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ABSTRACT

Characterizing and understanding the stability of Stochastic Gradient Descent
(SGD) remains an open problem in deep learning. A common method is to utilize
the convergence of statistical moments, esp. the variance, of the parameters to
quantify the stability. We revisit the definition of stability for SGD and propose
using the convergence in probability condition to define the probabilistic stabil-
ity of SGD. The probabilistic stability shows that alongside local minima, low-
capacity saddle points are also potential and likely solutions that SGD converge
to after training. We show that only through the lens of probabilistic stability does
SGD exhibit rich and practically relevant phases of learning, such as the phases of
the complete loss of stability, incorrect learning where the model captures incor-
rect data correlation, convergence to low-rank saddles, and correct learning where
the model captures the correct correlation. These phase boundaries are precisely
quantified by the Lyapunov exponents of the dynamics. The obtained phase di-
agrams imply that SGD prefers low-rank saddles in a neural network when the
underlying gradient is noisy.

1 INTRODUCTION

Stochastic gradient descent (SGD) is the primary workhorse for optimizing neural networks. As
such, an important problem in deep learning theory is to characterize and understand how SGD
selects the solution of a deep learning model, which often exhibits remarkable generalization capa-
bility. At the heart of this problem lies the stability of SGD because the models trained with SGD
stay close to the attractive solutions where the dynamics is stable and moves away from unstable
ones. Solving this problem thus hinges on having a good definition of the stability of SGD. The
stability of SGD is often defined as a function of the variance of the model’s parameters or gradients
during training. The hidden assumption behind this mainstream idea is that when the variance di-
verges, the training becomes unstable (Wu et al., 2018; Zhu et al., 2018; Liu et al., 2020; 2021; Ziyin
et al., 2022b). In some sense, the idea that the variance of the parameters matters the most is also
an underlying assumption in the deep learning optimization literature, where the utmost important
quantity is how fast the variance and the expected distance of the parameters decay to zero (Vaswani
et al., 2019; Gower et al., 2019). We revisit this perspective and show that a variance-based notion of
stability is insufficient to understand the empirically observed stability of training of SGD. In fact,
we demonstrate a lot of natural learning settings where the variance of SGD diverges, yet the model
still converges with high probability.

In this work, we study the convergence in probability condition to understand the stability of SGD.
We then show that this stability condition can be quantified with the Lyapunov exponent (Lyapunov,
1992) of the optimization dynamics of SGD, a quantity deeply rooted in the study of dynamical
systems and has been well understood in physics and control theory (Eckmann & Ruelle, 1985;
Diaconis & Freedman, 1999). Importantly, we apply this notion of stability to understand the at-
tractivity and repulsiveness of saddle points in neural networks. This focus of ours differentiates
our work from the previous works that also apply Lyapunov-type conditions to study local minima
(Gurbuzbalaban et al., 2021; Hodgkinson & Mahoney, 2021). The main contribution of this work is
to propose a new notion of stability that sheds light on how SGD can select saddle points as solutions
and discover multiple deep-learning phenomena that can only be understood in terms of this notion.
Perhaps the most important implication of our theory is the characterization of the highly nontrivial
and practically important phase diagram of SGD of a neural networks close to saddle points.
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2 PROBABILISTIC STABILITY

In this section, we introduce probabilistic stability, a rather general concept that appears in many
scenarios in control theory (Khas’ minskii, 1967; Eckmann & Ruelle, 1985; Teel et al., 2014). The
definition of probabilistic stability relies on the notion of convergence in probability. We use ∥ ⋅ ∥p
to denote the p−norm of a matrix or vector and ∥ ⋅ ∥ to denote the case where p = 2. The notation→p

indicates convergence in probability.
Definition 1. A sequence (of random variables) {θt}∞t is probabilistically stable at a constant
vector θ∗ if θt →p θ

∗.

Here, the notation →p denotes convergence in probability. A sequence θt converges in probability
to θ∗ if limt→∞ P(∥θt − θ∗∥>ϵ) = 0 for any ϵ > 0.

We will see that this notion of stability is especially suitable for studying the stability of the saddle
points in SGD, be it a local minimum or a saddle point. In contrast, the popular type of stability is
based on the convergence of statistic moments, which we also define below.
Definition 2. A sequence {θt}∞t is Lp-norm stable at θ∗ if limt→∞E∥θt − θ∗∥pp → 0.1

For deep learning, the sequence of θt is the model parameters obtained by the iterations of the SGD
algorithm for a neural network. For dynamical systems in general and deep learning specifically, it
is impossible to analyze the convergence behavior of the dynamics starting from an arbitrary initial
condition. Therefore, we have to restrict ourselves to the neighborhood of a given stationary point
and consider the linearized dynamics around it. The main application of moment-based stabilities
is to analyze the attractivity of local minima of neural networks, where a key insight is that flatter
minima are favored over sharper ones at a large learning rate (Wu et al., 2018; Wu & Su, 2023; Xie
et al., 2020). In contrast, the focus of our work is on the attractivity of saddle points.

The type of dynamics we consider in this work are all of the following form:

θt+1 = θt − λĤ(xt)(θt − θ
∗) +O(∣∣θt − θ

∗∣∣2), (1)

where λ is the learning rate, θ∗ is the critical point under consideration, Ĥ(xt) is a random symmet-
ric matrix that is a function of the random variables xt, which can stand for both a single data point
or a minibatch of data points.2 In this work, θ∗ is said to be a local minimum if H ∶= Ex[Ĥ(x)] is
positive semi-definite (PSD) and is a saddle point otherwise.

Note that Ĥ(x) does not have to be tied to a single data point but can also be the Hessian of a
minibatch of data points. Essentially, it is the data distribution of Ĥ that matters. When we have
the same data distribution but a different batch size S, the distribution of Ĥ is different. This
linearized dynamics is especially suitable for studying two types of stationary points that appear in
modern deep learning: (1) interpolation minima and (2) symmetry-induced saddle points. Let us
first consider the stability of the interpolation minimum.

A minimum is said to be an interpolation minimum if the loss function reaches zero for all data
points. This means that close to such a minimum, the per-sample loss functions all have vanishing
first-order derivatives and positive-semidefinite Hessians (Wu et al., 2018):

ℓ(θ;x) = (θ − θ∗)T Ĥ(x)(θ − θ∗) +O(∣∣θ∣∣3). (2)

The dynamics of θ thus obeys Eq. (1). This type of minimum is of great importance in deep learn-
ing because modern neural networks are often “overparametrized,” and overparametrized networks
under gradient flow are observed to reach these interpolation minima easily.

The dynamics we consider is more general than that around an interpolation minimum because the
Hessians Ĥ in Eq. (1) are allowed to have eigenvalues of both positive and negative signs, whereas
Eq. (2) only allows for positive semidefinite Ĥ . Therefore, the general solution of Eq. (1) also helps
us understand Eq. (2) once we restrict the study to PSD Hessians. The types of saddle points that

1Definitions of stability found in (Wu et al., 2018; Wu & Su, 2023; Ma & Ying, 2021; Mulayoff et al., 2021)
are slightly different from our Def. 2. However, they also lead to Prop. 2.

2Note that H(xt) is independent for different t because the sampling of xt is independent. Also, note that
H does not depend on θ by the linear-dynamics approximation.
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Figure 1: SGD exhibits a complex phase diagram through the lens of probabilistic stability. Left: a denotes
the parameter in the data distribution, as discussed in detail in section 4. For a matrix factorization saddle point,
the dynamics of SGD can be categorized into at least five different phases. Phase I, II, and IV correspond to a
successful escape from the saddle. Phase III is where the model converges to a low-rank saddle point. Phase
I corresponds to the case wt →p ut, which signals correct learning. In phase Ia, the model also converges in
variance. Phase II corresponds to stable but incorrect learning, where wt →p −ut. Phase IV corresponds to
complete instability. Right: the phases of SGD can quantified by the sign of the Lyapunov exponent Λ. Where
Λ < 0, SGD collapses to a saddle point; when Λ > 0, SGD escapes the saddle and enters a escaping phase. The
two escaping phases are qualitatively different. For a small learning rate, the model is in a learning phase due to
the repulsiveness of the saddle point at a small learning rate, and the model is likely to converge to local minima
close to the saddle. For a very large learning rate, SGD escapes the saddle due to the dynamical instability of
SGD, and the model will move far away from the saddle. Besides, the magnitude of the Lyapunov exponent
can also quantity the speed of the learning dynamics. See Appendix A.1 for numerical details of this example.

obey Eq.(1) have been found to widely exist when there is any type of loss function symmetry, such
as permutation symmetry (Fukumizu & Amari, 2000; Simsek et al., 2021; Entezari et al., 2021; Hou
et al., 2019), rescaling symmetry (Dinh et al., 2017; Neyshabur et al., 2014), and rotation symmetry
(Ziyin et al., 2023). Recently, it has been shown that every symmetry in the loss function leads to a
critical point3 of this type, and, more importantly, the subset of parameters relevant to the symmetry,
up to the leading order, has a dynamics completely independent of the rest of the parameters (Ziyin,
2023). This means that Eq. (1) can be seen as an effective description for only a small subset of all
parameters in the model under consideration and is not as restrictive as it naively seems to be.4

3 THE PROBABILISTIC STABILITY OF SGD

This section presents the main theoretical results. We first show that the dynamics is exactly solv-
able for a rank-1 dynamics. We then prove a result showing that no moment-based stability can
understand the stability of SGD around the saddle. Lastly, we prove that the probabilistic stability
of SGD is equivalent to a condition on the sign of the Lyapunov exponent of the dynamics.

3.1 RANK-1 DYNAMICS

Let us first consider the case in which Ĥ(x) = h(x)nnT is rank-1 for a random scalar function h(x),
and a fixed unit vector n for all data points x. Thus, the dynamics simplifies to a one-dimensional
dynamics, where h(x) ∈ R is the corresponding eigenvalue of Ĥ(x):

θt+1 = θt − λh(x)(θt − θ
∗). (3)

Theorem 1. Let θt follow Eq. (3). Then, for any distribution of h(x), nT (θt − θ
∗)→p 0 if and only

if
Ex[log ∣1 − λh(x)∣] < 0. (4)

The condition (4) is a sharp characterization of when a critical point becomes attractive. It also
works with weight decay. When weight decay is present, the diagonal terms of Ĥ are shifted by γ,
and so h = h′ + γ.

3Note that this does not have to be a “point,” but a critical submanifold. See an example of such a manifold
due to permutation symmetry in Simsek et al. (2021).

4See proposition 3 for an example of how different directions have dynamics independent of the rest.
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At what learning rate is the condition violated? To leading orders in λ, this can be identified by
expanding the logarithmic term up to the second order in λ:

Ex[log ∣1 − λh(x)∣] = −λE[h(x)] −
1

2
λ2Ex[h(x)

2] +O(λ3). (5)

Ignoring the second-order term, we see that the dynamics always follow the sign of E[h(x)], in
agreement with the GD algorithm. If E[h]<0, the condition is always violated. When the second-
order term is taken into consideration, the fluctuation of h(x) now decides the stability of the sta-
tionary condition. The stationary condition is attractive if

λ > 2
−E[h(x)]
E[h(x)2]

. (6)

This result implies that the stationary condition can be attractive even if h < 0. The r.h.s. of the con-
dition also has a natural interpretation as a signal-to-noise ratio in the gradient. The numerator is the
Hessian of the original loss function, which determines the signal in the gradient. The denominator
is the strength of the gradient noise in the minibatch (Wu et al., 2018). An illustration of this solution
is given in Figure 1. We show the probabilistic stability conditions for a rank-1 saddle point with a
rescaling symmetry (see Section 4). The loss function is ℓ(u,w) = −xyuw + o(u2 +w2). Here, the
data points xy = 1, and xy = a are sampled with equal probability. These saddles appear naturally
in matrix factorization problems and also in recent sparse learning algorithms (Poon & Peyré, 2021;
2022; Ziyin & Wang, 2023; Kolb et al., 2023).

When the dynamics is high-dimensional, the problem becomes harder to solve because for each
realization of x, Ĥ(x) do not commute with each other. While an analytical solution to the stability
condition in high-dimension is unlikely to exist, we can say something quite general about them.

3.2 INSUFFICIENCY OF NORM-STABILITY

Theorem 1 provides a perfect example to compare the probabilistic stability with the norm-stability.
The following rather trivial proposition shows that if SGD converges to a point in Lp-norm, it must
converge in probability.
Proposition 1. If θt is stable at θ∗ in Lp norm, then it is stable at θ∗ in probability.

The proof follows from that convergence in Lp norm implies the convergence in probability. Thus,
norm stability is a more restricted notion than probabilistic stability. In many cases, the two types of
stabilities agree. However, we will see that for SGD, the two types of stability conditions can offer
dramatically different predictions, which is constructively established by the following proposition.
Proposition 2. Let θt follow Eq. (1) around a critical point θ∗. Then, for any fixed λ,

1. there exists a data distribution such that θt is probabilistically stable but not Lp-stable;
2. if θ∗ is a saddle point and p ≥ 1, the set of θ0 that is Lp-stable has Lebesgue measure zero.

Therefore, this means that the Lp-stability is not useful in understanding the stability of SGD close
to saddle points. One reason is that the outliers strongly influence the Lp norm in the data, whereas
the probabilistic stability is robust against such outliers. As discussed in detail in section 5 and
shown in Fig. 6, the notion of probabilistic stability predicts the trajectory of learning qualitatively
while Lp-stability fails in doing so.

3.3 LYAPUNOV EXPONENT AND PROBABILISTIC STABILITY

Extending the probabilistic stability to high-rank dynamics is nontrivial because the stability of SGD
is generally initialization dependent, unlike the rank-1 case, where the condition is found to take an
exact form and is initialization independent. It is thus useful to consider the worst-case initialization.
Here, the crucial quantity is the Lyapunov exponent of a point θ∗:5

Λ =max
θ0

lim
t→∞

1

t
E [log

∥θt − θ
∗∥

∥θ0∥
] . (7)

5More appropriately, this should be called the maximum Lyapunov exponent, which is initialization-
independent. One can also consider the initialization-dependent Lyapunov exponent. If H̄ is a d-by-d matrix,
a well-known fact is that the initialization-dependent Lyapunov exponent takes at most d distinctive values.
Conceptually, this means that there can be, at most, d collapses at different critical learning rates.
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Here, the expectation is taken over the random samplings of the SGD algorithm. In general, Λ does
not vanish. The following theorem shows that SGD is probabilistically stable at a point if and only
if its Lyapunov exponent is negative.
Theorem 2. Assuming that Λ ≠ 0, the linearized dynamics of SGD is probabilistically stable at θ∗
for any θ0 if and only if Λ < 0.

The proof of this theorem invokes the Furstenberg-Kesten theorem (Furstenberg & Kesten, 1960). It
is straightforward to show that the Lyapunov exponent exists and to find an upper and lower bound.
For a finite-size dataset, we can define rmax to be larger than the absolute value of the eigenvalues
of I − λĤ(x) for all x. Similarly, we can define rmin > 0 to be smaller than all the absolute values
of all the eigenvalues of I − λĤ(x) for all x. Therefore, it is easy to check that

log rmin < Λ < log rmax. (8)

However, it is difficult to give a better estimation of the exponent. In fact, it is a well-known open
problem in the field of dynamical systems to find an analytical expression of the Lyapunov exponent
(Crisanti et al., 2012; Pollicott, 2010; Jurga & Morris, 2019).

Now, we give two quantitative estimates about when the Lyapunov exponent will be negative. This
discussion also implies a sufficient but weak condition for a general type of multidimensional dy-
namics to converge in probability. Let h∗(x) be the largest eigenvalue of Ĥ(x) and assume that
1−h∗(x) > 0 for all x. Then, the following condition implies that θ →p 0: Ex[log ∣1−λh

∗(x)∣] < 0,
which mimics the condition we found for rank-1 systems. An alternative estimate can be made
by assuming that Ĥ(x) commute with Ĥ(x′) for all x and x′. If Ĥ has rank d, this reduces the
problem to d separated rank-1 dynamics, and Theorem 1 gives the exact solutions in each subspace.
Numerical evidence shows that the commutation approximation quite accurately predicts the onset
of low-rank behavior the actual rank (see Section 4 and Appendix A.4).

Another relevant question is whether this theorem is trivial for SGD at a high dimension in the sense
that it could be the case that Λ could be identically zero independent of the dataset. One can show
that the Lyapunov exponent is generally nonzero for all datasets that satisfy a mild condition. Let
E[Ĥ] be full rank. By definition,

Λ = lim
t→∞

1

t
E
⎡
⎢
⎢
⎢
⎢
⎣

log θT0
⎛

⎝

t

∏
j

(I − λĤij)
⎞

⎠

⎛

⎝

t

∏
j

(I − λĤij)
⎞

⎠

T

θ0

⎤
⎥
⎥
⎥
⎥
⎦

= −
2λθT0 Hθ0
∥θ0∥2

+O(λ2). (9)

Therefore, as long as λ is sufficiently small, the sign of the Lyapunov exponent is opposite to the sign
of the eigenvalues of H . This proves something quite general for SGD at an interpolation minimum:
with a small learning rate, the model converges to the minimum exponentially fast, in agreement
with common analysis in the optimization literature. See Figure 1-right for numerical computation
of Lyapunov exponents of a matrix factorization problem and the corresponding phases.

4 PHASES OF LEARNING

With this notation of stability, we can study the actual effect of minibatch noise on a neural network-
like landscape. The theory has interesting implications for the stability of interpolation minima in
deep learning, which we explore in Appendix C.1. In the main text, we focus on the stability of
SGD on saddle points.

A commonly studied minimal model of the landscape of neural networks is a deep linear net (or
deep matrix factorization) (Kawaguchi, 2016; Lu & Kawaguchi, 2017; Ziyin et al., 2022a; Wang
& Ziyin, 2022). For these problems, we understand that all local minima are identical copies of
each other, and so all local minima have the same generalization capability (Kawaguchi, 2016; Ge
et al., 2016). A deep linear net’s special and interesting solutions are the saddle points, which are
low-rank solutions and often achieve similar training loss with dramatically different generalization
performances. More importantly, these saddles points also appear in nonlinear models with similar
geometric properties, and they could be a rather general feature of the deep learning landscape (Brea
et al., 2019). It is thus important to understand how the noise of SGD affects the stability of a low-
rank saddle here. Let the loss function be Ex[(∑i u

(i)σ(w(i)x)−y)2/2], where σ(x) = c0x+O(x2)
is any nonlinearity that is locally linear at x = 0. We let c0 = 1 and focus on cases where both x and
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Figure 2: Phase diagrams of SGD stability. The definitions of the phases are the same as those in Figure 1.
We sample a dataset of size N such that x ∼ N (0,1) and noise ϵ ∼ N (0,4), and generate a noisy label
y = µx + (1 − µ)ϵ. Left: the λ − µ (noise level) phase diagram for S = 1 and N =∞. Right: The λ − S (batch
size) phase diagram for µ = 0.06 and N =∞.

y are one-dimensional. Locally around u, w ≈ 0, the model uTw is either rank-1 or rank-0. The
rank-0 point where u(i) = w(i) = 0 for all i is a saddle point as long as E[xy] ≠ 0. In this section,
we show that the stability of this saddle point features complex and dramatic phase transition-like
behaviors as we change the learning rate of SGD.

Consider the linearized dynamics around the saddle at w(i) = u(i) = 0. The expanded loss function
takes the following form:

ℓ(u,w;x, y) = −xy
d

∑
i

u(i)w(i) + const. (10)

For learning to happen, SGD needs to escape from the saddle point. Let us consider a simple data
distribution where xy = 1 and xy = a with equal probability. When a > −1, correct learning happens
when sign(w) = sign(u). We thus focus on the case of a > −1. The case of a < −1 is symmetric to
this case up to a rescaling. This example is already presented in Figure 1. There are five phases of
learning in this simple example

• Ia. correct learning with prob. and norm stability (wt − ut →L2 0, wt + ut diverges);
• Ib. correct learning with prob. but not norm stability (wt − ut →p 0, wt − ut /→L2 0, wt + ut

diverges);
• II. incorrect learning under probabilistic stability (wt − ut diverges, wt + ut →p 0);
• III. convergence to low-rank saddle point (wt − ut →p 0, wt + ut →p 0);
• IV. completely unstable (wt + ut, wt − ut diverges in p.).

The two most important observations are: (1) SGD can indeed converge to low-rank saddle points;
however, this happens only when the gradient noise is sufficiently strong and when the learning rate
is large (but not too large); (2) the region for convergence to saddles (region III) is exclusive with
the region for convergence in mean square (Ia), and thus one can only understand the saddle-seeking
behavior of SGD within the proposed probabilistic framework. Let B denote a mini-batch and S be
its cardinality. We prove the following proposition.

Proposition 3. For any w0, u0 ∈ R/{0}. wt−ut →p 0 if and only if EB[log ∣1−λ∑(x,y)∈Bxy/S∣] < 0.
wt + ut converges to 0 in probability if and only if EB[log ∣1 + λ∑(x,y)∈Bxy/S∣] < 0.

The theory shows that the phase diagram of SGD strongly depends on the data distribution, and it
is interesting to explore and compare a few different settings. Now, we consider a size-N Gaussian
dataset. Let xi ∼ N (0,1) and noise ϵi ∼ N (0,4), and generate a noisy label yi = µxi + (1 − µ)ϵi.
See the phase diagram for this dataset in Figure 2 for an infinite N . The phase diagrams in Figure 7
show the phase diagram for a finite N . We see that the phase diagram has a very rich structure at a
finite size. We make three rather surprising observations about the phase diagrams: (1) as N →∞,
the phase diagram becomes smoother and smoother and each phase takes a connected region (cf.
finite size experiments in Appendix A.2); (2) phase II seems to disappear as N becomes large; (3)
the lower part of the phase diagram seems universal, taking the same shape for all samplings of
the datasets and across different sizes of the dataset. This suggests that the convergence to low-
rank structures can be a universal aspect of SGD dynamics, which corroborates the widely observed
phenomenon of collapse in deep learning (Papyan et al., 2020; Wang & Ziyin, 2022; Tian, 2022).
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Figure 3: Convergence to low-rank solutions in nonlinear neural networks. At every training step, we sample
input x ∼ N (0, I200) and noise ϵ ∼ N (0,

√
2I200), and generate a noisy label y = µx + (1 − µ)ϵ, where 1 − µ

controls the level of the noise. We compute the rank of the second layer of the weight matrix after training.
Left: Linear network. Right: tanh network. The white dashed line shows the theoretical prediction of the
appearance of low-rank structure computed by numerically integrating the condition in Proposition 3.

Figure 4: Density (1−sparsity) of the convolutional layers in a ResNet18, when there is static noise (mislabel-
ing) in the training data. Here, we show the number of sparse parameters in the two of the largest convolutional
layers, each containing roughly one million parameters in total. The figures respectively show layer1.1.conv2
(upper left), layer2.1.conv2 (upper right), layer3.1.conv2 (lower left), and layer4.1.conv2 (lower right).

Figure 5: Rank (left) and test accuracy (right) of the ResNet18 trained in a data set with static noise. The
transition of rank has a clear boundary. The model has a full rank but random-guess level performance for large
noise and small learning rates. Here, noise refers to the probability that data point is mislabeled.
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The theory also shows that if we fix the learning rate and noise level, increasing the batch size makes
it more and more difficult to converge to the low-rank solution (see Figure 8, for example). This is
expected because the larger the batch size, the smaller the effective noise in the gradient.

Many recent works have suggested how neural networks could be biased toward low-rank solutions.
Theoretically, Galanti et al. (2023) showed that with weak weight decay, SGD is biased towards low-
rank solutions. Ziyin et al. (2022a) showed that GD converges to a low-rank solution with weight
decay. Therefore, weight decay already induces a low-rank bias in learning, and it is unknown if
SGD alone has any bias toward low-rank solutions. Andriushchenko et al. (2022) showed empirical
hints of a preference for low-rank solutions when training without SGD. However, it remains to
be clarified when or why SGD has such a preference on its own. To the best of our knowledge,
our theory is the first to precisely characterize the low-rank bias of SGD in a deep learning setting.
Compared with the stability diagram of linear regression, this result implies that a large learning rate
can both help and hinder optimization.

Phase Diagram for Neural Networks There is a strong sense of universality in the lower-left
part of the phase diagram in Figure 1 since they all take a similar shape independent of the size or
sampling of the data points. We now verify its existence in actual neural networks.

We start with a controlled experiment where, at every training step, we sample input x ∼ N (0, I200)
and noise ϵ ∼ N (0,4I200), and generate a noisy label y = µx + (1 − µ)ϵ. Note that 1 − µ controls
the level of the noise. Training proceeds with SGD on the MSE loss. We train a two-layer model
with the architecture: 200 → 200 → 200. See Figure 3 for the theoretical phase diagram, which is
estimated under the commutation approximation. Under SGD, the model escapes from the saddle
with a finite variance to the right of the dashed line and has an infinite variance to its left. In
the region λ ∈ (0,0.2), this loss of the L2 stability condition coincides with the condition for the
convergence to the saddle. The experiment shows that the theoretical boundary agrees well with the
numerical results.6

Lastly, we train independently initialized ResNets on CIFAR-10 with SGD. The training proceeds
with SGD without momentum at a fixed learning rate and batch size S = 32 (unless specified oth-
erwise) for 105 iterations. Our implementation of Resnet18 contains 11M parameters and achieves
94% test accuracy under the standard training protocol, consistent with the established values. To
probe the effect of noise, we artificially inject a dynamical label noise during every training step,
where, at every step, a correct label is flipped to a random label with probability noise, and we note
that the phase diagrams are similar regardless of whether the noise is dynamical or static (where the
mislabelling is fixed). See Figure 5 for the phase diagram of static label noise. Interestingly, the best
generalization performance is achieved close to the phase boundary when the noise is strong. This
is direct evidence that SGD noise has a strong regularization effect on the trained model. We see
that the results agree with the theoretical expectation and the analytical model’s phase diagram. We
also study the sparsity of the ResNets in different layers in Figure 4, and we observe that the phase
diagrams are all qualitatively similar. Also, see Appendix A for the experiment with a varying batch
size.

5 WHICH SOLUTION DOES SGD PREFER?

We now investigate one of the most fundamental problems in deep learning through the lens of
probabilistic stability: how SGD selects a solution for a neural network. In this section, we study
a two-layer network with a single hidden neuron with the swish activation function: f(w,u, x) =
u×swish(wx), where swish(x) = x×sigmoid(x). Swish is a differentiable ReLU variant discovered
by meta-learning techniques and consistently outperforms ReLU in various tasks. We generate
100 data points (x, y) as y = 0.1swish(x) + 0.9ϵ, where both x and ϵ are sampled from normal
distributions. See Figure 6 for an illustration of the training loss landscape. There are two local
minima: solution A at roughly (−0.7,−0.2) and solution B at (1.1,−0.3). Here, the solution with
better generalization is A because it captures the correct correlation between x and y when x is small.
Solution A is also the sharper one; its largest Hessian eigenvalue is roughly ha = 7.7. Solution B is
the worse solution; it is also the flatter one, with the largest Hessian value being hb = 3.0. There is

6The Adam optimizer (Kingma & Ba, 2014) also have a similar phase diagram. See Appendix A. This
suggests that the effects we studied are rather universal, not just a special feature of SGD.
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Figure 6: How SGD selects a solution. Left: The landscape of a two-layer network with the swish activation
function (Ramachandran et al., 2017). The black arrow corresponds to the experimental trajectory and the
prediction of probabilistic stability, while the red arrow corresponds to the (false) prediction of the L2 stability.
Middle, Right: the generalization performance of the model for different learning rates. Middle: Initialized at
solution B, SGD first jumps to C and then diverges. Right: Initialized at A, SGD also jumps to C and diverges.
In both cases, the behavior of SGD agrees with the prediction of the probabilistic stability instead of the L2

stability. Instead of jumping between local minima, SGD, at a large learning rate, transitions from minima to
saddles.

also a saddle point C at (0,0), which performs significantly better than B and slightly worse than A
in generalization.

If we initialize the model at A, L2 stability theory would predict that as we increase the learning rate,
the model moves from the sharper solution A to the flatter minimum B when SGD loses L2 stability
in A; the model would then lose total stability once SGD becomes L2-unstable at B. As shown by
the red arrows in Figure 6. In contrast, probabilistic stability predicts that SGD will move from A
to C as C becomes attractive and then lose stability, as the black arrows indicate. See the right panel
of the figure for the comparison with the experiment for the model’s generalization performance.
The dashed lines show the predictions of the L2 stability and probabilistic theories, respectively. We
see that the probabilistic theory predicts both the error and the place of transition right, whereas L2

stability neither predicts the right transition nor the correct level of performance.

If we initialize at B, the flatter minimum, L2 stability theory would predict that the model will only
have one jump from B to divergence as we increase the learning rate. Thus, from L2 stability,
SGD would have roughly the performance of B until it diverges, and having a large learning rate
will not help increase the performance. In sharp contrast, the probabilistic stability predicts that
the model will have two jumps: it stays at B for a small λ and jumps to C as it becomes attractive
at an intermediate learning rate. The model will ultimately diverge if C loses stability. Thus, our
theory predicts that the model will first have a bad performance, then show a better performance at
an intermediate learning rate, and finally diverge. See the middle panel of Figure 6. We see that the
prediction of the probabilistic stability agrees with the experiment and correctly explains why SGD
leads to better performance.

6 DISCUSSION

In this work, we have demonstrated that the convergence in probability condition serves as an essen-
tial notion for understanding the stability of SGD close to saddle points. Crucially, these effects are
only present for SGD and not for GD, demonstrating that the algorithmic regularization due to SGD
is qualitatively different from that of GD. We also clarified its intimate connection to Lyapunov ex-
ponents, which are fundamental metrics of stability in the study of dynamical systems. The proposed
stability agrees with the norm-based notion of stability at a small learning rate and large batch size.
At a large learning rate and a small batch size, we have shown that the proposed notion of stability
captures the actual behavior of SGD much better and successfully explains a series of experiment
phenomena that have been quite puzzling. Among the many implications that we discussed, perhaps
the most fundamental one is a novel understanding of the implicit bias of SGD. When viewed from
a dynamical stability point of view, the implicit bias of stochastic gradient descent is thus fundamen-
tally different from the implicit bias of gradient descent. In the proposed perspective, SGD performs
a selection between converging to saddles and to local minima, not between sharp minima and flat
ones.
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A ADDITIONAL NUMERICAL RESULTS

A.1 EXPERIMENTAL DETAIL FOR FIGURE 1-RIGHT

The experiment is performed for a two-dimensional system whose dynamics is specified in (1). The
expectation of the Hessian E[Ĥ] is chosen to be diag(0.1,−0.1), while the noise is generated via a
normal 2 × 2 random matrix Mnoise. The noisy Hessian is obtained as

Ĥ = E[Ĥ] +Mnoise +M
T
noise, (11)

and one can verify that such Ĥ is symmetric and consistent with our choice of E[Ĥ]. The initial
state is sampled from a unit circle. The dynamics stops at time step t, and the Lyapunov exponent is
calculated as 1

t
log ∣∣θt∣∣, if one of the three following conditions is satisfied: ∣∣θ∣∣ reaches the upper

cutoff of 10100; ∣∣θ∣∣ reaches the lower cutoff of 10−140; the preset maximal number of steps of 5000
is reached. For each learning rate, the Lyapunov is obtained as the average of the results collected
in 800 independent runs.
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A.2 PHASES OF FINITE-SIZE DATASETS

See Figure 7.

Figure 7: Phase diagrams of SGD stability for finite-size dataset. The data sampling is the same as in
Figure 2. From upper left to lower right: N = 3, 4, 8, 10, 24, 100. As the dataset size tends to infinity, the
phase diagram converges to that in Figure 2. The lower parts of all the phase diagrams look similar, suggesting
a universal structure.
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Figure 8: The rank of the penultimate-layer representation of Resnet18 trained with different levels of batch
sizes. In agreement with the phase diagram, the model escapes from the low-rank saddle as one increases the
batch size.

A.3 EFFECT OF CHANGING BATCHSIZE ON RESNET18

See Figure 8.
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Figure 9: Rank vs learning rate in a vanilla matrix factorization problem for, from upper left to lower
right, µ = 0.05, 0.15, 0.25, 0.35. The theoretical curve is from the commutation approximation
where each subspace of the model collapses at the critical learning rate λ = −2 E[h(x)]

E[h2(x)]
.

Figure 10: Norms of gradient (g) of a matrix factorization problem trained with SGD. n is a low-
rank direction after training. During training, it is commonly the case the model does not converge
to a stationary point but to a stationary distribution. Our theory is compatible with this case because
it is possible and common for the model to converge to a point in some subspace, even if it is not
converging to a point overall.

A.4 COMMUTATION APPROXIMATION

Here, we compare the empirical rank of the solution with the commutation approximated critical
learning rates obtained in (6). See Figure 9. The experiment is run on a two-layer fully connected
linear network: 50 → 50 → 50, which is equivalent to a matrix factorization problem. The model is
initialized with the standard Kaiming init. The dataset we consider is one with a sparse but full-rank
signal.

Let⊙ denote the Hadamard product. The input data is generated as x =m⊙X , where X ∼ N (0, I50)
and m is a random mask where a random element is set to be 1, and the rest is zero. The labels Y is
generated as Y = µx + (1 − µ)(m⊙ ϵ), where ϵ ∼ N (0,2diag(0.01,0.05, ....,2.01)) is the noise.

A.5 CONVERGENCE TO STATIONARY DISTRIBUTIONS

As we mentioned in the main text, our theory is compatible with the case when the model converges
to a stationary distribution but not a stationary point, which is more commonly the case during actual
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deep learning practice (Zhang et al., 2022). The experimental setup is the same as in the previous
section.

See Figure 10, where we plot the norm of the gradient g and the norm of nT g, where n is a low-rank
direction after training. Here, we see that the norm of the gradient does not converge to zero, but
to a positive value, signaling a convergence to a stationary distribution. At the same time, the norm
of nT g does converge to zero, which means that in some subspace, the parameters do converge to a
point. This justifies our argument.
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Figure 11: Rank of the converged solution for two-layer linear (upper left), tanh (upper right), relu
(lower left) and swish (lower right) models.

B EXPERIMENT WITH ADAM

B.1 EXPERIMENT WITH ADAM

We note that the phenomena we studied is not just a special feature of the SGD, but, empirically,
seems to be a universal feature of first-order optimization methods that rely on minibatch sampling.
Here, we repeat the experiment in Figure 2. We train with the same data and training procedure,
except that we replace SGD with Adam (Kingma & Ba, 2014), the most popular first-order opti-
mization method in deep learning. Figure 11 shows that similarly to SGD, Adam also converges to
the low-rank saddles in similar regions of learning rate and µ.
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C ADDITIONAL THEORETICAL CONCERNS

C.1 A SIMPLE EXAMPLE OF INTERPOLATION MINIMUM

To illustrate different concepts of stability of the SGD algorithm, we examine a simple one-
dimensional linear regression problem. The training loss function for this problem is defined as
L(w) = 1

N ∑
N
i (wxi − yi)

2.

For GD, the dynamics diverges when the learning rate is larger than twice the inverse of the largest
Hessian eigenvalue. To see this, let H = Ex[Ĥ(w

∗, x)] denote the Hessian of L and h its largest
eigenvalue. Using GD leads to ∣∣wt+1∣∣ = ∣∣w0(I − λH)

t∣∣ ∝ ∣1 − λh∣t. Divergence happens when
∣1 − λh∣ > 1. The range of viable learning rates is thus:

λGD ≤ 2/h = 2/Ex[x
2]. (12)

Naively, one would expect that a similar condition approximates the stability condition for the case
when mini-batch sampling is used to estimate the gradient.

For SGD, the variance stability condition is the same as the condition that the second moment of
SGD decreases after every time step, starting from an arbitrary initialization (see Section C.1.1):

λDS ≤
2S2E[x2]

E[x4] + (S − 1)2E[x2]2
. (13)

Also related is the stability condition proposed by Ziyin et al. (2022b), who showed that starting
from a stationary distribution, w stays stationary under the condition λSS <

2
h

1
1+1/S

, which we call
the stationary linear stability condition (SS). When we have batch size 1, the stability condition
halves: λ < 1/h. For all stability conditions, we denote the maximum stable learning rate with an
asterisk as λ∗.

For the probabilistic stability, let us consider the interpolation regime, where all data points (x, y) ∈
R2 lie on a straight line. In this situation, the loss function has a unique global minimum of w∗ =
yi/xi for any i. Applying Theorem 1, one can immediately prove the following proposition.

Proposition 4. Let λ be such that Ex[log ∣1 − λx
2∣] ≠ 0. Then, for any w0, wt →p w∗ if and only if

Ex[log ∣1 − λx
2∣] < 0.

It is worth remarking that this condition is distinctively different from the case in which the gradient
noise is a parameter-independent random vector. For example, Liu et al. (2021) showed that if the
gradient noise is a parameter-independent Gaussian, SGD diverges in distribution if λ > 2/h. This
suggests that the fact that the noise of SGD is w-dependent is crucial for its probabilistic stability.

One of the implications of the probabilistic stability is that for λ = 1/x2
i , the SGD dynamics is

always stable. Therefore, the largest stable learning rate is roughly given by:

λmax = 1/x
2
min. (14)

However, for these special choices of learning rates, the moment stability is not always guaranteed.
As mentioned earlier, convergence in mean occurs when λ ≤ λ∗DS . However, this condition does
not hold when λ = 1/x2

min and xmin < E[xi]/2, which is often the case for standard datasets. This
result shows that the maximal learning rate that ensures stable training can be much larger than the
maximal learning rate required for convergence in mean (cf. (13)). For a fixed value of E[x2], x2

min
can be arbitrarily small, which means that the maximal stable learning rate can be arbitrarily large.
Another consequence of this result is that the stability of SGD depends strongly on individual data
points and not just on summary statistics of the whole dataset.

This result highlights the importance of the Lyapunov exponent Λ = Ex[log ∣1−λx
2∣] and its sign in

understanding the convergence of wt to the global minimum. When Λ is negative, the convergence
to the global minimum occurs. If Λ is positive, SGD becomes unstable. We can determine when Λ
is negative for a training set of finite size by examining the following equation:

Λ =
1

N
∑
i

log ∣1 − λx2
i ∣, (15)
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(a) N = 2 (b) N = 6 (c) N = 500 (d) N = 500

Figure 12: Stability of SGD against a single outlier data in a dataset of size N . Yellow denotes where SGD
converges in probability, and dark blue denotes divergence. We control the norm of the first data point (x2

1)
while sampling the rest data from a standard normal distribution. (a-c) Stability of SGD for different sizes of
the dataset; (d) zoom-in of (c) at a small learning rate. The grey dashed curves show λ∗GD , and the green dashed
curve shows λ∗GD/N . The intermediate finite learning rates are robust against outliers in the data, whereas the
smallest learning rates are strongly sensitive to outliers in the data.

which is negative when λ is close to 1/x2
i for some i ∈ 1, . . . ,N . What is the range of λ values

that satisfy this condition? Suppose that λ is in the vicinity of some 1/x2
i : λ = δλ + 1/x2

i , and the
instability is caused by a single outlier data point xout ≫ 1. Then, Λ is determined by the competing
contributions from the outlier, which destabilizes training, and x2

i , which stabilizes training, and the
resulting condition is approximately ∣1 − λx2

i ∣ < 1/∣λx
2
out∣. Because λ ≈ 1/x2

i , this condition leads
to:

∣δλ∣ < x2
i /x

2
out. (16)

This is a small quantity. However, if we change the learning rate to the stability region associated
with another data point xj as soon as we exit the stability region of xi, we still maintain stability.
Therefore, the global stability region depends on the density of data points near xi. Assuming that
there are N data points near xi with a variance of σ2, the average distance between xi and its
neighbors is approximately σ2/N . As long as σ2/N < x2

i /x
2
out, SGD will remain stable in a large

neighborhood. In practical terms, this means that when the number of data points is large, SGD is
highly resilient to outliers in the data as shown in Figure 12. We see that the region of convergence in
probability is dramatic, featuring stripes of convergent regions that correspond to 1/x2

i for each data
point and divergent regions where Λ > 0. While simple, this example has a fundamental implication:
there are problems that cannot be learned by SGD at a small learning rate but can be learned by SGD
at a finite learning rate. This implies the insufficiency of the commonly used stochastic differential
equation theories of SGD (Li et al., 2021).

An important implication is the robustness of SGD to outliers in comparison to gradient descent.
As Figure 12 shows, the bulk region of probabilistic stability stays roughly unchanged as the outlier
data point becomes larger and larger; in contrast, both λ∗GD and λ∗DS decreases quickly to zero.
In the bulk region of the learning rates, SGD is thus probabilistically stable but not stable in the
moments. Meanwhile, in sharp contrast to this bulk robustness is the sensitivity of the smallest
branch of learning rates of SGD to the outliers. Assuming that there is an outlier data point with a
very large norm c≫ N , the largest λGD scales as λmax ∼ Nc−1. In contrast, for SGD, the smallest
branch of the probabilistically stable learning rate scales as c−1, independent of the dataset size. This
means that if we only consider the smallest learning rate, SGD is much less stable than GD, and one
needs to use a much smaller learning rate to ensure convergence. For λDS a detailed analysis in
Section C.1.1 shows that λ∗DS = (Nc)−1. Thus, the threshold of convergence in mean square is yet
one order of magnitude smaller than that of probabilistic convergence. In the limit N → ∞, SGD
cannot converge in variance but can still converge in probability.
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C.1.1 L2 STABILITY CONDITIONS AND THE DERIVATION OF EQ. (13)

For a general batch size S, the dynamics of SGD reads

wt+1 = wt − λwt
1

S

S

∑
i=1

x2
i (17)

= wt (1 − λ
1

S

S

∑
i=1

x2
i) . (18)

The second moment of wt+1 is

Ex[w
2
t+1∣wt] = w

2
tEx (1 − λ

1

S

S

∑
i

x2
i)

2

(19)

= w2
t

⎛

⎝
1 − 2λE[x2] +

λ2

S2

S

∑
i,j

E[x2
ix

2
j ]
⎞

⎠
(20)

= w2
t (1 − 2λE[x

2] +
λ2

S2
E[x4] +

λ2(S − 1)2

S2
E[x2]2) . (21)

Note that this equation applies to any wt ∈ R. Therefore, the second moment of wt is convergent if

1 − 2λE[x2] +
λ2

S2
E[x4] +

λ2(S − 1)2

S2
E[x2]2 < 1, (22)

which solves to

λ <
2S2E[x2]

E[x4] + (S − 1)2E[x2]2
. (23)

This condition applies to any data distribution. One immediate observation is that it only depends
on the second and fourth moments of the data distribution and that both moments need to be finite
for convergence at a non-zero learning rate. It is quite instructive to solve this condition under a few
special conditions.

Gaussian Data Distribution The condition (23) takes a precise form when the data is Gaussian.
Using the fact that for a Gaussian variable x with variance σ2, E[x4] = 3σ4, the condition simplifies
to

λ <
2

E[x2]

S2

3S + (S − 1)2
. (24)

This is the same as Eq. (13).

Bernoulli Dataset Another instructive case to consider is the case when there are only two data
points in the data: x1 and x2. The moments are

{
E[x2] = 1

2
(x2

1 + x
2
2),

E[x4] = 1
2
(x4

1 + x
4
2).

(25)

When one of the data points, say x1, is large, the condition becomes

λ <
2S2x2

1

2x4
1 + (S − 1)

2x4
1

=
2S2

x2
1

1

2 + (S − 1)2
. (26)

Extreme Outlier We can also consider the general case of a finite dataset with a large outlier,
xmax. The condition is similar to the Bernoulli case. We have

{
E[x2] ≈ 1

N
x2
max,

E[x4] ≈ 1
N
x4
max.

(27)

The condition reduces to

λ <
2S2

Nx2
max

1

1 + (S−1)
2

N

. (28)
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This can be seen as the generalization of the Bernoulli condition. When S = 1, this condition
becomes

λ <
2

Nx2
max

. (29)

There are many other interesting limits of this condition we can consider from the perspective of
extreme value theory. However, this is beyond the scope of this work and we leave it as an interesting
future work.

C.2 PROOFS

C.2.1 PROOF OF THEOREM 1

Proof. Consider Eq. (1):
θt+1 = θt − λĤ(x)(θt − θ

∗). (30)
Defining wt = θt − θ

∗, this equation can be written as

wt+1 = wt − λĤ(x)wt, (31)

which is mathematically equivalent to the case when θ∗ = 0. Therefore, without loss of generality,
we write the dynamics in the form of Eq. (31) in this proof and the rest of the proofs.

Now, when Ĥ ∝ nnT is rank-1, we can multiply nT from the left on both sides of the dynamics to
obtain

nTwt+1 = n
Twt − λh(x)n

Twt. (32)

The dynamics thus becomes one-dimensional in the direction of nT .

Let ht denote the eigenvalue of the Hessian of the randomly sampled batch at time step t. The
dynamics in Eq. (3) implies the following dynamics

∥nTwt+1∥/∥n
Twt∥ = ∣1 − λht∣, (33)

which implies

∥nTwt+1∥/∥n
Tw0∥ =

t

∏
τ=1

∣1 − λhτ ∣. (34)

We can define auxiliary variables zt ∶= log(∥nTwt+1∥/∥n
Tw0∥) − m and m ∶=

E[log(∥nTwt+1∥/∥n
Tw0∥)] = tEx[log ∣1 − λht∣]. Let ϵ > 0. We have that

P(∥nTwt∥ < ϵ) = P(∥nTw0∥e
zt+m < ϵ) (35)

= P(
1

t
zt <

1

t
(log ϵ/∥nTw0∥ −m)) (36)

= P(
zt
t
< −Ex log ∣1 − λht∣ + o(1)) . (37)

By the law of large numbers, the left-hand side of the inequality converges to 0, whereas the right-
hand side converges to a constant. Thus, we have, for all ϵ > 0,

lim
t→∞

P(∥nTwt∥ < ϵ) = {
1 if m < 0;
0 if m > 1.

(38)

This completes the proof.

C.2.2 PROOF OF PROPOSITION 2

Proof. Part 2 of the proposition follows immediately from Proposition 5, which we prove below.
Here, we prove part 1.

It suffices to consider a dataset with two data points for which h(x1) = 1/λ and h(x2) = c0, where
each data point is sampled with equal probability. Let c0 be such that

∣1 − λc0∣
p >

1

2
. (39)
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Now, we claim that this dynamics converges to zero in probability. To see this, note that

∥zt+1∥ = {
∥zt∥∣1 − λ/λ∣ = 0 with probability 0.5;

∥zt∥∣1 − λc0∣ with probability 0.5.
(40)

Therefore, at time step t, P(zt = 0) ≥ 1− 2−t, which converges to 0. This means that zt converges in
probability to 0.

Meanwhile, the p-norm is

E[∥zt+1∥p] =
1

2
E[∥zt∥p]∣1 − λc0∣p (41)

∝
1

2t
∣1 − λc0∣

pt → 0. (42)

The convergence to zero follows from the construction that ∣1 − λc0∣
p > 1

2
. This completes the

proof.

Proposition 5. (No convergence in Lp.) For every strict saddle point θ∗, there exists an initialization
θ0 such that for any λ ∈ R+ and distance function f(⋅, θ∗), θ∗ is unstable in f .

Proof. This problem is easy to prove when θ is one-dimensional. For a high-dimensional θ, the
dynamics of SGD is

θt+1 = (I − λĤt)θt. (43)
Note that the expected value of θt is the same as the gradient descent iterations:

E[θt+1] = (I − λE[Ĥ])E[θt] = (I − λE[Ĥ])tθ0, (44)

which diverges if θ0 is in one of the escape directions of E[Ĥ], which exist by the definition of strict
saddle points.

Taking the f−distance of both sides and taking expectation, we obtain

E[f(θt, θ∗)] ≥ f(E[θt], θ∗) (45)

= f ((I − λE[Ĥ])tθ0, θ∗)↛ 0. (46)

The first line follows from the fact that the distance function is convex by definition, and so one can
apply Jensen’s inequality.

Therefore, as long as θ0 overlaps with the concave directions of E[Ĥ], the argument of f diverges,
which implies that the distance function converges to a nonzero value. The expected value of θt is
just the gradient descent trajectory, which diverges for any strict saddle point.

By definition, E[Ĥ] contains at least one negative eigenvalue, and so the directions that do not over-
lap with this direction are strict linear subspaces with dimension lower than the the total available
dimensions. This is a space with Lesbegue measure zero. The proof is complete.

C.2.3 PROOF OF THEOREM 2

Let us first state the Furstenberg-Kesten theorem.
Theorem 3. (Furstenberg-Kesten theorem) Let X1, X2, X3, ... be independent random square
matrices drawn from a metrically transitive time-independent stochastic process and E[log

+
∥X1∥ <

∞], then7

lim
n→∞

1

n
log ∥X1X2...Xn∥ = lim

n→∞
E [

1

n
log ∥X1X2...Xn∥] (47)

with probability 1, where ∥ ⋅ ∥ denotes any matrix norm.

Namely, the Lyapunov exponent of every trajectory converges to the expected value almost surely.
Essentially, this is a law of large numbers for the Lyapunov exponent.

Now, we present the proof of Theorem 2.
7log

+
(x) =max(logx,0).
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Proof. First of all, we define mt = log ∥θt − θ
∗∥ and zt =mt −E[mt]. By definition, we have

P(gt < ϵ) = P(ezt+mt < ϵ) (48)

= P(
1

t
(zt +E[mt]) <

1

t
log ϵ) (49)

= P(
1

t
(zt +E[mt]) < o(1)) . (50)

We can lower bound this probability by

P(
1

t
(zt +E[mt]) < o(1)) ≥ P(

1

t
max
θ0
(zt +E[mt]) < o(1)) . (51)

By the definition of SGD, we have

1

t
max
θ0
(zt(θ0) +E[mt]) =

1

t
max
θ0

log ∥
t

∏
i

(I − λĤi)(θt − θ0)∥ . (52)

By the Furstenberg-Kesten theorem (Furstenberg & Kesten, 1960), this quantity converges to the
constant Λ = limt→∞E[mt]/t ∈ R almost surely. Namely, zt/t converges to 0 for almost every SGD
trajectory.

Thus, for every ϵ, if Λ < 0, Eq. (50) can be bounded as

lim
t→∞

P(gt < ϵ) = P(Λ < 0) = 1. (53)

Because Λ is a constant, we have that if Λ < 0, all trajectories from all initialization converge to 0.
This finishes the first part of the proof. For the second part, simply let zt be the trajectory starting
from the trajectory that achieves the maximum Lyapunov exponent. Again, this dynamics escapes
with probability 1 by the Furstenberg-Kesten theorem. The proof is complete.

C.2.4 PROOF OF PROPOSITION 3

Proof. We consider the dynamics of SGD around a saddle:

ℓ = −χ∑
i

uiwi, (54)

where we have combined 1
S ∑(x,y)∈Bxy into a single variable χ. The dynamics of SGD is

{
wi,t+1 = wi,t + λχui,t;

ui,t+1 = ui,t + λχwi,t.
(55)

Namely, we obtain a set of coupled stochastic difference equations. Since the dynamics is the same
for all values of the index i, we omit i from now on. This dynamics can be decoupled if we consider
two transformed parameters: ht = wt + ut and mt = wt − ut. The dynamics for these two variables
is given by

{
ht+1 = ht + λχht;

mt+1 =mt − λχmt.
(56)

We have thus obtained two decoupled linear dynamics that take the same form as that in Theorem 1.
Therefore, as immediate corollaries, we know that h converges to 0 if and only if EB[log ∣1+λχ∣] <
0, and m converges to 0 if and only if EB[log ∣1 − λχ∣] < 0.

When both h and m converge to zero in probability, we have that both w and u converge to zero in
probability. For the data distribution under consideration in section 4 and for batchsize one, we have

E[log ∣1 + λχ∣] =
1

2
log ∣(1 + λ)(1 + λa)∣ (57)

and
E[log ∣1 − λχ∣] =

1

2
log ∣(1 − λ)(1 − λa)∣ . (58)

There are four cases: (1) both conditions are satisfied; (2) one of the two is satisfied; (3) neither is
satisfied. These correspond to four different phases of SGD around this saddle.
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