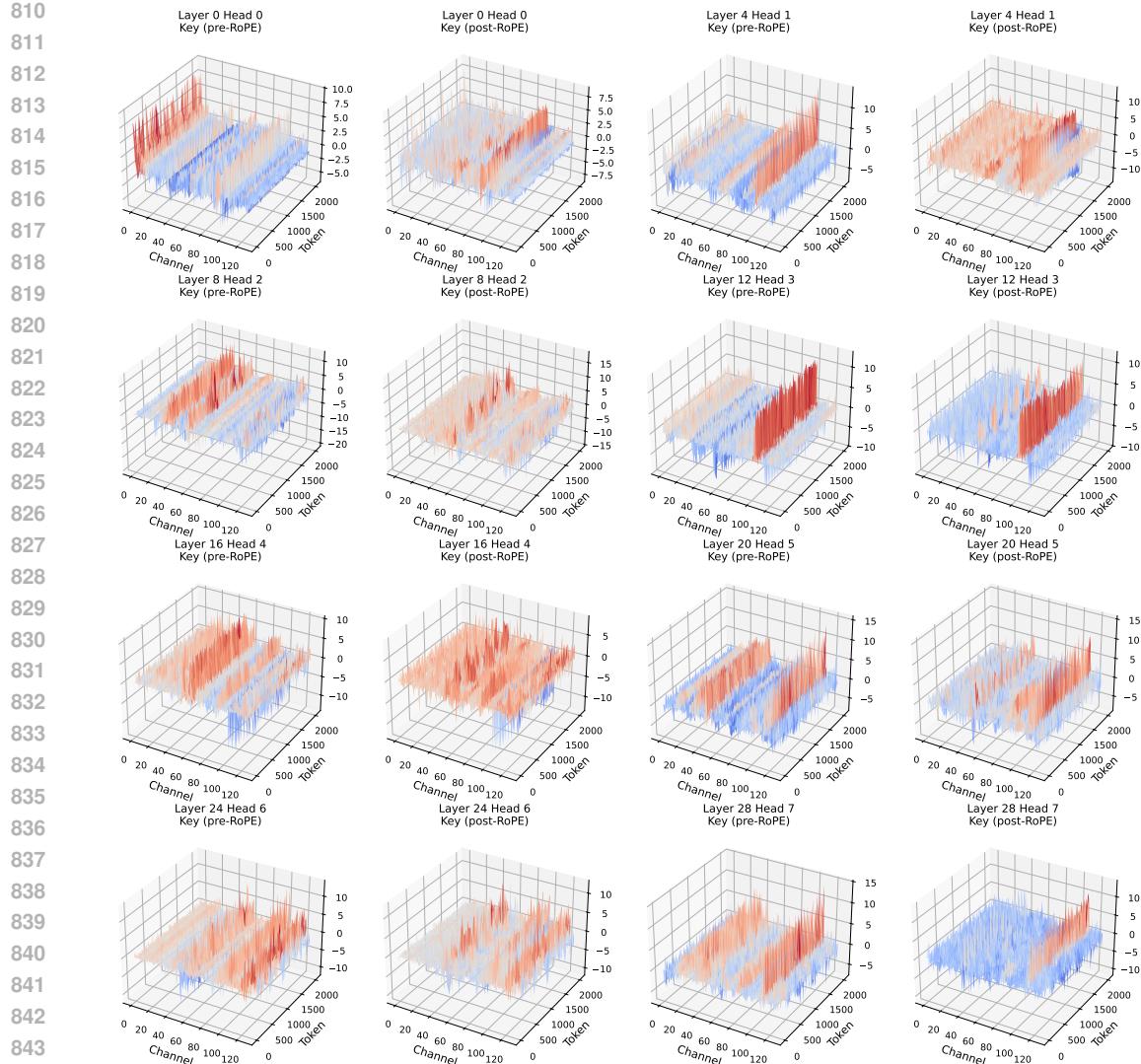


Figure 8: Distribution of pre- and post- RoPE Key. We sampled a 2048-length sentence from WikiText2 and generated pre- and post- RoPE Key on the LLaMA-3-8B model.

C PROOF OF THEOREM 1

For K , we have

$$\| \text{Attn}(\mathbf{Q}, \mathbf{K} + \delta \mathbf{K}, \mathbf{V}) - \text{Attn}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) \|_{L_1} = \| \left(\text{Softmax} \left(\frac{\tilde{\mathbf{Q}} \tilde{\mathbf{K}}^T}{\sqrt{d}} + \frac{\tilde{\mathbf{Q}} \delta \tilde{\mathbf{K}}^T}{\sqrt{d}} \right) - \text{Softmax} \left(\frac{\tilde{\mathbf{Q}}^T \tilde{\mathbf{K}}}{\sqrt{d}} \right) \right) \mathbf{V} \|_{L_1}. \quad (6)$$

The key to estimating the bound of equation 6 lies in the analysis of

$$\text{Softmax}\left(\frac{\tilde{\mathbf{Q}}\tilde{\mathbf{K}}^T}{\sqrt{d}} + \frac{\tilde{\mathbf{Q}}\delta\tilde{\mathbf{K}}^T}{\sqrt{d}}\right) - \text{Softmax}\left(\frac{\tilde{\mathbf{Q}}\tilde{\mathbf{K}}^T}{\sqrt{d}}\right), \quad (7)$$

whose (i, i) th entry is represented as

$$\frac{\exp\left(\frac{\tilde{\mathbf{Q}}_{i,:}\tilde{\mathbf{K}}_{j,:}^T}{\sqrt{d}} + \frac{\tilde{\mathbf{Q}}_{i,:}\tilde{\delta\mathbf{K}}_{j,:}^T}{\sqrt{d}}\right)}{\sum_s \exp\left(\frac{\tilde{\mathbf{Q}}_{i,:}\tilde{\mathbf{K}}_{s,:}^T}{\sqrt{d}} + \frac{\tilde{\mathbf{Q}}_{i,:}\tilde{\delta\mathbf{K}}_{s,:}^T}{\sqrt{d}}\right)} - \frac{\exp\left(\frac{\tilde{\mathbf{Q}}_{i,:}\tilde{\mathbf{K}}_{j,:}^T}{\sqrt{d}}\right)}{\sum_s \exp\left(\frac{\tilde{\mathbf{Q}}_{i,:}\tilde{\mathbf{K}}_{s,:}^T}{\sqrt{d}}\right)}. \quad (8)$$

864 Since $\|\delta\mathbf{K}\|_{L_1} \ll \|\mathbf{K}\|_{L_1}$, and by the first-order approximation $\exp(x + \delta x) \approx \exp(x)(1 + \delta x)$,
 865 equation 8 can be approximated as

$$\begin{aligned}
 & \frac{\exp\left(\frac{\tilde{\mathbf{Q}}_{i,:}\tilde{\mathbf{K}}_{j,:}^T}{\sqrt{d}}\right)\left(1 + \frac{\tilde{\mathbf{Q}}_{i,:}\delta\mathbf{K}_{j,:}^T}{\sqrt{d}}\right)\left(\sum_s \exp\left(\frac{\tilde{\mathbf{Q}}_{i,:}\tilde{\mathbf{K}}_{s,:}^T}{\sqrt{d}}\right)\right) - \exp\left(\frac{\tilde{\mathbf{Q}}_{i,:}\tilde{\mathbf{K}}_{j,:}^T}{\sqrt{d}}\right)\left(\sum_s \exp\left(\frac{\tilde{\mathbf{Q}}_{i,:}\tilde{\mathbf{K}}_{s,:}^T}{\sqrt{d}}\right)\left(1 + \frac{\tilde{\mathbf{Q}}_{i,:}\delta\mathbf{K}_{s,:}^T}{\sqrt{d}}\right)\right)}{\left(\sum_s \exp\left(\frac{\tilde{\mathbf{Q}}_{i,:}\tilde{\mathbf{K}}_{s,:}^T}{\sqrt{d}}\right)\right)\left(\sum_s \exp\left(\frac{\tilde{\mathbf{Q}}_{i,:}\tilde{\mathbf{K}}_{s,:}^T}{\sqrt{d}}\right)\left(1 + \frac{\tilde{\mathbf{Q}}_{i,:}\delta\mathbf{K}_{s,:}^T}{\sqrt{d}}\right)\right)} \\
 & = \frac{\exp\left(\frac{\tilde{\mathbf{Q}}_{i,:}\tilde{\mathbf{K}}_{j,:}^T}{\sqrt{d}}\right)}{\sum_s \exp\left(\frac{\tilde{\mathbf{Q}}_{i,:}\tilde{\mathbf{K}}_{s,:}^T}{\sqrt{d}}\right)} \cdot \frac{\sum_s \exp\left(\frac{\tilde{\mathbf{Q}}_{i,:}\tilde{\mathbf{K}}_{s,:}^T}{\sqrt{d}}\right)\left(\frac{\tilde{\mathbf{Q}}_{i,:}(\delta\mathbf{K}_{j,:}^T - \delta\mathbf{K}_{s,:}^T)}{\sqrt{d}}\right)}{\sum_s \exp\left(\frac{\tilde{\mathbf{Q}}_{i,:}\tilde{\mathbf{K}}_{s,:}^T}{\sqrt{d}}\right)\left(1 + \frac{\tilde{\mathbf{Q}}_{i,:}\delta\mathbf{K}_{s,:}^T}{\sqrt{d}}\right)} \\
 & \approx \frac{\exp\left(\frac{\tilde{\mathbf{Q}}_{i,:}\tilde{\mathbf{K}}_{j,:}^T}{\sqrt{d}}\right)}{\sum_s \exp\left(\frac{\tilde{\mathbf{Q}}_{i,:}\tilde{\mathbf{K}}_{s,:}^T}{\sqrt{d}}\right)} \cdot \frac{\sum_s \exp\left(\frac{\tilde{\mathbf{Q}}_{i,:}\tilde{\mathbf{K}}_{s,:}^T}{\sqrt{d}}\right)\left(\frac{\tilde{\mathbf{Q}}_{i,:}(\delta\mathbf{K}_{j,:}^T - \delta\mathbf{K}_{s,:}^T)}{\sqrt{d}}\right)}{\sum_s \exp\left(\frac{\tilde{\mathbf{Q}}_{i,:}\tilde{\mathbf{K}}_{s,:}^T}{\sqrt{d}}\right)} \\
 & = \mathbf{A}_{i,j} \cdot \frac{\sum_s \exp\left(\frac{\tilde{\mathbf{Q}}_{i,:}\tilde{\mathbf{K}}_{s,:}^T}{\sqrt{d}}\right)\left(\frac{\tilde{\mathbf{Q}}_{i,:}(\delta\mathbf{K}_{j,:}^T - \delta\mathbf{K}_{s,:}^T)}{\sqrt{d}}\right)}{\sum_s \exp\left(\frac{\tilde{\mathbf{Q}}_{i,:}\tilde{\mathbf{K}}_{s,:}^T}{\sqrt{d}}\right)}.
 \end{aligned}$$

882 For convenience, we denote $\frac{\tilde{\mathbf{Q}}\delta\mathbf{K}^T}{\sqrt{d}}$ and $\left[\begin{array}{c} \sum_s \exp\left(\frac{\tilde{\mathbf{Q}}_{i,:}\tilde{\mathbf{K}}_{s,:}^T}{\sqrt{d}}\right)\left(\frac{\tilde{\mathbf{Q}}_{i,:}(\delta\mathbf{K}_{j,:}^T - \delta\mathbf{K}_{s,:}^T)}{\sqrt{d}}\right) \\ \sum_s \exp\left(\frac{\tilde{\mathbf{Q}}_{i,:}\tilde{\mathbf{K}}_{s,:}^T}{\sqrt{d}}\right) \end{array}\right]_{n \times n}$ as \mathbf{X} and \mathbf{Y}

886 respectively. Then equation 7 can be approximated as $(\mathbf{A} \odot \mathbf{Y}) \mathbf{V}$, and by the property of Kronecker
 887 product, we have

$$\text{Vec}((\mathbf{A} \odot \mathbf{Y}) \mathbf{V}) = (\mathbf{I}_n \otimes \mathbf{V}^T) \text{Vec}(\mathbf{A} \odot \mathbf{Y}) = (\mathbf{I}_n \otimes \mathbf{V}^T) \text{Diag}(\text{Vec}(\mathbf{A})) \text{Vec}(\mathbf{Y}).$$

888 Further, we can obtain

$$\begin{aligned}
 \|\text{Attn}(\mathbf{Q}, \mathbf{K} + \delta\mathbf{K}, \mathbf{V}) - \text{Attn}(\mathbf{Q}, \mathbf{K}, \mathbf{V})\|_{L_1} & \approx \|(\mathbf{I}_n \otimes \mathbf{V}^T) \text{Diag}(\text{Vec}(\mathbf{A})) \text{Vec}(\mathbf{Y})\|_{L_1} \\
 & = \sum_i \|\mathbf{V}^T \text{Diag}(\mathbf{A}_{i,:}) (\mathbf{I}_n - \mathbf{e}\mathbf{A}_{i,:}) \mathbf{X}_{i,:}^T\|_{L_1} \\
 & \leq \sum_i \sum_j \|\mathbf{V}^T \text{Diag}(\mathbf{A}_{i,:}) (\mathbf{I}_n - \mathbf{e}\mathbf{A}_{i,:})\|_{:,j} \|\mathbf{X}_{i,:}\|_{L_1} |\tilde{\mathbf{Q}}_{i,:}\delta\mathbf{K}_{j,:}^T| \\
 & \leq \sum_j \sum_i \|\mathbf{V}^T \text{Diag}(\mathbf{A}_{i,:}) (\mathbf{I}_n - \mathbf{e}\mathbf{A}_{i,:})\|_{:,j} \|\mathbf{X}_{i,:}\|_{L_1} \|\mathbf{Q}_{i,:}\|_2 \|\delta\mathbf{K}_{j,:}\|_{L_1}.
 \end{aligned} \tag{9}$$

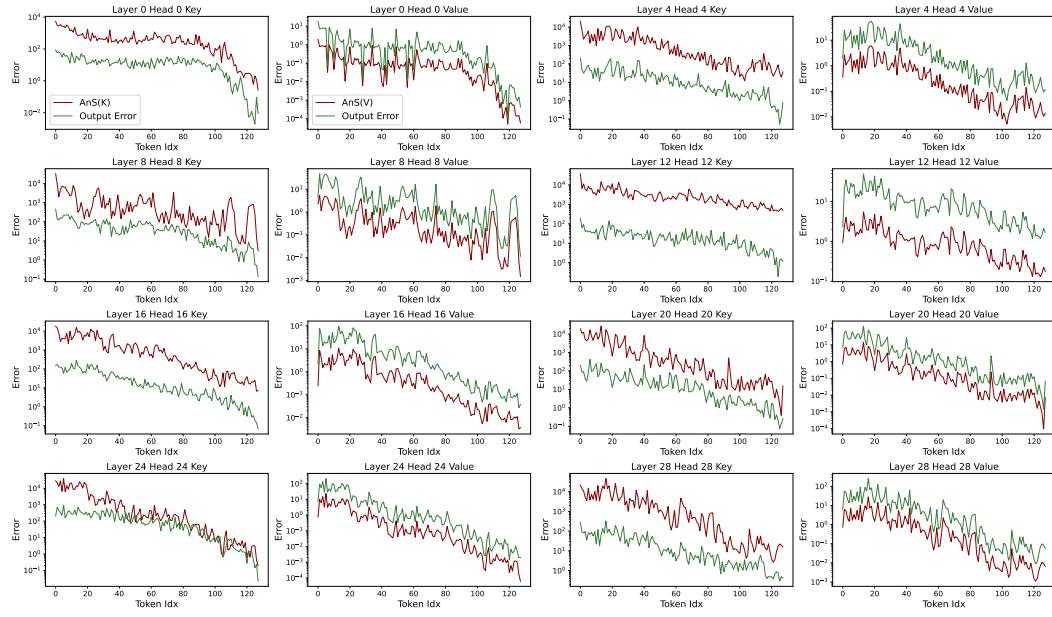
899 For \mathbf{V} , we have

$$\begin{aligned}
 \|\text{Attn}(\mathbf{Q}, \mathbf{K}, \mathbf{V} + \delta\mathbf{V}) - \text{Attn}(\mathbf{Q}, \mathbf{K}, \mathbf{V})\|_{L_1} & = \|\text{Softmax}\left(\frac{\tilde{\mathbf{Q}}\tilde{\mathbf{K}}^T}{\sqrt{d}}\right) \delta\mathbf{V}\|_{L_1} \\
 & = \|\mathbf{A}\delta\mathbf{V}\|_{L_1} = \sum_{i,k} \left| \sum_j \mathbf{A}_{i,j} \delta\mathbf{V}_{j,k} \right| \\
 & \leq \sum_{i,k} \sum_j |\mathbf{A}_{i,j}| |\delta\mathbf{V}_{j,k}| \\
 & = \sum_j \left(\sum_i |\mathbf{A}_{i,j}| \right) \left(\sum_k |\delta\mathbf{V}_{j,k}| \right) \\
 & = \sum_j \|\mathbf{A}_{:,j}\|_{L_1} \|\delta\mathbf{V}_{j,:}\|_{L_1}.
 \end{aligned} \tag{10}$$

D THE EFFECTIVENESS OF ANS

916 We quantized each token across layers and heads, and separately recorded the errors in the attention
 917 outputs. As shown in Figure 9 and equation 5, it can be observed that the relative values derived from

918 our AnS, as defined in Theorem 1, closely align with the actual outputs of the attention. For a fair
 919 comparison, the output errors for \mathbf{K} also exclude the contribution of \mathbf{V} .
 920



921
 922 Figure 9: The effectiveness of AnS.
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944

E ANS DISTRIBUTION DURING DECODING

945 To illustrate the distribution of AnS during decoding, we sampled prompts from Qasper within
 946 LongBench for visualization. As shown in Figure 10, we present the distribution of $\text{Ans}(\mathbf{K})$ and
 947 $\text{Ans}(\mathbf{V})$ across different layers and heads, specifically when decoding the first token. Our observations
 948 reveal that high AnS values during decoding are predominantly concentrated on adjacent tokens and
 949 at the attention sink tokens. Since sink tokens often lead to significant error propagation and can
 950 be dynamically identified by AnS during prefill, we simplify the design of AnS during decoding by
 951 employing a sliding window to ensure model performance.
 952
 953

F COMPUTATIONAL PROCEDURE OF ANS IN THE ONLINE STAGE

Algorithm 1 The computation of AnS in the online stage.

```

954 1: Input: Query ( $\mathbf{Q}$ ), key ( $\mathbf{K}$ ), value ( $\mathbf{V}$ )
955 2: Output: AnS of KV, i.e.,  $\text{Ans}(\mathbf{K})$  and  $\text{Ans}(\mathbf{V})$ 
956 3:  $(\mathbf{O}, \mathbf{L}, \mathbf{M}, \|\mathbf{Q}_{i,:}\|_{L_2}) \leftarrow \text{FlashAttention}(\mathbf{Q}, \mathbf{K}, \mathbf{V})$ 
957 4: for each block key index  $j$  in parallel (assigned to GPU block) do
958 5:   for each block query index  $i$  do
959 6:      $S_{i,j} \leftarrow \langle \mathbf{Q}_{h,i}, \mathbf{K}_{h,j} \rangle$ 
960 7:      $\mathbf{A}_{i,j} \leftarrow \exp(S_{i,j} - \mathbf{M}_{h,i}) / \mathbf{L}_{h,i}$ 
961 8:      $\text{Ans}(\mathbf{K})_i \leftarrow \text{Ans}(\mathbf{K})_i + \text{col\_sum}(\mathbf{A}_{i,j} \cdot (1 - \mathbf{A}_{i,j}), \text{row-wise})$ 
962 9:      $\text{Ans}(\mathbf{V})_i \leftarrow \text{Ans}(\mathbf{V})_i + \text{col\_sum}(\mathbf{A}_{i,j}, \text{row-wise})$ 
963 10:  end for
964 11: end for
965 12: return  $\text{Ans}(\mathbf{K}), \text{Ans}(\mathbf{V})$ 
  
```

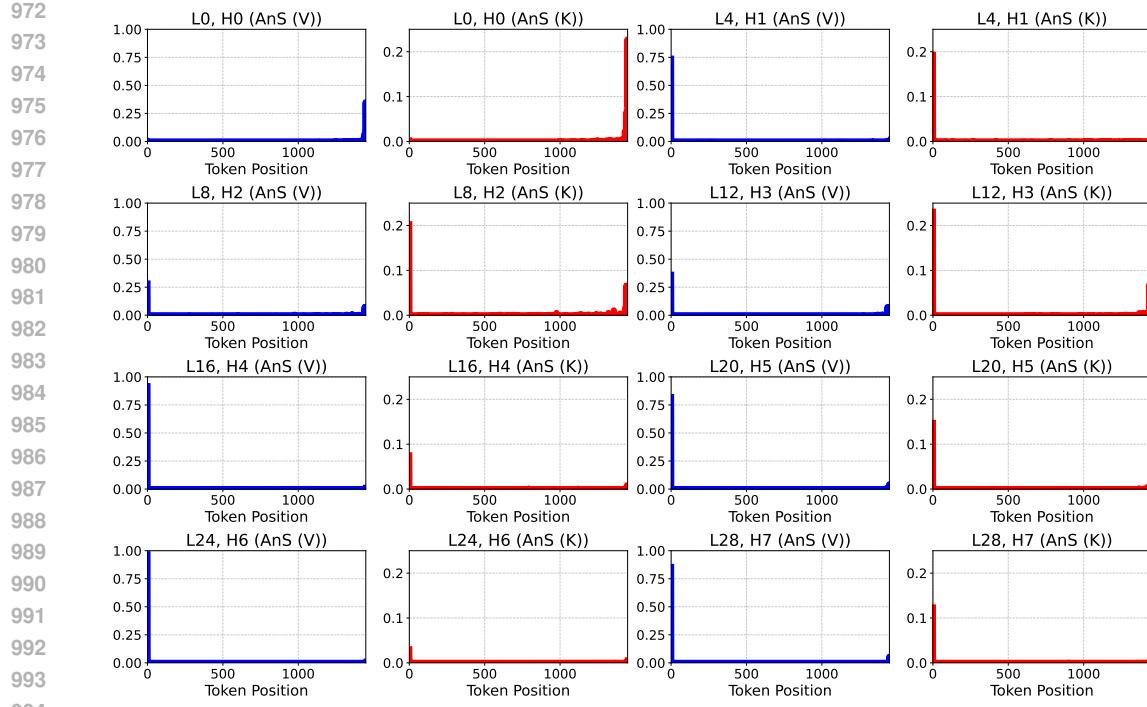


Figure 10: AnS Distribution on Sampled Prompts from Qasper Using LLaMA-3-8B-Instruct During First-Token Decoding.

G CALIBRATION SET IMPACT

As shown in the Table 2, we observe that for VQ-based quantization in the ultra-low-bit regime, the calibration set significantly impacts the perplexity results. However, AnTKV with 1% anchor tokens not only substantially reduces the PPL but also greatly mitigates the effect of different calibration sets.

Table 2: Perplexity experiment results on Mistral-7B, using the W2 and C4 training sets respectively as Calibration Sets. The "Vset" is the validation set related to W2 and C4. "Calib Set" represents "Calibration Set".

Bits	Vset	4		2		1		0.75		0.375	
Calib Set		W2	C4	W2	C4	W2	C4	W2	C4	W2	C4
Ours	W2	4.76	5.69	5.08	6.18	7.32	10.51	7.32	10.51	11.65	23.98
Ours	C4	4.79	5.69	5.32	6.15	10.14	10.09	10.90	10.80	24.16	19.95
Ours-1%	W2	4.74	5.67	4.95	5.97	6.32	8.44	6.32	8.44	8.87	14.87
Ours-1%	C4	4.75	5.66	5.02	5.94	7.13	8.13	7.79	8.56	12.87	13.07

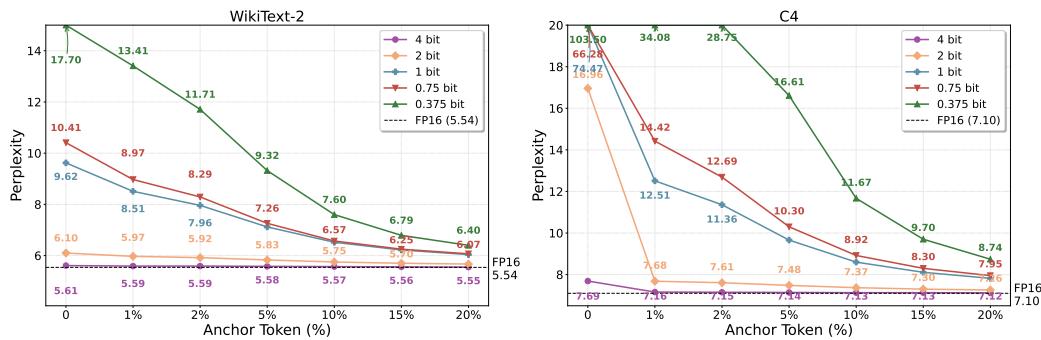
To further investigate the impact of the calibration set on model performance, we used C4 as a calibration set to evaluate several subtasks within LongBench (qasper, trec, samsum, lcc, ropebench-p). As shown in the Table 3, we observed that there were some differences in the results of Trec and Repobench-p when using Wikitext-2 and C4, while the differences were not significant for the other tasks.

1026 Table 3: Performance on LongBench Subtasks with WikiText-2 (W2) and C4 Calibration Sets at
 1027 Different Bits using LLaMA-3-8B-Instruct. "Calib Set" represents "Calibration Set", and "repobc-p"
 1028 represents "repobench-p".

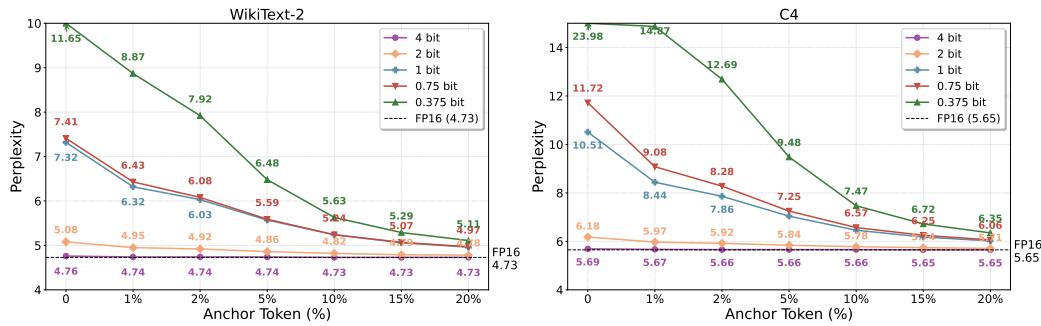
Bits	4		2		1		0.75		0.375	
Calib Set	W2	C4								
qasper	40.46	39.98	39.04	38.2	25.95	26.51	25.48	25.49	22.41	23.27
trec	69.33	69.33	67	64.67	38.67	42.33	39.67	41.33	38	38
samsun	40.2	40.27	38.61	38.22	30.0	30.3	29.57	29.29	25.5	24.82
lcc	59.84	59.07	60.94	59.15	53.97	53.93	52.97	52.01	49.61	49.79
repobc-p	44.24	41.3	45.29	42.68	38.53	37.94	37.87	38.02	34.54	34.71

H ANCHOR TOKENS NUMBER IMPACT

To investigate the impact of the number of anchor tokens on model performance, we conducted Perplexity evaluations on Mistral-7B and LLaMA-3-8B, both with a context length of 8192. We performed evaluations using no anchor tokens and with anchor token percentages of 1% (82), 2% (164), 5% (410), 10% (820), 15% (1230), and 20% (1640). The corresponding results are presented in Figures 11 and 12. For the 2-bit and 4-bit results, using 1% of anchor tokens kept the error within 0.6 compared to FP16. However, for the 1-bit and sub-bit results, we needed to increase the number of anchor tokens to control the error within an acceptable range. Nevertheless, AnTKV provides a feasible technical pathway for ultra-low-bit quantization of the KV cache.



1061 Figure 11: Perplexity results on LLaMA-3-8B with varying anchor token numbers.



1076 Figure 12: Perplexity results on Mistral-7B with varying anchor token numbers.

1079 To further investigate the impact of anchor token numbers on downstream tasks, we evaluated different anchor token numbers on the Trec and Qasper subtasks of LongBench under ultra-low-bit

quantization settings. For convenience, we approximated 1% of the anchor token number as 64. The results are shown in Figure 13. It illustrates that both the Trec and Qasper subtasks exhibit a consistent improvement pattern as the number of anchor tokens increases. In particular, moving from 0% to 1% anchor tokens leads to a substantial performance gain across all quantization settings, highlighting that even a very small proportion of anchor tokens can effectively mitigate the degradation introduced by ultra-low-bit quantization. Beyond this point, the improvements from 1% to 2%, 2% to 5%, and 5% to 10% follow an approximately linear trend, with performance gradually approaching the FP16 baseline. These results demonstrate that anchor tokens play a dual role that a small fraction is sufficient to deliver immediate and significant benefits, while larger allocations further provide steady, near-linear enhancements in downstream task performance.

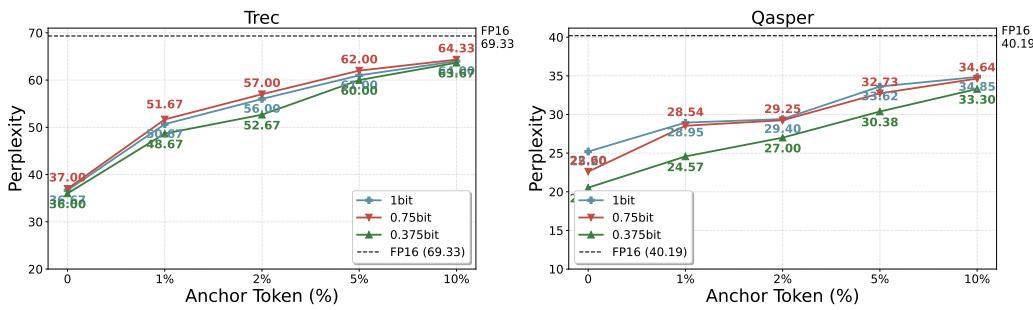


Figure 13: Trec and Qasper results on LLaMA-3-8B-Instruct with varying anchor token numbers.

I USE OF LLMs

In preparing this manuscript, we utilized ChatGPT-5 as a writing and editing assistant. Its role was limited to enhancing the clarity and fluency of the English in various sections. All scientific ideas, research methodology, experimental design, result analysis, and technical contributions are solely the product of the human authors.

1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133